
Controlled Query Evaluation over Prioritized
Ontologies with Expressive Data Protection Policies?

Gianluca Cima1[0000−0003−1783−5605], Domenico Lembo2[0000−0002−0628−242X],
Lorenzo Marconi2[0000−0001−9633−8476], Riccardo Rosati2[0000−0002−7697−4958], and

Domenico Fabio Savo3[0000−0002−8391−8049]

1 University of Bordeaux, CNRS, Bordeaux INP, LaBRI
gianluca.cima@u-bordeoux.fr

2 Sapienza Università di Roma
{lembo,marconi,rosati}@diag.uniroma1.it

3 Università degli Studi di Bergamo
domenicofabio.savo@unibg.it

Abstract. We study information disclosure in Description Logic ontologies, in
the spirit of Controlled Query Evaluation, where query answering is filtered
through optimal censors maximizing answers while hiding data protected by a
declarative policy. Previous works have considered limited forms of policy, typ-
ically constituted by conjunctive queries (CQs), whose answer must never be
inferred by a user. Also, existing implementations adopt approximated notions
of censors that might result too restrictive in the practice in terms of the amount
of non-protected information returned to the users. In this paper we enrich the
framework, by extending CQs in the policy with comparison predicates and in-
troducing preferences between ontology predicates, which can be exploited to
decide the portion of a secret that can be disclosed to a user, thus in principle
augmenting the throughput of query answers. We show that answering CQs in
our framework is first-order rewritable for DL-LiteA ontologies and safe poli-
cies, and thus in AC0 in data complexity. We also present some experiments on
a popular benchmark, showing effectiveness and feasibility of our approach in a
real-world scenario.

1 Introduction

In this paper, we study how to manage disclosure of sensitive information in Descrip-
tion Logic (DL) ontologies. This problem has been recently addressed in knowledge-
based systems through Controlled Query Evaluation (CQE) [12,7,9,5,8], a declara-
tive approach to data confidentiality preservation, originally investigated in the con-
text of databases [14,4]. In a nutshell, CQE over ontologies involves specifying a data-
protection policy as a set of queries whose answer must never be inferred by a user who
? This work was partly supported by the ANR AI Chair INTENDED (ANR-19-CHIA-0014),

by the EU within the H2020 Programme under the grant agreement 834228 (ERC Advanced
Grant WhiteMec) and the grant agreement 825333 (MOSAICrOWN), by Regione Lombardia
within the Call Hub Ricerca e Innovazione under the grant agreement 1175328 (WATCH-
MAN), and by the Italian MUR (Ministero dell’Università e della Ricerca) through the PRIN
project HOPE (prot. 2017MMJJRE), and by Sapienza (project CQEinOBDM).

2 G. Cima et al.

is able to make standard reasoning and query answering over the ontology. To enforce
privacy preservation, query answering is altered by a function called censor. Intuitively,
optimal censors maximize answers to queries still guaranteeing that disclosed informa-
tion cannot lead to answer queries in the policy.

Among various approaches, the one proposed in [6] has been shown to be par-
ticularly interesting from the practical point of view, since it allows for an effective
reduction of conjunctive query answering under censors over DL-LiteR ontologies to
standard processing of conjunctive queries in Ontology-based Data Access (OBDA),
where mappings connecting the ontology to a source database can filter the data acting
as a censor. This approach is based on the notion of IGA censor. Intuitively, the IGA
censor protects data by disclosing to the users the intersection of all inclusion-maximal
subsets of the ground facts that are inferred by the ontology and that do not violate the
policy (such subsets are returned by so-called optimal GA censors [6,12]).

Example 1. Assume that an oil company wants to keep information on unproduc-
tive wildcat drilling confidential, since it does not want to disclose data about the
failure of this high-risk exploration activity in new areas outside of known extrac-
tion fields1. Thus, no answer has to be returned to the query ∃x.emptyWell(x) ∧
type(x, ‘wildcat’). Assume also that the terminological component of the ontology,
i.e., the TBox, says that each empty well is a wellbore and it is maintained by some-
one (e.g., a sub-unit of the company), and also that everything having a type is
maintained by someone (i.e., emptyWell v wellbore, emptyWell v ∃maintainedBy,
∃type v ∃maintainedBy, in DL formulas), and consider an ontology ABox containing
the facts emptyWell(e) and type(e, ‘wildcat’). Two optimal GA censors exist, one ex-
posing to users the facts {emptyWell(e),wellbore(e)}, and the other accounting for
{type(e, ‘wildcat’),wellbore(e)} (note that wellbore(e) is implied by the ontology).
Thus, the IGA censor returns only the fact wellbore(e). ut

The use of the above approach in practice is however hampered by some limitations
of the proposed framework. Namely, the policy considered in [6] allows only for the
specification of conjunctive queries (CQs), thus ruling out many important data pro-
tection statements typical of real-world applications. The company of our example, for
instance, might want to protect only data referring to facts occurred after a certain year,
and this cannot be expressed through a CQ. Moreover, IGA censors might result too
restrictive with respect to the amount of non-protected data disclosed to the user. In our
example, the query ∃x.maintainedBy(e, x) is implied under both the GA censors (i.e.,
inferred by each ontology we obtain by coupling the TBox with the ABox returned by
a GA censor), but it is not implied under the IGA censor. Thus, confidentiality pro-
tection through IGA censors might obfuscate too much information. At the same time,
answering CQs by reasoning over all GA censors is intractable, as shown in [12], and
randomly selecting one single censor is arbitrary without additional metadata.

However, in practical scenarios such metadata are often available, and may lead to
prefer one censor to another, so that simply taking the intersection of the results of all
censors would be unsatisfactory. For instance, the company of our example might con-
sider it preferable to disclose type(e, ‘wildcat’) over emptyWell(e), but not acceptable
disclosing both, according to the policy. This situation calls for new modeling tools.

1 This example is inspired by the benchmark we use in the experiments.

CQE over Prioritized Ontologies with Expressive Data Protection Policies 3

In this paper we contribute to fill the previous gaps, by enriching the CQE frame-
work of [6] to support prioritized ontologies and a more expressive policy language2,
thus allowing for a more flexible management of information disclosure, still guaran-
teeing feasibility of the approach. Our contributions can be summarized as follows:

– We consider ontologies specified in DL-LiteA, which is more expressive than
DL-LiteR studied in [6] and is one of the richest DLs of the DL-Lite family, i.e., the
logical underpinning of the OWL 2 profile OWL 2 QL3.

– We extend the policy language by allowing for CQs with atoms using comparison
predicates, in a controlled way.

– We allow for the presence of priority relations between ontology predicates, such
as, e.g., type�emptyWell, and exploit them to identify preferred optimal censors.
To this aim, we first propose priority-based censor semantics for our framework,
by adapting the well-known notions of Pareto and Global optimal repairs proposed
in [15] in the context of Consistent Query Answering (CQA). To overcome in-
tractability of query answering under such semantics, we provide a sound approx-
imation of both the Pareto and Global censors, called DD censor, for which CQ
answering in DL-LiteA is polynomial in data complexity.

– We exhibit a parametrized version of the DD censor enabling for first-order
rewritable CQ answering in DL-LiteA, which proves AC0 data complexity.

