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A B S T R A C T

A new method is proposed for simulating the energy dissipation resulting from depth-limited wave
breaking, in combination with a universal breaking onset criterion, in two-dimensional (2D) fully
nonlinear potential flow (FNPF) models, based on a non-dimensional breaking strength parameter.
Two different 2D-FNPF models are used, which solve the Laplace equation based on Chebyshev
polynomial expansions or a boundary element method. In these models, impending breaking waves are
detected in real time using a universal breaking onset criterion proposed in earlier work, based on the
ratio of the horizontal particle velocity at the crest 𝑢, relative to the crest velocity 𝑐, 𝐵 = 𝑢∕𝑐 > 0.85.
For these waves wave energy is dissipated locally using an absorbing surface pressure that is calibrated
using an inverted hydraulic jump analog. This approach is first validated for periodic spilling breakers
over plane beaches and bars, for which results are shown to be in good agreement with experimental
data. Recasting this breaking dissipation model in terms of a non-dimensional breaking strength, the
hydraulic jump analog is shown to provide results similar to those of a constant breaking strength
model, and to yield good agreement for periodic plunging breakers as well. The same approach is then
applied to irregular waves shoaling over a submerged bar, and shown to agree well with experimental
data for the wave height, asymmetry, skewness, and kurtosis. Future work will extend this 2D breaker
model to cases of three-dimensional (3D) breaking waves, simulated in existing 3D-FNPF models, in
shallow or deep water conditions.

1. Introduction
Once generated by wind, ocean waves evolve, with com-

plex kinematics and dynamics, as a result of nonlinear and
dispersive effects, the effects of bathymetry, and dissipation
from wave breaking and bottom friction, to name a few.
Accurate simulations of this evolution are crucial for predict-
ing phase-resolved surface wave properties in complex sea
states, which govern wave interactions with fixed and float-
ing objects, including offshore renewable energy systems,
and surf zone parameters that drive nearshore currents and
sediment processes, whose understanding and prediction are
key to coastal management decisions.

Most wave processes that occur in complex sea states
have already been simulated to some extent, based on equa-
tions representing the complete physics (i.e., derived from
Navier-Stokes equations for single or multiple fluids). How-
ever, such simulations are highly computationally intensive
and, hence, limited to small spatial and temporal scales. In
contrast, operational models have been developed based on
equations that simplify the wave physics, but nevertheless
can simulate realistically many ocean wave processes over
large areas and for long time periods. In such models, which
are usually restricted to a specific wave regime (e.g., shallow
or deep water conditions, small amplitude waves), important
processes missing from the equations are parameterized in
an ad-hoc manner, often on the basis of semi-empirical terms
(e.g., breaking or bottom friction dissipation, the presence of
structures). In this category are the standard phase-averaged
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wind wave models that are based on a spectral representation
of the wave energy as a function of frequency and direction
(e.g., STWAVE, Smith et al., 2001; TOMAWAC, Benoit
et al., 1997; WAVEWATCH III, Tolman, 2009).

However, in many engineering applications, phase-resolved
wave properties are required in real time. Thus, there is a
need for models in which wave elevation and kinematics are
predicted over space and time, and in which the complex
physics resulting from wave nonlinearity and fluid inter-
actions with structures and the seafloor can be easily and
accurately represented. Examples of problems requiring the
use of such models include ship or ocean energy system
seakeeping and motion control/optimization, coastal wave
runup, and the prediction of extreme wave loads on ocean
structures.

Phase-resolved models take many forms, depending on
their domain of use. Ocean waves are often classified by the
the depth 𝑑 to wavelength 𝐿 ratio. In deep water, for 𝑑 ≳
𝐿∕2, where nonlinearity is usually weak but dispersive ef-
fects are important, one might apply models based on the lin-
ear mild-slope equation (MSE), such as REFDIF (Kirby and
Dalrymple, 1983). In shallow water, for 𝑑 ≲ 𝐿∕20, where
nonlinearity and bottom effects dominate, and dispersive ef-
fects become less significant, models based on the Nonlinear
Shallow Water (NSW) equations, which assume a uniform
velocity over depth, could be an optimal choice (e.g., Stelling
and Zijlema, 2003; Zijlema and Stelling, 2008). Lastly, in
intermediate water depth, where both wave nonlinearity and
dispersion are important, Boussinesq-type models (Kirby,
2016) that feature both nonlinearity and dispersion to some
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extent, based on specifying a cutoff on higher-order terms
representing these processes, are preferred provided that the
horizontal velocity varies only moderately with depth such
that it can be described by a polynomial approximation (e.g.,
Madsen and Schäffer, 1998; Agnon et al., 1999; Madsen
et al., 2002; Kennedy et al., 2000) and fully nonlinear Serre-
Green-Naghdi-type models (e.g., Wei et al., 1995; Cienfue-
gos et al., 2006; Bonneton et al., 2011; Shi et al., 2012;
and Zhao et al., 2014). Boussinesq-type models are typically
developed based on a perturbation expansion of the Fully
Nonlinear Potential flow (FNPF) equations (Kirby, 2016),
with wave breaking, bottom friction, and horizontal vorticity
effects represented by terms added to the equations to param-
eterize these physical processes (Kennedy et al., 2000; Shi
et al., 2012; Kazolea and Ricchiuto, 2018). These models
have proved accurate in simulating laboratory experiments
in which waves are generated in deep to intermediate water
conditions and propagate into shallow water.

Models that directly solve the FNPF equations (e.g.,
Dold and Peregrine, 1985; Dommermuth and Yue, 1987;
Grilli et al., 1989; Grilli and Subramanya, 1996; Grilli et al.,
2001; Bingham and Zhang, 2007; Belibassakis and Athanas-
soulis, 2011; Yates and Benoit, 2015; Ducrozet et al., 2017)
are more computationally demanding than MSE, NSW, or
Boussinesq-type models, but can accurately simulate waves
in all water depth regimes up to wave breaking, since no
assumptions are made about the wave nonlinearity or disper-
sion. FNPF models assume the flow to be irrotational and,
hence, are governed by a Laplace’s equation for the velocity
potential, which makes them much more computationally
efficient than full Navier-Stokes (NS) models. Among FNPF
models, those based on the Higher-order Spectral (HOS)
method (Dommermuth and Yue, 1987) are notably very effi-
cient, but can typically only be applied to waves propagating
in constant depth and up to a certain wave height, unless
a modified form of the models is used, which makes them
less efficient (Ducrozet et al., 2017). FNPF models (except
HOS-based models that require spatial periodicity) can also
simulate wave interactions with structures and wave shoaling
over an arbitrary bathymetry (e.g., slopes and/or bars), up
to and into breaking/overturning (e.g., Grilli et al., 1994a,b,
1997, 1998, 2004; Grilli and Horrillo, 1999; Guyenne and
Grilli, 2006; Fochesato et al., 2007; Pomeau et al., 2008).
However, FNPF models become unstable when waves begin
to break and overturn, unless this process can be prevented
by artificially specifying an energy dissipation for waves that
are about to break (e.g., Guignard and Grilli, 2001; Grilli
et al., 2020 for a review).

As noted before, many NS models of wave breaking
have been developed, using various numerical schemes and
methods, including two-fluid models that represent the air
and water (e.g., Guignard et al., 2001; Lachaume et al., 2003;
Abadie et al., 2010; Banari et al., 2014; Derakhti et al.,
2016), which can accurately simulate wave breaking either
in direct NS simulations or based on standard turbulence
models such as Large Eddy Simulation (LES; e.g., Harris
and Grilli, 2014). However, the spatial resolution (and hence

computational time) required to apply NS models currently
restricts their use to small spatial and temporal scales and
thus often to academic or idealized problems. Therefore,
considering the large range of engineering applications in-
volving strongly nonlinear and breaking waves, it is highly
desirable to extend FNPF models to adequately model break-
ing waves and their related energy dissipation.

Although some earlier attempts to simulate the energy
dissipation resulting from breaking waves in a FNPF model
have been reported (e.g., Guignard and Grilli, 2001; Seiffert
et al., 2017; Seiffert and Ducrozet, 2018; Papoutsellis et al.,
2019; Simon et al., 2019; Grilli et al., 2020), here a more gen-
eral and accurate way of both detecting breaking onset in any
conditions (i.e., wave types, bathymetry, and breaker types),
including for nonlinear irregular wave trains, and simulating
the corresponding energy dissipation in a more realistic
manner are proposed. The present paper only describes two-
dimensional (2D) models featuring 2D breaking waves, but
the extension to three-dimensions (3D) is in principle fairly
straightforward and will be presented in future work.

In addition to being governed by a Laplace’s equation,
FNPF models use fully nonlinear kinematic and dynamic
boundary conditions that are typically derived based on the
formulations of Zakharov (1968) or Longuet-Higgins and
Cokelet (1976). With the Eulerian framework of Zakharov
(1968), the free surface elevation is assumed single-valued,
and thus waves can be modeled only until the instant that
the free surface becomes vertical (e.g., Dommermuth and
Yue, 1987; Craig and Sulem, 1993, Bingham and Zhang,
2007; Yates and Benoit, 2015, Belibassakis and Athanas-
soulis, 2011). In models that follow the Eulerian-Lagrangian
framework of Longuet-Higgins and Cokelet (1976), the free
surface can be multivalued (e.g., for plunging breakers) and
hence accurately simulated (in comparison to experiments)
until the breaker jet impacts the free surface (e.g., in 2D,
Dold and Peregrine, 1985; Grilli et al., 1989; Grilli and
Subramanya, 1996; Grilli et al., 1997, 1998, 2004; or, in 3D,
Guyenne and Grilli, 2006; Fochesato et al., 2007).

In the present study, two 2D-FNPF models are modified
and used to demonstrate the application of a novel combi-
nation of breaking onset/termination criteria and a breaker
model: (i) the Eulerian model Misthyc (Yates and Benoit,
2015), and the Eulerian-Lagrangian model, first proposed by
Grilli et al. (1989), hereafter referred to as the “numerical
wave tank” (NWT). Although the latter model can simulate
all the cases presented here, some wave propagation cases
can be more efficiently simulated by one FNPF model than
the other. For instance, Misthyc, similar to other models of
this type (e.g., Dommermuth and Yue, 1987; Bingham and
Zhang, 2007; Engsig-Karup et al., 2009; Ducrozet et al.,
2017) that only apply to single-valued free surfaces, may
be faster for certain domain sizes. In contrast, the higher-
order Boundary Element Method (BEM) used in the NWT
can simulate the exact geometry of a moving wavemaker,
or complex bottom geometries, as well as multivalued free
surfaces. Both types of models are equally able to simulate
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accurately highly nonlinear and dispersive waves propagat-
ing over arbitrary bathymetries. In both models, when waves
are detected to approach breaking, an energy dissipation is
explicitly specified to prevent wave breaking (e.g., instability
or overturning) from occurring, which would interrupt the
simulations. This is done by first identifying where and when
in the computational domain impending breaking waves
occur, using a breaking onset criterion, then applying a
physically realistic energy dissipation onto these waves,
commensurate with their parameters, and finally defining
where and when this dissipation should cease to be applied,
using a breaking termination criterion.

