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Canada

cAlayaCare, 4200 St Laurent Blvd Suite 800, Montréal, Québec H2W 2R2, Canada

Abstract

Workforce planning for home healthcare represents an important and challenging task involv-

ing complex factors associated with labor regulations, caregivers’ preferences, and demand

uncertainties. This task is done manually by most home care agencies, resulting in long

planning times and suboptimal decisions that usually fail to meet the health needs of the

population, to minimize operating costs, and to retain current caregivers. Motivated by these

challenges, we present a two-stage stochastic programming model for employee sta�ng and

scheduling in home healthcare. In this model, first-stage decisions correspond to the sta�ng

and scheduling of caregivers in geographic districts. Second-stage decisions are related to the

temporary reallocation of caregivers to neighboring districts, to contact caregivers to work on

a day-o↵, and to allow under- and over-covering of demand. The proposed model is tested

on real-world instances, where we evaluate the impact on costs, caregiver utilization, and

service level by using di↵erent recourse actions. Results show that when compared with a

deterministic model, the two-stage stochastic model leads to significant cost savings as sta↵

dimensioning and scheduling decisions are more robust to accommodate changes in demand.

Moreover, these results suggest that flexibility in terms of use of recourse actions is highly

valuable as it helps to further improve costs, service level, and caregiver utilization.

Keywords: Sta�ng and scheduling, Home healthcare, Two-stage stochastic programming,

Context-free grammars

1. Introduction1

Home healthcare refers to any type of care given to a patient at his own home rather than2

in a healthcare facility like a hospital or a clinic. Caregivers (e.g., personal support workers,3
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nurses, and therapists) meet the patients’ needs by bringing all necessary equipments at their4

homes and therein provide care. This activity increases the quality of life for the patients,5

as they are allowed to remain at home where they are most comfortable. Moreover, it yields6

relevant cost savings for the entire healthcare system as hospitalization costs are avoided7

(Lanzarone & Matta, 2014).8

Home healthcare planning includes di↵erent decision levels that are usually classified in9

three main categories: strategic planning, tactical planning, and operational planning (Hulshof10

et al., 2012). Strategic planning relates to problems addressing structural decision making11

to design and to dimension the healthcare delivery process. This planning level often in-12

volves long planning horizons in which decisions are based on aggregate information and13

forecasts. Some applications include districting problems in which the geographic territory14

where home care agencies operate is partitioned in districts (i.e. smaller geographic zones).15

Tactical planning is related to medium-term decision making dealing with the implementation16

of strategic decisions. Examples of problems in this decision level include personnel scheduling17

problems, where work patterns are designed and allocated to caregivers to meet a forecasted18

and often uncertain demand for services. Operational planning includes short-term decision19

making related to the execution of the healthcare delivery process. Applications include visit20

rescheduling where visit schedules are updated a few days in advance or during the execution21

day, to respond to events such as caregiver absenteeism, incoming urgent care requests, and22

changes in visit requirements.23

The spatial distribution of patients and the uncertainty in demands represent some im-24

portant features found in home healthcare workforce planning. The incorporation of these25

aspects increases the complexity of the problems under study. However, including them in26

the modeling and solution process could have a positive impact on an e�cient service delivery27

in terms of costs and quality. First, the integration of decisions in several districts usually28

generates flexible sta�ng and scheduling solutions that respond in a better way to fluctuating29

demand, since caregivers are allowed to work in a di↵erent district than the one they are ded-30

icated to (Lahrichi et al., 2006). In a similar way, the incorporation of demand uncertainty31

provides solutions that will be more robust to accommodate changes in demand associated32

with the arrival of new patients and with changes in patients’ conditions.33

In this paper, we focus on the integration of two medium-term workforce planning prob-34

lems: the sta↵ dimensioning problem and the caregiver scheduling problem. This integration35

deals with the definition of the number of caregivers to recruit per district, as well as with the36

allocation of schedules to caregivers while considering demand uncertainty. Caregiver sched-37

ules are defined by sequences of work stretches and rest stretches. Work stretches contain a38

consecutive number of work days, where each work day contains exactly one shift (e.g., morn-39

ing shift, night shift) executed in one district. Similarly, rest stretches represent a consecutive40

number of days-o↵. The composition of feasible schedules is subject to work regulations en-41
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suring, among others, that there is a minimum rest time between consecutive shifts, that each42

work stretch includes a sequence of shifts between a minimum and a maximum value, and43

that each rest stretch contains a sequence of days-o↵ between a minimum and a maximum44

value.45

Our work is motivated by the challenges experienced in AlayaCare, a start-up company46

based in Canada developing software solutions for home healthcare agencies. Most of these47

agencies currently lack the tools to forecast future demands, to manage their labour resources,48

and to optimize work assignments. Hence, the sta�ng and scheduling planning is mostly done49

manually by experienced coordinators. Since this planning method often fails to include most50

of the rules for the composition of schedules, as well as accurate demand forecasts, it results51

in the inability to hire an adequate number of caregivers, to retain current caregivers, and to52

meet the needs of patients.53

This paper has the following contributions. First, to the best of our knowledge, our work is54

the first to propose an optimization approach that integrates sta�ng and scheduling decisions55

in the context of home healthcare. To do so, we present a two-stage stochastic programming56

model where first-stage decisions correspond to the sta�ng and scheduling of caregivers at57

each geographic district, and second-stage decisions are related to the temporary reallocation58

of caregivers to neighboring districts, to contact caregivers to work on a day-o↵, and to allow59

under-covering and over-covering of demand. Second, although other authors have already60

benefit from the expressiveness of context-free grammars to build short-term schedules with a61

planning horizon of one day (see Restrepo et al. (2017); Côté et al. (2013)), we believe that our62

work is the first that uses context-free grammars to build schedules over long time horizons63

(i.e., one month or more) guaranteeing horizontal work regulations such as the minimum rest64

time between consecutive shifts and the allocation of a minimum and a maximum number of65

shifts to each work sequence. Context-free grammars allow to easily incorporate horizontal66

regulations as a set of recursive rewriting rules (or productions) to generate patterns of strings67

(Hopcroft et al., 2001), in our case, to generate caregiver schedules. Third, we discuss how68

to forecast the demand of home care services and how to integrate these forecasts in a two-69

stage stochastic programming model. Fourth, we perform an extensive computational study70

on real-based data to evaluate the impact in costs, caregiver utilization and service level, by71

using several recourse actions, various scheduling policies and di↵erent planning horizons.72

The paper is organized as follows. In Section 2, we review related works on caregiver73

sta�ng and scheduling for healthcare. In Section 3, we present the methodology to solve the74

integrated caregiver sta�ng and scheduling for home healthcare. Computational experiments75

are presented and discussed in Section 4. Concluding remarks and future work follow in76

Section 5.77
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2. Related Work78

Healthcare planning problems for hospitals have been extensively studied over the past79

years. In particular, nurse sta�ng and scheduling problems have attracted most of the at-80

tention from the operations research community since the generation of high-quality nurse81

schedules can lead to improvements in hospital resource e�ciency, in patient safety and sat-82

isfaction, and in administrative workload (Burke et al., 2004). Recent approaches to this83

problem include the works presented in Maenhout & Vanhoucke (2013) and Kim & Mehro-84

tra (2015). Maenhout & Vanhoucke (2013) present a branch-and-price procedure to solve85

an integrated nurse sta�ng and scheduling problem, where the number of nurses has to be86

determined for each profession in order to balance, over several months, the workforce costs87

and the coverage of patients in multiple hospital departments. Results indicate that sta�ng88

multiple departments simultaneously and including nurse skills into the sta�ng decisions lead89

to significant improvements in schedule quality in terms of cost, employees’ job satisfaction,90

and e↵ectiveness in providing high-quality care. Kim & Mehrotra (2015) present a two-91

stage stochastic integer program with mixed-integer recourse to integrated nurse sta�ng and92

scheduling. In the problem, first-stage decisions define initial sta�ng levels and schedules,93

while second-stage decisions adjust these schedules at a time epoch closer to the actual date94

of demand realization. Results show that, when compared with a deterministic model, the95

two-stage stochastic model leads to significant cost savings. The work of Kim & Mehrotra is96

similar to ours as the authors use a two-stage stochastic integer programming program with97

recourse to solve integrated sta�ng and scheduling problems in healthcare. The objective of98

both works is to find initial sta�ng levels and schedules to minimize overall labor costs by99

right-sizing the sta↵ and by balancing understa�ng and oversta�ng costs. However, their100

work di↵ers in some important spects from ours. First, as opposed to our work, the work of101

Kim & Mehrotra does not consider the spatial dimension in the planning, since the sta�ng102

and scheduling is done for nurses in a hospital and not for caregivers that need to visit patients103

in di↵erent geographic zones. Second, the authors assume that work patterns repeat from104

week to week during the planning horizon and that all possible weekly patterns are generated105

in advance. Instead, in our approach, caregiver schedules are allowed to be di↵erent from106

week to week, and weekly schedules are not generated in advance, as one of the objectives of107

our model is to build (with context-free grammars) caregiver schedules that guarantee several108

work regulations. Third, regarding the use of recourse actions, both works allow for calling109

in additional sta↵ when needed. However, our work uses an additional recourse action corre-110

sponding to the reallocation of caregivers to neighbor areas and, contrary to Kim & Mehrotra,111

we do not allow to cancel shifts from the scheduled sta↵.112

Problems related to the routing and scheduling of human resources involve the most im-113

portant volume of existing investigations in home healthcare planning. These problems define114
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the assignment of caregivers to patients, as well as the design of caregivers routes to reduce115

traveling distances, to decrease overtime costs, and to improve the continuity of care. Conti-116

nuity of care guarantees that a patient is most of the time visited by the same caregiver in117

the whole duration of the care plan. Home healthcare routing and scheduling problems often118

require the incorporation of several constraints related to the management of caregivers’ work119

regulations, to the matching of caregivers’ skills and patients’ requirements, and to the satis-120

faction of patients’ and caregivers’ preferences. Since the addition of these constraints often121

makes the modelling and solution of this problem intractable, di↵erent authors have proposed122

heuristic methods such as tabu search algorithms (Hertz & Lahrichi, 2009) and rolling horizon123

approaches (Bennett & Erera, 2011; Nickel et al., 2012) to e�ciently solve practical instances124

of this problem. Exact approaches have also been developed in Bachouch et al. (2011) and125