– We show practical applicability of our approach through an experimental study
over the NPD benchmark [11]. To this aim, we cable our rewriting technique in
the method given in [6] that solves query answering under censors via a reduction
to query processing in OBDA. Our experiments show that CQE under priorities
is feasible in practice and that priorities are particularly effective in increasing the
amount of data disclosed to the user, still guaranteeing confidentiality preservation.

Related work. Previous works on CQE over ontologies have considered policies ex-
pressed as ground atoms [8], ontology axioms [5], or CQs [9,12,7,6], which, as said, we
extend with the presence of comparison predicates. Query answering under censors as
a form of skeptical reasoning, as we do in this paper, has been first investigated in [12],
from the theoretical viewpoint. In [5] and [7] censors over DL ontologies have been
studied under the indistinguishability perspective, explicitly requiring that the answer
returned by a censor does not allow the user to distinguish the instances containing sen-
sitive information from the ones with no secrets. As shown in [5], this property may also
protect from attacks of users with some background knowledge, thus it is important for
robust privacy-preservation. We remark that, as proved in the following, the censors we
consider in this paper satisfy this property. Leveraging an indistinguishability-based no-
tion of source policy compliance, reference [2] studies information disclosure in OBDA,
but does not consider query answering, as we do in this paper.

To the best of our knowledge, this is the first paper considering CQE over prioritized
ontologies. The priority-based CQE semantics we propose are adapted from the litera-
ture on CQA. More in detail, our DD censor has a correspondence with the grounded

2 For the sake of presentation, we consider here CQE over ontologies. Our extensions and results
apply straightforwardly to a privacy-protected OBDA framework [6].

3 https://www.w3.org/TR/owl2-profiles/

https://www.w3.org/TR/owl2-profiles/

4 G. Cima et al.

extension recently introduced in [3] through a transformation of the CQA problem into
argumentation framework. Also, our rewritability result corresponds to an analogous
finding mentioned in that paper. Besides the differences between the settings studied in
the two papers, we remark that priorities considered in [3] are specified between ABox
facts, whereas we here assume priorities between ontology predicates, maintaining this
aspect at the intensional level, thus enriching the modeling abilities of the system de-
signer. Furthermore, our treatment is tailored to CQE, and does not require transforma-
tion into a different problem, thus streamlining the technical aspects of the approach.
Finally, the rewriting algorithm that we provide allows us to easily exploit the idea of
[6] for solving CQE over ontologies through the use of off-the-shelf tools for OBDA.

Paper organization. In Section 2 we provide some preliminaries. In Section 3 we
present the CQE framework for ontologies and the new policy language considered
in this paper. In Section 4 we introduce priority relations between ontology predicates
and define Pareto and Global censors. In Section 5 we provide sound approximations
of the Pareto and Global censors and give our query-rewriting algorithm. In Section 6,
we present our experiments, and in Section 7 we conclude the paper.

2 Preliminaries

Description Logics (DLs) are decidable first-order (FO) languages using unary and bi-
nary predicates [1]. Unary predicates are called concepts, corresponding to classes in
OWL, which denote sets of objects, whereas binary predicates can be either roles, called
object properties in OWL, denoting relations between concepts, or attributes, called data
properties in OWL, denoting relations between concepts and data-types. Hereinafter we
assume to have the pairwise disjoint countably infinite alphabets ΣO, ΣI , ΣV , and ΣV ,
for ontology predicates, constants (a.k.a. individuals), values, and variables, respec-
tively. ΣO is in turn partitioned in three pairwise disjoint sets ΣC , ΣR, ΣA, for names
of concepts, a.k.a. atomic concepts, roles, a.k.a. atomic roles, and attributes, respec-
tively. Furthermore, with ΣT = ΣI ∪ΣV ∪ΣV we denote the alphabet of terms.

A DL ontology O is a set T ∪ A, where T is the TBox, i.e., a finite set of asser-
tions modeling intensional knowledge, and A is the ABox, i.e., a finite set of assertions
specifying extensional knowledge. For us, an ABox is always a set of assertions of the
form A(a), P (a, b), U(a, v), where A ∈ ΣC , P ∈ ΣR, U ∈ ΣA, a, b ∈ ΣI , and
v ∈ ΣV . The set of concept, role, and attribute names occurring in O is the signature
of O, denoted ΣO(O). The semantics of O is given in terms of interpretations [1]. A
model of O is an interpretation that satisfies all assertions in T and A. O is consistent
if it has at least one model, inconsistent otherwise. Then, O entails an FO sentence φ,
i.e., a closed FO formula, if φ is true in every model of O. Given a TBox T , an ABox
A for T contains only assertions over ΣO(T), ΣI and ΣV , andA is such that T ∪A is
consistent. In the following, given an ABox A for T , we denote by cl(T ,A) the set of
all facts α constructible over the alphabets ΣO(T), ΣI and ΣV , such that T ∪ A |= α.

A query q over a DL ontology O is an FO formula φ(~x) over ΣO(O) ∪ ΣT . The
variables in ~x are the free variables of q, and the number of variables in ~x is the arity
of q. The evaluation of q over a model I for O is the set of tuples of elements in the
domain of I that assigned to the variables in ~x make the query true in I.

CQE over Prioritized Ontologies with Expressive Data Protection Policies 5

An atom over ΣO ∪ ΣT is an expression of the form A(t), P (t1, t2) or U(t1, t2)
where A ∈ ΣC , P ∈ ΣR, U ∈ ΣA and t, t1, t2 are terms from ΣT . A query q over
O is a conjunctive query (CQ) if φ(~x) is an expression of the form ∃~y.S1(~x, ~y) ∧ . . . ∧
Sn(~x, ~y), where n ≥ 1, ~y are the existential variables, and each Si(~x, ~y) is an atom over
ΣO(O)∪ΣT with variables in ~x∪ ~y. Each variable in ~x∪ ~y occurs in at least one atom
of q. Boolean CQs (BCQs) are queries whose arity is zero (i.e., BCQs are sentences).

We will focus on the DL-LiteA language, whose constructs are formed as follows:

B −→ A | ∃R | ∃U R −→ P | P−

where A ∈ ΣC , P ∈ ΣR, P− is the inverse of P ∈ ΣR, and U ∈ ΣA. B and R denote
a basic concept and a basic role, respectively. The concept ∃R and ∃U are the domain
of R and U , respectively. DL-LiteA TBox assertions assume the following form:

B1 v B2 R1 v R2 U1 v U2 ρ(U) v F
B1 v ¬B2 R1 v ¬R2 U1 v ¬U2 (funct R) (funct U)

where ρ(U) denotes the range of an attribute U , i.e., the set of values to which U relates
some object, and F ⊆ ΣV is a value-domain (e.g., integers, strings, etc.). A DL-LiteA
TBox T is a finite set of assertions of the above kind, such that each basic role R or
attribute U that is functional in T , i.e., (funct R) ∈ T or (funct U) ∈ T , is never
specialized, i.e., it (or its inverse, in the case of role) does not occur in assertions of the
form R′ v R or U ′ v U . For the semantics of DL-LiteA, we refer the reader to [13].