Wave breaking onset (or impending breaking) refers to
the location in space and moment in time where and when
some properties of an individual wave reach values indicat-
ing that the wave will soon begin to break and dissipate
some of its energy through turbulence and viscosity. In a
NS model of breaking waves, this process is included in the
model equations and typically occurs automatically in the
simulations. In models with reduced physics, such as FNPF,
explicit breaking criteria must be defined to detect impend-
ing wave breaking. Such criteria usually depend on local
wave properties such as their crest kinematics, steepness,
surface slope, or curvature Derakhti et al. (2020) reaching
a specified threshold value. As the physics of wave breaking
varies from deep to shallow water, until recently, different
breaking criteria have been proposed to simulate different
wave breaking regimes. In deep water, wave breaking is
usually attributed to an excessive wave steepness, and re-
ferred to as steepness-limited breaking. In shallow water,
wave breaking is usually induced by bathymetric effects,
occurring during the shoaling process as waves propagate
into shallow water, and is referred to as as depth-limited
breaking. In the latter case, the type of wave breaking and
the intensity of the related energy dissipation depend on the
incident wave train and wave shoaling process, which is in
general governed by the incident wave properties and bottom
slope. Spilling breaking generally occurs over very mild
slopes, plunging breaking over steeper slopes, and surging
breaking over very steep slopes (see, e.g., Grilli et al., 1997
for solitary wave shoaling). Accordingly, many different
definitions and criteria have been proposed for estimating
breaking onset, that can be broadly classified (Derakhti et al.,
2020) as geometric (e.g., Schäffer et al., 1993), kinematic
(e.g., Wei et al., 1995; Kurnia and van Groesen, 2014), or
dynamic (e.g., Barthelemy et al., 2018) criteria. For depth-
limited breaking, the geometric and kinematic criteria are
often used (Grilli et al., 1997, 2020; Papoutsellis et al.,
2019; Simon et al., 2019), but they depend on an empirical
constant that is a function of the bathymetry and incident
wave conditions. Rather than relying on a collection of case-
specific criteria, a universal breaking onset criterion is desir-
able, independent of empirical constants. In seminal work,
Barthelemy et al. (2018) and Derakhti et al. (2020) recently
showed that there appears to be a universal breaking onset
criterion for an evolving crest in the form of the ratio of the
horizontal particle velocity at the crest to the wave (or crest)

celerity, 𝐵 = 𝑢∕𝑐 reaching a threshold value 𝐵𝑡ℎ = 0.85.
This criterion indicates that, when the wave crest reaches this
𝐵𝑡ℎ value, the wave will inevitably evolves towards breaking,
although it does not necessarily start breaking at the limit
of the threshold. This breaking onset criterion based on 𝐵
is used in the present work. It should be noted that Seiffert
et al. (2017) and Seiffert and Ducrozet (2018) recently used
this criterion in a HOS model, coupled with an energy dissi-
pation model based on an eddy viscosity. Through laboratory
experiments, they demonstrated the relevance and accuracy
of this criterion for focused wave trains breaking over a flat
bottom in intermediate water depths.

As energy dissipation resulting from wave breaking is
complex and not yet fully understood, its simulation in mod-
els with reduced-physics, including those based on FNPF,
has often relied on analogies with well-known dissipative
phenomena, such as a hydraulic jump (HJ; e.g., Guignard
and Grilli, 2001), and calibrating an empirical constant that
may depend on the type of breaker. For example, a weak
spilling breaker dissipates energy as white water rolls on
the front face of the wave and, by moving in a frame of
reference at the wave speed, this process resembles a bore or
a HJ. Along this line, Svendsen et al. (1978) and Stive (1984)
compared the energy dissipated by a spilling breaker with
that of a bore and estimated an empirical constant, 𝜇 ≃ 1.5,
quantifying the ratio of energy dissipated by the breaking
wave to that of an equivalent HJ. This analogy has been suc-
cessfully used to simulate spilling breakers in FNPF models,
in combination with various breaking criteria (Grilli et al.,
2020, Papoutsellis et al., 2019, Simon et al., 2019); it will
also be applied in the present work. Although the HJ analog
approach should be less accurate for plunging breakers,
because breaking is more violent and the overturning surface
no longer resembles a hydraulic jump, we shall see that it is
still adequate in most cases. However, to simulate long-term
irregular sea states, where both spilling and plunging wave
breaking occurs, it is necessary to develop a breaker model
that does not rely on test case dependent empirical constants.

Over the past few decades, various advances have been
made in parameterizing wave breaking dissipation. Duncan
(1983) conducted a series of experiments on steady breaking
waves induced by fully submerged towed 2D hydrofoils,
and quantified for these cases the non-dimensional breaking
strength parameter 𝑏 (the wave breaking energy normalized
by the fifth power of the wave celerity). Similarly, Phillips
(1985), formulated spectral breaking strength as a function
of wave speed using 𝑏 in deep water for irregular wind-
generated waves in the ocean. Based on laboratory exper-
iments, Romero et al. (2012) followed up on this idea for
deep water focused breaking waves, defining an empirical
curve for 𝑏 as a function of the maximum surface slope of
the focusing wave packet. Derakhti et al. (2018a) proposed
an empirical relationship for parameterizing the breaking
strength 𝑏 as a function of the time rate of change 𝑑𝐵∕𝑑𝑡
of the breaking onset parameter 𝐵 (Barthelemy et al., 2018),
at breaking onset 𝐵 = 𝐵𝑡ℎ, for deep or intermediate water
2D/3D focused waves. In this approach, by estimating the
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onset kinematics, the total energy dissipation of the resulting
focused breaking can also be estimated. To utilize this in
FNPF models, a universal breaking parameterization ex-
tending from shallow to deep water conditions is needed.
In addition, the instantaneous energy dissipation needs to
be explicitly specified. For these reasons, this work studies
the parameterization of wave breaking in FNPF models,
focusing on depth-limited breaking waves.

The paper is organized as follows. The formulations of
the two FNPF models used are briefly described in Section 2.
The breaking onset/termination criteria and the breaking
dissipation models are described in Section 3, including the
hydraulic jump model and a newer dynamic model proposed
by Derakhti et al. (2018b). Applications of both models
are presented in Section 4 for several regular and irregular
depth-limited breaking wave cases, including some cases
for which both types of breaking dissipation models are
compared. Finally, the results are discussed and conclusions
drawn in Sections 5 and 6.

2. FNPF models
FNPF models compute the irrotational motion of an in-

compressible and inviscid fluid, for which the fluid velocity
u is represented by a scalar potential 𝜙, with u = ∇𝜙. For
such flows, mass conservation becomes the Laplace equation
for the potential,

∇2𝜙 = 0 (1)
in the fluid domain Ω of boundary Γ.

For two-dimensional (2D) transient free surface flows
in a vertical plane (𝑥, 𝑧), with a single-valued free surface
elevation 𝜂(𝑥, 𝑡), the kinematic and dynamic free surface
boundary conditions are,

𝜕𝜂
𝜕𝑡

=
𝜕𝜙
𝜕𝑧

−
𝜕𝜂
𝜕𝑥

𝜕𝜙
𝜕𝑥

(2)

𝜕𝜙
𝜕𝑡

= −𝑔𝜂 − 1
2
|∇𝜙|2 −

𝑝𝑎
𝜌
, (3)

on the boundary Γ𝑓 and where 𝑔 denotes the gravitational
acceleration, 𝜌 is the fluid density, and 𝑝𝑎 is the free surface
(atmospheric) pressure.

For typical 2D wave propagation problems, the fluid
domain has an impermeable bottom boundary where a no-
flow, Neumann bottom boundary condition is specified as,

u ⋅ n =
𝜕𝜙
𝜕𝑛

= 0 (4)

on the boundary Γ𝑏, where n denotes the outward unit
normal vector to the boundary. Typical conditions at the
lateral boundaries of the 2D domain will be periodicity, a
wave maker for generating waves, or an absorbing beach for
dissipating waves. The details of these boundary conditions
are provided in Section 4 for each specific application.

In the following subsections, the equations are briefly
presented, and the numerical methods are summarized for
the two existing FNPF models that use different versions of
the free surface boundary conditions and different numerical
methods for solving Laplace’s Equation (Eq. 1).

2.1. Misthyc
The Misthyc FNPF model, developed by Yates and

Benoit (2015), solves Laplace’s Equation (Eq. 1) by mapping
the potential 𝜙(𝑥, 𝑧, 𝑡) onto a boundary fitted vertical coor-
dinate 𝑠 ∈ [−1, 1] and using a spectral approach to express
𝜙(𝑥, 𝑠, 𝑡) as a linear combination of Chebyshev polynomials
(following Tian and Sato, 2008). At each time step, 𝜙(𝑥, 𝑠, 𝑡)
is calculated by solving a system of 𝑁𝑥(𝑁𝑇 + 1) linear
equations, where 𝑁𝑥 is the number of free surface nodes in
the horizontal direction 𝑥 and 𝑁𝑇 is the maximum order of
the Chebyshev polynomials (here 𝑁𝑇 = 7, following Yates
and Benoit, 2015).

Assuming single-valued free surface elevations 𝜂(𝑥, 𝑡),
the free surface boundary condition Eqs. (2-3) are expressed
following Zakharov (1968) as,

𝜕𝜂
𝜕𝑡

= �̃�
{

1 +
(

𝜕𝜂
𝜕𝑥

)2}

−
𝜕𝜂
𝜕𝑥

𝜕�̃�
𝜕𝑥

(5)

𝜕�̃�
𝜕𝑡

= −𝑔𝜂 − 1
2

(

𝜕�̃�
𝜕𝑥

)2
+ 1

2
�̃�2

{

1 +
(

𝜕𝜂
𝜕𝑥

)2}

−
𝑝𝑎
𝜌
,

(6)

where �̃�(𝑥, 𝑡) = 𝜙(𝑥, 𝑧 = 𝜂, 𝑡) and �̃�(𝑥, 𝑡) = 𝑤(𝑥, 𝑧 =
𝜂, 𝑡) = 𝜕𝑠𝜙(𝑥, 𝑠, 𝑡)|𝑠=1 are the velocity potential and the
vertical velocity on the free surface Γ𝑓 , respectively (where
subscripts indicate partial derivatives). Note that Eqs. (5-
6) can be transformed to express a relationship between 𝜂
and �̃� in the form of a so-called Dirichlet-Neumann (DtN)
operator (Craig and Sulem, 1993). Following Bingham and
Zhang (2007), Yates and Benoit (2015) formulated the DtN
problem corresponding to these equations.

