
HAL Id: hal-03609510
https://hal.science/hal-03609510

Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Untangling the overlap between Blockchain and DLTs
Badr Bellaj, Aafaf Ouaddah, Emmanuel Bertin, Noel Crespi, Abdellatif

Mezrioui

To cite this version:
Badr Bellaj, Aafaf Ouaddah, Emmanuel Bertin, Noel Crespi, Abdellatif Mezrioui. Untangling the
overlap between Blockchain and DLTs. SAI 2022: Computing Conference, Jul 2022, London (online),
United Kingdom. pp.483-505, �10.1007/978-3-031-10467-1_30�. �hal-03609510�

https://hal.science/hal-03609510
https://hal.archives-ouvertes.fr


Untangling the overlap between Blockchain and
DLTs

Badr BELLAJ12, Aafaf OUADDAH1∗,Emmanuel BERTIN3,Noel Crespi2 and
Abdellatif MEZRIOUI1

1 National Institute of Post and Telecommunication (INPT),Rabat,Morocco
aafafouaddah@gmail.com

2 Institut polytechnique de Paris, Paris,France
3 Orange Lab, Caen, France

Abstract. The proven ability of Bitcoin and other cryptocurrencies to oper-
ate autonomously on the trustless Internet has sparked a big interest in the un-
derlying technology – Blockchain. However, the portage of Blockchain technol-
ogy outside its initial use case led to the inception of new types of Blockchains
adapted to different specifications and with different designs. This unplanned
evolution resulted in multiple definitions of what a Blockchain is. The technol-
ogy has diverged from its baseline (Bitcoin) to the point where some systems
marketed as “blockchain” share only a few design concepts with the original
Blockchain design. This conceptual divergence alongside the lack of compre-
hensive models and standards made it difficult for both system designers and
decision-makers to clearly understand what is a blockchain or to choose a suit-
able blockchain solution. To tackle this issue, we propose in this paper “DCEA”
a holistic reference model for conceptualizing and analysing blockchains and
distributed ledger technologies (DLT) using a layer-wise framework that en-
visions all these systems as constructed of four layers: the data, consensus,
execution and application layers.

Keywords: Blockchain, DLT, Reference model, blockchain-like, review

1 Introduction

The emergence of many projects heavily inspired by Bitcoin’s blockchain drove the
industry to adopt a broader term; “Distributed ledger technology”, or DLT when refer-
ring to this category. Nevertheless, there is no rigorously defined set of terminologies
or commonly acceptable reference model delineating the border of DLTs subcate-
gories. As a result, terms like “blockchain”, “DLT” or even “distributed database”
were misunderstood, misused, and misinterpreted. As a result, many projects or enter-
prises use the word “blockchain” extensively, simply as a marketing word to describe
their Blockchain like products without abiding by a clear standard. Although there
are multiple proposals for standardizing blockchain (ISO [6]-[9], IEEE [3], ITU [10]),
there is no recognized standard for defining blockchain or DLT. In the absence of a ref-
erential definition, we observe the growing use of imprecise and inconsistent language
and terminology across different projects— where the same term may be used to refer
to different things— that leads usually to confusion. To help untangle the underly-
ing concepts and delineate the different categories of DLTs, we define in this paper



2 Badr Bellaj et al.

a reference model capturing a longitudinal and representative view of DLT systems.
The proposed model introduces a systematic and holistic approach to conceptualizing
and analysing DLTs in general as a functioning system constructed of four key layers:
Data, consensus, execution and application layers.

Hence, the rest of the paper is structured as follows. Section 2 defines a new
layer-wised framework serving to normalize and deliberates on the classification and
taxonomy of DLTs Sections 3, 4, 5 and 6 present, respectively the data, the consensus,
the execution and the application layers, where in each section we outline the main
components and properties of the studied layer as well as it related state of the art. In
section7 we discuss the briefly the difference between Blockchain and Blockchain-like
systems. Finally, we close with a conclusion in section 8.

2 DCEA framework

We propose DCEA, a framework that defines a layered heterogeneous stack for DLT
systems. From a design perspective, our conceptual framework (DCEA) segregates
DLT technologies into four essential and distinct layers: data, consensus, execution
and application layers — each one playing a well-defined role in the DLT architecture.
The framework consists of the DLTs components and their main properties (Table 1,
with logically related functions grouped together. This layering approach is aligned
with the DLT’s modular architecture. It will help to provide a better understanding
of DLTs and serves as a baseline to build a comparative analogy between different
DLT variants.

In the following, we introduce the four layers that form the DLT stack.

– Data Layer: Represents the data (transactions and states) flowing through the
distributed network and stored in the ledger. Data in this layer is represented by
entries recorded in the ledger, under consensus and shared amongst the network
participants. These records may represent elements defined by the underlying
protocols (such as cryptocurrency, or smart contracts), or data received from
external environments (such as IoT data). Generally, the data layer covers data
stored on the blockchain itself (on-chain storage) as well as data stored in an
auxiliary source using a distributed database (off-chain storage).

Table 1. Layers and components of DCEA framework

Application Layer Integrability DLT orientation and purpose Wallet and identity management

Execution Layer
Execution
environment

Turing-completeness Determinism Openness Interoperability

Consensus Layer Safety Liveness Finality
Network
model

Failure
model

Adversary
model

Governance
model

Transaction
ordering

Conflict
resolution

Data Layer Data structure Data shareability Data immutability States storage

– Consensus layer: Defines the global software-defined ruleset to ensure agreement
among all network participants on a unified ledger. Consequently, this layer des-
ignates the formal rules that govern the system.



Overlap between Blockchain and DLT 3

– Execution layer: Represents the components responsible for enforcing and exe-
cuting distributed programs (e.g. smart contracts). Basically, these programs or
contracts codify a given logic (e.g. a business logic) as a set of instructions for
manipulating the states recorded in the ledger.

– Application layer: Represents an abstraction layer that specifies a variety of pro-
tocols and APIs provided by the DLT system to enable the building of distributed
applications commonly called DApps. This layer also represents a communication
link between the external actors or applications and the code hosted on the DLT
ledger.

Based on the above layering, we propose a four-layered taxonomy (Table 1), to
categorize DLT systems. The purpose of the taxonomy is to:

– Classify the typical DLT systems proposed in the academia and in the industry;
and to

– the relative strengths and weaknesses of existing systems and identify deficiencies
in the current set of DLTs.