Cappanera & Scutellà (2014) to deal (in an integrated way) with assignment, scheduling, and126

routing decisions.127

Real applications of routing and scheduling of human resources in home healthcare often128

require the optimization of multiple objectives, as well as the incorporation of uncertainty in129

demands to obtain robust solutions that react better to changes in demand. In that order130

of ideas, Duque et al. (2015) and Braekers et al. (2016) propose bi-objective optimization131

approaches to maximize the quality of service and to minimize the distance travelled by the132

caregivers. Lanzarone et al. (2012) formulate di↵erent scenario-based stochastic programming133

models to solve the robust nurse-to-patient assignment problem that preserves the continuity134

of care and balances the operators’ workloads. Lanzarone & Matta (2012) use analytical poli-135

cies to address the nurse-to-patient assignment problem, in which both continuity of care and136

demand uncertainty are considered. Nguyen et al. (2015) present a variant of a home care137

problem in which the availability of nurses is uncertain (e.g., nurses might call sick on short138

notice). To address this problem, the authors propose to use a matheuristic optimization139

approach for robust nurse-to-patient assignment and nurse scheduling and routing. Carello140

& Lanzarone (2014) and Lanzarone & Matta (2014) present robust approaches for the nurse-141

to-patient assignment under continuity of care. In the former work, the authors apply the142

robust cardinality-constrained approach proposed in Bertsimas & Sim (2004) to incorporate143

the uncertainty in patients’ demands. In the latter work, the authors propose an analyt-144

ical policy that takes into account the stochasticity of new patient’s demand and nurses’145

workloads. Hewitt et al. (2016) solve the nurse-to-patient assignment problem and develop a146

solution method to incorporate uncertainty in demand, as future patient requests are often147

unknown at the time of planning. Cappanera et al. (2018) extend the cardinality-constrained148

robust approach presented in Cappanera & Scutellà (2014) to include uncertainty in patients’149

demands in a home care problem integrating assignment, scheduling and routing decisions.150

The interested reader is referred to Fikar & Hirsch (2017) for a recent survey of current works151

in home healthcare routing and scheduling.152

5



Contrarily to the routing and scheduling of caregivers, integrated sta�ng and scheduling153

problems for home healthcare have been rarely studied in the literature. This problem is154

highly relevant, as human resources need to be properly managed in order to avoid ine�cient155

visit schedules, treatment delays, and low quality of service (Matta et al., 2014). Two medium-156

term home healthcare nurse scheduling problems are addressed in Trautsamwieser & Hirsch157

(2014) and in Wirnitzer et al. (2016). In these works, a given set of nurses is allocated to158

schedules which are built by including work regulations associated with the allocation of days-159

o↵ between work stretches, the allocation of rest times between consecutive working days, and160

the allocation of a maximum working time per day and per week. Trautsamwieser & Hirsch161

(2014) use a branch-and-price-and-cut solution approach to solve the problem over a one-week162

planning horizon. Experiments on real-world based instances show that the proposed method163

helps to significantly reduce the schedule planning time when compared to a manual planning164

process. Wirnitzer et al. (2016) present a mixed integer programming (MIP) model to address165

the nurse scheduling problem for longer planning horizons (e.g., one month). Experiments166

on real-world instances suggest that using the MIP model not only helps to reduce the time167

to generate the schedules, but also improves the solution quality from the patients and from168

the nurses point of view. A home healthcare nurse sta�ng problem with uncertain demands169

is studied in Rodriguez et al. (2015). The authors propose to use a two-stage stochastic170

programming approach where first-stage decisions correspond to a global sta↵ dimensioning,171

while second-stage decisions are related to the allocation of schedules (that do not include172

work regulations or continuity of care) to nurses with di↵erent skills. Results indicate that173

the proposed approach helps decision-makers with sta�ng and scheduling decisions before174

opening a home healthcare service or before hiring a new nurse.175

Forecasting patients’ demands represents an important step in robust approaches for plan-176

ning and managing resources in health care. These forecasts can create alerts for the man-177

agement of patient overflows, they can enhance preventive health care, and when used as178

an input for planning human resources, they can significantly reduce the associated costs in179

oversta�ng and understa�ng (Soyiri & Reidpath, 2013). Several methods have been pro-180

posed in the literature to forecast demands and to support healthcare providers in human181

resource planning before the care execution. These forecasting methods include, among oth-182

ers, Markovian decision models (Lanzarone et al., 2010; Garg et al., 2010), Bayesian models183

(Argiento et al., 2016), and autoregressive moving average models (Jalalpour et al., 2015). In184

this paper, we use a decomposable time series model (Harvey & Peters, 1990) to forecast the185

demand since this type of model is relatively easy to implement and to explain to the end186

user.187

The literature review in home healthcare planning reveals that no method has been pro-188

posed to integrate caregiver sta�ng and scheduling when demand is stochastic and when189

the composition of schedules includes complex work regulations, in particular, existing works190
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show that when rules for the composition of schedules are included in the problem, sta�ng191

decisions are not considered since it is assumed that these decisions have been already taken192

in a previous step of the decision process (Defraeye & Van Nieuwenhuyse, 2016). In a similar193

way, when sta�ng decisions are included in the problem, the composition of caregivers’ sched-194

ules does not consider important work rules such as the allocation of a minimum rest time195

between consecutive shifts. This paper addresses these gaps in the literature by proposing196

a model that integrates sta↵ dimensioning with sta↵ scheduling decisions for a medium-term197

home healthcare problem. Furthermore, the proposed model includes uncertainty in demands198

and the incorporation of several work rules for the generation of caregivers’ schedules, pro-199

viding solutions that are expected to react in a robust way to variations in demand and that200

comply with workplace agreements. We remark that although other works have already used201

context-free grammars to solve personnel scheduling problems under stochastic demand (see202

Restrepo et al. (2017)), our work is the first one that uses grammars to build schedules over203

time horizons longer than one day (i.e., a month or longer). Additionally, our work di↵ers204

from the work in Restrepo et al. (2017) by three other aspects. First, this paper consid-205

ers sta�ng decisions, while the work presented in Restrepo et al. (2017) assumes that the206

number of employees is already given. Second, in this paper, employees can work in di↵erent207

geographic areas, while in Restrepo et al. (2017) all employees are assumed to work in a single208

place. Third, while this paper uses the reallocation of caregivers to neighboring areas and209

the possibililty of calling caregivers to work during one of their days-o↵ as the set of recourse210

actions, the work in Restrepo et al. (2017) uses the allocation of activities and breaks to daily211

shifts to protect against demand uncertainty.212

Next section presents the definition and formulation of the problem studied in this paper.213

3. Problem Definition and Formulation214

The integrated caregiver sta�ng and scheduling problem for home healthcare considers a215

territory divided into |C| geographic areas or districts, each one covering several patients. We216

assume that each patient is assigned to only one district. The planning horizon includes |D|217

days, where each day d 2 D is covered by a set of working shifts S characterized by a set of218

attributes, namely: a start time bs, a day of the week ds (e.g. Monday, Tuesday,...), a length219

ls, and a cost cs that depends on the shifts’s length ls and the day of the week ds. Each220

district c 2 C defines a di↵erent type of caregiver e 2 E (E = C) working in at most one shift221

s 2 S per day. To guarantee the continuity of care for patients, caregiver e 2 E should work222

most of the time in his district. However, caregivers might be temporarily reallocated (at223

the expense of an additional cost) to a compatible district c 2 C during shift s 2 S to meet224

unexpected demands. Campbell (2011) showed that schedule flexibility resulting from the225

reallocation of employees can be more valuable than the perfect information about demand,226
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especially when demand uncertainty is high.227

We assume that demands (expressed as the number of visits during day d 2 D in district228

c 2 C and shift s 2 S) are uncertain. Hence, when solving the integrated caregiver sta�ng229

and scheduling problem for home healthcare we consider two types of decisions. The first type230

includes the first-stage decisions, which define the sta�ng levels (i.e. the number of caregivers231

to hire), as well as the allocation of individual schedules to each caregiver. The second type232

incorporates the second-stage decisions, which define the adjustment of caregivers’ schedules233

few days before their execution. These adjustments include the caregivers reallocation to234

compatible districts, contacting caregivers to work during their day-o↵, and allowing demand235

over-covering and under-covering. Because schedules must be available to caregivers at least236

one month in advance to allow for choices, we assume that the planning horizon is larger237

than or equal to 4 weeks. At the beginning of this planning horizon sta�ng and scheduling238

decisions (first-stage decisions) are made to minimize the sum of the total sta�ng costs, the239

expected recourse costs, and the expected over-covering and under-covering costs. Since the240

actual demand is often revealed one week in advance, the planned schedules are adjusted at241

the beginning of each week for the following week. These adjustment decisions (second-stage242

decisions) are applied for each type of shift at each day of the week.243

The methodology to solve the problem studied in this paper is divided in three steps.244