Assuming known 𝜂(𝑥, 𝑡) and �̃�(𝑥, 𝑡) values on Γ𝑓 (𝑡),
once �̃�(𝑥, 𝑡) is computed from the solution of Laplace’s
equation, these quantities are advanced to time 𝑡 + Δ𝑡 by
integrating Eqs. (5-6) with an explicit fourth-order Runge-
Kutta scheme.

With this formulation in the Misthyc model, waves can
only be simulated until the instant the free surface becomes
vertical, at which time the model becomes unstable. To pre-
vent this situation from occurring, impending wave breaking
is detected using a breaking onset criterion, and a local
damping is specified in the dynamic free surface boundary
condition using an absorbing pressure 𝑝𝑎 calibrated to sim-
ulate the wave breaking dissipation (Guignard and Grilli,
2001; Papoutsellis et al., 2019; Simon et al., 2019; Grilli
et al., 2020). Finally, waves are generated and absorbed
at each end of the fluid domain by specifying relaxation
zones that extend horizontally for ∼ 3𝐿, where 𝐿 is the
dominant wavelength. Details are provided for specific cases
in Section 4.

2.2. Numerical Wave Tank (NWT)
Longuet-Higgins and Cokelet (1976) first proposed a

2D-FNPF model to simulate overturning waves in a periodic
domain with constant depth, until the instant the breaker
jet impinges the free surface. The model solved Laplace’s
Eq. (1) at each time 𝑡, based on a complex potential Bound-
ary Integral Equation (BIE) formulation (in a conformally
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mapped space) and integrated the kinematic and dynamic
free surface boundary conditions Eqs. (2-3), expressed in a
mixed Eulerian-Lagrangian frame of reference,

𝐷r
𝐷𝑡

= 𝜕r
𝜕𝑡

+ (u ⋅ ∇)r = u = ∇𝜙 (7)

𝐷𝜙
𝐷𝑡

= −𝑔𝑧 + 1
2
|∇𝜙|2 −

𝑝𝑎
𝜌
, (8)

by way of a predictor-corrector scheme, where r denotes
the position vector on the free surface Γ𝑓 . Dold and Pere-
grine (1985) later proposed a more accurate time integra-
tion scheme for this model, based on an explicit Taylor
series expansion of both r and 𝜙 on the free surface, which
requires computing the successive material derivatives of
Eqs. (7-8) and solving additional Laplace’s equations for
the corresponding time derivatives of the potential, up to a
desired order. However, their model was still expressed in a
conformally mapped domain and limited to space-periodic
waves propagating in constant depth.

The 2D-FNPF model of Grilli et al. (1989); Grilli and
Svendsen (1990); Grilli and Subramanya (1994, 1996);
Grilli and Horrillo (1997) used here is based on the same ap-
proach, but is formulated in the physical space, which allows
for modeling wavemakers or other types of exact generation
of fully nonlinear waves, such as from streamfunction wave
theory, an absorbing beach at the far end of the domain, and
an arbitrary bottom bathymetry. Laplace’s Eq. (1) is solved
based on a BIE derived from Green’s second identity,

𝛼(𝐱𝑖)𝜙(𝐱𝑖) = ∫Γ

{

𝜕𝜙
𝜕𝑛

(𝐱)𝐺(𝐱 − 𝐱𝑖) − 𝜙(𝐱)𝜕𝐺
𝜕𝑛

(𝐱 − 𝐱𝑖)
}

dΓ,

(9)

where 𝜙 is the velocity potential on the boundary Γ, 𝛼 is
the interior angle made by the boundary at point 𝐱𝑖 and
𝐺(𝐱, 𝐱𝑖) = −(1∕2𝜋) ln 𝑟𝑖 is the 2D free space Green’s
function (with 𝑟𝑖 = |𝐱 − 𝐱𝑖|). In the model, this equation
is discretized by various types of higher-order boundary
elements and both regular and singular, as well as quasi-
singular (occurring when two parts of the boundary are
close to each other, e.g., in the tip of breaker jets) integrals
are computed by very accurate methods (Grilli and Subra-
manya, 1994, 1996). Additionally, extended compatibility
conditions of the solution on both sides of the boundary
are specified at corners in the domain (e.g., between a wave
maker and the free surface, Grilli and Svendsen, 1990; Grilli
and Subramanya, 1996).

Assuming known 𝜂(𝑥, 𝑡) and 𝜙(𝑥, 𝑡) values on Γ𝑓 (𝑡),
once 𝜕𝑛𝜙 is computed from the solution of Eq. (9), these
quantities are advanced to time 𝑡+Δ𝑡, by integrating Eqs. (7-
8), as in Dold and Peregrine (1985), based on explicit Taylor
series expansions of both r and 𝜙, limited here to second-
order, hence requiring to solve an additional Laplace’s equa-
tion for 𝜕𝑡𝜙. This is done using a similar BIE to Eq. (9) in
the same discretized computational domain, for a modest
additional computational effort.

To generate waves, the NWT can simulate the motion of
a flap or piston wavemaker, or the generation of numerically

exact streamfunction waves on a lateral boundary (Grilli and
Horrillo, 1997). For wave absorption, an absorbing beach
can be specified at the far end of the domain, combin-
ing an absorbing free surface pressure for high-frequency
waves and an absorbing lateral piston wavemaker for low-
frequency waves (Grilli and Horrillo, 1997).

3. Wave breaking model
Wave breaking in a FNPF model requires three steps: (i)

a breaking onset criterion, which allows identifying where
on the free surface and when a wave has reached a threshold
beyond which breaking is inevitable, and indicating where
on the free surface and when the application of an energy
absorption in the model should start; (ii) based on wave
parameters, a method to quantify the energy dissipation rate
that should be specified in the model to damp waves that
are identified to be breaking in (i); and (iii) a breaking
termination criterion, which indicates where on the free
surface and when the application of the energy dissipation
should end.

3.1. Breaking onset criterion
As discussed in the introduction, in this work, breaking

onset is detected based on the universal criterion proposed
by Barthelemy et al. (2018) for deep and intermediate water
depth breaking, and validated by Derakhti et al. (2020) for
shallow water breaking of any type (i.e., spilling, plunging,
or surging). These studies showed, for a wide variety of
conditions leading to breaking such as energy focusing or
effects of bathymetry, that a steepening wave whose ratio
of the horizontal particle velocity at the crest 𝑢 to the wave
(or crest) celerity 𝑐, noted 𝐵 = 𝑢∕𝑐, exceeds the threshold
value𝐵𝑡ℎ = 0.85, will eventually break; and waves for which
𝐵 < 𝐵𝑡ℎ will not break. It should be emphasized that wave
breaking does not start at this threshold, but later on when
𝐵 ≃ 1. Instead, the 𝐵 criterion predicts where and when
a wave crest passes a point of no return, beyond which it
will eventually break. Derakhti et al. (2020) showed that,
in shallow water, this occurs about 0.2𝑇 in average after
breaking onset, where 𝑇 is the mean wave period in the sea
state. In the FNPF models, it takes time for the absorbing
pressure that is used to damp impending breaking waves
(see next subsection) to extract enough energy from the wave
crest to prevent breaking. Therefore, the energy dissipation
in the models is applied when a wave reaches the threshold
𝐵 = 𝐵𝑡ℎ.

One challenging aspect of applying this kinematic break-
ing criterion is that it is local and requires first that all
wave crests be identified and tracked at all times over the
entire free surface Γ𝑓 , and second that the crest celerity,
𝑐 = 𝑑𝑥𝑐∕𝑑𝑡 is computed accurately (where 𝑥𝑐(𝑡) denotes
a given wave crest location as a function of time). Accord-
ingly, in the models, similar to Guignard and Grilli (2001),
Grilli et al. (2020), and Stansell and MacFarlane (2002), the
instantaneous celerity 𝑐(𝑡) of individual tracked wave crests
is computed by fitting a moving polynomial to 𝑥𝑐(𝑡) over a
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Figure 1: (top) Geometric parameters used to calculate the HJ
dissipation, and (bottom) the shape function 𝑆(𝑥)

time interval [𝑡−𝑛Δ𝑡, 𝑡] (where 𝑛 denotes the number of time
steps involved in the curve fit), and taking the time derivative
analytically in the polynomial. Details of the numerical
method used to compute 𝑐 are provided in Appendix A.

3.2. Breaking dissipation
3.2.1. Absorbing surface pressure

For waves that have been identified as evolving to break-
ing by the breaking onset criterion, the energy dissipation
is specified, as in earlier work (Guignard and Grilli, 2001;
Grilli and Horrillo, 1997; Papoutsellis et al., 2019; Grilli
et al., 2020), using an absorbing (or damping) surface pres-
sure 𝑝𝑎 in the dynamic free surface boundary condition,
Eq. (6) or (8) for the Misthyc and NWT models, respectively.
This pressure is applied spatially across part of the back and
front of the breaking wave crest, and it is defined as being
proportional to the normal velocity of water particles at the
free surface (Fig. 1),

𝑝𝑎(𝑥, 𝑡) = 𝜈𝑎(𝑡)𝑆(𝑥)
𝜕𝜙
𝜕𝑛

(𝑥, 𝑡) ∀𝑥 ∈ (𝑥𝑙, 𝑥𝑟) (10)

where𝑆(𝑥) is a non-dimensional shape function (defined be-
low) and 𝜈𝑎(𝑡) is an absorption function, with the dimension
of 𝜌 𝑐 (i.e., units of kg m−2 s−1), defined such that the rate
of work produced by the pressure against the wave motion,
𝑝𝑎 𝜕𝑛𝜙, integrated over the selected segment of the breaking
wave surface, matches an expected rate of energy dissipation
per unit length of crest, Π𝑏 for the wave, as will be described
in the following subsection.