At each layer, DLTs adopt different settings for DCEA properties defined in Ta-
ble (1). Based on their combinations, at the four layers, we can define different DLT
classes. For instance, at the data layer we differentiate between DAG-based and chain-
based DLTs based on the nature of the underlying data structure; at the consensus
layer we differentiate between permissioned and permissionless DLTs based on the
identity model of the consensus mechanism; at the execution layer we differentiate
between Smart-contract based DLTs and script-based DLTs; and at the applica-
tion layer, we can differentiate between DApps-oriented DLTs and Cryptocurrency-
oriented.

3 DATA LAYER

In this section, we lay out the key components, and their characteristics, that construct
the data layer as introduced in Fig 1.

Fig. 1. The main components of the data layer with examples



4 Badr Bellaj et al.

3.1 Components and properties

DLT’s ledger represents a distributed data store where data is duplicated among mul-
tiple nodes, by means of data synchronization. In these data stores, the data organiza-
tion ,in its macroscopic structure, varies from one technology to another. Generally,
we distinguish between two main models of data structures in the DLT space; the
linear chain of blocks and the chain-less models.

Chained model

Chain of blocks: Data in the chain of blocks is organized in elementary units
called blocks. Each block is a collection of transactions validated by the network.
These units are organized chronologically as a chain of inter-hinged blocks, which
are tied by tamper-evident hash pointers. Each new block can only be valid if it is
built upon an unchangeable body of previous blocks. Blocks are composed of a header
and a record of transactions. The block’s header contains meaningful metadata such
as a cryptographic reference to the previous block and the current time. This linear
linkability ensures data integrity through cryptographic connections between blocks
and enables each participant in the network to verify and validate data. Data in a
chain of blocks is carried over and stored in the ledger using transactions, therefore
we consider a transaction as the most elementary data type. At the block level, the
transactions are ordered and hashed into a Merkle tree, with the hash root placed
in the corresponding block’s header. This structure guarantees a cryptographically
sealed and tamper-proof data vault resistant to any type of data corruption.
Skipchain: The data structure of a skipchain is inspired by skip lists . Skipchain
adapts the skip list idea to the chain of blocks by adding links between blocks both
forwards and backwards in time. In skipchain, a block includes not just a single hash
link to the previous block, but also an additional hash link to a point farther back
in time. Thus, skipchain can build subsequent layers of linked blocks on top of an
original linked list of blocks. Skipchain is very useful when concurrent access to data
is required.

Chainless model
In order to overcome some limitations imposed by the adoption of the chained block
structure, certain DLTs have opted for a chain-less model. Instead, they use new data
structures for better scalability or security.
DAG: In contrast to using a chain of blocks, some DLTs are using a nonlinear struc-
ture such as the Direct Acyclic Graph (DAG) to offer better performance. A DAG is
a graph that grows in one direction without cycles connecting the other edges (i.e.,
there is no path from a vertex back to itself). As with a chain of blocks, a DAG is
used as a sorted collection of hierarchically connected transactions where each trans-
action and sometimes a block of transactions is represented by a node (which refers
to a vertex in the graph) and linked to at least another node. The DAG is extended
chronologically by appending new transactions to the previous nodes. The ledger is
thus an ever-growing tree, starting initially from a root node. The acyclic nature of the
DAG and its unidirectional evolution enables participants to confirm transactions au-
tomatically based on previous transactions. Based on the representation of its nodes,
we identify two types of DAGs:



Overlap between Blockchain and DLT 5

– Transaction-based DAGs: DAG nodes that represent individual transactions; and
– Block-based DAGs: DAG nodes that represent a block of transactions.

Decentralized database model: Some DLTs adopt radical changes in their ar-
chitecture over the conventional blockchains, to the point they resemble a classical
distributed database. We consider these solutions as decentralized databases, as they
manage data similar to how conventional databases handle data but they present
a different technology. In fact, unlike in a conventional distributed database, where
nodes cooperate to maintain a consistent view of data across all systems, a decentral-
ized database is designed to allow multiple parties that may not trust each other to
collaborate with their peers to maintain shared records.

Hybrid data model: Some DLT projects combine both chains of block mod-
els along a block-less model to manage transactions and states in the network. The
hybridization is designed to exploit the advantages of each model to enable better scal-
ability and rapid transaction validation. In this model, the states are generally stored
in external dedicated key-value databases and the blocks contain only the transac-
tions affecting the ledger’s states. Using key-value databases makes it easy to directly
access the updated value of a state rather than having to calculate it by traversing
trees of transactions.

State management A key distinguishing factor among various DLTs, is how states
are managed within the system. Although DLTs serve as distributed ledgers for shared
data, in the case of many DLTs, data is stored outside the transactional distributed
ledger (off-chain/off-ledger) using auxiliary databases. Conventional blockchains, how-
ever, tend to always store data on the shared ledger (on-chain/on-ledger). When we
analyze how general states (e.g. user’s balance) are managed in existing DLTs, two
models emerge UTXO model, Account model. The first is a special transactions set,
linking new transactions to old transactions, wherein a newly produced transaction
(new UTXO) points to a single or multiple ulterior transactions (inputs), whereas,
the second is a model where the ledger keeps track of up-to-date global states related
to each account.

Data shareability All nodes in a DLT network exchange transactions carrying
shared data in order to reach consensus, but due to privacy reasons different visions
of data shareability have been adopted. Some systems favor complete shareability of
all data — which we consider as global shareability—, whereas others restrict the
perimeter of shareability including some nodes and excluding others — which we
consider as restricted shareability.

Data immutability / Atomicity There is a common belief that records stored on
a DLT (especially a blockchain) are immutable and unalterable. However, that is not
necessarily the case, as different DLT systems provide different degrees of immutability
depending on the system design. This means that, under some circumstances, nodes
can hold inconsistent states, or that a confirmed transaction may be reversed. For
data immutability, we differentiate between:



6 Badr Bellaj et al.

– Strong immutability. When the state variables or blockchain entries cannot be
mutated or tampered after their creation; and

– Weak immutability. When the state variables or blockchain entries could be mu-
tated or tampered with after their creation.

It is worth noting that for some strong immutable systems, their states can be
updated without breaking immutability. This is achieved by using tree structures to
store persistently both new and old values for a given entry.