The first step is related to the demand forecasting and scenario generation. The second step245

involves the definition of caregivers’ schedules by means of grammars. The third step uses246

a two-stage stochastic programming optimization model for caregiver sta�ng and schedule247

allocation. The description of these steps is presented next.248

3.1. Demand Forecasting and Scenario Generation249

The ability of accurately forecast the demand for visits is a fundamental requirement for250

developing robust decision support tools in home healthcare resource planning. In fact, sev-251

eral strategic and tactical decisions in home healthcare are based on forecasts of demand for252

resources. For instance, recruitment decisions are mainly driven by forecasts on the amount253

of visits required by the patients in a given planning horizon. If this demand is accurately254

predicted, several operational problems such as under-utilization and over-utilization of care-255

givers can be avoided. On the contrary, inaccurate forecasts threatens the quality of the plans256

obtained leading to more expensive solutions that could be infeasible for some demand scenar-257

ios. In this section, we present a methodology for demand forecasting and scenario generation258

in home healthcare. We remark that the methods used to forecast and to generate scenarios259

for the demand are possible approaches, developing and evaluating di↵erent methods for these260

tasks is out of the scope of this work.261
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3.1.1. Demand forecasting262

To estimate the number of patients bdcs to visit during day d 2 D in district c 2 C, and263

shift s 2 S, we use a decomposable time series model with three main model components:264

growth, seasonality, and holidays. These components (included in equation (1)) represent265

the growth function (gdsc) which models non-periodic changes in the value of the time series,266

the periodic changes function (sdsc) modelling weekly or yearly seasonality, and the e↵ects267

of holidays function (hdsc) including e↵ects from days such as christmas and new year’s day.268

The error term ✏dsc represents irregular changes in demand, which are not accommodated by269

the time series model.270

bdsc = gdsc + sdsc + hdsc + ✏dsc, for each s 2 S, c 2 C (1)

Equation (1) is estimated with Facebook Prophet which is an open source library to271

create quick, accurate and completely automated time series forecasts. This tool uses an272

additive regression model with four components: i) a piecewise linear or logistic growth curve273

to detect changes in trends by selecting change points from the historical data; ii) a yearly274

seasonal component modeled using Fourier series; iii) a weekly seasonal component using275

dummy variables; iv) a user-provided list of relevant holidays. Unlike with ARIMA models,276

the time series measurements do not need to have a regular period. Hence, there is no need277

to interpolate missing values to fit. The reader is referred to (Taylor & Letham, 2018) for278

more information on how Facebook Prophet works.279

3.1.2. Scenario generation280

In generating the di↵erent scenarios for our problem we only consider uncertainty in the281

number of visits per day, per shift, and per district. Therefore, we assume that the duration282

of patients’ visits and travel times are deterministic parameters which are included in the283

caregiver capacities (i.e. the number of patients visited per shift). We allow these capacities284

to vary with the day of the week, with the type of shift, and with the district where the285

caregiver is working. For instance, the capacity of night shifts is generally lower than the286

capacity of morning shifts, as patients visited at night need care for longer periods than287

patients visited in the morning. We assume that the number of visits per day, per shift, and288

per district is a random variable with finite support. In addition, we define ⌦d as a set of289

scenarios for the demand at each day d 2 D, and p(w)
d

> 0 as the probability of occurrence of290

scenario w 2 ⌦d. Note that
P

w2⌦d
p(w)
d

= 1, 8 d 2 D.291

The scenarios for the demand are generated with Monte Carlo simulation. We assume292

that given the estimated values for the mean of demand (b̂dsc) and the estimated values for293

the upper bound (b̂u
dsc

) of a (1 � ↵) confidence interval returned by Facebook Prophet after294
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fitting model (1) to the historical data, the standard deviation �̂dsc can be computed with295

equation (2).296

�̂dsc = (b̂udsc � b̂dsc)⇥
p
n

Z1�↵
2

(2)

Where Z1�↵
2
is the value for a standard normal variable with a 1 � ↵

2 probability to the297

right, and n denotes the size of the training set used to estimate time series model (1). Once298

the values for �̂dsc are obtained, we can compute the demand for the number of visits in299

district c 2 C and shift s 2 S during day d 2 D under scenario w 2 ⌦d as:300

b(w)
dsc

= max

⇢
0,

�
b̂dsc +R ⇤ �̂dscp

n

⇡�
(3)

Where R represents the value of a random variable that follows a standard normal distri-301

bution and b e denotes the nearest integer function.302

An example on the scenario generation for a given day d 2 D is shown in Tables 1 and303

2. Table 1 presents for each combination of districts and shifts (denoted as d0, d1, d2, and d3304

for the districts, and a4, m4, m8, and n10 for the shifts) the values for the forecasted mean305

demand (b̂), the values for the lower bound and upper bound (b̂l, b̂u) of a 90% confidence306

interval for the forecasted demand, the values for the actual value of the demand (b), and307

the values for the possible values for the demand (list) with their corresponding frequency308

(count), after running 500 simulations. Table 2 shows a sample of 10 scenarios from the 500309

scenarios generated. Each column from this table presents the demand values (number of310

visits) during day d for each combination of districts and shifts.311

district shift b b̂l b̂u b̂ list count
d0 m4 1 1 2 1 [1] [500]
d0 m8 2 1 3 1 [1, 2, 0, 3] [314, 157, 25, 4]
d0 n10 2 1 2 1 [1, 2, 0] [466, 30, 4]
d1 a4 7 5 9 7 [7, 6, 5, 8, 9, 4, 10, 3] [151, 134, 87, 77, 23, 22, 5, 1]
d1 m4 5 2 8 4 [4, 5, 6, 3, 2, 7, 1, 8, 0, 9] [122, 110, 84, 78, 49, 31, 14, 9, 2, 1]
d1 m8 14 12 17 14 [13, 14, 15, 12, 16, 11, 17, 18, 10] [126, 122, 106, 56, 47, 22, 13, 5, 3]
d1 n10 9 6 10 7 [8, 9, 7, 6, 10, 11, 5, 12] [182, 128, 116, 33, 32, 5, 3, 1]
d2 m4 2 1 3 1 [1, 2, 0, 3] [304, 154, 40, 2]
d2 m8 2 1 2 1 [1, 2, 0] [460, 34, 6]
d2 n10 2 1 2 1 [1, 2, 0] [420, 78, 2]
d3 a4 3 1 5 2 [3, 2, 4, 1, 5, 0] [179, 176, 67, 59, 10, 9]
d3 m4 4 3 6 4 [4, 3, 5, 2, 6, 7, 1] [204, 129, 116, 26, 23, 1, 1]
d3 m8 4 2 6 4 [3, 4, 2, 5, 1, 6, 7] [192, 147, 88, 55, 9, 8, 1]
d3 n10 4 3 6 4 [4, 3, 5, 2, 6, 1] [212, 151, 93, 30, 11, 3]

Table 1: Results for the demand forecasting and Monte Carlo simulation.
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Scenario
district shift 1 2 3 4 5 6 7 8 9 10
d0 m4 1 1 1 1 1 1 1 1 1 1
d0 m8 1 1 1 2 2 3 1 2 2 1
d0 n10 1 1 1 1 2 1 1 1 1 1
d1 a4 7 5 5 6 8 8 5 7 6 7
d1 m4 3 3 5 5 5 4 6 6 6 2
d1 m8 11 15 13 13 14 13 13 11 16 11
d1 n10 7 11 9 9 5 7 6 8 8 6
d2 m4 2 2 1 2 1 1 1 1 1 2
d2 m8 1 1 2 1 1 1 1 1 1 2
d2 n10 1 1 1 1 1 2 1 2 1 1
d3 a4 3 3 3 2 2 2 3 4 3 1
d3 m4 4 5 4 4 3 3 5 5 3 3
d3 m8 3 3 5 3 3 5 3 2 3 4
d3 n10 3 5 4 5 3 4 4 3 6 3

Table 2: Example of 10 scenarios for a given day in the planning horizon.

3.2. Grammars312

A context-free grammar is a set of recursive rewriting rules (or productions) used to313

generate patterns of strings, or (in the case of personnel scheduling) to generate schedules or314

daily shifts. Context-free grammars have been successfully used in the context of personnel315

scheduling. Applications include the solution of multi-activity and multi-task shift scheduling316

problems (Côté et al., 2013; Boyer et al., 2012) and multi-activity tour scheduling problems317

(Restrepo et al., 2017, 2016).318

A context-free grammar consists of a four-tuple G = h⌃, N,S, P i, where ⌃ is an alphabet319

of characters called the terminal symbols, N is a set of non-terminal symbols, S 2 N is the320

starting symbol, and P is a set of productions represented as A ! ↵, where A 2 N is a non-321

terminal symbol and ↵ is a sequence of terminal and non-terminal symbols. The productions322

of a grammar are used to generate new symbol sequences until all non-terminal symbols have323

been replaced by terminal symbols. A context-free language is the set of sequences accepted324

by a context-free grammar.325

A parse tree is a tree where each inner-node is labeled with a non-terminal symbol and326

each leaf is labeled with a terminal symbol. A grammar recognizes a sequence if and only327

if there exists a parse tree where the leaves, when listed from left to right, reproduce the328

sequence. A DAG � is a directed acyclic graph that embeds all parse trees associated with329

words of a given length n recognized by a grammar. The DAG � has an and/or structure330

where the and-nodes represent productions from P and or-nodes represent non-terminals from331