All our complexity results are given with respect to the size of the ABox only, i.e.,
they refer to data complexity. For the sake of exposition, in the following we deal with
entailment of BCQs from DL ontologies. Our results can be straightforwardly extended
to non-Boolean CQs, which we indeed consider in the experiments.

3 Framework for CQE in DLs

We now define the framework for CQE over DL ontologies. In this section we do not
consider priorities between ontology predicates, which will be introduced in the next
section. We start with the definition of Boolean CQs with inequalities (BCQineq). To
this aim, we first define inequality atoms over ΣT as expressions of the form t1op t2
where t1, t2 ∈ ΣT and op ∈ {6=, <,≤, >,≥}. Then, a BCQineq q over an ontologyO,
is a sentence of the form: ∃~y.α1 ∧ . . .∧αn ∧ρ1 ∧ . . .∧ρm, where n ≥ 1, m ≥ 0, every
αi is an atom over ΣO(O)∪ΣT , with variables in ~y, and every ρi is an inequality atom
over ΣT with variables in ~y. We denote as Ineq(q) the set of inequality atoms occurring
in q, and as Pos(q) the Boolean CQ obtained from q by eliminating all the inequality
atoms. We also assume that every variable x occurring in Ineq(q) occurs at least once
in Pos(q). The evaluation of q over an interpretation is given in the standard way, by
assuming that {6=, <,≤, >,≥} are interpreted in the same way in every interpretation.

Given a DL TBox T , a policy P for T is a set of denial assertions (or simply de-
nials), i.e., formulas of the form ∀~x.φ(~x)→ ⊥ such that ∃~x.φ(~x) is a BCQineq over T .
We always assume that T ∪P is consistent, i.e., there exists a model I of T such that all
the formulas in P are satisfied. We point out that queries used in the previous definition

6 G. Cima et al.

are more expressive than formulas used in policies in previous works on CQE over on-
tologies (e.g., [9,12,7]). We also notice that reasoning over T ∪ P may be problematic
from a computational viewpoint, even for a TBox expressed in a light DL. At the end of
this section we will give a syntactic restriction on the interaction between T and P for
the case in which T is a DL-LiteA TBox. As we will show in the rest of the paper, this
restriction is enough to obtain a setting with well-founded CQE semantics and efficient
reasoning (namely query answering), amenable to implementation.

An L CQE specification E is a pair 〈T ,P〉, where T is a TBox in the DL L and P a
policy for T (we will omit L for definitions and results applying to any DL language).

Example 2. Consider the DL-LiteA CQE specification E = 〈T ,P〉, where:

T = {∃doc− v wellbore}
P = {∀w, y, d.wellbore(w) ∧ type(w, ‘wildcat’) ∧ year(w, y) ∧ doc(d,w) ∧ y > 1980→ ⊥,

∀w, y.wellbore(w) ∧ year(w, y) ∧ doc(d,w) ∧ y > 1992→ ⊥,
∀w, d.wellbore(w) ∧ doc(d,w) ∧ age(w, ‘Eocene’)→ ⊥}

In words, the TBox T sanctions that the documents are always about wellbores. The
first denial in P declares confidential documents about wildcat wellbores that have been
drilled after 1980. The second denial asserts that documents about wellbores drilled
after 1992 have not to be disclosed. Finally, the last denial specifies that no document
about wellbores that extract hydrocarbons from lithostratigraphic unit of Eocene era
have to be divulged. ut

A censor for E is a function disclosing only information that does not lead to viola-
tions of the policy P . Below we provide a notion studied in [12,7,6].

Definition 1 (GA censor). Let E = 〈T ,P〉 be a CQE specification. A Ground Atom
(GA) censor for E is a function cens(·) such that for each ABox A for T , returns a set
cens(A) ⊆ cl(T ,A) such that T ∪ P ∪ cens(A) is consistent

Given two GA censors cens(·) and cens′(·) for a CQE specification E = 〈T ,P〉, we
say that cens′(·) is more informative than cens(·) if: (i) cens(A) ⊆ cens′(A), for every
ABoxA for T , and (ii) there exists an ABoxA′ for T such that cens(A′) ⊂ cens′(A′).

We say that a GA censor cens(·) for E is optimal if there does not exist a GA
censor cens′(·) for E such that cens′(·) is more informative than cens(·). We denote by
optGACens(E) the set of all optimal GA censors for a CQE specification E .

Example 3. Let E be as in Example 2, and let cens(·) be the function such that, given
an ABox A for T , cens(A) = cl(T ,A′), where A′ is the ABox obtained from
A by adding the atom wellbore(w) and removing the atom doc(d,w) for each pair
of individuals (d,w) such that T ∪ A |= ∃y.(wellbore(w) ∧ type(w, ‘wildcat’) ∧
year(w, y) ∧ doc(d,w) ∧ y > 1980) ∨ (wellbore(w) ∧ year(w, y) ∧ doc(d,w) ∧ y >
1992) ∨ (wellbore(w) ∧ doc(d,w) ∧ age(w, ‘Eocene’)). One can easily verify that
cens ∈ optGACens(E). ut

We now define query entailment over GA censors.

Definition 2. Let E = 〈T ,P〉 be a CQE specification, q be a BCQ, and A be an ABox
for T . GA-Cens-Ent is the problem of deciding whether T ∪ cens(A) |= q for each
cens ∈ optGACens(E).

CQE over Prioritized Ontologies with Expressive Data Protection Policies 7

As shown in [12], the above problem is intractable even for light DLs such as
DL-LiteR and EL⊥, and for a policy language less expressive than the one we con-
sider in this paper. Towards the identification of a practical setting, in [6] the authors
have proposed a sound approximation of GA censors, for which entailment of BCQs
in DL-LiteR CQE specifications (with a policy denying CQs) has been shown to be
reducible to standard BCQ entailment in OBDA.

Definition 3 (IGA censor). Let E = 〈T ,P〉 be a CQE specification, the intersection
GA (IGA) censor for E is the function censIGA(·) such that, for every ABox A for T ,
censIGA(A) =

⋂
cens∈optGACens(E) cens(A).

The IGA censor for a CQE specification E always exists [6]. Given a BCQ q and
an ABox A for T , IGA-Cens-Ent amounts to decide whether T ∪ censIGA(A) |= q.
Obviously, IGA-Cens-Ent implies (i.e., it is a sound approximation of) GA-Cens-Ent.

Example 4. Consider the CQE specification E of Example 2 and Example 3, and the
ABox A = {type(o, ‘wildcat’), year(o, 1985), doc(d, o), age(o, ‘Eocene’)}. One can
verify that censIGA(A) = {wellbore(o)}. ut

As said in the introduction, to increase robustness of censors, literature on CQE has
often looked at censors satisfying a property of instance indistinguishability [4,5,2,7].
Intuitively, a censor fulfilling such a property masks confidential information in such a
way that a user cannot distinguish an instance actually containing data protected by the
policy from an instance without such data, so that the incompleteness of the information
of a possible attacker is increased. In our framework, this is formalized as follows.