Data privacy Data privacy is securing data from public view. In a shared context
like in DLTs, data can be private or not private. This is possible with cryptographic
techniques such as Zero-knowledge proofs which enable verifying private data without
revealing it in its clear form.

3.2 Data layer: state of the art

This subsection is meant to present an overview of DLTs projects adopting the dif-
ferent data structures previously outlined by our framework as well as an evaluation
of their properties.

Chained DLTs Most DLTs follow the linear data chain structure initially defined
by Bitcoin. In this broad category, multiple projects define different inner block struc-
tures.

Bitcoin In Bitcoin and its clones, transactions are assembled in the block’s body and
then linked in a Merkle tree. The root of this tree, or the Merkle root, is a hash
representing an indirect hash of all the hashed pairs of transactions in the tree and
is included in the block header, thereby ensuring transaction verification. In addition
to the Merkle root, the block header also contains other important information, in-
cluding: the timestamp, and the previous block’s hash. Moreover, Bitcoin adopts the
UTXO model to track the system states (Wallet balances). The UTXO set is stored
off-chain in an auxiliary database.

Ethereum The block structure is more complex in Ethereum than in Bitcoin, and
the system’s state tracking is different than in Bitcoin. In fact, the block’s header
comprises more metadata and its body englobe multiple types of data, namely: trans-
actions, receipts and system states. Each of these data types is organized into a Merkle
tree or a Patricia tree (Radix tree) in the case of the state tree. The state tree is an
important component in the Ethereum ledger, as it is used to implement the account
model, whereby each account is linked to its related states (account balances, smart
contract states, etc.). Any node can parse the tree and get the updated state without
any overhead calculation. The state tree grows each time a change occurs in a state.
It grows by adding new nodes (stored in the new block) — containing new states—
which points to the nodes (stored in the previous block) containing the old value for
the same state. To enforce immutability Ethereum keeps its root hash in the block
header.



Overlap between Blockchain and DLT 7

Skipchain Chainiac Nikitin and al. [17] introduced Chainiac to solve offline transac-
tion verification problems (enable nodes to check if a transaction has been committed
to a blockchain without having a full copy of the ledger). The Chainiac solution was to
add traversability forward in time using a skipchain, where back-pointers in Chainiac
are crypto-graphic hashes, whereas forward-pointers are collective signatures. With
long-distance forward links and via collective signatures, a client or node can efficiently
verify a transaction anywhere in time.

Chainless DLT

DAG based chains The idea of using DAGs as underlying data structure has en-
countered great interest from DLT designers of multiple projects, including Byteball,
DagCoin IOTA NanoPhantom and Hedera . Some studies have tried to introduce
DAG in conventional blockchain DLTs, for instance the GHOST protocol [12] pro-
poses a modification of the Bitcoin protocol by making the main ledger a tree instead
of a blockchain. Such a modification reduces confirmation times and improves the
overall security of the network.

Decentralized Databases: Corda R3 In the corda network, each node main-
tains a local database called a “vault” that stores time-stamped data. Each vault has
many different versions (current and historic) of data in the form of state objects. A
vault does not store transactions, instead it stores the output state relevant to a party
(state’s participants). The transactions are stored in the ”NODE1 TRANSACTIONS”
table in the node’s database . Alongside, Corda adopts a UTXO model to store state
data, which means a transaction consumes current states and produces or not new
states.

Hybrid DLTs: Hyperledger Fabric Hyperledger Fabric combines between the
usage of a chain of blocks to store only the validated transactions, and the usage of a
key-value classical database to store the system’s states (transaction outcomes). In the
Fabric chain, the block structure resembles the structure of a block in a conventional
chain but with an additional part: block metadata. This additional section contains a
timestamp, as well as the certificate, public key and signature of the block writer. The
block header is straightforward and the transactions are ordered in the block body
without Merkilization.

BigchainDB The BigchainDB [15] was introduced as a blockchain database. It
aims to combine the key characteristics of “traditional” NoSQL databases (MongoDb)
and the key benefits of traditional blockchains. BigchainDB server nodes utilize two
distributed databases (transaction set or “backlog”) holding incoming transactions
and a chain of blocks storing validated transactions (Creation or Transfers). Each
transaction represents an immutable asset (represented as JSON documents in Mon-
goDB).

Data shareability Most DLTs operating as global cryptocurrency platforms
adopt by design a global shareability of the transactions. In fact, networks such as
Bitcoin, Ethereum and many others, operate in relay mode where nodes are relay-
ing transactions to each other, thereby propagating it to the entire network without
restrictions. In other DLTs, such as Hashgraph, senders deliver their transactions to



8 Badr Bellaj et al.

a set of selected nodes that are responsible for including them into their DAG and
sharing them with others by Gossiping. On the other hand, the DLTs constructed
for business purposes, such as Corda or Hyperledger Fabric, impose restricted share-
ability of the transactions as privacy is an important requirement in such contexts.
In Corda, for instance, each node maintains a separate database of data that is only
relevant to it. As a result, each peer sees only a subset of the ledger, and no peer
is aware of the ledger in its entirety. In Fabric a subset of the ledger restricts data
shareability by using the concept of channels [5]. A channel is a private sub network
between two or more specific network members. Each transaction on the network is
executed on a channel, where only authenticated and authorized parties are able to
transact on that channel. Therefore, the network ends up with a different ledger for
each channel. Similarly, Quorum, an Ethereum-based distributed ledger protocol with
transaction/contract privacy, enables sending private transactions between multiple
parties in the network by use of constellations.

4 Consensus Layer

DLTs have renewed the interest in the design of new distributed consensus protocols.
In fact, a myriad of consensus algorithms, for DLT, have been proposed in the litera-
ture presenting different properties and functionalities. In this section, we present the
properties and features we consider as part of the DCEA framework for studying and
differentiating between the protocols.

4.1 Components and properties

Basic Properties The concepts of safety and liveness properties were introduced
initially by Lamport in 1977 and have been well adopted in the distributed com-
puting community. All consensus algorithms provide these properties under different
assumptions of synchrony, adversary model, etc.

Safety Safety represents in the context of DLT networks, the guarantee that the
correct nodes will not validate conflicting outputs (or make conflicting decisions) at
the same time (e.g. chain forks).