N and letters from ⌃. An and-node is true if all of its children are true. An or-node is true if332

one of its children is true. The root node is true if the grammar accepts the sequence encoded333

by the leaves. The DAG � is built with a procedure proposed in Quimper & Walsh (2007)334

using bottom-up parsing and dynamic programming.335

In employee scheduling, the use of grammars allows one to include work rules regarding336
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the definition of work stretches and rest stretches in an easy way. Thus, feasible schedules can337

be represented as words in a context-free language. Specifically, for the problem addressed in338

this paper we use grammars to:339

• Generate work stretches representing sequences of work spanning a minimum and a340

maximum number of days.341

• Generate rest stretches denoting sequences of days-o↵ spanning a minimum and a max-342

imum number of days.343

• Define a minimum and a maximum consecutive number of morning, afternoon, and344

night shifts within a work stretch. For instance, a given work stretch cannot have more345

than 3 night shifts in a row.346

• Forbid infeasible transitions between shifts by associating costs to productions. For347

instance, a night shift cannot be followed by a morning shift.348

• Allocate a rest stretch between two work stretches.349

Example 1350

351

Consider the following grammar for an employee scheduling problem where the planning hori-352

zon consists of five days, work stretches have a length of three consecutive days, and days-o↵353

can be allocated in consecutive or nonconsecutive days:354

355

G = (⌃ = (w, r), N = (S, F,Q,W,R), P,S),356

357

Where productions P are: S ! RF |FR|QR, F[3,3] ! WW , W ! WW |w, Q ! RF ,358

R ! RR|r and symbol | specifies the choice of production. Letter w represents the allocation359

of a working shift and letter r represents the allocation of a day-o↵. P[min, max] restricts the360

subsequences generated by production P to a length between a minimum and maximum num-361

ber of days.362

363

In this grammar, production F[3,3] ! WW generates two non-terminal symbols W , meaning364

that the schedule will include a work stretch of exactly three days. Production Q ! RF gen-365

erates two non-terminal symbols R and F , meaning that the schedule will start with a rest366

stretch and then it will include a work stretch of exactly three days. Production R ! RR367

generates two non-terminal symbols R, meaning that the schedule will include a rest stretch.368

Productions W ! w and R ! r generate terminal symbols associated with the allocation of369

a shift and with the allocation of a day-o↵ to the schedule of an employee, respectively. The370
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last three productions are S ! RF , S ! FR, and S ! QR. The first production generates371

a schedule starting with two days-o↵ followed by a work stretch. The second production gen-372

erates a schedule starting with a work stretch followed by two days-o↵. The last production373

generates a schedule starting with one day-o↵, followed by a work stretch, to finish with one374

day-o↵. The three words recognized as valid schedules by the grammar in this example are375

rrwww, wwwrr, and rwwwr.376

377

Let O⇡

dl
be the or-nodes associated with ⇡ 2 N [ ⌃ (i.e. with non-terminals from N or378

letters from ⌃) that generate a subsequence from day d of length l. Note that if ⇡ 2 ⌃,379

the node is a leaf and l is equal to one. On the contrary, if ⇡ 2 N the node represents a380

non-terminal symbol and l � 1. A⇧,k

dl
is the kth and-node representing production ⇧ 2 P381

generating a subsequence from day d of length l. There are as many A⇧,k

dl
nodes as there382

are ways of using ⇧ to generate a sequence of length l from day d. As previously mentioned,383

undesired productions (i.e. transitions between a night shift and a morning shift) are penalized384

by a cost denoted as c⇧,k

dl
. The sets of or-nodes, and-nodes, and leaves of DAG � are denoted385

by O, A, and L, respectively. The root node is described by OS
1n and its children by A⇧,k

1n .386

The children of or-node O⇡

dl
are represented by ch(O⇡

dl
) and its parents by par(O⇡

dl
). Similarly,387

the children of and-node A⇧,k

dl
are represented by ch(A⇧,k

dl
) and its parents by par(A⇧,k

dl
). For388

more details on the use of grammars in employee scheduling we refer the reader to Côté et al.389

(2011).390

Figure 1 shows the DAG � associated with the grammar from Example 1. Observe that391

this figure includes three parse trees, each one representing one word (schedule) recognized by392

the grammar. As an example we present in dashed lines the parse tree generating schedule393

rwwwr.394

The works of Restrepo et al. (2017) and Côté et al. (2011) on anonymous tour scheduling395

problems with multiple activities are examples of the use of context-free grammars to represent396

the work rules involved in the composition of shifts. In both works, the authors present397

implicit grammar-based integer programming models where the word length n corresponds to398

the number of periods in the planning horizon, the set of work activities corresponds to letters399

in the alphabet ⌃, and each employee is allowed to work in any work activity. In the model,400

the logical clauses associated with � are translated into linear constraints on integer variables.401

Each and-node A and each leaf L in � are represented by an integer variable denoting the402

number of employees assigned to a specific subsequence of work. Since this grammar-based403

model e�ciently encapsulates the constraints for the generation of the schedules, it is used as404

a component in the formulation of the two-stage stochastic problem presented next.405
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Figure 1: DAG � on schedules of length five.
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3.3. Two-Stage Stochastic Optimization Model406

The formulation of the two-stage stochastic programming model requires a previous defi-407

nition of the grammars and DAGs � containing specific work regulations for the composition408

of valid caregiver schedules. Since work regulations could vary depending on the type of care-409

giver, we define a di↵erent grammar and a di↵erent DAG �e for each e 2 E. The notation410

used for the formulation of the problem is as follows:411

Parameters:412

– e
dsc

: number of visits a caregiver of type e 2 E working on shift s 2 S can perform in413

district c 2 C during day d 2 D;414

– ce
ds
: non-negative cost associated with one caregiver of type e 2 E working on shift s 2 S415

during day d 2 D;416

– c⇧,k,e

dl
: non-negative cost associated with the kth and-node representing production ⇧ from417

�e, producing a sequence from day d 2 D of length l for caregiver e 2 E;418
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– b̂dsc: mean demand for the number of visits in district c 2 C and shift s 2 S during day419

d 2 D;420

– b(w)
dsc

: demand for the number of visits in district c 2 C and shift s 2 S during day d 2 D421

under scenario w 2 ⌦d;422

– c+
dsc

, c�
dcs

: non-negative demand over-covering and under-covering costs for district c 2 C423

and shift s 2 S during day d 2 D, respectively;424

– te
dsc

: non-negative transition cost associated with the reallocation one caregiver of type425

e 2 E to district c 2 C during day d and shift s 2 S;426

– re
ds
: non-negative cost associated with assigning shift s 2 S to a caregiver of type e 2 E427

during its rest day d 2 D;428

– �esc: binary parameter that takes value 1 if caregiver e 2 E admits a reallocation to district429

c 2 C during shift s 2 S, and it assumes value 0 otherwise.430

Decision variables:431

– ue: variable that denotes the number of caregivers of type e 2 E to hire;432

– v⇧,k,e

dl
: variable that denotes the number of caregivers of type e 2 E assigned to the kth433

and-node representing production ⇧ from �e producing a sequence from day d 2 D of434

length l;435

– ye
ds
: variable that denotes the number of caregivers of type e 2 E working on shift s 2 S436

during day d 2 D (equivalent to the number of caregivers of type e 2 E assigned to leaf437

Os,e

d1 );438

– ye
dr
: variable that denotes the number of caregivers of type e 2 E having rest during day439

d 2 D (equivalent to the number of caregivers of type e 2 E assigned to leaf Or,e

d1 );440

– xe(w)
dsc

: variable that denotes the number of caregivers of type e 2 E assigned to work in441

district c 2 C and shift s 2 S during day d 2 D under scenario w 2 ⌦d;442

– ze(w)
ds

: variable that denotes the number of caregivers of type e 2 E assigned to work during443

a day-o↵ on shift s 2 S during day d and scenario w 2 ⌦d;444

– s+(w)
dsc

and s�(w)
dsc

: slack variables denoting demand over-covering and under-covering in445

district c 2 C and shift s 2 S during day d 2 D under scenario w 2 ⌦d, respectively.446

The formulation for the stochastic caregiver sta�ng and scheduling problem, is as follows.447
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min
X

d2D

X

s2S

X

e2E

cedsy
e

ds +
X

d2D

X

e2E

X

A
⇧,k,e
dl 2Ae

c⇧,k,e

dl
v⇧,k,e

dl
+Q(y) (4)

yeds =
X

A
⇧,1,e
d1 2 par(Os,e

d1 )

v⇧,1,e
d1 , 8 d 2 D, e 2 E, s 2 S, (5)

yedr =
X

A
⇧,1,e
d1 2 par(Or,e

d1 )

v⇧,1,e
d1 , 8 d 2 D, e 2 E, (6)

ue =
X

A
⇧,k,e
1n 2 ch(OS,e

1n )

v⇧,k,e

1n , 8 e 2 E, (7)

X

A
⇧,k,e
dl 2 ch(O⇡,e

dl )

v⇧,k,e

dl
=

X

A
⇧,k,e
dl 2 par(O⇡,e

dl )

v⇧,k,e

dl
,

8 e 2 E, O⇡,e

dl
2 Oe \ {OS,e

1n [ Le}, (8)

ue � 0 and integer, 8 e 2 E, (9)

v⇧,k,e

dl
� 0 and integer, 8 d 2 D, e 2 E, A⇧,k,e

dl
2 Ae, (10)

yeds � 0 and integer, 8 d 2 D, e 2 E, s 2 S, (11)

yedr � 0 and integer, 8 d 2 D, e 2 E. (12)

The objective of model (4)-(12) is to minimize the total sta�ng cost (i.e. allocation of448

working shifts to caregivers), the penalization for certain transitions between shifts (i.e. transi-449

tion from night shifts to morning shifts), and the expected recourse function Q(y). Constraints450

(5)-(6) set the value of variables ye
ds

and ye
dr

as the summation of the value of the parents of451

leaf nodes Os,e

d1 and Or,e

d1 , respectively. Constraints (7) define the number of caregivers of type452

e 2 E to hire. Constraints (8) guarantee, for every or-node in �e, e 2 E excluding the root453

node OS,e
1n and the leaves Le, that the summation of the value of its children is the same as the454

summation of the value of its parents. Constraints (8) can be seen as flow conservation equa-455

tions where or-nodes O⇡,e

dl
represent “transition nodes”. The constraints for those transition456

nodes guarantee that if m caregivers of type e are allocated to the productions generating the457

subsequence associated with node O⇡,e

dl
, those m caregivers have to be distributed along all the458

possible ways to use ⇡ to generate a sequence of length l from position d (ch(O⇡,e

dl
)). Consider459

the following example using the DAG � from Figure 1. Assume that three caregivers are460

assigned to and-node AW!WW,1
22 (represented by variable vW!WW,1

22 ) and that one employee461

is assigned to and-node AW!WW,1
12 (represented by variable vW!WW,1

12 ). Since these two and-462

nodes have one child in common (i.e. or-node OW
21 ) the number of employees allocated to463