Definition 4 (indistinguishability). Let E = 〈T ,P〉 be a CQE specification and
cens(·) be a censor for E . We say that cens(·) satisfies the indistinguishability prop-
erty if for every ABox A for T , there exists an ABox A′ for T (not necessarily distinct
from A) such that: (i) cens(A) = cens(A′), and (ii) T ∪ P ∪ A′ is consistent.

It is not difficult to see that the following proposition holds.

Proposition 1. For every CQE specification E , both optimal GA censors and the IGA
censor for E satisfy the indistinguishability property.

We next provide with two definitions that will be useful in the following. Let E =
〈T ,P〉 be a CQE specification and A be an ABox for T . We say that a set of ABox
assertions S ⊆ cl(T ,A) is a secret in T ∪ P ∪ A, if T ∪ P ∪ S is inconsistent and
for each assertion σ ∈ S we have that T ∪ P ∪ S \ {σ} is consistent. We denote with
secrets(T ,P,A) the set of all secrets in T ∪ P ∪ A, and, given an ABox assertion γ,
with inSecrets(T ,P,A, γ) the set of secrets S ∈ secrets(T ,P,A) such that γ ∈ S.

As announced, we conclude this section by discussing the case of DL-LiteA CQE
specifications to provide a practical syntactic condition that we will exploit to obtain
our main computational results. We say that a denial ∀~x.φ(~x) → ⊥ is safe w.r.t. a
DL-LiteA TBox T if every variable x in Ineq(∃~x.φ(~x)) occurs in Pos(∃~x.φ(~x)) only in
safe attribute range positions, i.e., in atoms of the formU(t, x) such thatU is an attribute
and there exists no basic concept B 6= ∃U such that T |= B v ∃U . Then, a policy P
is safe w.r.t. T , if P contains only denials that are safe w.r.t. T , and a DL-LiteA CQE
specification E = 〈T ,P〉 is safe if P is safe w.r.t. T . It is easy to see that the DL-LiteA
CQE specification of Example 2 (and throughout all examples of this paper) is safe.

8 G. Cima et al.

4 Prioritized CQE Framework

Given a TBox T , a priority relation � over T is an acyclic binary relation over the
signature of T , i.e., � ⊆ ΣO(T)×ΣO(T). A prioritized L CQE specification E� is a
triple 〈T ,P,�〉, such that 〈T ,P〉 is an L CQE specification.

Example 5. E� = 〈T ,P,�〉, where E = 〈T ,P〉 is as in Example 2 and � specifies
that type�doc and year�doc, is a (safe) prioritized DL-LiteA CQE specification. ut

The definitions of GA censor, optimal GA censor, IGA censor, GA-Cens-Ent, and
IGA-Cens-Ent apply also to a prioritized CQE specification (e.g., given one such speci-
fication E� = 〈T ,P,�〉, cens(·) is a GA censor for E� if it is a GA censor for the CQE
specification E = 〈T ,P〉). We also use for prioritized CQE specifications the same
notations introduced in Section 3 for CQE specifications, with the same meaning.

We now exploit the priority relation to define a preference criterion over censors. We
consider two optimality notions introduced by [15] in the context of consistent query an-
swering over databases, and recently adopted in [3] for repairing inconsistent prioritized
DL ontologies. Whereas the priority relations considered in this paper are intentional,
i.e., between ontology predicates, priorities considered in [15,3] are between (conflict-
ing) facts. Intentional priorities however straightforwardly induce priorities over facts:
given a TBox T , a priority relation � over T , an ABox A for T , and two assertions
S1(~n) and S2(~m) in A, we have that S1(~n)�S2(~m) if S1�S2. Below we take the defi-
nitions of Pareto- and Global-optimal repair from [3] and adapt them to our framework.

Definition 5 (Pareto/Global censor). Let E� = 〈T ,P,�〉 be a prioritized CQE spec-
ification, A be an ABox for T , and cens(·) ∈ optGACens(E�). We say that an ABox
A′ ⊆ cl(T ,A), such that A′ 6= cens(A) and T ∪ P ∪ A′ is consistent, is:

– a Pareto improvement of cens(A) w.r.t. E� if there exists γ′ ∈ A′ \ cens(A)
such that γ′�γ for every γ ∈ cens(A) \ A′ and {γ, γ′} ⊆ S for some S ∈
secrets(T ,P,A);

– a Global improvement of cens(A) w.r.t. E� if for each γ ∈ cens(A)\A′ there exists
γ′ ∈ A′\cens(A) such that γ′�γ and {γ, γ′} ⊆ S for some S ∈ secrets(T ,P,A).

Then, cens(·) is a Pareto (resp. Global) censor for E� if there exists no other GA
censor cens′(·) for E� such that, for each ABox A for T , either cens′(A) = cens(A)
or cens′(A) is a Pareto (resp. Global) improvement of cens(A) w.r.t. E�.

We denote with PCens(E�) (resp. GCens(E�)) the set of all Pareto (resp. Global)
censors for E�. It is easy to see that GCens(E�) ⊆ PCens(E�) ⊆ optGACens(E�)
for every E�, analogous to the containment between Global and Pareto repairs given
in [15]. Also, if � is empty, then PCens(E�) = GCens(E�) = optGACens(E�). As
done for GA censors, we define intersection-based versions of Pareto and Global cen-
sors. Namely, we call Intersection Pareto (IP) censor for E� the function censIP (·)
such that, for every ABox A for T , censIP (A) =

⋂
cens∈PCens cens(A), and Intersec-

tion Global (IG) censor for E� the function censIG(·) such that, for every ABox A
for T , censIG(A) =

⋂
cens∈GCens cens(A). Obviously, censIP (A) ⊆ censIG(A) for

each ABox A for T . Also, if � is empty, then, since PCens(E�) = GCens(E�) =
optGACens(E�), we have that censIP (·) = censIG(·) = censIGA(·).

CQE over Prioritized Ontologies with Expressive Data Protection Policies 9

Given an ABox A for T and a BCQ q, P-Cens-Ent (resp. G-Cens-Ent) is the prob-
lem of deciding whether T ∪ cens(A) |= q for each cens(·) ∈ PCens(E�) (resp.
cens(·) ∈ GCens(E�)), and IP-Cens-Ent (resp. IG-Cens-Ent) is the problem of de-
ciding whether T ∪ censIP (A) |= q (resp. T ∪ censIG(A) |= q). It is immediate to
see that P-Cens-Ent implies G-Cens-Ent, and IP-Cens-Ent (resp. IG-Cens-Ent) implies
P-Cens-Ent (resp. G-Cens-Ent). The following results immediately follow from [3].

Theorem 1. Let E�〈T ,P,�〉 be a safe prioritized DL-LiteA CQE specification, A be
an ABox for T , and q be a BCQ. P-Cens-Ent and IP-Cens-Ent are coNP-hard in data
complexity, whereas G-Cens-Ent and IG-Cens-Ent are Πp

2 -hard in data complexity.

Results in Theorem 1 represent a clear obstacle to the use of the above forms of
priority-based censors over real-world, large datasets. In the next section we will see
how these censors can be suitably approximated for a practical use.