For single valued surface elevations Eq. (10) yields,

𝜈𝑎(𝑡) =
Π𝑏

∫ 𝑥𝑟
𝑥𝑙

𝑆(𝑥)(𝜕𝑛𝜙)2
√

1 + (𝜕𝑥𝜂)2𝑑𝑥
. (11)

in which the square root is the Jacobian, 𝑑Γ∕𝑑𝑥.
The limits of integration in Eq. (11) are defined across

each breaking wave crest, with (𝑥𝑙, 𝑥𝑟) located near the

troughs located behind and ahead of the breaking wave crest,
respectively, such that |𝜕𝑛𝜙| < 𝜀 |𝜕𝑛𝜙|𝑚𝑎𝑥, where 𝜀 ≪ 1
(here 𝜀 = 10−4). As shown in Fig. 1, 𝑆(𝑥) is a smooth
function that varies from 0 to 1 over the breaking region,
with a ramp to ensure smooth transitions of 𝑝𝑎 between
zero in non-breaking regions and its calculated value in
breaking regions (Guignard and Grilli, 2001; Grilli et al.,
2020; Papoutsellis et al., 2019),

𝑆(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, 𝑥 ≤ 𝑥𝑙
cos

(

𝜋
2

𝑥−𝑥𝑙1
𝑥𝑙−𝑥𝑙1

)

, 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑙1
1, 𝑥𝑙1 ≤ 𝑥 ≤ 𝑥𝑟1
cos

(

𝜋
2

𝑥−𝑥𝑟1
𝑥𝑟−𝑥𝑟1

)

, 𝑥𝑟1 ≤ 𝑥 ≤ 𝑥𝑟
0, 𝑥 ≥ 𝑥𝑟

(12)

where 𝑥𝑙1 = 𝑥𝑙 + 𝛼(𝑥𝑟 − 𝑥𝑙) and 𝑥𝑟1 = 𝑥𝑟 − 𝛼(𝑥𝑟 − 𝑥𝑙),
𝛼 = 0.1.

3.2.2. Rate of energy dissipation
Two different parameterizations of the rate of energy

dissipation in breaking waves, Π𝑏, will be considered in
this work. The first one, based on the hydraulic jump
analogy introduced in earlier work (Guignard and Grilli,
2001; Papoutsellis et al., 2019; Grilli et al., 2020), will be
the default method used in both models, and the second
one, based on the time rate of change of the breaking onset
criterion, recently proposed by Derakhti et al. (2018b), will
be used for comparison.

Hydraulic jump analogy: In earlier work, Guignard and
Grilli (2001), Papoutsellis et al. (2019), and Grilli et al.
(2020) parameterized Π𝑏 based on the classical energy dis-
sipation of an hydraulic jump (HJ), i.e.,

Πℎ = 𝜌𝑔𝑐 𝑑 𝐻3

4ℎ𝑐ℎ𝑡
with Π𝑏 = 𝜇Πℎ, (13)

where 𝑐 is the wave phase speed (or crest celerity), 𝑑 the
undisturbed water depth below the point of maximum front
slope, 𝐻 the wave height (measured trough to crest), ℎ𝑐
the total depth below wave crest, and ℎ𝑡 the total depth
below wave trough (Fig. 1). As shown in Svendsen et al.
(1978) and Stive (1984), the equation for Πℎ can be ob-
tained easily from a control volume approach by deriving
equations for mass, momentum, and energy conservation
assuming periodic waves with a uniform velocity over depth,
hydrostatic pressure, and negligible bottom friction. Based
on laboratory experiments for spilling breakers propagating
over mild slopes, Svendsen et al. (1978) proposed that 𝜇 =
1.5.

Note, for symmetric linear waves breaking over mild
slopes, 𝐻 = 2𝑎, with 𝑎 the wave amplitude, 𝑐 ≃ 𝑐𝓁 =

√

𝑔𝑑,
ℎ𝑡 ≃ 𝑑 − 𝑎 and ℎ𝑐 ≃ 𝑑 + 𝑎, and Eq. (13) transforms into,

Π𝑏 = 𝜇
(

𝜖
𝑏

)

2𝐹 3

1 − 𝐹 2
(14)

with 𝜖 = 𝑏𝜌𝑔−1𝑐5, (15)
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where 𝐹 = 𝑔𝑎∕𝑐2𝓁 is the wave Froude number (Kirby, 1998),
which for long breaking waves in shallow water reduces to
𝐹 ≃ 𝑎∕𝑑, 𝜖 is the breaking energy dissipation rate per unit of
wave crest width proposed by Duncan (1981, 1983), based
on measurements of steady spilling breakers in deep-water,
and 𝑏 is a non-dimensional breaking strength parameter that
was parameterized as a function of the hydrofoil character-
istics and submergence depth used in these experiments. To
obtain Π𝑏 = 𝜖 requires that 𝑏 ≃ 2𝜇𝐹 3 in Eq. (14), assuming
𝐹 2 ≪ 1. Based on Svendsen’s parameterization, for small𝐹 ,
the HJ breaking strength parameter can thus be expressed as
𝑏 ≃ 2𝜇𝐹 3 = 3𝐹 3.

Making various scaling arguments of the turbulent en-
ergy dissipation for unsteady breakers in deep or intermedi-
ate water, Drazen et al. (2008) showed that 𝑏 ∝ 𝐹 2.5, while
more recently, using different scaling arguments, Mostert
and Deike (2020) proposed that 𝑏 ∝ 𝐹 3.5 for unsteady
shallow water breakers. Thus, the above formulation of 𝑏
falls in between these independent results, without any clear
guidance on which result is most realistic. Note that, consis-
tent with the analysis of Drazen et al. (2008), Romero et al.
(2012) and Derakhti et al. (2018b) assumed that 𝑏 ∝ 𝐹 2.5.
It is outside the scope of this paper to attempt to reconcile
these conflicting results, which will be the object of other
studies (Derakhti et al., 2022).

The default parameterization of energy dissipation in
both FNPF models used in the present applications will
thus be based on Eq. (13), with 𝜇 = 1.5. It should be
noted that, similar to the breaking onset criterion used to
detect impending breaking in the models, computing Πℎ
requires identifying individual wave crests and troughs and
accurately computing the crest celerity. The same method
used to compute the onset criterion is thus used to compute
the parameters required for estimating the wave energy
dissipation.

Parameterization based on time rate of breaking onset cri-
terion: By performing numerical simulations of focused
waves, Romero et al. (2012) and Derakhti et al. (2016)
extended Duncan’s parameterization of the rate of energy
dissipation 𝜖 to intermediate water, steepness-limited, plung-
ing breaking waves and irregular wave trains. Following the
introduction of the breaking onset criterion based on 𝐵 by
Barthelemy et al. (2018), Derakhti et al. (2018a) observed in
their NS simulations of focused wave trains, that the slope
of 𝐵(𝑡) at breaking onset was correlated with the average
breaking power dissipated in the model, from breaking onset
to termination, ⟨𝜖⟩, or the corresponding breaking strength 𝑏
obtained from Eq. (15). On this basis, they proposed a new
parameterization of the breaking strength parameter,

𝑏 =
𝑔⟨𝜖⟩
𝜌𝑐5𝑙𝑏

= 0.034 (𝛾 − 0.30)2.5 (16)

𝛾 = 𝑇𝑏
𝑑𝐵
𝑑𝑡

|

|

|

|𝐵=𝐵𝑡ℎ

(17)

computed based on wave crest parameters at breaking on-
set and a breaking wave period, 𝑇𝑏 = 𝐿𝑏∕𝑐𝑙𝑏, estimated

based on, 𝑐𝑙𝑏 =
√

𝑔 tanh(𝑘𝑏𝑑)∕𝑘𝑏, with 𝑘𝑏 = 2𝜋∕𝐿𝑏,
the linear wave celerity at breaking in arbitrary depth, and
𝐿𝑏 a relevant breaking wave length calculated based on the
method proposed by Derakhti et al. (cf., Fig. A2 in Derakhti
et al., 2020). In some of the applications in Section 4, 𝑏 will
be computed with Eq. (16) and compared to results based
on the HJ analog. To do so, the time rate of change of 𝐵
at the threshold will be calculated by applying a linear fit
to the 𝐵 values computed in the interval [0.82-0.85]. Note
that 𝑏, which quantifies the average energy dissipation rate
during a breaking event based on 𝛾 , computed at breaking
onset, is not the time average of 𝑏(𝑡), which quantifies the
instantaneous energy dissipation rate based on instantaneous
wave parameters.

As discussed before, Derakhti et al. (2020) showed that
the 𝐵 criterion also applies to shallow water breaking waves
and, hence, is universal. Calculating the energy dissipation
rate in their model for shallow water breaking waves, Der-
akhti et al. (2018b) confirmed the parameterization of 𝑏 in
Eq. (16) for 𝛾 < 1.11, with the breaking strength parameter
reaching an upper bound 𝑏𝑚𝑎𝑥 = 0.02 for larger 𝛾 values,
although this parameterization, particularly for large 𝛾 , was
revised by Derakhti et al. (2022).

Given Π𝑏 = 𝜖, the second parameterization of energy
dissipation considered in both FNPF models in the present
applications will be based on the expression of 𝜖 in Eq. (15),
with 𝑏 obtained from Eq. (16) for 𝛾 ≤ 1.3, and 𝑏 = 𝑏𝑚𝑎𝑥 for
𝛾 ≥ 1.3. As before, most wave crest parameters required to
compute Π𝑏 are similar to those used to compute 𝐵 and are
already available in the models.

3.3. Breaking termination criterion
Breaking termination is also an important factor to

extract accurately the appropriate amount of energy from
breaking waves in the models. However, unlike in actual
waves, as would for instance be simulated in a NS-VOF
model (Derakhti et al., 2020), the value of 𝐵 does not grow
much beyond or remain above 𝐵𝑡ℎ in the FNPF model once
dissipation is applied and a different method is required to
detect breaking termination. To be consistent with the onset
criterion, the termination criterion is based on 𝐵 reaching a
value 𝐵off that is lower than the onset threshold, and needs to
be calibrated based on benchmark data. For the applications
considered here, the optimal 𝐵off value appeared to be
problem dependent. Specific values and their implications
are discussed in the section 4.2.