OW
21 is four. Now, since or-node OW

21 has one child (AW!w,1
21 ) these four employees must be464

allocated to a working shift during day 2.465

466
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The expected recourse function Q(y) is denoted by Q(y) ⌘ E⇠[Q(y, ⇠)]. The recourse467

function Q(y, ⇠d(w)) for a given realization w of ⇠ and fixed values for the allocation of468

caregivers to shifts and days-o↵ (ȳe
ds
, ȳe

d�1r, ȳ
e

dr
, and ȳe

d+1r) is represented by:469

min
X

e2E

X

s2S

X

c2C

tedscx
e(w)
dsc

+
X

e2E

X

s2S

redsz
e(w)
ds

+
X

s2S

X

c2C

�
c+
dsc

s+(w)
dsc

+ c�
dsc

s�(w)
dsc

�
(13)

X

c2C

�escx
e(w)
dsc

= (ze(w)
ds

+ ȳeds), 8 s 2 S, e 2 E, (14)

X

s2S

ze(w)
ds

 ȳed�1r, 8 e 2 E, (15)

X

s2S

ze(w)
ds

 ȳedr, 8 e 2 E, (16)

X

s2S

ze(w)
ds

 ȳed+1r, 8 e 2 E, (17)

X

e2E

edscx
e(w)
dsc

� s+(w)
dsc

+ s�(w)
dsc

= b(w)
dsc

, 8 s 2 S, c 2 C, (18)

xe(w)
dsc

� 0 and integer, 8 e 2 E, s 2 S, c 2 C, (19)

ze(w)
ds

� 0 and integer, 8 e 2 E, s 2 S, (20)

s+(w)
dsc

, s�(w)
dsc

� 0, 8 s 2 S, c 2 C. (21)

The objective of model (13)-(21) is to minimize the reallocation costs, the costs of con-470

tacting caregivers to work on a day-o↵, and the penalization for demand over-covering and471

under-covering. Constraints (14) define the reallocation of caregivers of type e 2 E working472

on shift s 2 S to compatible districts. Constraints (15)-(17) set the valid conditions to contact473

caregivers to work on a day-o↵. That is, if an employee is having three days-o↵ in a row only474

the day-o↵ in the middle of the rest stretch can be assigned to a working shift. Constraints475

(18) ensure that the total number of caregivers working on day d 2 D, shift s 2 S, and district476

c 2 C is equal to the demand subject to some adjustments related to demand under-covering477

and over-covering. Constraints (19)-(21) set the non-negativity and integrality of variables478

xe(w)
dsc

and ze(w)
ds

, and the non-negativity of variables s+(w)
dsc

and s�(w)
dsc

.479

Since we assumed that the number of visits per day, per shift, and per district is a random480

variable with finite support, where ⌦d is the set of scenarios for the demand at each day and481

p(w)
d

> 0 is the probability of occurrence of scenario w 2 ⌦d, the expected recourse function482

Q(y) can be expressed as:483

Q(y) ⌘
X

d2D

E⇠[Q(y, ⇠d)] ⌘
X

d2D

X

w2⌦d

p(w)
d

Q(y, ⇠d(w)) (22)
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With this result, recourse functions (13)-(21) can be incorporated in (4)-(12) to obtain an484

deterministic equivalent problem given by:485

f(Z) = min
X

d2D

X

s2S

X

e2E

cedsy
e

ds +
X

d2D

X

e2E

X

A
⇧,k,e
dl 2Ae

c⇧,k,e

dl
v⇧,k,e

dl
+

X

d2D

X

w2⌦d

p(w)
d

� X

e2E

X

s2S

X

c2C

tedscx
e(w)
dsc

+
X

e2E

X

s2S

redsz
e(w)
ds

�

X

d2D

X

w2⌦d

p(w)
d

� X

s2S

X

c2C

c+
dsc

s+(w)
dsc

+ c�
dsc

s�(w)
dsc

�

(5)� (12) and

(14)� (21), 8 d 2 D,w 2 ⌦d.

Observe that model Z could involve a large number of variables and constraints, espe-486

cially when the number of days in the planning horizon is large. However, since context-free487

grammars allow to handle multiple shift types and to represent complex work regulations in488

an implicit (compact) way, and since the size of the model does not depend on the number of489

caregivers to hire at each district, model Z can be e�ciently solved for large instances without490

the need of decomposition methods.491

4. Computational Experiments492

In this section, we test the proposed approach on real-world instances from a home health-493

care agency working with AlayaCare. First, we present information related to the agency’s494

operations and to the rules for schedule generation. Second, we describe the procedure adopted495

for the generation of the instances and present the size of these instances. Third, we report496

and analyze the computational results and present a discussion on the practical aspects and497

managerial insights of the proposed approach.498

The computational experiments were performed on a Linux operating system, 16 GB of499

RAM and 1 processor Intel Xeon X5675 running at 3.07GHz. The algorithm to solve the500

problem was implemented in C++. The deterministic equivalent problem Z was solved with501

CPLEX version 12.7.0.0. The time limit to solve each instance is proportional to the length502

of the planning horizon. For example, if a given instance is defined over 4 weeks, the time503

limit is set to 2 hours. Similarly, if a given instance is defined over 12 weeks, the time limit504

is set to 6 hours. A relative gap tolerance of 0.01 was set as a stopping criterion for solving505

the MILPs with CPLEX.506
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4.1. Operations and Schedule Generation507

• Operations: The test instances are generated based on 8-month historical data from508

operations of one private agency operating in Greater Toronto Area. This region is509

divided in four districts (i.e. |C| = 4). The agency operates in these districts 24510

hours per day from Monday to Sunday. We only consider the sta�ng and scheduling511

of personal support workers, as they represent the largest portion of employees in the512

agency (70% of the total number of caregivers). Based on the agency’s operations we513

defined four types of shifts: morning shifts of type 1 (denoted as m8) starting at 7:00514

with an 8-hour length; morning shifts of type 2 (denoted as m4) starting at 10:00 with515

a 4-hour length; afternoon shifts (denoted as a4) starting at 14:00 with a 4-hour length;516

and night shifts (denoted as n10) starting at 18:00 with a 10-hour length. We assume517

that the base cost of each working time interval is 1$ and that the shift allocation518

cost depends on the shift length, as well as on the day covered (weekend shifts are more519

expensive than weekday shifts). Because one of the objectives of the agency is to increase520

the service level, demand under-covering costs are set to a large value equal to the cost of521

each visit (ce
ds
/e

ds
) multiplied by 10. Similarly, the costs for the demand over-covering522

are equivalent to the cost of each visit (ce
ds
/e

ds
) multiplied by 0.5. The values for these523

costs, for the capacities of shifts, as well as other parameters characterizing each type524

of shift are presented in Table 3. Observe that the costs presented in this table do525

not consider a 20% surcharge for weekend days. In addition, the cost of contacting a526

caregiver to work on a day-o↵ is re
ds

= ce
ds

⇤ 2, the surcharge for allowing transitions527

between districts is te
dsc

= 10%, and the transition costs between forbidden shifts is528

equal to c⇧,k,e

dl
= 1000$.529

Parameter
Shift

m8 m4 a4 n10

Shift allocation cost ceds ($) 8 4 4 10
Under-covering cost c�dsc ($) 40 40 20 100
Over-covering cost c+dsc ($) 2 2 1 5

Capacity e
ds (number of visits) 2 1 2 1
Max days 6 4 4 3

Table 3: Costs and capacity values for each type of shift.
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District
District

d0 d1 d2 d3
d0 1 0 0 0
d1 0 1 1 0
d2 0 1 1 1
d3 0 0 1 1

Table 4: District compatibilities.

• Schedule composition: The work regulations for the schedule composition are the fol-530

lowing531

1. The minimum and maximum number of days in each work stretch are 4 and 6,532

respectively.533

2. The minimum and maximum number of days in each rest stretch are 1 and 3,534

respectively.535

3. A rest stretch is necessary between two work stretches.536

4. Each shift has a maximum number of consecutive times it can appear in a work537

sequence. These values are presented in row Max days of Table 3. For instance, a538

work stretch cannot contain more than 3 night shifts in a row.539

• Grammar: Let ws be a terminal symbol that defines working on shift s 2 S. Let540

r be a terminal symbol that represents a rest period. Let F and R be non-terminal541

symbols representing work and rest stretches, respectively. Let su be the maximum542

number of consecutive times shift s can appear in a work sequence. In productions543

⇧ 2 P, ⇧
ctr![min, max] restricts the subsequences generated by a given production to544

a length between a minimum and maximum number of days, and ctr denotes a cost545

associated with the production. The grammar and the productions that define valid546

schedules for caregiver of type e 2 E during a planning horizon of four weeks are as547

follows:548
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Ge =(⌃ = (ws 8s 2 S, r),

N = (S, F,H, Js, J
0
s, J

2
s , J

3
s 8s 2 S,R), P,S),

S[28,28] ! RHR|RH|HR,

H ! FRFRFRF,

F[4,6]
ctr! JsJ

0
s, 8s 2 S;F[4,6]!J2

s J
3
s , 8s 2 S,

J 0
s

ctr! Js0J
0
s0 , 8s 2 S, 8s0 2 S\{s}; J 0

s ! J2
s0J

3
s0 , 8s 2 S, 8s0 2 S\{s};

Js[0,su] ! J2
s J

3
s , 8s 2 S,

J2
s ! J2

s J
3
s , 8s 2 S; J3

s ! ws, 8s 2 S;

R[1,3] ! rR;R ! r.