5 FO-rewritable prioritized CQE in DL-LiteA

In this section we first give a deterministic notion of priority-based censor (DD censor)
and its parametrized sound approximation called k-DD censor. Then, we provide an
algorithm that computes a non-redundant policy, i.e., such that the image of each policy
assertion corresponds to a secret. This step is crucial in order to define our query rewrit-
ing technique, which shows that BCQ entailment under k-DD censors in DL-LiteA is
FO rewritable. The full rewriting algorithm is given in the last part of this section.

5.1 DD censors and k-DD censors

Theorem 1 clearly says that under Pareto or Global censors, or their intersection-based
versions, entailment of BCQs is inherently non-deterministic. Towards the identification
of a tractable approximation, we give below the notion of deterministically disclosed
(DD) and deterministically censored (DC) atoms. Hereinafter, given a priority relation
�, a fact α, and a set of facts S, we write α�S if there exists β ∈ S such that α�β.

Definition 6. Given a prioritized CQE specification E� = 〈T ,P,�〉 and an ABox
A for T , we denote by DD(E�,A) and DC(E�,A) the inclusion-minimal subsets of
cl(T ,A) such that:

DD(E�,A) = {α ∈ cl(T ,A) | ∀S ∈ inSecrets(T ,P,A, α) either α�(S \ {α})
or S ∩ DC(E�,A) 6= ∅ }

DC(E�,A) = {α ∈ cl(T ,A) | ∃S ∈ inSecrets(T ,P,A, α) s.t. S \ DD(E�,A) = {α}}

In words, a DD atom α is such that α does not occur in any secret, or, either, in each
secret in which it occurs there is an atom β such that α�β or β is a DC atom. Instead, a
DC atom is such that there is a secret where it is the only non-DD atom. It is immediate
to verify that DD(E�,A) and DC(E�,A) are unique for a given pair (E�,A).

Given a prioritized CQE specification E� = 〈T ,P,�〉, we call DD censor for E�
the function censDD(·) such that, for each ABox A for T , censDD(A) = DD(E�,A)

10 G. Cima et al.

Example 6. Consider the safe prioritized DL-LiteA CQE specification E� of Ex-
ample 5 and the censor cens of Example 3. We have that cens coincides with
the DD censor for E�. Moreover, for the ABox A of Example 4, cens(A) =
{wellbore(o), type(o, ‘wildcat’), year(o, 1985), age(o, ‘Eocene’)}. ut

The proposition below follows from the definition of DD censor4.

Proposition 2. Let E∅ = 〈T ,P, ∅〉 be a prioritized CQE specification with an empty
priority relation. The DD censor for E∅ coincides with the IGA censor for E∅.

It is also easy to verify that the DD censor satisfies the property given in Definition 4.

Proposition 3. For every prioritized CQE specification E�, the DD censor for E� sat-
isfies the indistinguishability property.

We now establish the relationship between DD censors and the previously presented
IP and IG censors.

Proposition 4. Let E� = 〈T ,P,�〉 be a prioritized CQE specification, and let
censIP (·) and censIG(·) be the Intersection Pareto and Global censor for E�. Then,
DD(E�,A) ⊆ censIP (A) ⊆ censIG(A), for every ABox A for T .

BCQ entailment under DD censors is defined as usual. Namely, given a prioritized
CQE specification E� = 〈T ,P,�〉, an ABox A for T , and a BCQ q, DD-Cens-Ent is
the problem of deciding whether T ∪ censDD(A) |= q. From Proposition 4, it follows
that DD-Cens-Ent implies IP-Cens-Ent (and consequently IG-Cens-Ent).

Given a prioritized CQE specification E� = 〈T ,P,�〉, and an ABox A for T , it is
not difficult to see that DD(E�,A) and DC(E�,A) correspond to the least fixpoint of
the equations:

DDi+1(E�,A) = {α ∈ cl(T ,A) | ∀S ∈ inSecrets(T ,P,A, α),
α�(S \ {α}) or S ∩ DCi(E�,A) 6= ∅ }

DCi+1(E�,A) = {α ∈ cl(T ,A) | ∃S ∈ inSecrets(T ,P,A, α) s.t.
S \ DDi(E�,A) = {α}}

where DD0(E�,A) = DC0(E�,A) = ∅. For safe prioritized DL-LiteA CQE spec-
ifications, computing such fixpoint is in P in the size of A, and from the results in
[3] it also follows that DD-Cens-Ent is P-hard in data complexity. By fixing a k, we
can define a new censor censDDk(·), which we call k-DD censor for E�, such that
censDDk(A) = DDk(E�,A), for each ABox A for T .

We next define BCQ entailment under k-DD censors, which is the problem that we
study in the rest of the paper for safe prioritized DL-LiteA CQE specifications.

Definition 7. Let E� = 〈T ,P,�〉 be a prioritized L CQE specification, k be a positive
integer,A be an ABox for T , and q be a BCQ. kDD-Cens-Ent is the problem of deciding
whether T ∪ censDDk(A) |= q.

4 A similar result is provided in [3, Theorem 38] in the context of CQA.

CQE over Prioritized Ontologies with Expressive Data Protection Policies 11

Since for every prioritized CQE specification E�, positive integer k, and ABox A,
DDk(E�,A) ⊆ DD(E�,A), the k-DD censor for E� constitutes a sound approximation
of the DD censor for E�, and thus kDD-Cens-Ent implies DD-Cens-Ent. Moreover, it
is immediate to verify that the k-DD censor preserves the indistinguishability property.

Example 7. For the specification E� of Example 5 and the ABox A of Example 4,
we have that DD1(E�,A) = {wellbore(o), type(o, ‘wildcat’), year(o, 1985)}, while
DD3(E�,A) = {wellbore(o), type(o, ‘wildcat’), year(o, 1985), age(o, ‘Eocene’)},
which coincides with the DD-censor for E�. ut

5.2 Generating a non-redundant policy specification

We now provide the algorithm PolicyRefine, which we use to produce a non-redundant
policy specification. A specification of this kind enjoys the property that every image
over the ABox of a BCQineq q in a policy denial is a secret, where the image is a minimal
set of facts inferring q. This property is crucial for the correctness of the query rewriting
algorithm presented in Section 5.3. It is not difficult to see that in general a policy can
be redundant. For example, consider the policy P = {A(x) ∧ U(x, y) ∧ y < 20 →
⊥;U(x, y) ∧ y < 15 → ⊥} and the ABox A = {A(a), U(a, 12)}, the ABox A itself
is an image of the query in the premise of the first denial, but it is not a secret, since
U(a, 12) alone is a secret. The technique we propose here extends the one discussed
in [6], tailored to policy assertions denying CQs.

We start with some preliminary definitions. As said before, the symbol op repre-
sents a comparison operator in {=, 6=, >,≥, <,≤}. Given a set of sets of inequalities
RC and a denial δ = ∀~x.φ(~x) → ⊥, we denote by τ(δ,RC) the function that returns
the extended denial assertion ∀~x.φ(~x) ∧ ¬(π(~x)) → ⊥, where π(~x) is the disjunction
of conjunctions of inequalities ∨

Ineq∈RC

(
∧

t1op t2∈Ineq
t1op t2)

In the rest of this section we call non-extended denial, or simply denial, a denial as
defined in Section 3. Moreover, we call extended policy a set of extended denials and
non-extended denials.