Liveness A consensus protocol guarantees liveness if requests (transactions) from
correct clients are eventually processed.

Finality In the DLT settings, we define the finality property as the affirmation and the
guarantee for a transaction to be considered by the system as final and irreversible.
The Finality as property can be divided into two types:

– Probabilistic finality, where the probability that a validated transaction will not
be reverted, increases with time after the transaction is recorded onto the ledger.

– Absolute finality, where a transaction is considered finalized once it is validated
by the honest majority.



Overlap between Blockchain and DLT 9

Network models In both traditional distributed systems literature and DLT con-
sensus protocols, we consider the message-passing model in which nodes exchange
messages over the network, under differing assumptions of network synchrony. We
adopt in this survey the following taxonomy defined by [7].

– Synchronous, where we assume the existence of a known upper bound on message
delay. That means messages are always delivered within sometime after being
sent.

– Partially-synchronous, where we assume there is some known Global Stabilization
Time (GST), after which the messages sent are received by their recipients within
some fixed time-bound. Before the GST, the messages may be delayed arbitrarily.

– Asynchronous, where messages sent by parties are eventually delivered. They may
be arbitrarily delayed and no bound is assumed on the delay of messages to be
delivered.

Failure Models Different failure models have been considered in the literature; we
list hereafter two major types.

– Fail stop failure (Also known as benign or crash faults): Where nodes go offline
because of a hardware or software crash.

– Byzantine faults: This category of faults was introduced and characterized by
Leslie Lamport in the Byzantine Generals Problem to represent nodes behaving
arbitrarily due to software bugs or a malicious compromise. A Byzantine node
may take arbitrary actions, provide ambivalent responses or intentionally mislead
other nodes by sending sequences of messages that can defeat properties of the
consensus protocol.

We consider, therefore, a protocol as fault tolerant, if it can gracefully continue oper-
ating without interruption in the presence of failing nodes.

Adversary models Under the assumption of a message-passing model, the ad-
versary is able to learn the message exchange and to corrupt different parts of the
network. We distinguish between the following three adversary models:

– The Threshold Adversary Model : This model is the most common adversary as-
sumption used in the traditional distributed computing literature, which assumes
that the Byzantine adversary can corrupt up to any f nodes among a fixed set of n
nodes. Under this model, the network usually has a closed membership requiring
a permission to join. The consensus protocol should be able to operate correctly
and reach consensus in the presence of Byzantine nodes as long as their numbers
do not exceed a given threshold.

– Computational Threshold Adversary: A new model introduced by Bitcoin, where
the control of the adversary over the network is bounded by the computational
power –requiring concrete computational material— instead of the number of
nodes he can control. In this model, typically the membership is open and multi-
ples parties and the bounding computation is a brute force calculation.

– Stake Threshold Adversary [1]: In this model, the adversary control is bound by his
proportion of a finite financial resource. In networks managing cryptocurrencies,



10 Badr Bellaj et al.

the underlying protocol can ensure consensus based on cryptocurrency deposits,
thus the adversary is bound by the share of cryptocurrency he owns. In addition,
in these protocols’ punishment rules (e.g. stake slashing) could be put in place to
deter bad behaviour.

Adversary Modes Consensus protocols assume the existence of different types of
adversaries based on their ability and the time they need to corrupt a node.

– Static adversary: A Byzantine user who is able to corrupt a certain number of
network nodes ahead of time and exercise complete control over them. However,
he is not able to change which nodes they have corrupted or to corrupt new nodes
over time.

– Adaptive adversary: A Byzantine user who has the ability to control nodes and
dynamically change, depending on the circumstances, the nodes under his control
to gain more power.

– Mildly adaptive adversary: A Byzantine user who can only corrupt nodes based
on past messages, or its anticipations, and cannot alter messages already sent.
Moreover, the adversary may mildly corrupt groups, but this corruption takes
longer than the activity period of the group.

– Strongly adaptive adversary: A Byzantine user can learn of all messages sent by
honest parties, and based on their content, he can decide whether or not to corrupt
a party by altering its message or delaying message delivery.

Identity Model Protocols manage nodes membership differently, but in general two
opposite sides are adopted:

– Permissionless, where the membership is open and any node can join the network
and validate new entries.

– Permissioned, where the membership is closed and only a restricted set of ap-
proved members is able to validate new entries.

In the DLT settings, the identity model is commonly bound to the network openness
nature —being private, public or consortium. .

Governance Model The governance model refers to the process of decision-making
adopted by a DLT network to decide on the protocol rules and their upgrade. Hence,
the governance of the system boils down to a social concept, we find it appropriate
to identify some of the possible governance models from a social perspective:

– Anarchic, where protocols upgrade proposals are approved by every participant
in the network. Each participant chooses to accept or reject a given proposal, thus
leading to potential splits in the network.

– Democratic, where participants vote on new rules and protocol upgrades proposals
and at the end, all participants have to follow the decision of the majority, even
for those participants who voted against them.

– Oligarchic, where new rules and protocol upgrades are proposed and approved by
a group of participants.



Overlap between Blockchain and DLT 11

As most DLTs move governance and related issues “on-chain” or “off-chain” we
consider also the differentiation between; Built-in (or on-chain governance), where the
decision-making process in the network is defined as part of the underlying consensus
protocol; External governance (or off-chain governance), where the decision-making
process is based on procedures independently performed without involving the DLT
mechanisms.

Transactions ordering Whether for a linear or a non-linear DLT (e.g. DAGs), the
stored transaction should be ordered chronologically to avoid frauds and inconsisten-
cies. Different approaches have been introduced by the consensus protocols to provide
reliable and fair transaction ordering. Usually, in DLTs the ordering is an integrating
part of the consensus mechanism but in some cases, it can be decoupled from the ex-
ecution and validation of transactions. Ordering is an important property with direct
impacts on the security and the usage of a DLT, thus the need to evaluate this feature
separately.

Conflict resolution model In some DLT networks, conflicting temporary versions
of the ledger (known as forks) can coexist for different reasons (e.g. network latency,
parallel validation of blocks, etc.). To converge toward a canonical ledger or chain,
networks and consensus mechanisms adopt different rules. The most notable rule is
defined by Bitcoin protocol as the “longest chain rule”, whereby in the presence of
conflicting orders, the network converges to one order following the longest chain —
the chain with the largest accumulated PoW in case of PoW-based systems— and
discards the rest. The longest chain rule is adopted by different protocols and each
may adopt a different cumulative parameter (witnesses votes, endorsement, etc.).