4. Applications
4.1. Comparison of the two formulations of

breaking dissipation
Before presenting detailed applications using the same

breaking onset/termination criteria, it is of interest to analyze
and compare values of 𝐵 and 𝑑𝐵∕𝑑𝑡 computed near and at
the breaking onset for various cases, as well as the breaking
strength parameter 𝑏 and/or dissipation rate Π𝑏 resulting
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Figure 2: Evolution of 𝐵 = 𝑢∕𝑐 in simulations with the Misthyc model as a function of non-dimensional time 𝑡∗ = (𝑡 − 𝑡𝑏)∕𝑇𝑏 (𝑡𝑏
denotes the time of breaking onset when 𝐵 = 𝐵𝑡ℎ = 0.85), for periodic: (i) plunging breaking waves propagating over a bar, from
Beji and Battjes (1993) (BB-regular, red); (ii) spilling breaking waves propagating over a plane slope, from Hansen and Svendsen
(1979) (HS, magenta); and shoaling and spilling breaking waves propagating over a plane slope, from Ting and Kirby (1994)
(TK, green).

from the two parameterizations of the rate of energy dissipa-
tion discussed before. These are the experimentally validated
depth-limited HJ spilling breaker model (Grilli et al., 2020),
whose energy dissipation rate is given by Eq. (13) and for
which 𝑏 can readily be obtained based on the expression of 𝜖
in Eq. (15), assuming Π𝑏 = 𝜖, and the newer dissipation rate
based on 𝑑𝐵∕𝑑𝑡 and 𝛾 (Derakhti et al., 2018b), with 𝑏 given
by Eq. (16).

In the following, breaking wave parameters calculated
based on the HJ breaking model, with Misthyc and the NWT,
are compared in simulations of laboratory experiments for
periodic: (i) shoaling and plunging breaking waves propa-
gating over a bar, from Beji and Battjes (1993) (BB-regular);
(ii) shoaling and spilling breaking waves propagating over a
plane slope, from Hansen and Svendsen (1979) (HS); and
(iii) shoaling and spilling breaking waves propagating over
a plane slope from Ting and Kirby (1994) (TK). The details
of the set-up and numerical parameters for these simulations
are described in the following subsections. Note, the HJ dis-
sipation model and correspondingΠ𝑏 values were previously
experimentally validated using the NWT model for the HS
test cases by Grilli et al. (2020), and using the Misthyc model
for the regular and irregular BB cases by Simon et al. (2019),
and with another FNPF model called HCMT, for the regular
wave TK and BB cases by Papoutsellis et al. (2019).

In each test case, the HJ breaking dissipation model is
used, and the parameter 𝑏 is calculated using the expression
of 𝜖 in Eq. (15), based on the average power dissipated in
the model over the breaking onset/termination range, 𝜖 =
⟨Π𝑏⟩, through the application of the absorbing pressure 𝑝𝑎
based on Eqs. (10-12), with the instantaneous Π𝑏(𝑡) given
by Eq. (13). For the second parameterization of dissipation,
the corresponding 𝑏 values are found using Eq. (16), based
on the wave parameters computed at breaking onset.

Fig. 2 shows the evolution of 𝐵 computed leading up to
wave breaking with the Misthyc model as a function of the

non-dimensional time 𝑡∗ = (𝑡 − 𝑡𝑏)∕𝑇𝑏, where 𝑡𝑏 is the time
of breaking onset over the region of interest for calculating
𝑑𝐵∕𝑑𝑡. Consistent with Derakhti et al. (2018a,b), of the
three test cases shown, the plunging breaker case (BB-
regular) has the fastest rate of change of 𝐵 at the threshold,
whereas the spilling breaker cases (HS and TK) show slower
changes in 𝐵. The calculation of 𝑑𝐵∕𝑑𝑡 was found to be
sensitive to the interval over which it is calculated, as well
as to the spatial and temporal resolution of the simulation.
Fig. 2 (right) shows the linear fit applied to 𝐵 in the interval
[0.82-0.85], used to compute 𝑑𝐵∕𝑑𝑡 and, for this interval for
the HS case, Table 1 shows the sensitivity of the 𝑑𝐵∕𝑑𝑡 and
𝛾 values calculated for different spatial and temporal grids.

Fig. 3 shows the average 𝑏 values computed in each test
case using the HJ model as a function of 𝛾 , compared to the
values predicted by the second parameterization based on 𝛾
(Eq. 16). Average values of 𝑏 computed over the breaking
region using the HJ dissipation range within [0.02, 0.08],
and corresponding 𝛾 vary within [0.6, 2.5]. These results
are in moderate agreement with those of the Derakhti et al.
(2018a,b) parameterization, when 𝛾 ∈ [1 − 2]. Some dif-
ferences between these two parameterizations of 𝑏 are to be
expected since even the Derakhti et al. (2018a,b) parameteri-
zation is only a curve fit, with significant spread of individual
values. Recall also that the breaking strength shown here is
based on an average energy dissipation rate, ⟨𝜖⟩, which will
have a different value depending on the duration of active
breaking, which in both models could be adjusted without
affecting significantly the resultant wave characteristics. Fi-
nally, in this paper potential flow is assumed, while wave
breaking transfers energy to non-potential components of the
flow (e.g., vorticity) that may not be dissipated and would
appear as an over-prediction of the energy dissipation.

Based on the 𝑏 values simulated in these applications,
an instantaneous dissipation rate Π𝑏 = 𝜖 defined with the
expression of 𝜖 in Eq. (15), based on a constant breaking
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Δ𝑥 (𝑚) Δ𝑡 (𝑠) 𝑑𝐵
𝑑𝑡
|𝐵=𝐵𝑡ℎ

(𝑠−1) 𝛾

0.028 0.007 0.885 0.726
0.020 0.008 0.974 0.788
0.031 0.008 1.00 0.774
0.041 0.010 1.075 0.791

Table 1
Sensitivity of 𝛾 computed with Eq. (16) for different spatial
and temporal resolutions, for the Hansen and Svendsen (1979)
(HS) case.
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Figure 3: Average breaking strength 𝑏 computed for the HJ
parameterization, as a function of 𝛾 for depth-limited breaking
waves simulated in Misthyc including: (filled circles) regular
wave cases, magenta: HS, green: TK and red: BB; (hollow
circles) BB-irregular cases. For comparison, the empirical
parmaterization from Eq. 16 proposed by Derakhti et al.
(2018a), is indicated with a solid line. The dashed line shows
the constant strength average breaking value 𝑏 = 0.05 used in
the Mis-005 parameterization.

strength 𝑏 = 0.05, was also tested. Since the wave celerity
used in the definition of 𝜖 is a function of space and time,
𝑐(𝑥, 𝑡), this parameterization also provides a time-varying
dissipation rate. For instance, for the BB-regular case, Fig. 4
shows that this constant breaking strength yields an instan-
taneous dissipation rate that agrees well with that calculated
using Eq. (13) for the HJ parameterization. Therefore, for the
BB-regular case, the constant strength approach would likely
be accurate enough, and Fig. 3 shows that for the wider range
of cases that will be considered hereafter, the average 𝑏 value
computed in the model in each case is on the same order as
𝑏 = 0.05.

4.2. Experimental validations
In this subsection, the results of numerical simulations

with one or both FNPF models, using the energy dissipation
rate of the HJ model, the constant breaking strength 𝑏 =
0.05, or both, are compared with laboratory experiments
performed for five standard benchmark cases. The five test
cases are the periodic spilling breaker experiments over a
plane slope of Hansen and Svendsen (1979), and Ting and
Kirby (1994), the regular and irregular plunging breakers

Figure 4: Comparison of the instantaneous energy dissipation
rate Π𝑏(𝑡) calculated for the plunging BB-regular case in the
Misthyc model using: (blue) the HJ analogy Eq. (13), or (red)
the Mis-b005 Eq. (15) parameterization with 𝑏 = 0.05.

over a bar of Beji and Battjes (1993), and the irregular
breaking waves over a bar of Adytia et al. (2018). In the
models, fully nonlinear periodic waves are generated based
on streamfunction wave theory in the generation zone for
Misthyc (Benoit et al., 2002), and using an exact wavemak-
ing (particle curtain) boundary (Grilli and Horrillo, 1997)
for the NWT. Irregular waves are simulated in the model
using a flap wave maker boundary (e.g., Grilli and Horrillo,
1997).

The model discretizations in space and time are specified
such that the Courant number, CFL ≈ 1.0 in Misthyc (as
suggested by Yates and Benoit, 2015) and CFL ≈ 0.45 in the
NWT (found to be optimal by Grilli and Subramanya, 1996).
Using the optimal CFL number for each model, a refined
spatial discretization is specified in each case to ensure high
numerical accuracy (see Grilli and Subramanya, 1996 for
guidance). Fig. 5 shows examples of the instantaneous free
surface elevation computed for the HS test case for a range
of spatial discretizations after simulations reach a quasi-
steady state in the models. These are defined based on the
initial spatial discretization on the free surface Δ𝑥, where
𝐿∕Δ𝑥 = 35, 50, or 70, and 𝐿 is the incident wave length.
The simulation results show that free surface elevations are
nearly identical in deeper water for both models over the
range of tested discretizations. Small differences can only be
seen in shallower depths, particularly near the wave crests.
Based on these results, in all the simulations discussed
hereafter, the spatial discretization was prescribed such that
𝐿∕Δ𝑥 > 50 (note, for irregular waves, 𝐿 denotes the domi-
nant wavelength). Table 2 summarizes the spatio-temporal
parameters used in the simulations with the Misthyc and
NWT models for the five benchmark cases detailed in the
following sections.
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Test case Δ𝑥 (𝑚) Δ𝑡 (𝑠) Domain 𝑇𝑚𝑎𝑥
Misthyc NWT Misthyc NWT length (m) (𝑠)

HS 0.019 0.031 0.008 0.008 22.7 25
TK 0.019 0.055 0.008 0.013 29.7 32

BB-regular 0.014 0.048 0.01 0.015 34.4 35
BB-irregular 0.02 - 0.01 - 30 600

AH 0.02 - 0.01 - 60 500

Table 2
Numerical parameters used in the simulations with the Misthyc and NWT models for the five experimental benchmark test cases.

Figure 5: Sensitivity of the simulation results to the spatial discretization for the HS test case using the NWT (blue dashed,
𝐿∕Δ𝑥 = 35, and blue solid, 𝐿∕Δ𝑥 = 50) and Misthyc (solid red with 𝐿∕Δ𝑥 = 70) model.