Given two set of inequalities Ineq and Ineq ′, we write Ineq |= Ineq ′ to denote that
every inequality in Ineq ′ is implied by the inequalities in Ineq .

Definition 8. Given an extended policy P and a non-extended denial δ in P , we say
that a set of inequalities Ineq is a strict redundancy condition for δ in P if there exists
δ′ ∈ P such that: (i) δ′ |= δ ∪ Ineq and δ ∪ Ineq 6|= δ′; (ii) there exists no set of
inequalities Ineq ′ such that Ineq |= Ineq ′ and δ |= δ′ ∪ Ineq ′ and δ′ ∪ Ineq ′ 6|= δ.

We say that a set SRC of strict redundancy conditions for δ in P ′ is complete if,
for every extended denial δ′ in P ′, if there exists a set of inequalities Ineq such that
conditions (i) and (ii) of Definition 8 hold, then there exists a set Ineq ′ ∈ SRC such
that Ineq |= Ineq ′.

Then, we say that an extended denial δ′ is a non-redundant representation of δ in
P ′ if every minimal ABoxA such that {δ′}∪A is inconsistent is also a minimal ABox
such that P ′ ∪ A is inconsistent.

12 G. Cima et al.

Algorithm 1 PolicyRefine

input: a policy P;
output: an extended policy P ′ that is a non-redundant representation of P;
1) P ′ ← ∅;
2) foreach denial δ ∈ P do
3) RC ← ∅;
4) foreach denial δ′ ∈ P such that δ 6= δ′ do
5) foreach partition Q1, . . . , Qk+1 of Atoms(δ) do
6) foreach partition Q′1, . . . , Q′k of PredAt(δ′)
7) such that, for each i s.t. 1 ≤ i ≤ k,
8) Qi ∪Q′i is a set of unifiable atoms do
9) σ ←

⋃
1≤i≤k MGU (Qi ∪Q′i);

10) if σ(Atoms(δ′)) 6|= σ(Qk+1)
11) then RC ← RC ∪ {σ} ∪ σ(CompAt(δ′));
12) P ′ ← P ′ ∪ {τ(δ,RC)};
13) return P ′;

Definition 9. We say that an extended policy P ′ is a non-redundant representation of
an extended policy P if: (i) P ′ is equivalent to P; and (ii) every δ ∈ P ′ is such that
there exists no strict redundancy condition for δ in P ′.

We are now able to define the algorithm PolicyRefine (Figure 1). Given a policy
P , PolicyRefine(P) returns an extended policy P ′ that is a non-redundant representa-
tion of P . To this aim, PolicyRefine identifies, for each denial δ in P , a set of sets of
inequalities RC that is a complete set of strict redundancy conditions for δ in P , and
then represents the denial δ by the extended denial τ(δ,RC) in P ′. In the algorithm,
Atoms(δ) denotes the set of all atoms occurring in the denial δ, PredAt(δ) denotes the
set of standard predicate atoms, and CompAt(δ) denotes the set of comparison atoms.
Moreover, MGU (Q) denotes the most general unifier of the set of atoms Q.

The correctness of the algorithm is stated by the following theorem.

Theorem 2. Let P be a policy and let P ′ be the extended policy returned by
PolicyRefine(P). Then, P ′ is a non-redundant representation of P .

We finally notice that, given a DL-LiteA TBox T and a policy P that is safe w.r.t.
T , before refining P , in our procedure we have to reformulate it by using the algo-
rithm PerfectRef(T ,P) of [13], which returns relevant policy assertions implied by T
and P5.

Example 8. Let T and P be as in Example 2. One can verify that the set P ′ =
PolicyRefine(PerfectRef(T ,P)) is constituted by the following denials:

P = {∀w, y, d.type(w, ‘wildcat’) ∧ year(w, y) ∧ doc(d,w) ∧ 1980 < y ≤ 1992→ ⊥,
∀w, y.year(w, y) ∧ doc(d,w) ∧ y > 1992→ ⊥,
∀w, d.doc(d,w) ∧ age(w, ‘Eocene’)→ ⊥}

ut
5 Technically speaking, PerfectRef rewrites CQs. We here adopt a variant that rewrites the pos-

itive part of each BCQineq in the premise of a policy assertion, which provides a correct refor-
mulation under the safe policy assumption.

CQE over Prioritized Ontologies with Expressive Data Protection Policies 13

5.3 Query rewriting algorithm

We now give our query rewriting technique. In the following, without loss of generality,
we assume that in each denial, the arguments of an atom are always variables different to
one another (the presence of the same variable or of constants can be indeed expressed
through equalities). First of all, given a DL-LiteA TBox T and a policy P that is safe
w.r.t. T , we reformulate P by using the algorithm PerfectRef(T ,P). Then, let α and
β be two atoms. We say that β is compatible with α if there exists a mapping µα/β of
the variables occurring in β to the terms occurring in α such that µ(β) = α. Given an
atom α and an FO formula Φ , we denote by compSet(α,Φ) the set of atoms of Φ that
are compatible with α. Moreover, let α be an atom, let Q be a set of FO formulas, and
let � be a preference relation, we denote by notPreferred(α,Q,�) the set of formulas
Φ ∈ Q such that there does not exist in Φ any atom β such that α�β.

Let Φ = ∃~x.α ∧ β1 ∧ . . . ∧ βn be a query, we denote by allDDi(Φ, α) the FOL
formula ∃~y.DDi(β1)∧ . . .∧DDi(βn) where ~y are the variables in ~x that do not occur in
α and by oneDCi(Φ, α) the FO formula DCi(β1) ∨ . . . ∨DCi(βn) (of course, if n = 0
then allDDi(Φ, α) = true and oneDCi(Φ, α) = false). Also, DD0(α) = DC0(α) =
false, for each atom α. Moreover, we denote by QP the set of queries returned by
PolicyRefine(PerfectRef(T ,P)).

For an atom α and a natural number i ≥ 1, we denote by DDi(α) the FO formula:

α ∧

 ∧
∀qd∈notPreferred�(α,QP),
∀β∈compSet(α,qd)

∀~w.
(
¬µα/β(qd) ∨ oneDCi−1(µα/β(qd), α)

)
Where ~w contains all the variables in µα/β(qd) that do not occur in α.

For an atom α and a natural number i ≥ 1, we denote by DCi(α) the FO formula:∨
∀qd∈notPreferred�(α,QP),
∀β∈compSet(α,qd)

∃~v.µα/β(qd) ∧ allDDi−1(µα/β(qd), α)

Given a union of BCQsQ and a prioritized CQE specification E�, we define the FO
query k-DDClosed(Q, E�) as follows:

k-DDClosed(Q, E�) =
∨
q∈Q

(∧
α∈q

DDk(α)

)
Given a DL-LiteA TBox T and an FO query φ, we define expand(T , φ) as the FO

query obtained from φ by replacing every atom α occurring in φwith its “T -expansion”
expand(T , α), where:
(i) if α = C(t), then expand(T , α) =

∨
T |=DvC D(t) ∨

∨
T |=∃RvC(∃x.R(t, x)) ∨∨

T |=∃R−vC(∃x.R(x, t)).
(ii) if α = R(t1, t2), then expand(T , α) =

∨
T |=SvR S(t1, t2)∨

∨
T |=∃S−vR S(t2, t1).