4.2 Consensus layer: state of the art

In this subsection, we present multiple consensus mechanisms and their properties.
Although, is out of scope of this paper to present a detailed taxonomy of the existing
protocols (fig. 2), we consider to group all the reviewed protocols in six categories.
This protocol categorization serves us as a basis to categorize the DLTs.

BFT consensus family (PBFT-like) This family refers to the classical consensus
mechanisms introduced in the traditional distributed computing literature and their
recent variants. The BFT family is easily recognized due to their property: all-to-
all voting rounds , the identity of the nodes in the network is known, the number

Fig. 2. Taxonomy of consensus protocols



12 Badr Bellaj et al.

of participants is limited. Due to the big number of the protocols belonging to this
family, we limit our review, in this paper, on the most used algorithms in DLT context
namely; PBFT, RAFT, IBFT, DBFT, POA (AURA, Clique), HoneyBadgerBFT and
Hotstuff.

Nakamoto consensus family We consider that Nakamoto’s consensus family rep-
resents protocols using a chain of block data structure and adopting the longest chain
fork choice rule (or a variant like GHOST [21]), to ensure safety, along economic incen-
tives. These protocols were introduced primarily to enable secure currency transfer
over the internet. Conversely to PBFT, they are conceptually simple and tolerate
important corruptions up to n/2. Besides, they are known for being permission-less
(open enrollment) — they do not require node authentication and allow nodes to
arbitrarily join or leave the network. We review hereafter some of the most discussed
protocols in this category namely: PoW, memory bound PoW and BitcoinNG.

Proof of stake and its variants Proof-of-Stake (PoS) was first proposed as an
alternative to the costly PoW for use in the PPCoin [13]. Instead of a hash-calculation
competition between validators, participants who desire to join validators board and
forge the new block have to lock a certain amount of coins into the network as a finan-
cial stake. Thus, the chances for a node to be selected as the next validator depends
on the size of the stake. Different implementations of PoS exist. We present here some
of the typical representatives including Ethereum PoS, DPoS (EOS), Ouroboros and
its variants, and Snow white.

Hybrid protocols This family represents protocols which attempt to benefit from
the advantages of the known protocols PoW, PoS and other established protocols to
provide better performance.

DAG-based Protocols IOTA is a hybrid consensus protocol, marrying between
PoW at the entry level and a custom transaction validation algorithm. IOTA relies
on PoW to protect the network against spamming as the transactions are fee-less.
paragraphAvalanche Avalanche is a recent leaderless Byzantine fault tolerance pro-
tocol built on a metastable mechanism via network subsampling. Avalanche protocol
is based on a metastable mechanism, whereby a node repeatedly takes a uniform
random sample from the network, sends queries repeatedly in multiple rounds and
collects responses.

Federated BFT Ripple was the first implementation of a federated Byzantine agree-
ment system (FBAS, for short), which was extended later by Stellar protocol. FBA
revisits BFT settings by providing an open membership service based on a trust
model. In fact, FBA protocols depart from the concept that each node interacts only
with a limited group of its trusted peers — the unique node list (UNL) in Ripple
and the quorum slice in Stellar. Thus, unlike traditional BFT protocols, the feder-
ated Byzantine agreement (FBA) does not require a global and unanimous agreement
among the network participants.



Overlap between Blockchain and DLT 13

5 Execution Layer

In this section,as illustrated in Fig 3, we identify the fundamental components of the
execution layer and their properties. Then we present the execution component widely
adopted in the state-of-the-art.

5.1 Components and properties

In a DLT system, business logic, agreed to by counterparties, can be codified using a
set of instructions and embedded into the ledger in a specific format. The ruleset exe-
cution is enforced by the distributed consensus mechanism. Generally, we distinguish
between two main models for rules codification: Smart contracts and built-in scripts
(scripting model).

Execution environment

Smart contract model In this model, clauses between counterparties are codified as
a stateful self-executed program. Typically, this program (known as smart contract)
is implemented either in a dedicated language or using an existing programming lan-
guage such as Java or C++. The smart contract execution is handled by a dedicated
environment such as a virtual machine or a compiler, which proceeds the instructions
defined in the triggering transaction, returns an output and often results in updating
states. Commonly, the smart contracts live and execute on the DLT as an indepen-
dent entity with reserved states. Although they are qualified as ‘smart’, they are not
autonomous programs, as they need external triggering transactions, nor contracts in
a legal sense.

Scripting model Unlike the smart contract model, the scripting model enables codi-
fying the desired logic using only a usage-oriented and predefined set of rules defined
by the protocol, which limits the possible scenarios to implement. The idea behind
this limitation is to avoid security problems and reduce the complexity of the system.
Typically, scripting model is implemented in the DLTs that focuses on securing the
manipulation of built-in assets rather than providing a platform for running universal
programs.

Turing completeness Generally speaking, a given environment or programming
language is said to be Turing-complete if it is computationally equivalent to a Turing
machine . That is, a Turing-complete smart contract language or environment is
capable of performing any possible calculation using a finite amount of resources. Some
DLTs are capable of supporting a Turing-complete execution environment, which
provides its users with the flexibility to define complex smart contracts, whereas other
DLTs provides Non-Turing complete execution environments because they suffer from
some inherent limitations.



14 Badr Bellaj et al.

Determinism Determinism is an essential characteristic of the execution environ-
ment in DLT systems. Since the distributed program (e.g. smart contract) is exe-
cuted across multiple nodes, the deterministic behaviour is needed to yield coherent
and identical outputs to obviate discrepancies in the network. In order to ensure
determinism, DLTs have to handle non-deterministic operations (e.g. Floating-point
arithmetic, or random number generation, etc.) either by disabling these features or
by enabling them in a controlled environment.

Runtime openness In most DLTs, the execution environment or runtime is by
design an isolated component without connections with external networks (e.g. In-
ternet). However, in many case scenarios, the need for accessing information from
outside the DLT manifested as a necessity. Thus, to allow such a feature, different
design choices were introduced which can be classified into three approaches:

– Isolated: where interactions between the smart contract execution environment
and the external environments are not allowed

– Oracle-based: where interactions with external environments are managed by
members of the network who are called oracles. An oracle refers to a third-party
or a decentralized data feed service that provides external data to the network.