4.2.1. Periodic spilling breakers on a slope - Hansen
and Svendsen (1979)

Hansen and Svendsen (1979) (referred to as HS) per-
formed experiments for periodic waves shoaling and spilling
breaking waves propagating over a mild slope. The wave
tank had a constant initial depth of ℎ0 = 0.36 m, from the
wavemaker up to 𝑥 = 14.78 m, the toe of the 1∕34.26 slope.
Regular waves with an initial height 𝐻0 = 0.095 m, period
𝑇 = 1 s, and incident wavelength 𝐿0 = 1.43 m were gener-
ated at the wavemaker (note, these waves were generated in
intermediate waver conditions, with ℎ0∕𝐿0 = 0.252). This
benchmark was simulated with both Misthyc and the NWT,
using the energy dissipation rates from the HJ and Mis-
b005 or NWT-b005 models, respectively (see Table 2 for
the numerical parameters used). Since wave runup was not
considered in either model, an absorbing beach was modeled
for 𝑥 ≥ 25.5 m with a deepening bathymetry (for 𝑥 ∈
[25.5 − 27] to induce deshoaling, which aids the absorption
of waves) followed by constant depth in the absorption zone
(see Fig. 6a and Fig. 1 in Grilli et al., 2020 for details).
In these experiments, the breakers reach the shoreline, so
𝐵off = 0 is used as the breaking termination criterion.
Preliminary tests with larger values appeared to cause wave
reformation that was not observed in the experiments. In the
numerical models, breaking onset with 𝐵 = 𝐵𝑡ℎ = 0.85
occurs at 𝑥𝑏 ≃ 22.2 m, as compared to 𝑥𝑏 ≃ 22.5 m
in the experiments. The model results were averaged over
5 successive wave periods after the simulations reached a
quasi-steady state

Fig. 6b shows (in both the experiments and all numerical
simulations) the wave celerity normalized by the deep water
linear celerity 𝑐0 = 𝑔𝑇 ∕(2𝜋) gradually decreases in the
shoaling region. In general, the simulation results agree well
with the experimental measurements, but less so in breaking
region (𝑥 > 𝑥𝑏; where experimental data is very noisy) due
to unsteady variations in calculations of the derivative of
the wave crest displacement. For 𝑥 < 𝑥𝑏, 𝑐∕𝑐0 is slightly
larger than in experiments, which is consistent with the
results of Grilli et al. (2020). Fig. 6c shows the wave height
normalized by 𝐻0 gradually increases over the shoaling
region then rapidly decreases beyond breaking onset and, in
all cases, the simulation results agree well with experimental
measurements.

Considering the two parameterizations of energy dissi-
pation in Misthyc, the simulation results show only small dif-
ferences throughout the simulations, and these differences,
as well as those with the NWT results, mostly occur at the
far end of the tank for 𝑥 > 23.5. The differences likely result
from the different numerical methods and discretizations, as
well as the regridding used in the NWT, where the Eulerian-
Lagrangian approach causes grid points to cluster around the
breaking crests. To limit this clustering, regridding is peri-
odically calculated in the model using cubic shape functions
(Grilli and Subramanya, 1996), which may slightly affect the
application of the breaker model around the breaking crests.

Note, when using the NWT with the HJ model and a
geometric breaking criterion (front slope 𝛽𝑚𝑎𝑥 = 37𝑜) for
this case, Grilli et al. (2020) predicted breaking onset slightly
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Figure 6: (a) Bathymetry of the Hansen and Svendsen (1979) (HS) experimental set-up for periodic shoaling and spilling breaking
waves, where the shaded cyan region indicates the wave crest location from the onset of wave breaking (note an absorbing beach
is specified in the models for 𝑥 ≥ 25.5 m). Spatial evolution of the (b) wave celerity, and (c) wave height in the experimental
data (circles), Misthyc using the HJ model (dashed red line), Mis-b005 (solid red line) and NWT-b005 (solid blue line), averaged
over 5 successive wave periods after a quasi-steady state is reached.

sooner at 𝑥𝑏 = 21.75 m and, as a consequence, had lower
𝐻∕𝐻0 values at 𝑥 = 22.5 m relative to both the present
simulations and the experimental data.

4.2.2. Periodic spilling breakers on a slope - Ting and
Kirby (1994)

Experiments of shoaling and spilling breaking waves
propagating over a plane 1/35 slope, similar to those by
HS in the previous section, were performed by Ting and
Kirby (1994) (referred to as TK). Periodic waves of height
𝐻0 = 0.125 m, period 𝑇 = 2.0 s, and wavelength 𝐿0 = 3.85
m, were generated by a piston wavemaker and propagated
in a tank of constant depth ℎ0 = 0.4 m to 𝑥 = 3.85 m,
the toe of the slope. Similar to the previous test case, in
the models, an absorbing beach was specified for 𝑥 > 15.5
m, starting in a water depth ℎ = 0.067 m and gradually
deepening to ℎ = 0.29 m at 𝑥 = 18 m. As in the previous

case, 𝐵off = 0. Fig. 7 shows the experimental setup along
with the the locations of the 12 wave gauges that measured
the free surface position.

For this test case, the models detected the onset of
wave breaking at 𝑥𝑏 ≃ 10.0 m, with ℎ𝑏 = 0.21 m and
𝐻𝑏 = 0.178 m, which agrees well with the experimental
values, 𝑥𝑏𝑒 = 10.25 m, ℎ𝑏𝑒 = 0.196 m, and 𝐻𝑏𝑒 = 0.162
m. Fig. 8 shows a 4-second window of the measured and
simulated free surface elevation at 12 wave gauges after a
quasi-steady state was achieved. The free surface elevations
computed with Misthyc and the NWT for 𝑥 < 𝑥𝑏 are in
close agreement with each other, and are nearly identical
the experimental measurements. Note, using a kinematic
onset criterion (𝛾𝑖

√

𝑔ℎ), Papoutsellis et al. (2019) reported
breaking onset at 𝑥 = 9.7m, which led to an underestimation
of the crest and wave height at gauge 𝑥 = 10.25 m, whereas,
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Figure 7: Setup for Ting and Kirby (1994) laboratory experiments of periodic spilling breakers propagating over a 1/35 slope,
with black arrows showing the locations of the 12 wave gauges. The cyan shading indicates the simulated wave breaking region,
from onset to termination. The gray shading indicates the beach absorption zone.

using the 𝐵 = 0.85 criterion, both models predict more
accurately the wave elevation at this gauge. Beyond breaking
(for 𝑥 > 𝑥𝑏), results from Misthyc using the HJ model
agree reasonably well with the experiments at all subsequent
gauges, whereas using Mis-b005 yields similar results until
𝑥 = 12.35 m, but increasingly large differences in the crest
area for shallower gauges. In contrast, the results of NWT-
b005 yield surface elevations in better agreement with those
predicted by Misthyc with the HJ energy dissipation model.

4.2.3. Periodic plunging breakers over a bar - Beji and
Battjes (1993)

Beji and Battjes (1993), among others, performed lab-
oratory experiments for periodic waves propagating over a
trapezoidal bar (referred to here as BB-regular). Some of
the generated incident waves were sufficiently steep to break
over the bar as plunging breakers. Fig. 9 shows the set-up
of the computational domain used in the models to simulate
BB’s experiments, with arrows indicating the locations of
the wave gauge, where time series of the free surface eleva-
tion were measured in experiments. Waves were generated at
𝑥 = 0 in the constant depth region with ℎ0 = 0.4 m, shoaled
over the bar with a mild 1/20 offshore slope, and then broke
over the crest of the bar where ℎ = 0.1 m, before the water
depth increased again over the 1/10 onshore slope of the bar.

The target periodic wave characteristics in these exper-
iments were a height 𝐻0 = 0.054 m, period 𝑇 = 2.5 s,
and wavelength 𝐿0 = 4.8 m in the region of constant depth.
However, in the wave gauge measurements, the actual wave
height was 𝐻0 ≃ 0.042 m at the toe of the slope, which was
thus used as the wave height in the simulations. Simulations
were performed with Misthyc and the NWT using 𝑏 = 0.05
and, in both models, breaking onset occurred at 𝑥𝑏 ≃ 12.2
m, as compared to between 12 and 13 m in experiments.
The breaking termination was specified at 𝐵off = 0.3 in
the models, which occurs before the water depth increases
shoreward and causes wave deshoaling (end of cyan shaded
region in Fig. 9).

Fig. 10, compares the measured time series of free sur-
face elevations to those computed in the models. They agree
well in the shoaling region, for 6 < 𝑥 < 12 m, and in the

breaking region, for 12 < 𝑥 < 14 m. Larger differences start
occurring for 𝑥 > 14 m, but wave breaking on top of the
bar and deshoaling for 14 < 𝑥 < 17 m are simulated well
overall. Differences between the results of both models are
small, except for higher harmonics generated on top of and
beyond the bar, which Misthyc does not capture as well as
the NWT. This may be due to the limited number of vertical
layers (𝑁𝑇 ), or the difference in timestep used.

The effect of the breaking termination criterion value
was tested in the Misthyc model in the range 𝐵off = 0.2
to 0.35. Fig. 11 shows the simulated and measured spa-
tial variation of the significant wave height 𝐻𝑠 throughout
the domain. The results show that, in the zone after wave
breaking (for 𝑥 > 14 m), using 𝐵off = 0.20 leads to
underpredicting 𝐻𝑠, whereas using 𝐵off = 0.35 leads to
overpredicting it. Using 𝐵off = 0.30 or even 0.25, allows
reproducing well 𝐻𝑠 measured in the experiments after the
bar. Thus, 𝐵off = 0.30 was selected for all cases shown here
involving submerged bars (where waves deshoal).

4.2.4. Irregular plunging breakers over a bar - Beji
and Battjes (1993)

Using the same submerged bar, water depth, and set
of wave gauges (see Fig. 9), Beji and Battjes (1993) also
tested cases with irregular incident wave trains generated
at the wavemaker based on a JONSWAP spectrum with
significant wave height 𝐻𝑠 = 0.049 m and peak spectral
period 𝑇𝑝 = 1∕𝑓𝑝 = 2.5 s (referred to as BB-irregular).
In the simulations, performed here using only Misthyc with
𝑏 = 0.05, incident waves are specified as a linear superposi-
tion of periodic waves in the frequency range [0.25𝑓𝑝, 5𝑓𝑝],
obtained from an FFT of the experimental free surface ele-
vation measurements at the wave gauge located at 𝑥 = 6 𝑚.
Once again, 𝐵off = 0.30 is used in the model.

The simulation is run for 600 s or 240 peak periods,
and breaking of the steepest waves was observed over the
bar crest, as in the experiments where they were plunging
breakers. To compare the simulated and experimental re-
sults, several wave statistics are computed based on the time
series of free surface elevations at the wave gauges. These
quantify the wave height (𝐻𝑠) and wave shape and non-linear
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Figure 8: Comparison of the temporal evolution of the free surface position measured at the gauge locations from Ting and Kirby
(1994) for regular spilling waves (circles) with simulations using Misthyc with the HJ model (dashed red line), Mis-b005 (solid
red line), and NWT-b005 (solid blue line).

characteristics (asymmetry 𝐴𝑠, skewness 𝑆𝑘, kurtosis 𝐾𝑢),
defined as follows,

𝐻𝑠 = 4𝜎1∕2 (18)
𝐴𝑠 = ⟨ℍ(𝜂 − ⟨𝜂⟩)3⟩∕𝜎3∕2 (19)
𝑆𝑘 = ⟨(𝜂 − ⟨𝜂⟩)3⟩∕𝜎3∕2 (20)
𝐾𝑢 = ⟨(𝜂 − ⟨𝜂⟩)4⟩∕𝜎2 − 3 (21)

where 𝜎 = ⟨(𝜂 − ⟨𝜂⟩)2⟩, is the free surface variance, ⟨ ⟩ the
time averaging operator, and ℍ, the Hilbert transform.