Finally, given a safe DL-LiteA prioritized CQE specification E� = 〈T ,P,�〉, a
positive integer k, and a BCQ q we define:

k-DDRew(E�, q) = expand(T , k-DDClosed(PerfectRef(T , q), E�)).

14 G. Cima et al.

Notice that, for every odd i, DDi(α) = DDi+1(α) (by definition), and thus
i-DDRew(E�, q) = (i+1)-DDRew(E�, q).

It is easy to see that k-DDRew(E�, q) is an FO query. The following theorem states
that, for safe prioritized DL-LiteA CQE specifications, kDD-Cens-Ent can always be
solved by checking whether k-DDRew(E�, q) is entailed by the ABox, which amounts
to evaluating such query over the ABox. In other terms, the problem is FO rewritable.

Theorem 3. Let E� = 〈T ,P,�〉 be a safe prioritized DL-LiteA CQE specification, k
be a positive integer, and censDDk be the k-DD censor for E�. For every ABox A for
T and BCQ q, T ∪ censDDk(A) |= q iff A |= k-DDRew(E�, q).

Proof. The proof is based on three crucial lemmas. The first recalls a property of the
PerfectRef algorithm [13].

Lemma 1. T ∪ censDDk(A) |= q iff censDDk(A) |= PerfectRef(T , q).

Then, we prove the following property.

Lemma 2. Let Q be a union of BCQs. Then, censDDk(A) |= Q iff cl(T ,A) |=
k-DDClosed(Q, E�).

Proof (sketch). First, we prove inductively the following property: For every i such
that 0 ≤ i ≤ k, and for every atom α, α ∈ DDi(E�,A) iff cl(T ,A) |= DDk(α) and
α ∈ DCi(E�,A) iff cl(T ,A) |= DCk(α). The base case holds since DD0(E�,A) =
DC0(E�,A) = ∅ and DD0(α) = DC0(α) = false. The inductive case follows im-
mediately from Theorem 2, Definition 6, and the definition of the formulas DDi(α)
and DCi(α). Then, the thesis follows immediately from the previous property and the
definition of k-DDClosed(Q, E�).

The next lemma directly follows from the definition of cl(T ,A) and expand(T , φ).

Lemma 3. Let φ be a FO query. Then, cl(T ,A) |= φ iff A |= expand(T , φ).

Then, the theorem is an immediate consequence of the above lemmas. ut

Example 9. Consider the safe prioritized CQE specification E� = 〈T ,P,�〉 of Exam-
ple 5, and the BCQ q = ∃x, y, z.year(x, y) ∧ age(x, z). We have that:

1-DDRew(E�, q) =∃x, y, z.year(x, z) ∧ age(x, y) ∧ ∀w.(¬(doc(w, x) ∧ age(x, y)∧
y = ‘Eocene’))

3-DDRew(E�, q) =∃x, y, z.year(x, z) ∧ age(x, y) ∧ ∀w.(¬(doc(w, x) ∧ age(x, y)∧
y = ‘Eocene’)∨(∃v, u.type(x, v) ∧ v = ‘wildcat’ ∧ year(x, u)∧
doc(w, x) ∧ 1980 < u ≤ 1992)∨(∃r.year(x, r) ∧ doc(w, x)∧
r > 1992))

Now, letA be the ABox of Example 4. It is easy to see thatA 6|= 1-DDRew(E�, q),
while A |= 3-DDRew(E�, q). ut

The corollary below follows from Theorem 3 and the fact that evaluating an FO
query over an ABox is in AC0 in the size of the ABox (i.e., in data complexity).

Corollary 1. kDD-Cens-Ent for safe prioritized DL-LiteA CQE specifications is in
AC0 in data complexity.

CQE over Prioritized Ontologies with Expressive Data Protection Policies 15

q3 [5] q4 [4] q5 [6] q9 [5] q12 [10] q13 [7] q14 [5] q18 [9] q44 [6]
Setting # time # time # time # time # time # time # time # time # time

∅, ∅ 910 207 1558 168 17254 585 1566 320 96671 5665 22541 811 141439 2553 339 1525 5078 221
P, ∅ 910 278 252 295 14797 825 416 331 13028 2876 9374 2861 62255 12372 311 1804 325 153
P,�, 1 910 221 252 179 17254 612 416 216 96671 5933 22541 914 125656 4145 311 1384 325 112
P,�, 3 910 249 521 1445 17254 749 1252 1148 96671 5378 22541 716 131791 15873 311 1416 4630 1952
P,�, 5 910 242 566 8942 17254 723 1456 7715 96671 5219 22541 732 132127 1625K 311 4733 4630 522K
P,�, 7 910 472 − t.o. 17254 993 − t.o. 96671 7691 22541 912 − t.o. 311 5464 − t.o.

Table 1: k-DD censor results for the six considered settings. ∅, ∅: empty policy and empty prefer-
ence relation;P, ∅: policyP and empty preference relation;P,�, i: policyP , preference relation
�, and k = i, with i ∈ {1, 3, 5, 7}. In the time columns, “t.o.” indicates a time out (30 minutes),
and nK stands for n · 103.

6 Experiments

For our experiments, we used the NPD benchmark for OBDA [11], which models the
Norwegian Petroleum Directorate’s FactPages domain. The benchmark provides an
OWL 2 QL version of the NPD TBox6 comprising 1377 axioms (over 321 concepts,
135 roles, and 233 attributes), the NPD ABox expressed in RDF with a total of around
2 millions of instances, and a set of 30 SPARQL queries.

Following the approach of [6], we reduced query answering over prioritized CQE
specifications under k-DD censors to query answering in OBDA. We recall that an
OBDA instance is a pair (J , D), where J = 〈T ,M,S〉 is an OBDA specification,
with TBox T , source schema S, and mappingM between T and S, andD is a database
for S [13]. In the experiments, we proceeded as follows: we used the TBox T of the
benchmark, generated the schema S comprising unary and binary tables corresponding
to predicates of the signature of T (for a total of 689 tables), and produced a database
D for S in which the extension of each table coincides with the extension of the corre-
sponding predicate in the (RDF) ABox A of the benchmark.

For each of the settings considered in our experiments, i.e., pairs with a prioritized
CQE specification E� = 〈T ,P,�〉 and positive integer k, we produced a mapping
Mk
E� . More precisely, for each atomic concept A in T , Mk

E� contains an assertion
Φ(x) ; A(x), where Φ(x) is the rewriting of the query A(x) returned by k-DDRew,
in which ontology predicates are substituted with the corresponding table symbol in
S. Analogously for atomic roles and attributes. Under this transformation, answering
CQs under k-DD censor over (E�,A) is equivalent to answering CQs over the OBDA
instance (J , D), where J = 〈T ,Mk

E� ,S〉.
Exactly as done in [6], we executed the conjunctive version of 9 queries of the

benchmark, i.e., q3, q4, q5, q9, q12, q13, q14, q18, and q44.7
We analyzed six different settings. In the first one we set an empty policy (and, con-

sequently, an empty priority relation), which corresponds to the case of standard query
answering over the ontology. For the other settings, we specified a policy P constituted
by the following denials:

6 http://sws.ifi.uio.no/vocab/npd-v2
7 In [6], we have extracted the conjunctive component of each such query, which in NPD con-

tains also aggregate operators.