– Open: The execution layer is able to connect to the external environments.

Interoperability DLT operating networks are currently by-design siloed and iso-
lated from each other. The interoperability, which we consider as the ability to ex-
change data, assets or transactions between different DLTs, is a complex operation
that requires passing transactions between them, in a trustless manner without the
intervention of third parties. Interoperability is a highly desired property thus mul-
tiple solutions were developed to enable interoperability between different existing
DLTs. These solutions can be categorized into the following groups:

– Sidechain : is a blockchain running in parallel with another chain (known as main
chain) that allows transferring data (cryptocurrency) from the main chain to itself.

– Multichain : is a network of interconnecting chains, upon which other chains can
be built. In a multichain one major ledger rules all the sub-ledgers.

– Interoperability protocols: represent protocols and means (e.g. smart contracts)
added to the original DLT to enable interoperability with other DLTs.

– Interoperable DLT: represents a DLT designed with the goal to enable interoper-
ability between other DLTS.

5.2 Execution layer: state of the art

In this section, we provide an overview of the most widely-used execution environ-
ments implemented in the industry and the literature with a discussion of their prop-
erties.

Execution environments



Overlap between Blockchain and DLT 15

Fig. 3. The main components of execution layer

Ethereum Virtual machine In Ethereum, smart contracts represent a computer pro-
gram written in a high-level language (e.g. Solidity, LLL, Viper, Bamboo, etc.) and
compiled into a low-level machine bytecode using an Ethereum compiler. This byte-
code is stored in a dedicated account —therefore has an address— in the blockchain.
Then, it is loaded and run reliably in a stack-based virtual machine called Ethereum
Virtual Machine (EVM for short), by each validating node when it is invoked. To
enable the execution of the bytecode and state update, the EVM operates as a stack-
based virtual machine. It uses a 256-bit register stack from which the most recent 16
items can be accessed or manipulated at once. The stack has a maximum size of 1024
possible entries of 256-bits words. The EVM has a volatile memory operating as a
word-addressed byte array, where each byte is assigned its own memory address. The
EVM has also a persistent storage space which is a word-addressable word array. The
EVM storage is a key-value mapping of 2256 slots of 32 bytes each. Unlike the memory
which is volatile, storage is non-volatile and it is maintained as part of the system
state. The EVM is a sandboxed runtime and a completely isolated environment. That
is, every smart contract running inside the EVM has no access to the network, file
system, or other processes running on the computer hosting the EVM. The EVM
is a security-oriented virtual machine, designed to permit the execution of unsafe
code. Thus, to prevent Denial-of-Service (DoS) attack, EVM adopts the gas system,
whereby every computation of a program must be paid for upfront in a dedicated unit
called gas as defined by the protocol. If the provided amount of gas does not cover
the cost of execution, the transaction fails. Assuming given enough memory and gas,
the EVM can be considered a Turing-complete machine as it enables to perform all
sorts of calculations.



16 Badr Bellaj et al.

Bitcoin scripting Bitcoin uses a simple stack-based machine to execute Bitcoin scripts.
A Bitcoin script is written using a basic Forth-like language. It consists of a sequence of
instructions (opcodes), loaded into a stack and executed sequentially. The script is run
from left-to-right using a push-pop stack. A script is valid if the top stack item is true
(non-zero) at the end of its execution. Bitcoin scripting is intentionally not Turing-
complete, with no loops. Moreover, the execution time is bounded by the length of
the script (Maximum 10 kilobytes long after the instruction pointer. This limitation
prevents denial of service attacks on nodes validating the blocks. Bitcoin scripting is
considered as a limited and complex language for writing smart contracts, to overcome
this limitation, multiple projects have been introduced, such as Ivy [11] , Simplicity ,
BitMLwhich are high-language with richer features that compile into Bitcoin scripts.
Also, [4] introduced BALZaC - a high-level language based on the formal model,
and Miniscript was proposed recently as a language for writing (a subset of) Bitcoin
Scripts in a structured way, enabling analysis, composition, generic signing and other
features. In addition, Rootstock (RSK)[16] was proposed as a smart-contract platform
that integrates an Ethereum-compatible virtual machine to Bitcoin.

Interoperability The inability for siloed DLTs to communicate with one another has
been a major hindrance to the development of the blockchain space, therefore different
proposals have aimed to solve this problem. In this subsection we present the most
important approaches implemented at the execution layer to solve this problem.

Sidechains Multiple sidechains have been proposed in the DLT ecosystem. Rootstock
is a sidechain of Bitcoin, equipped with RVM a built-in compatible Ethereum vir-
tual machine. Rootstock chain is connected to the Bitcoin (BTC) blockchain via a
two-way peg enabling transfers from BTC to SBTC (Rootstock’s built-in currency)
and vice versa using Bitcoin scripts, whereby users lock up their BTC in a special
address and get an equivalent amount of RBTC on the sidechain. Similarly, Coun-
terparty is another sidechain of Bitcoin where coins to be transferred are burned or
locked by sending them to an unspendable address and generating the equivalent in
the Counterparty chain. Drivechain is another proposal for transferring BTC between
Bitcoin blockchain and sidechains. Unlike most DLTs where the sidechain is a separate
project, Cardano has introduced Cardano KMZ sidechain as part of its ecosystem.
Cardano KMZ is a protocol which serves for moving assets from its two-layer CSL
to the CCL (Cardano Computation Layer), or other blockchains that support the
Cardano KMZ protocol. Another sidechain-based project is Plasma [19]. It aims for
creating hierarchical trees of sidechains (or child blockchains) using a combination of
smart contracts running on the root chain (Ethereum). The idea is to build connected
and interoperable chains operated by individuals or a group of validators rather than
by the entire underlying network. Thus, Plasma helps scaling Ethereum by moving
transactions toward the sidechains. Currently, Plasma is actively developed and used
by projects such as OmiseGo , which aims to build a peer-to-peer decentralized ex-
change, and Loom , which provides the tools needed to build high-performance DApps
while being operating over the Ethereum network.