Fig. 12 shows that there is a good agreement between
the simulated and measured wave statistics for all wave
characteristics. More specifically, Fig. 12a shows that 𝐻𝑠
increases up to the onset of wave breaking at 𝑥 ≃ 12 m, then

decreases during breaking over the bar crest (12 < 𝑥 < 14
m), and remains roughly constant for 𝑥 > 14 m. Fig. 12b
shows that wave asymmetry is maximum at breaking onset
(𝑥 ≃ 12 m) and decreases during wave breaking. Finally,
Figs. 12c,d shows that the skewness and kurtosis, which
quantify the wave nonlinearity, gradually increase during
shoaling and breaking, and then decrease during deshoaling,
after the bar. Both of these statistics agree better with the
experiments than the results reported by Simon et al. (2019),
who also simulated this test case using Misthyc with the HJ
dissipation and an eddy viscosity model (Kurnia and van
Groesen, 2014) in combination with several breaking onset
criteria that were not based on 𝐵.
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Figure 9: Set-up of the computational domains in the simulations of the Beji and Battjes (1993) experiments for periodic waves
shoaling and plunging breaking over a bar (BB). Arrows indicate the locations of wave gauges in the experiments and simulations.
Wave breaking occurs in the models in the cyan shaded region, from onset to termination, and the gray shaded region indicates
the absorbing beach. Note, the free surface shown is of BB-regular.
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Figure 10: Comparison of the temporal evolution of the free surface at the gauge locations from the Beji and Battjes (1993) test
case for regular plunging waves (circles) with Mis-b005 (red solid line) and NWT-b005 (blue solid line).

4.2.5. Irregular waves breaking over a bar - Adytia
et al. (2018)

Adytia et al. (2018) also performed experiments with
irregular waves propagating and breaking over a submerged
bar with a different geometry than BB’s (referred to as AH).
Irregular incident waves were generated with 𝐻𝑠 = 0.2 m
and 𝑇𝑝 = 2.5 s, in a constant depth ℎ0 = 0.615 m. Fig. 13
shows the Misthyc model set-up, with the bar having a 1/20
offshore slope with the toe located at 𝑥 = 23.65 m and
extending up to 𝑥 = 31.98 m, followed by a constant depth
crest with ℎ = 0.2 m, to 𝑥 = 41 m. Time series of the free
surface elevation were measured at 15 wave gauges, with the

locations indicated with arrows in Fig. 13. As in the BB-
irregular test case, the free surface elevation measured at the
gauge located at 𝑥 = 11.5 m is used to calculate the incident
waves conditions for the simulation (based on a FFT).

The simulation is run for 500 s or 200 peak periods, and
breaking onset occurs at 𝑥𝑏 ∈ [30 − 32] m. The same wave
statistics as in the previous application are computed here
based on experimental measurements and simulations with
the Misthyc model, using 𝑏 = 0.05. These are shown in
Fig. 14 where, overall, there is a good agreement between
the experiments and simulations. Fig. 14a shows that 𝐻𝑠
gradually increases over the offshore slope of the bar until
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Figure 11: Spatial evolution of the significant wave height 𝐻𝑠 for the BB-regular experiments (circles) and simulations with the
Mis-b005 model using different breaking termination criteria 𝐵off =: (red) 0.2, (blue) 0.25, (green) 0.30, and (yellow) 0.35.

Figure 12: Spatial evolution of wave statistics computed from the experiments (circles) and simulations with Mis-b005 (solid line)
for the irregular wave case of Beji and Battjes (1993) (JONSWAP spectrum with 𝐻𝑠 = 0.049 m and 𝑇𝑝 = 2.5 s). Waves break
over the bar in the model and in the experiments (plunging breakers).

wave breaking begins over the bar crest, then decreases in
the breaking region (30 < 𝑥 < 35 m), and finally remains
constant for 𝑥 > 35 m to the end of the bar crest. A similar
trend is observed in asymmetry as in the BB-irregular test
case in Fig. 14b: an increase up to the onset of breaking, a
decrease in the breaking region, and a roughly constant value

afterwards. Although the variation of skewness and kurtosis
are reproduced better in the breaking region compared to
Simon et al. (2019), some differences are seen in the post-
breaking region (see Figs. 14c,d).
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Figure 13: Set-up for simulations with Misthyc of Adytia et al. (2018) experiments for irregular waves propagating over a bar
(𝐻𝑠 = 0.2 m and 𝑇𝑝 = 2.5 s), with arrows showing the location of the 15 wave gauges. The cyan shading shows the breaking
region from onset to termination, and the gray shading indicates the absorbing beach region.

5. Discussion
In the previous section, the results of simulations using

one or both FNPF models with the newly proposed breaking
onset/termination and dissipation parameterizations were
presented, for standard experimental benchmarks from the
literature (referred to as HS, BB, TK and AH) featuring
regular or irregular waves propagating and breaking over
several mild beach slopes and bars. In each case, the type
of breaking (spilling-S or plunging-P) was reported in the
experiments, as well as the measured breaking index value
𝜅𝑏𝑒 = (𝐻𝑏∕ℎ𝑏)𝑒 for some cases. Overall, the simulation
results agreed well with the experimental data, confirming
that the breaking onset criterion (𝐵 = 0.85) proposed by
Barthelemy et al. (2018) is accurate, and wave elevation and
kinematics at breaking onset and during breaking are accu-
rately simulated in the models using the absorbing pressure
and the proposed parameterizations of the energy dissipation
rate.

Table 3 summarizes, for the periodic wave cases reported
in the HS, BB-regular and TK studies, the incident wave
and bathymetric parameters specified in the models and
experiments: (𝐻0, 𝑇 ), offshore slope 𝑆, and wave charac-
teristics simulated at breaking onset (𝑇𝑏, 𝑐𝑏, 𝜅𝑏). Note the
breaking period used in the definition of 𝛾 , 𝑇𝑏 < 𝑇 is
based on the breaking crest geometry, following Derakhti
et al. (2020). In addition to the test cases described in detail
in Section 4.2, additional simulations were performed for
periodic wave cases from two more studies by Narayanan
and McCalpin (1997) (NM) and Blenkinsopp and Chaplin
(2007) (BC), whose parameters and results are also summa-
rized in Table 3. For each case, the Table also lists the value
of Battjes’ surf similarity parameter (or Irribaren number),
𝜉0 = 𝑆∕

√

𝐻0∕𝐿0, where 𝐿0 is the incident wavelength in
deep water, 𝐿0 = 𝑔𝑇 2∕(2𝜋) (Battjes, 1974). Battjes showed
that periodic waves shoaling over a plane slope break as
spilling breakers for 𝜉0 ≤ 0.5 and as plunging breakers
for 0.5 < 𝜉0 ≤ 3.3. In all of the experiments reported in
Table 3, waves broke either as spilling or plunging breakers,
except in one case (c: S/P-BC) where both were observed.
In most cases, the 𝜉0 value is consistent with the observed

type of wave breaking, despite some of these experiments
being performed over a bar and not just a plane slope. Con-
sistent with Battjes’s work and predictions based on the surf
similarity parameter for periodic depth-limited breakers, the
models predicted a breaking index 𝜅𝑏 ∈ [0.7 − 1.2] for the
tests considered here. In the next section, the dependence
of the breaking strength 𝑏 predicted using the HJ model on
the instantaneous 𝜅 ≃ 2𝐹 values in the breaking area is
examined.

5.1. HJ model breaking strength
For the HJ model, the instantaneous breaking strength

parameter 𝑏 can be computed in each case using Eq. (13)
and expression of 𝜖 in Eq. (15), assuming Π𝑏 = 𝜖. As shown
in Eq. (14), assuming small amplitude waves (i.e., a small
𝐹 ) yields 𝑏 ≃ 2𝜇𝐹 3 with 𝐹 = 𝑔𝑎∕𝑐2𝓁 ≃ 𝑎∕𝑑 and 𝑐𝓁 ≃

√

𝑔𝑑
in shallow water. Since waves tend to not be symmetric
about the mean water level, this equation underestimates
the product ℎ𝑐ℎ𝑡 in Eq. (13), and therefore overestimates
the non-dimensional breaking strength compared to using
the complete formula. Therefore, the value predicted this
way represents an upper bound, i.e., 𝑏𝑚𝑎𝑥 = 2𝜇𝐹 3. Now,
noting that in Eq. (13) we always have, ℎ𝑐ℎ𝑡 < (𝑑 +
2𝑎)2 = (1+2𝐹 )2𝑑2, replacing the latter value in the equation
yields a lower bound of the breaking strength, i.e., 𝑏𝑚𝑖𝑛 =
𝑏𝑚𝑎𝑥∕(1+2𝐹 )2. As the energy dissipates during the breaking
process, the relative depths under the crest and trough, ℎ𝑐
and ℎ𝑡, change, and therefore the exact value of 𝑏 will vary,
roughly bounded by these approximations, until the breaking
termination criterion is met.

Fig. 15 shows the breaking strength 𝑏 computed with the
Misthyc model, using the HJ parameterization, as a function
of 𝜅(𝑡) = 𝐻∕𝑑 ≃ 2𝐹 , for the HS, TK, and BB-regular
periodic wave experiments, as well as its approximate lower
and upper bounds, 𝑏𝑚𝑖𝑛 = (𝜇∕4)𝜅3∕(1 + 𝜅)2 and 𝑏𝑚𝑎𝑥 =
(𝜇∕4)𝜅3, respectively. Breaking onset is at the right side of
the figure, where the largest values of 𝑏, 𝜅 and 𝐹 occur
and, moving to the left of the figure, the waves propagate
through the breaking region as a function of time, with
breaking termination occurring near the bottom left. The
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Figure 14: Spatial evolution of wave statistics computed based on results of experiments (circles) and simulations with Mis-b005
(solid line) for the irregular wave case of Adytia et al. (2018) (𝐻𝑠 = 0.2 m and 𝑇𝑝 = 2.5 s); waves break over the bar in the model
and in the experiments.

model results for 𝑏 are in the range [0.01, 0.1] and fall
mostly within its previously defined lower and upper bounds,
estimated based on 𝐹 values. As expected, at breaking onset,
𝜅𝑏 = 𝐻𝑏∕ℎ𝑏 is in the range [0.7, 1.2] (Table 3).