16 G. Cima et al.

d1: ∀w, d, i.dateWellboreEntry(w, d) ∧ wellboreMaxInclation(w, i)∧
wellboreType(w, “initial”) ∧ i 6= 6→ ⊥

d2: ∀c, w, d, y.coreForWellbore(c, w) ∧ wellboreCompletionYear(w, y)∧
documentForWellbore(d,w) ∧ y 6= 1985→ ⊥

d3: ∀w, c, t, s.wellOperator(w, c) ∧ taskForCompany(t, c)∧
wellboreCompletionYear(w, 1985) ∧ oilSampleTestForWellbore(s, w)→ ⊥

d4: ∀w, l, d.explorationWellboreForLicence(w, l) ∧ documentForWellbore(d,w)→ ⊥
d5: ∀f, p, l.Field(f) ∧ currentFieldOwner(f, p) ∧ ProductionLicence(p)∧

licenseeForLicence(l, p)→ ⊥
d6: ∀p, f .productionMonth(p, 1) ∧ productionForField(p, f)→ ⊥

By coupling P with the OWL 2 QL version of the NPD TBox we obtained a safe
CQE specification. In the second setting, the prioritized CQE specification contains the
policy P illustrated above, and an empty priority relation. Notice that, according to
Proposition 2, this setting is similar to the full setting considered in [6], but with a dif-
ferent policy. All the other settings are intended to verify the effectiveness of providing
a priority relation and filtering data with a k-DD censor. In each setting we used a dif-
ferent odd k with 1 ≤ k ≤ 7, and considered the following priority relations, which,
together with the denials in P , generate challenging scenarios for our technique.

wellboreType � dateWellboreEntry ,
coreForWellbore � documentForWellbore,

licenseeForLicence � currentFieldOwner ,
wellboreCompletionYear � documentForWellbore,
wellboreCompletionYear � wellOperator ,

oilSampleTestForWellbore � wellboreCompletionYear

We performed the experiments through the Java API of MASTRO system [10] for
OBDA on a standard laptop with an Intel i7 @2.6Ghz processor and 16GB of RAM.

Table 1 reports the result of our experiments. The column “#” under each query qi
displays the number of tuples in its evaluation, while the column “time” indicates the
evaluation time in milliseconds. Finally, the length of each query, i.e., the number of
atoms occurring in it, is indicated in square brackets near the query.

The values in the second row show that the policy P has an effect on query answer-
ing for eight of the nine queries (query q3 is the only one not altered by the censor), hid-
ing several answers with respect to the setting with no policy (with the only exception
of queries q5, q18, answers to queries are reduced by up to one third). By introducing
the priority relation, already with k = 1, we recover a substantial portion of the original
answers for query q14, whereas for q5, q12, q13 the recovery is even total. Interestingly,
the evaluation time slightly increases w.r.t. the setting without policy but it decreases
w.r.t. the setting with the policy without a priority relation. This is due to the fact that,
for each atom α, when we adopt a priority relation, DD1(α) contains less conditions
than the case with empty priority relation.

As for k = 3, we have a noticeable recovery of original answers for queries q9 and
q44, a further increment for query q14, and a small one for query q4. In these cases the
evaluation times are only slightly affected. When k = 5, for some queries we notice a
worsening of the evaluation time, with only a limited recovery of the original answers
in queries q4, q9, and q14. With k = 7, query execution was feasible only for five
queries, in particular those for which we already recovered all the original answers with
a smaller k. For the remaining queries, we stopped the execution after 30 minutes.

CQE over Prioritized Ontologies with Expressive Data Protection Policies 17

We remark that in our experiments difficulties in executing queries have been en-
countered only for k = 7. However, the largest number (arguably, a considerable one)
of original query answers has been recovered for k = 1 and k = 3, for which the as-
sociated evaluation times improve and worsen slightly, respectively, with respect to the
setting with the policy without a priority relation.

7 Conclusions

Our experiments show applicability in the practice of our technique, and how priorities,
besides being an important modeling feature for the designer, play an important role
in increasing the amount of answers disclosed to the user, while still preserving con-
fidentiality. An interesting direction for our research, leveraging the fact that priorities
are specified between ontology predicates and not on facts, is investigating the problem
of establishing at the intensional level the value for k which makes the k-DD censor
coincide with the DD censor. We leave this aspect for future research.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. 2nd edition, 2007.

2. M. Benedikt, B. Cuenca Grau, and E. V. Kostylev. Logical foundations of information dis-
closure in ontology-based data integration. AIJ, 262:52–95, 2018.

3. M. Bienvenu and C. Bourgaux. Querying and repairing inconsistent prioritized knowledge
bases: Complexity analysis and links with abstract argumentation. In Proc. of KR, pages
141–151, 2020.

4. J. Biskup and P. A. Bonatti. Controlled query evaluation for known policies by combining
lying and refusal. AMAI, 40(1-2):37–62, 2004.

5. P. A. Bonatti and L. Sauro. A confidentiality model for ontologies. In Proc. of ISWC, volume
8218 of LNCS, pages 17–32, 2013.

6. G. Cima, D. Lembo, L. Marconi, R. Rosati, and D. F. Savo. Controlled query evaluation in
ontology-based data access. In Proc. of ISWC, pages 128–146, 2020.

7. G. Cima, D. Lembo, R. Rosati, and D. F. Savo. Controlled query evaluation in description
logics through instance indistinguishability. In Proc. of IJCAI, pages 1791–1797, 2020.

8. B. Cuenca Grau, E. Kharlamov, E. V. Kostylev, and D. Zheleznyakov. Controlled query
evaluation over OWL 2 RL ontologies. In Proc. of ISWC, volume 8218 of LNCS, 2013.

9. B. Cuenca Grau, E. Kharlamov, E. V. Kostylev, and D. Zheleznyakov. Controlled query
evaluation for datalog and OWL 2 profile ontologies. In Proc. of IJCAI, 2015.

10. G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, M. Ruzzi, and D. F. Savo.
MASTRO: A reasoner for effective Ontology-Based Data Access. In Proc. of ORE, 2012.

11. D. Lanti, M. Rezk, G. Xiao, and D. Calvanese. The NPD benchmark: Reality check for
OBDA systems. In Proc. of EDBT, pages 617–628, 2015.

12. D. Lembo, R. Rosati, and D. F. Savo. Revisiting controlled query evaluation in description
logics. In Proc. of IJCAI, pages 1786–1792, 2019.

13. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

14. G. L. Sicherman, W. de Jonge, and R. P. van de Riet. Answering queries without revealing
secrets. ACM Trans. Database Syst., 8(1):41–59, 1983.

15. S. Staworko, J. Chomicki, and J. Marcinkowski. Prioritized repairing and consistent query
answering in relational databases. AMAI, 64(2-3):209–246, 2012.

	Controlled Query Evaluation over Prioritized Ontologies with Expressive Data Protection Policies