Determinism To deal with the non-determinism issue, three general approaches
are adopted. The first approach is to guarantee determinism by design. For instance,



Overlap between Blockchain and DLT 17

in Ethereum the EVM does not support, by-design, any non-deterministic operations
(e.g. floating point, randomness, etc.). Nevertheless, due to the importance of ran-
domness, the RANDAO [20] project has been proposed as an RNG (Random number
generator) of Ethereum based on an economically secure coin toss protocol. The idea
behind is to build DAO (decentralized autonomous organisation) for registering ran-
dom data on the blockchain. The second approach, adopted by other projects such as
Multichain , Corda, or Stratis which use existing runtime environments, ensure deter-
minism by adapting these environments to force determinism processing. For instance,
MultiChain uses Google’s V8 engine with sources of non-determinism disabled. Simi-
larly, corda uses a custom-built JVM sandbox . Stratis limits the capabilities of C#,
or all of .NET’s core libraries that can be used . The third approach (Determinism
by endorsement) introduced by Hyperledger Fabric ensures determinism differently.
In order to guarantee determinism, the endorsement policy can specify the endorsing
nodes to simulate the transactions and execute the Chaincode. In the case, where
endorsing peers diverge with different outputs, the endorsement policy fails and the
results will not be committed into the ledger.

5.3 Environment openness

Most DLTs rely on oracles to read data from external sources. Simply put, an oracle is
a smart contract maintained by an operator that is able to interact with the outside
world. Several data feeds are deployed today for smart contract systems such as
Ethereum. Examples include , Town Crier [24] and oracle Oraclize.it . The latter
relies on the reputation of the service provider and the former is based on the concept
of enclave hardware root of trust [8]. Other oracles such as Gnosis and Augur [18],
leverages prediction markets MakerDao , which is a decentralized lending facility built
on the Ethereum blockchain, utilizes a multi-tiered approach to feed reliable price data
for its assets without sacrificing the decentralization. For instance, Medianizer [14] is
used as a MakerDao oracle, which serves to provide accurate prices for Ethereum,
collects data from 14 independent price feeds. Similar to the MakerDAO system,
ChainLink [22] aggregates data feeds from many sources. Conversely to most DLTs,
Fabric’s Chaincode is able to interact with external sources such as an online HTTP or
REST API . In case, where every endorser gets a different answer from the called API,
the endorsement policy will fail and, therefore no transaction will take place. Other
DLTs, like Aeternity [2] incorporate an oracle in the blockchain consensus mechanism
removing the need for a third-party.

6 Application layer

In this section, we briefly introduce the components and properties we defines for the
application layer and review the related solution as illustarted in Fig 4.

6.1 components and properties

Integrability As a new technology, which is often perceived as hard to adopt, DLT
systems try to offer a better user-experience by providing necessary tools (APIs,
frameworks, protocols.) to enable better integrability with existing technologies and



18 Badr Bellaj et al.

Fig. 4. The main components of the application layer with examples

systems (e.g. Web, mobile). The integrability of a DLT can be considered as a qual-
itative property, thus it is possible to deduce a ”Level of Integrability”. That is, we
establish a small integrability scale from “high” to “low”.

DApp orientation and DLT’s purpose Decentralized software applications (or DApps
for short) are software applications whose server and client tiers are decentralized
and operating autonomously using a DLT. We consider a DLT as DApp-oriented if it
focuses on offering the necessary tools for building and maintaining decentralized ap-
plications, using different protocols and APIs. Wallets are an important component of
the application layer. Generally, they manage the user’s cryptographic identities. Wal-
lets are responsible for all cryptographic operations related to the creation or storage
of the user’s keys or digital certificates as well as the management of transactions.

6.2 Application layer: state of the art

Due to the vastness of different approaches and tools provided by different DLTs at
the application layer, we overview only the application layer of few notorious DLTs.

Integrability DLTs generally introduce a layer of integration between external entities
and their data and execution layer. DLTs like Ethereum NEO or EOS and others,
have a richer toolset and integration tools. Ethereum offers a robust and lightweight
JSON-RPC API with a good support for the JavaScript language. It provides Web3.js,
an official feature-rich JavaScript library for interacting with Ethereum compatible
nodes over JSON-RPC. Further, for a better integration into legacy systems, Camel-
web3j connector provides an easy way to use the capabilities offered by web3j from
Apache Camel DSL. In addition, Infura provides online access for external actors
to communicate with the Ethereum chain, through Metamask , dropping the need
for running an Ethereum node or client making the DApp easier for the end-user.
Similarly, EOS presents a wide set of tools and features, easing its integration and
interaction with external systems. In fact, EOS provides multiple APIs such as EOSIO
RPC API, and its implementations in different languages (EosJs , Py Eos , Scala
Eos wrapper , Eos Java , etc.). These tools enable developers to interact with EOS



Overlap between Blockchain and DLT 19

using most used programming platforms. B2B-targeting DLTs such as Hyperledger
fabric or Corda platform, tackle the integrability issue by providing rich integration
SDKs. For instance, Fabric provides a RESTful API Server which uses Fabric SDK
as a library to communicate with the DLT network. Fabric SDK currently supports
Node.js and Java languages. Other technologies like Bitcoin or its variants (Litecoin,
Dogecoin, etc.) enable less integrability as it was not aimed, by design, to integrate or
communicate with other systems. It provides basic RPC features along with unofficial
implementation of its protocol in different languages such as BitcoinJ, limited python
implementations (e.g. pybtc), and others.

DApp Orientation and DLT purpose Bitcoin and similar projects (e.g. Zcash, Lite-
coin) are created with the purpose to serve as mere secure digital cash networks.
Thus, they are considered Cryptocurrency-oriented. Other DLTs try to propose along
the cryptocurrency other types of P2P value transfers. In the case of storage oriented
DLTs such as Sia Network, Storj, FileIo, Ipfs, the network manages data storage along-
side a cryptocurrency. Similarly, the service-oriented DLTs propose services consuming
the inherent token, such as “Steemit” which runs a social network or Namecoin which
aims to provide a decentralized DNS. On the other hand, various DLTs are DApp-
oriented and allow developers to build generic applications. For example, Ethereum,
EOS, Stellar, TRON, and many others, propose a more flexible development environ-
ment for building DApps with built-in tokens. For more information about current
blockchain DApps landscape we refer to this study [23].