4.2. Instances Generation and Size of Problems549

Three instances spanning planning horizons from 4 to 12 weeks and including 500 demand550

scenarios were generated to test our model. These instances were built with the procedures551

presented in Sections 3.1.1 and 3.1.2. Table 5 presents for each instance (denoted as I1, I2, and552

I3), the number of or-nodes, the number of and-nodes, and the number of leaves in each DAG553

�e, 8 e 2 E. This table also presents the number of variables and the number of constraints554

for the first-stage and second-stage components of model Z. Note that the size of the model555

is not proportional to the number of caregivers, as the employee dimension is included in the556

model in an implicit way.557

Instance
I1 (4 weeks) I2 (8 weeks) I3 (12 weeks)

Or-nodes 1,551 3,102 6,204
And-nodes 3,614 7,228 14,456
Leaves 140 280 560
First-stage constraints 6,208 12,416 24,832
Second-stage constraints 305,000 610,000 1,120,000
First-stage integer variables 15,016 30,032 60,064
Second-stage integer variables 560,000 1,120,000 2,240,000
Second-stage continuos variables 224,000 448,000 896,000

Table 5: Instances size.

Since the size and complexity of problem Z increase with the number of scenarios, we558

decided to perform an analysis to evaluate how sta�ng and scheduling decisions (including559

a fraction of the scenarios) accommodate the real demand, and how these decisions react560

when they are evaluated on all generated scenarios (500). Specifically, for each instance561

we first solve problem Z with a fraction of the scenarios (e.g., 50 out of 500) to get the562
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optimal solution for variables ye
ds

and ye
dr
. These optimal values are fixed in second-stage563

problems (13)-(21), which are solved with the actual demand information and with all 500564

scenarios. Table 6 presents the results for this evaluation on problem Z including reallocation565

of caregivers (Realloc. = 1) and contacting caregivers to work on a day-o↵ (RestToW = 1).566

For each type of instance (Instance) and number of scenarios (Scen.), we present the status of567

the solution (Status), the recourse cost when the schedule is evaluated with the real demand568

(Real.C), and the recourse cost when the schedule is evaluated with 500 scenarios (Recour.C).569

The percentage increase in these two costs (Real.C and Recour.C) by using a fraction of the570

scenarios is presented in columns %I.Real.C and %I.Recour.C. This percentage is computed571

as: %I = 100⇥ Cost� base cost

base cost
, where Cost represents the value for Real.C and Recour.C, and572

base cost denotes the recourse cost obtained after solving problem Z with the largest possible573

number of scenarios (300 for I1 instances, 125 for I2 instances, and 25 for I3 instances).574

Instance Scen. Realloc. RestToW Status Real.C ($) Recour.C ($) %I.Real.C %I.Recour.C
I1 5 1 1 Optimal 1,679.6 2,297.34 14.63% 28.45%
I1 25 1 1 Optimal 1,505.8 1,807.29 2.77% 1.05%
I1 100 1 1 Optimal 1,464.6 1,801.97 -0.04% 0.75%
I1 150 1 1 Optimal 1,508.6 1,800.15 2.96% 0.65%
I1 200 1 1 Optimal 1,638.8 1,827.56 11.85% 2.18%
I1 250 1 1 Optimal 1,506.8 1,824.26 2.84% 2.0%
I1 300 1 1 Optimal 1,428 1,794.67 -2.54% 0.34%
I1 350 1 1 Optimal 1,567 1,835.46 6.95% 2.62%
I1 400 1 1 Optimal 1,503.8 1,827.55 2.63% 2.18%
I1 450 1 1 Optimal 1,465.2 1,788.53 0.0% 0.0%
I2 5 1 1 Optimal 3,829 4,048.22 24.77% 11.92%
I2 25 1 1 Optimal 3,106 3,832.19 1.21% 5.95%
I2 50 1 1 Optimal 3,212 3,786.17 4.67% 4.67%
I2 100 1 1 Optimal 3,100.8 3,685.55 1.04% 1.89%
I2 150 1 1 Optimal 3,062.2 3,618.67 -0.22% 0.04%
I2 200 1 1 Optimal 3,068.8 3,617.14 0% 0.0%
I3 5 1 1 Optimal 6,187.4 6,315.87 6.68% 9.18%
I3 25 1 1 Optimal 5,904.4 5,827.59 1.8% 0.74%
I3 50 1 1 Optimal 5,800 5,784.86 0% 0%

Table 6: Costs on stochastic instances for di↵erent number of scenarios.

To choose the number of scenarios that will be used in each instance we observed the values575

for the percentage di↵erences in the recourse costs (%I.Recour.C). Since these di↵erences are576

smaller than 0.5% for 300 scenarios for instances I1 and for 150 scenarios for instances I2, we577

decided to set |⌦d| = 300 for I1 and to set |⌦d| = 150 for I2. Regarding instances I3, we set578

|⌦d| to 50 as the expected recourse cost (Recour.C) was smaller than the value of Recour.C579

for the other number of scenarios (5 and 25), and as the model was not able to solve instances580

with a larger number of scenarios.581
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4.3. Computational Results582

In this section, we present the computational results after testing our model on real-world583

instances. First, we present the performance of the proposed model for di↵erent planning584

horizons. Second, we introduce an example to illustrate a typical output of the problem.585

Third, we analyze the impact of the type of recourse actions used in the costs and number of586

caregivers sta↵ed. An analysis of the impact of schedule flexibility in the costs and number587

of caregivers sta↵ed is presented at the end of this section.588

Table 7 presents for each instance and each combination of recourse actions allowing care-589

giver reallocation (Realloc.) and working on a day-o↵ (RestToW), the CPU time in seconds590

to solve the problem (Time), the status of the solution (Status), the total cost (Total.C), and591

the total number of caregivers to hire.592

Caregivers
Instance Scen. Realloc. RestToW Time (s) Status Total.C ($) d0 d1 d2 d3 Total

I1 300 0 0 8.04 Optimal 12,858.8 4 43 6 22 75
I1 300 1 0 418.45 Optimal 11,773.5 4 39 13 15 71
I1 300 0 1 166.78 Optimal 11,528.5 4 39 5 20 68
I1 300 1 1 1,121.53 Optimal 10,843 4 37 11 17 69
I2 150 0 0 53.54 Optimal 24,990.7 4 43 6 21 74
I2 150 1 0 1,876.03 Optimal 22,620.7 4 38 13 14 69
I2 150 0 1 675.45 Optimal 21,441.6 3 38 5 17 63
I2 150 1 1 5,212.85 Optimal 20,116.4 4 35 11 14 64
I3 50 0 0 1,139.62 Optimal 35,995.5 4 34 6 17 61
I3 50 1 0 10,522.7 Optimal 32,341.8 4 30 11 13 58
I3 50 0 1 2,799.27 Optimal 30,033.5 3 30 6 16 55
I3 50 1 1 11,983.2 Optimal 27,805.5 3 27 10 12 52

Table 7: Computational e↵ort and results on stochastic instances.

Results from Table 7 indicate that the computational e↵ort increase with the length of the593

planning horizon, as well as with the flexibility related to the recourse actions. Observe that594

it was possible to find an optimal solution for all instances. We can conclude that the recourse595

action that contributes the most to an increase in the CPU time is allowing the reallocation596

of caregivers (Realloc. = 1). Specifically, for instances I1, I2, and I3 and when Realloc. =597

1 CPLEX was respectively 52, 35 and 10 times slower to solve the model when compared to598

solving the model with simple recourse, i.e. Realloc = 0 and RestToW = 0. When recourse599

RestToW is included in the model (contact caregivers to work on a day-o↵), these values600

increase to 140, 97, and 10 for instances I1, I2, and I3, respectively.601

Results on sta↵ dimensioning suggest that the number of caregivers to hire in districts602

d0, d2, and d3 is very similar for instances spanning di↵erent planning horizons. However, for603

districts d1 and d3 we can observe some significative di↵erences in the number of caregivers604

to hire (e.g., 27 caregivers for d0 in instance I3 when Realloc = 1 and RestToW = 1 versus 37605
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caregivers for d0 in instance I1 when Realloc = 1 and RestToW = 1). We remark that this606

result might be due to forecasting errors and changes in the magnitude of demands from one607

month to the other one.608

4.4. Example 2: Output Illustration609

Tables 8 and 9 present an example of the schedules and the use of recourse actions af-610

ter solving the two-stage stochastic programming model on an instance including a 4-week611

planning horizon and 10 scenarios. This example incorporates the use of recourse actions asso-612

ciated with under-covering, with over-covering, with the reallocation of caregivers to neighbor613

districts, and with contacting caregivers to work on a day-o↵. Table 8 shows four sched-614

ules (one per district) including the shift and day-o↵ allocation at each day in the planning615

horizon. Recall that r represents the allocation of a day-o↵, and that m4, m8, a4, and n10616

denote di↵erent types of shifts. For instance, a caregiver hired to work in district 3 (d3) will617

be allocated in his last week to: afternoon shifts (a4) in the first 2 days of the week; then he618

will work in the next 2 days in night shifts (n10); the caregiver will finish the week with 3619

consecutive days-o↵ (r).620

Date
district 2017-07-03 2017-07-04 2017-07-05 2017-07-06 2017-07-07 2017-07-08 2017-07-09
d0 m8 d0 m8 d0 m8 d0 m4 d0 m4 d0 r m8 d0

d1 m4 d1 m4 d1 m4 d1 m8 d1 m8 d1 r r
d2 r r r m4 d2 m4 d2 n10 d2 n10 d2

d3 m4 d3 m4 d3 a4 d3 a4 d3 r r r
2017-07-10 2017-07-11 2017-07-12 2017-07-13 2017-07-14 2017-07-15 2017-07-16

d0 m8 d0 n10 d0 n10 d0 r r r m8 d0

d1 r m4 d1 m4 d1 m8 d1 m8 d1 r r
d2 r r r m8 d2 m8 d2 n10 d2 n10 d2

d3 a4 d3 a4 d3 n10 d3 n10 d3 r r r
2017-07-17 2017-07-18 2017-07-19 2017-07-20 2017-07-21 2017-07-22 2017-07-23

d0 m8 d0 n10 d0 n10 d0 r r r m8 d0

d1 r m4 d1 m4 d1 m8 d1 m8 d1 r r
d2 n10 d2 r r r m4 d2 m4 d2 n10 d2

d3 m8 d3 m8 d3 n10 d3 n10 d3 r r r
2017-07-24 2017-07-25 2017-07-26 2017-07-27 2017-07-28 2017-07-29 2017-07-30

d0 m8 d0 m8 d0 n10 d0 n10 d0 r r r
d1 r m8 d1 m8 d1 m8 d1 a4 d1 a4 d1 r
d2 n10 d2 r m4 d2 m4 d2 m4 d2 m8 d2 m8 d2

d3 a4 d3 a4 d3 n10 d3 n10 d3 r r r

Table 8: Example of the schedules obtained with the two-stage stochastic programming model.

The shift and day-o↵ allocation of the schedule for d3 is used as an example to show the621

use of recourse actions related to the reallocation of caregivers to neighbor districts, and with622

contacting caregivers to work on a day-o↵. Table 9 shows for each day of the week from623

2017-07-24 to 2017-07-30 the changes in the schedules due to the recourse actions used for 10624

demand scenarios. Values in bold indicate that a recourse action was used to protect against625
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uncertainty. For instance, during day 2017-07-24 and under scenario 10 the model decided to626

include a district reallocation (a caregiver from district d3 is reallocated to district d1). In a627

similar way, during day 2017-07-29 the model chose to use the recourse work on a day-o↵ for628

scenarios 2, 7, 9, and 10 (e.g., in scenario 2, a caregiver is called to work on his day-day in a629

morning shift in district 3 (m4 d3)).630

Date
2017-07-24 2017-07-25 2017-07-26 2017-07-27 2017-07-28 2017-07-29 2017-07-30

Master schedule a4 d3 a4 d3 n10 d3 n10 d3 r r r
Scen. 1 a4 d3 a4 d3 n10 d3 n10 d3 r r r
Scen. 2 a4 d3 a4 d3 n10 d3 n10 d3 r m4 d3 r
Scen. 3 a4 d3 a4 d3 n10 d3 n10 d3 r r r
Scen. 4 a4 d3 a4 d3 n10 d3 n10 d3 r r r
Scen. 5 a4 d3 a4 d3 n10 d3 n10 d3 r r r
Scen. 6 a4 d3 a4 d3 n10 d3 n10 d3 r r r
Scen. 7 a4 d3 a4 d3 n10 d3 n10 d3 r a4 d3 r
Scen. 8 a4 d3 a4 d3 n10 d3 n10 d3 r r r
Scen. 9 a4 d3 a4 d3 n10 d3 n10 d3 r a4 d3 r
Scen. 10 a4 d1 a4 d3 n10 d3 n10 d3 r n10 d3 r

Table 9: Illustration on the use of recourse actions in a schedule of a caregiver working in d3.

4.5. Assessing the Impact of Di↵erent Recourse Actions631

In this section, we perform a comparison among the di↵erent types of recourse actions used632

in the two-stage stochastic programming model. The impact of allowing caregiver reallocation633

and working on a day-o↵ is evaluated. Table 10 reports the percentage di↵erence in the634

total cost (%D.Total.C), the percentage di↵erence in the scheduling cost (%D.Sched.C), the635

percentage di↵erence in the recourse cost (%D.Recour.C), and the percentage di↵erence in the636

total number of caregivers sta↵ed (%D.Sta↵), when flexibility regarding the use of di↵erent637

recourse actions is introduced in the model. These percentage di↵erences are computed as638

%D = 100⇥ (V alue� base value)/base value. V alue represents the final value for the total639

cost, for the sta�ng cost, for the recourse cost, and for the total number of caregivers sta↵ed,640

and base value denotes the value for the same attribute obtained after solving problem Z (on641

each instance I1, I2, and I3) with the base scenario. Since the base scenario corresponds to the642

use of simple recourse in the second-stage model (i.e. only allowing demand under-covering643

and over-covering) the di↵erences in the recourse costs are mainly due to the reduction in644

demand under-covering and over-covering costs.645
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Instance Scen. Realloc. RestToW %D.Total.C %D.Sched.C %D.Recour.C %D.Sta↵
I1 300 1 0 -8.44% -5.35% -21.17% -5.33%
I1 300 0 1 -10.35% -12.7% -0.65% -9.33%
I1 300 1 1 -15.68% -12.87% -27.22% -8%
I2 150 1 0 -9.48% -6% -23.03% -6.76%
I2 150 0 1 -14.2% -17.84% -0.03% -14.86%
I2 150 1 1 -19.5% -17.36% -27.85% -13.51%
I3 50 1 0 -10.15% -6.16% -24.73% -4.92%
I3 50 0 1 -16.56% -18.91% -7.99% -9.84%
I3 50 1 1 -22.75% -20.5% -25.26% -14.75%

Table 10: Impact of the type of recourse action used in the costs and number of caregivers sta↵ed.

Results from Table 10 suggest that the introduction of flexibility in the use of recourse646

actions significantly reduces the total costs, as well as the number of caregivers sta↵ed. These647

reductions appear to be larger for instances spanning planning horizons of 8 weeks or longer648

than for instances spanning 4 weeks. The recourse action with larger impact is contact care-649

givers to work on a day-o↵, and when this recourse action is integrated with the reallocation650

of caregivers, the reductions in costs become even larger. Solving an integrated problem651

including all districts instead of solving independent problems for each district generates a652

supplementary cost reduction, as well as an improvement in caregivers’ utilization. In partic-653

ular, allowing reallocation of caregivers to neighbor districts gives planners the flexibility to654

occasionally use resources from other districts to respond to changes in demands.655

4.6. Assessing the Impact of Schedule Flexibility656

Since the two-stage stochastic programming problem becomes harder to solve with the657

length of the planning horizon, we perform an analysis on the impact of reducing schedule658

flexibility. Specifically, for instances including more that 4 weeks (I2 and I3), we solve the659

two-stage stochastic programming problem by imposing schedules starting at week 5 to be660

exactly the same as schedules from the previous 4 weeks. For instance, in a problem with a661

8-week planning horizon, the schedules in week 5 must be the same as the schedules for week662

1, the schedules in week 6 must be the same as the schedules for week 2, and so on.663

Table 11 reports an analysis on the impact of schedule flexibility in the computational664

e↵ort and results of model Z. In particular, this table presents a comparison of the CPU665

times in seconds (Time (s)), of the total costs (Total.C), and of the number of caregivers666

sta↵ed (Total.Sta↵) when schedules are completely flexible (Flex.) and when the scheduling667

flexibility is reduced (No.Flex) as explained above.668
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Time (s) Total.C ($) Total.Sta↵
Instance Scen. Realloc. RestToW Flex No.Flex Flex No.Flex Flex No.Flex
I2 150 0 0 53.54 12.36 24,990.7 25,879.5 74 71
I2 150 1 0 1,876.03 1,397.98 22,620.7 23,583 69 67
I2 150 0 1 675.45 547.97 21,441.6 22,344.3 63 62
I2 150 1 1 5,212.85 3,442.57 20,116.4 20,858.4 64 58
I3 50 0 0 1,139.62 14.6 35,995.5 40,120.3 61 70
I3 50 1 0 10,522.7 704.88 32,341.8 36,155 58 69
I3 50 0 1 2,799.27 533.79 30,033.5 33,006.6 55 57
I3 50 1 1 11,983.2 2,668.15 27,805.5 30,678.8 52 54

Table 11: Impact of schedule flexibility in the costs and number of caregivers sta↵ed.

Results from Table 11 indicate that the method is in average 14 times faster when flexibility669

in the allocation of schedules is limited. This speed-up is more substantial for instances with670

type I3 as a longer time horizon is being considered. Observe that the total cost presents671

an increase when there is less flexibility associated with the allocation of schedules, as the672

two-stage model has less freedom to use recourse actions when needed. However, the number673

of caregivers to hire shows a di↵erent behavior for instances I2 and I3. Specifically, in I2674

instances the value of Total.Sta↵ becomes smaller when the schedule flexibility is reduced. On675

the contrary, when the schedule flexibility is reduced, the value of Total.Sta↵ becomes larger676

for instances I3. This might be explained by the fact that for short time horizons (8 weeks),677

the model with less schedule flexibility (No.Flex) decides to hire less employees (even if this678

means to have some extra under-covering) in order to reduce the employee underutilization679

(visits over-covering). On the contrary, for longer time horizons (12 weeks) the No.Flex model680

decides to hire more employees as this restriction in the schedule allocation might significantly681

increase the visits under-covering and hence the total costs.682

4.7. Value of the Stochastic Solution683

The VSS is a standard measure that indicates the expected gain from solving a stochastic684

model rather than its deterministic counterpart, the expected value problem (EV). The value of685

the stochastic solution is defined as V SS = EEV �RP , where RP corresponds to the optimal686

value of problem (4)-(12) and EEV corresponds to the expected value of using the EV solution.687

EV is problem (4)-(12) evaluated using the mean scenario ⇠̄d = b̂d for each day d 2 D. Given688

an EV solution (ȳ⇤), EEV corresponds to: EEV =
P

d2D

P
w2⌦d

p(w)
d

Q (ȳ⇤, ⇠d(w)). A large689

VSS means that uncertainty is important for the quality of the resulting optimal solution. On690

the contrary, a small VSS means that a deterministic approach based on the expected values691

of the random variables might be su�ciently good to take a decision. The reader is referred692

to Birge & Louveaux (2011) for an overview of stochastic programming.693

Table 12 presents a comparison of the computational e↵ort between the two-stage stochas-694

tic programming model (denoted as Stochastic) and the mean value problem (denoted as De-695
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terministic). This e↵ort is measured by the CPU time in seconds to solve the problem. This696

table also reports the total cost when the schedules obtained with the stochastic model and697

with the deterministic model are evaluated with the actual values for the demand (Real.C).698