7 The Distinction between Blockchain and Blockchain like
system

When deconstructing DLTs system using the DCEA framework and evaluating the
differences between the two high-level taxons blockchain and the blockchain-like, we
observe that they share many common characteristics, as well as distinguishing prop-
erties (Table 2).

In a zoom-out view, we consider that a system is not a blockchain and belongs to
the blockchain-like category, if it displays at least two of the following traits. First,
lack of good decentralization. In fact, multiple DLTs consider sacrificing the decen-
tralization or weaken it for different reasons such as better scalability, straightforward
and seamless governance or because they are intended to be deployed in contexts that
do not require decentralization. Second, a blockchain-like system tolerates data tam-
pering and provides weak immutability either for states or transactions. Third, the
data structure does not rely on chained blocks of transactions to store data. In Table
2, we summarize the distinctive settings of each category to enable the separation
between the two categories of DTLs. However, both categories are not disjoint, but
overlap—often considerably. We can find a blockchain-like system that exhibits all
blockchain properties except one or two. Moreover, in our distinction, we do not rely
on the operational settings —being public or not or being permissioned or permis-
sionless— for the separation between blockchain and blockchain-like because a project
deployed in public and permissionless settings (e.g. Ethereum) can be as well deployed
in private and permissioned settings and vice-versa.



20 Badr Bellaj et al.

Table 2. Settings of blockchain AND blockchain-like in DCEA framework

Components and properties Blockchain Blockchain-like

Data Layer

Data structure Chain of block Chainless model
Shareability Global Restricted by design
States management On-chain Off-chain
Immutability Strong Weak

Consensus layer
Consensus identity model (membership) Permissionless Permissioned
Governance Democratic, Oligarchic Dictatorship, Oligarchic
Data ordering Decentralized and open Centralized or reserved

Execution layer

Conflict resolution Longest-chain/ No-Forks Longest-chain/No-Forks
Turing completeness Turing/Non-Turing complete Turing and Non-Turing complete
Openness Closed/Oracle-based Open/Oracle-based
Interoperability Non-interoperable/Interoperable Non-interoperable/Interoperable
Determinism Deterministic Non-deterministic
Execution environment and rules enforcement VM, Script runtimes VM, Script runtimes

Application layer
Integrability High, Medium, Low High, Medium, Low
DApp orientation DApps, Cryptocurrency DApps/ Cryptocurrency
Wallet management Built-in Built-in or External

8 CONCLUSION

In this paper, we have proposed a comprehensive and referential framework to ease
the understanding and the investigation of different approaches adopted by different
DLTs at the four layers: data structure, execution, consensus and application layers.
We have defined a stack of DLTs components and their main properties after analysing
the design choices adopted by a large spectrum of existing DLTs solutions. The layer-
wise approach adopted by DCEA is aligned with the DLT’s modular architecture and
will help to provide a better and modular understanding of DLTs to decision-makers,
who could then make granular decisions at each layer to construct the best solution.
Moreover, DCEA will serve as a comparative baseline to build a comparative analysis
between different DLT variants. In the future work, we aim to apply this referential
framework to classify existing DLTs into two broad taxa: blockchain and blockchain-
like systems.

References

1. Ittai Abraham and Dahlia Malkhi. The blockchain consensus layer and BFT. Bulletin
of EATCS, 3(123), 2017.

2. Aeternity. æternity - a blockchain for scalable, secure and decentralized æpps.

3. IEEE Standards Association. IEEE blockchain standards.

4. Nicola Atzei, Massimo Bartoletti, Stefano Lande, Nobuko Yoshida, and Roberto Zunino.
Developing secure bitcoin contracts with BitML. In ESEC/FSE 2019 - Proceedings
of the 2019 27th ACM Joint Meeting European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1124–1128, New York,
New York, USA, 8 2019. Association for Computing Machinery, Inc.

5. Sloane Brakeville and Perepa Bhargav. Blockchain basics: Glossary and use cases, 2016.

6. Emily N Dawson, Athan Taylor, and Yvonne Chen. ISO/TC 307 Blockchain and dis-
tributed ledger technologies.

7. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 4 1988.

8. GlobalPlatform and Inc. GlobalPlatform Security Task Force Root of Trust Definitions
and Requirements. Technical report, 2017.



Overlap between Blockchain and DLT 21

9. ISO/TR. ISO/TR 23455:2019 Blockchain and distributed ledger technologies —
Overview of and interactions between smart contracts in blockchain and distributed
ledger technology systems.

10. ITU. Focus Group on Application of Distributed Ledger Technology.
11. IVY. GitHub - ivy-lang/ivy-bitcoin: A high-level language and IDE for writing Bitcoin

smart contracts.
12. Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions in the

blockchain. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11368 LNCS, pages
327–351. Springer Verlag, 2019.

13. Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.
self-published paper, August, 19, 2012.

14. Maker. Maker - Feeds price feed oracles.
15. Trent McConaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe, Troy Mc-

Conaghy, Greg McMullen, Ryan Henderson, Sylvain Bellemare, and Alberto Granzotto.
Bigchaindb: a scalable blockchain database. white paper, BigChainDB, 2016.

16. Nova Mining. Rootstock (RSK): Smart contracts on Bitcoin. Medium, 2018.
17. Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. {CHAINIAC}: Proactive
software-update transparency via collectively signed skipchains and verified builds. In
26th {USENIX} Security Symposium ({USENIX} Security 17), pages 1271–1287, 2017.

18. Jack Peterson, Joseph Krug, Micah Zoltu, Austin K Williams, and Stephanie Alexander.
Augur: a Decentralized Oracle and Prediction Market Platform. Technical report, 2018.

19. Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts. White
paper, pages 1–47, 2017.

20. Randaow. GitHub - randao/randao: RANDAO: A DAO working as RNG of Ethereum.
21. Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bit-

coin. In International Conference on Financial Cryptography and Data Security, pages
507–527. Springer, 2015.

22. F Tschorsch and B Scheuermann. Bitcoin and beyond: A technical survey on decentral-
ized digital currencies. IEEE Communications Surveys, 2015.

23. Kaidong Wu. An Empirical Study of Blockchain-based Decentralized Applications. arXiv
preprint arXiv:1902.04969, 2019.

24. Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town Crier: An
Authenticated Data Feed for Smart Contracts. dl.acm.org, 24-28-Octo:270–282, 10 2016.