Table 13 presents an evaluation of the values of the stochastic solution. In particu-699

lar, this table reports the expected gains in the total cost (V SSCost), in the scheduling700

cost (V SSScheduling), in the recourse cost (V SSRecourse), and in the quantity of caregivers701

sta↵ed (V SSStaff ) from solving the stochastic model rather than its deterministic coun-702

terpart. This evaluation is computed as: V SSi = 100 ⇥ (EEVi � RPi)/EEVi, for all703

i = {Cost;Scheduling;Recourse;Staff}.704

Stochastic Deterministic
Instance Scen. Realloc. RestToW Time(s) Real.C ($) Time (s) Real.C ($)
I1 300 0 0 8.04 13,102.2 2.73 12,765.6
I1 300 1 0 418.45 11,831 8.78 12,174.68
I1 300 0 1 166.78 11,158.4 2.32 11,431.8
I1 300 1 1 1,121.53 10,478.68 9.77 10,981.48
I2 150 0 0 53.54 24,947.6 34.59 28,810.4
I2 150 1 0 1,876.03 22,464.72 218.16 25,952.68
I2 150 0 1 675.45 20,635 48.18 22,148.8
I2 150 1 1 5,212.85 19,587.2 217.29 21,157.92
I3 50 0 0 1,139.62 37,509.2 575.7 45,786.8
I3 50 1 0 10,522.7 32,884.12 8706.94 40,853
I3 50 0 1 2,799.27 30,655.2 577.08 31,873
I3 50 1 1 11,983.2 28,262.8 5144.16 30,706.6

Table 12: Computational e↵ort and results for the stochastic and deterministic models.

Instance Scen. Realloc. RestToW V SSCost V SSScheduling V SSRecourse V SSStaff

I1 300 0 0 15.53% -17.62% 60.89% -13.64%
I1 300 1 0 14.12% -11.34% 59.68% -5.97%
I1 300 0 1 5.61% -2.04% 25.75% -1.49%
I1 300 1 1 5.12% -1.74% 28.77% -1.47%
I2 150 0 0 16.33% -20.5% 61.8% -17.46%
I2 150 1 0 14.62% -13.8% 60.97% -9.52%
I2 150 0 1 3.35% 0.86% 10.56% 0.0%
I2 150 1 1 4.27% -0.2% 20.15% -3.23%
I3 50 0 0 18.67% -22.81% 63.58% -19.61%
I3 50 1 0 17.25% -15.61% 63.92% -13.73%
I3 50 0 1 5.34% 0.26% 18.68% -7.84%
I3 50 1 1 6.56% 0.64% 24.13% -4%

Table 13: Value of the stochastic solution.

Results from Table 12 indicate that the CPU time to solve the mean value problem is705

significantly smaller than the CPU time to solve the stochastic problem. However, when the706
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schedules obtained after solving the deterministic problem are evaluated on the real demand707

these schedules perform worse (as the Real.C is larger in most instances), when compared to708

the performance of the schedules obtained with the stochastic problem. The di↵erences in the709

real cost between the deterministic model and the stochastic model are of great importance in710

practice, since Real.C indicates how well the caregivers schedules react to the actual demand.711

Since the majority of values for Real.C are lower when demand uncertainty is included in712

the model, we can conclude that the schedules obtained with the stochastic model are more713

robust than the schedules obtained with the deterministic model (EV problem).714

We remark that since the schedules obtained with the stochastic model are usually more715

robust than the schedules obtained with a deterministic model, Real.C is expected to be lower716

when evaluated with the stochastic schedules than when evaluated with the deterministic717

schedules. However, it may happen that in some cases this is not true. For example, in718

instance I1 with Realloc.=0 and RestToW=0. In this case, what could have happened was that719

the actual demand was very similar to the mean demand. Hence, when the dimensioning and720

scheduling decisions obtained with the deterministic model are evaluated on a single instance721

corresponding to the actual (observed) demand, Real.C is lower than the cost obtained with722

the stochastic model.723

Results from Table 13 suggest that the two-stage stochastic model can lead to significant724

reductions in the total cost when compared to the mean value program, since all the VSSs725

associated with the total cost are positive values ranging from 3.35% to 18.67%. This result726

is mainly due to a reduction in the recourse costs associated with demand under-covering727

and over-covering. Observe that some instances have negative VSS for the scheduling costs728

(V SSSched.) and for the the sta�ng decisions (V SSStaff ). This means that the two-stage729

stochastic model selects a larger workforce than the deterministic model, resulting in more730

robust sta�ng and scheduling decisions that accommodate better to changes in demands.731

4.8. Practical Aspects and Managerial Insights732

The methodology developed in this paper represents an important and general decision733

support tool for home care agencies interested in sta↵ dimensioning and caregiver scheduling.734

Specifically, our computational experiments indicate that:735

• The design of robust sta�ng and scheduling decisions require the incorporation of un-736

certainty in demands, as expected costs are smaller when uncertainty is included. This737

is explained by the fact that opposite to deterministic models, the strength of stochastic738

programming arises from the ability to represent solutions that protect against multiple739

possible future outcomes (Birge, 1995). Hence, the aptitude to identify solutions that740

handle or adapt best to the set of potential outcomes, relative to their probability of oc-741

curring, is expected to generate costs that are smaller when compared to a deterministic742

model when evaluated on several possible demand realizations.743
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• Including recourse actions such as allowing caregiver reallocation to neighbor districts744

and working on a day-o↵ significantly improves the costs associated with the dimen-745

sioning decisions (sta�ng), as well as with demand under-covering and over-covering,746

resulting in the improvement of caregiver utilization and quality of service.747

• Solving an integrated problem including all districts instead of solving independent748

problems for each district, generates supplementary cost reductions. In particular, al-749

lowing reallocation of caregivers to neighbor districts gives planners the flexibility to750

occasionally use resources from other districts to respond to changes in the demand or751

in caregivers’ availabilities.752

Even though the case study was done for a specific agency from AlayaCare, this agency was753

selected because it includes most of the key features of the consider problem (e.g., stochastic754

demands, several geographic areas, di↵erent types of shifts, several work regulations for the755

composition of schedules). Therefore, we believe that our study is general and that the756

conclusions drawn form the computational experiments can be similar if the methodology is757

tested in other practical cases.758

The proposed model could be useful to evaluate the impact in costs and in the quality759

of solutions by using di↵erent recourse actions. Specifically, recourse actions including the760

allocation of overtime and the use of part-time caregivers could be tested to evaluate if an761

increase in recourse flexibility helps to decrease the scheduling costs and demand under-762

covering and over-covering costs. The model could also be used as a tool to detect the763

lack/excess of caregivers due to changes in demand. For instance, given a fix number of764

caregivers, the model will incur large under-covering costs if the size of the workforce is765

inadequate to satisfy all patient visits when demand increases. On the contrary, the solutions766

of the model will return large over-sta�ng costs if the size of the permanent workforce is767

too large for the demand. Moreover, the two-stage stochastic programming model could768

be extended to incorporate multiple types of caregivers with di↵erent skills, and to include769

information about current employees with their preferences and availabilities.770

Regarding the computational e↵ort and limits of the two-stage stochastic programming771

model, computational experiments indicate that the CPU time increases with the length772

of the planning horizon, with the number of scenarios, and with the flexibility in recourse773

actions. For each type of instance tested, we observed that the most important factor in this774

computational time increase was the value of RestToW (i.e. contact caregivers to work on775

their day-o↵) since problem Z was in average 100 times slower when RestToW was set to 1.776

We also observed that the computational time required to solve the problems can be reduced777

by 5 times in average by limiting the schedule allocation flexibility. One idea to deal with778

the computational limits of the method on larger planning horizons could be to use a rolling779

horizon approach. In this way, the complexity of the problem will be reduced as this method780
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will gradually move along the planning horizon to incorporate stochastic information of the781

demand.782

The work presented in this paper has some limitations that could be addressed in future783

work. These limitations are mainly related to the assumptions adopted to facilitate the784

modeling and solution of the problem under study. For instance, assuming that the duration785

of patients’ visits and travel times are deterministic parameters could lead to suboptimal786

solutions, especially if caregivers perform several short visits within one day and the variability787

in these times is large. In the case of AlayaCare, this variability does not a↵ect significantly788

the solution of the problem, as most of the caregivers are personal support workers that789

perform long visits during their shift. In addition, the practical use of the work presented790

in this paper can be a↵ected by assuming that caregivers will accept to work when called791

during their day-o↵, since from time to time caregivers are free to reject this type of request792

from their employer. Moreover, in a home care setting where caregiver absenteeism rates793

are high, assuming that the workforce capacity is deterministic could lead to problems in794

the implementation of the solutions obtained. The last limitation of this work is related to795

the demand forecasting methods used, as other techniques could be explored to predict the796

demand in a more accurate way.797

5. Concluding Remarks798

We presented a two-stage stochastic programming model for integrated sta�ng and schedul-799

ing in home healthcare. In this model first-stage decisions correspond to sta↵ dimensioning800

and to the allocation caregivers to schedules. Second-stage decisions are related to the tem-801

porary reallocation of caregivers to neighbor districts, to contact caregivers to work on their802

day-o↵, and to allow under-covering and over-covering. Results on real-world instances show803

that the use of the two-stage stochastic programming model helps to reduce demand under-804

covering and over-covering costs when compared to a deterministic approach using the mean805

demand. Moreover, computational results indicate that the use of flexible recourse actions806

significantly reduces the total costs, improves caregiver utilization, and increases the level of807

service.808

An interesting avenue for future research is related to the development of specialized809

solution methods to tackle larger instances commonly found in practice. Future research810

could also include the use of di↵erent techniques for demand forecasting and for scenario811

generation to assess the impact of demand estimation accuracy in the solutions obtained with812

the two-stage stochastic programming problem.813
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