These observations, as well as the good agreement be-
tween the simulations and experimental observations for a
variety of benchmark cases, confirm the relevance of mod-
eling the energy dissipation rate for depth-induced breaking
waves as analogous to that of a hydraulic jump (or bore),
with a single calibration constant 𝜇 = 1.5 (Svendsen et al.,
1978 and Stive, 1984; Eq. (13)). Furthermore, unlike in
earlier studies that used a variety of case specific breaking
criteria and related energy dissipation rates, good agreement
with all experiments reported here for spilling and plunging
breaker cases was achieved using universal breaking onset
and termination criteria based on 𝐵 and a dissipation rate
based on the HJ analogy. Fig. 15 also shows that the time-
averaged breaking strength, based on all simulated cases, is
𝑏 ≃ 0.05, as tested in several simulations in Section 4.2.
And although the actual 𝑏 value differs substantially from

this average near breaking onset and termination, as seen in
earlier results, there were no significant differences in the
results obtained with a constant 𝑏 = 0.05 or varying 𝑏 value
throughout breaking within the accuracy/variability of most
experiments, and both approaches agreed similarly with the
experiments for the 5 considered benchmark cases.

5.2. Breaking onset kinematics
Fig. 16 shows the time evolution of the 𝐵 value up to

breaking onset (𝐵 = 0.85), as computed in simulations of
the 10 experimental cases listed in Table 3. As expected
from the parameterization of 𝑏 as an increasing function
of 𝛾 ∝ 𝑑𝐵∕𝑑𝑡, defined in Eq. (16) (Fig. 3), 𝑑𝐵∕𝑑𝑡 is
observed to be larger at breaking onset for plunging breakers
than for the spilling breakers. This observation appears to
be independent from the type of bathymetry that caused
waves to break. For instance, BB and TK conducted S and
P breaker experiments on barred and sloped bathymetries,
respectively, and 𝑑𝐵∕𝑑𝑡 is larger for P than for S breakers in
all cases. Blenkinsopp and Chaplin (2007) conducted three
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Label Name 𝐻0 (cm) 𝑇 (s) slope 𝑆 𝑇𝑏 (s) 𝑐𝑏 (m/s) 𝜅𝑏 𝜅𝑏𝑒 𝛾 𝜉0
a M-S-HS 9.50 1.0 1/34.26 0.78 1.03 0.73 0.78 0.77 0.118
b M-S-TK 12.50 2.0 1/35 1.33 1.26 0.81 0.82 0.80 0.202
c N-S/P-BC 10.05 1.0 1/10 0.75 1.06 0.69 0.87 1.01 0.394
d N-S-NM 12.00 2.0 1/34.66 1.23 1.31 0.84 - 1.12 0.208
e N-P-NM 12.00 5.0 1/34.66 1.54 1.24 1.09 - 1.54 0.520
f M-S-BB 4.40 2.5 1/20 0.82 0.89 0.79 - 1.30 0.744
g N-P-TK 12.80 5.0 1/35 1.71 1.27 1.09 1.21 1.65 0.499
h N-P-BC2 9.72 1.42 1/10 1.04 1.07 0.95 0.91 1.43 0.569
i M-P-BB 5.40 2.5 1/20 0.99 0.92 0.92 - 2.47 0.672
j N-P-BC1 7.82 2.0 1/10 1.64 1.04 1.17 0.84 1.52 0.894

Table 3
Periodic wave breaking test cases and their parameters. Each test case name has 3 parts: (1) the model used, M-Misthyc, N-NWT;
(2) type of breaking reported in experiments, S-Spilling, P-Plunging; and (3) the experiment: (slope) HS-Hansen and Svendsen
(1979), TK-Ting and Kirby (1994), NM-Narayanan and McCalpin (1997) and BC-Blenkinsopp and Chaplin (2007), and (bar)
BB-Beji and Battjes (1993).
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Figure 15: Evolution of the instantaneous breaking strength 𝑏 calculated with the HJ model during breaking simulations with
Misthyc for the (Table 3): (a) HS (solid magenta), (b) TK (solid green), and (i) BB-regular (solid red) periodic spilling/plunging
breaking wave experiments, as a function of 𝜅 = 𝐻∕𝑑. The dashed blue curves represent the lower (𝑏𝑚𝑖𝑛) and upper (𝑏𝑚𝑎𝑥) bounds
estimated for 𝑏, and the horizontal dash-dotted black line is 𝑏 = 0.05.

types of experiments, for strongly P (BC1), P (BC2), and S/P
(BC) breakers and, among these, 𝑑𝐵∕𝑑𝑡 is largest for BC1
and lowest for BC, as would be expected.

For the cases shown in Table 3, the S breakers, with
𝜉0 < 0.7 have 𝛾 < 1.3 and the P breakers, have 𝜉0 > 0.5
and 𝛾 > 1.4. Hence, consistent with the value of 𝑑𝐵∕𝑑𝑡
at breaking onset, 𝛾 values may also distinguish S from
P breakers. However, a more accurate estimation of this
threshold 𝛾 value should be based on a larger number of test
cases.

5.3. Breaking termination conditions
For waves breaking on a plane beach (such that depth

always decreases as waves propagate into shallower water),
as described in Svendsen et al. (1978), from breaking on-
set shoreward, the breaking dissipation can occur up until

waves run up the dry upper slope. However, the FNPF
setup used here does not model wave run-up or bottom
friction, which becomes significant near the shoreline. Using
a similar model set-up, simulations in previous work on
plane beaches did not use a breaking termination criterion.
For example, in Fig. 9a from Grilli et al. (2020), the wave
height decreases from the onset up to the shallowest depth.
For the cases on a plane slope, this is also seen in Fig. 10
of Simon et al. (2019), where the same variation in 𝐻𝑠 is
observed. Finally, Papoutsellis et al. (2019) also mention that
for the spilling breaker case of Ting and Kirby (1994), they
terminate breaking inside the sponge layer.

In contrast, for waves breaking over a bar, which is
followed by deshoaling over the shoreward slope of the bar,
a breaking termination criterion 𝐵off = 0.30 was used in
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Figure 16: Evolution of 𝐵 = 𝑢∕𝑐 as a function of non-dimensional time 𝑡∗ = (𝑡 − 𝑡𝑏)∕𝑇𝑏, referred to the time of breaking onset,
up to breaking onset (𝐵 = 0.85; horizontal dashed line), computed for a wave crest evolving over sloping bathymetries in the
experimental test cases listed in Table 3. Red lines for P-cases and blue lines for S-cases have smaller and larger values of 𝑑𝐵∕𝑑𝑡
at breaking onset, respectively.

all of the present applications. As shown in Fig. 11, this
value appears to be optimal for reproducing the experimental
results. Waves breaking on a bar may terminate breaking
over the crest or on the shoreward slope of the bar. Here, the
choice of termination criterion is important since the wave
evolution depends strongly on it.

To the authors’ knowledge, a universal breaking ter-
mination criterion does not exist. Alternative ideas have
been tested, such as a termination criterion based on the
slope of the free-surface (e.g., Simon et al., 2019). Another
possibility is a time-based criterion. Derakhti et al. (2018a)
noted that the active breaking period 𝜏 ≈ 0.75𝑇𝑏, and so this
could also be tested in future applications.

6. Conclusions
A unified method of modeling depth-limited wave break-

ing dissipation in FNPF models was demonstrated, building
on the work of Guignard and Grilli (2001) and Grilli et al.
(2020), who proposed making the energy dissipation rate
analogous to that of a hydraulic jump. Two different FNPF
models were applied here: Misthyc (Yates and Benoit, 2015)
and a BEM-NWT (Grilli et al., 1989; Grilli and Subra-
manya, 1996). The detection of breaking onset in the models
was based on the universal criterion 𝐵 = 𝑢∕𝑐 = 0.85,
first proposed by Barthelemy et al. (2018) for deep and
intermediate water cases, and validated by Derakhti et al.
(2020) in shallow water. Similar to earlier work such as
Grilli et al. (2020) or Simon et al. (2019), we show that
simulation results based on this approach agree well with
experimental measurements for a variety of standard shallow

water breaking cases from the literature, for both regular and
irregular wave trains and different bathymetries.

Using the hydraulic jump (HJ) analogy originally pro-
posed by Svendsen et al. (1978) and Stive (1984) for spilling
breakers, the non-dimensional breaking strength 𝑏, is found
in most cases, including both spilling or plunging breakers,
to have a fairly narrow range of variation centered on 0.05.
However, consistent with the recent parameterization of 𝑏
proposed by Derakhti et al. (2018a,b), proportional to 𝑑𝐵∕𝑑𝑡
at the onset, the instantaneous value of 𝑏 resulting from
the HJ analogy is much larger at breaking onset, and then
decreases throughout the breaking region. Recalling that the
HJ dissipation rate is related to the relative wave height 𝜅,
or wave Froude number 𝐹 , with 𝜅 = 𝐻∕𝑑 ≃ 2𝐹 in shallow
water and for the depth-limited breaking waves tested here,
𝜅𝑏 ∈ [0.7 1.2], consistent with Battjes’ predictions based on
the surf similarity parameter (Battjes, 1974). This implies
that for waves in this parameter range, 𝑏 would always have
a similar order of magnitude. With this rationale, simulations
of spilling and plunging depth-limited breaking waves were
performed using a constant breaking strength 𝑏 = 0.05.
The simulated results using a constant 𝑏 or the HJ model
with a time-varying 𝑏 agreed similarly with the experimental
measurements, within the range of experimental uncertainty.
Although in very complex cases there may be waves in an
irregular wave train requiring larger or smaller 𝑏 values,
the constant 𝑏 value provides results with a similar level of
uncertainty or accuracy as the HJ model.

There are some weaknesses in this current approach that
must be resolved in order to obtain a fully general method.
While concentrating on the wave breaking criterion and
dissipation rate, the breaking termination criterion has not
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yet been thoroughly investigated, which should be a point
for further research. For the cases shown here, wave breaking
on a slope were not terminated until the shallowest depth in
the model domain (or the absorbing beach) were reached,
whereas wave breaking on a bar was terminated at a value
𝐵off = 0.30, which was found to yield results in good
agreement with experiments. Since the energy dissipation
rate Π𝑏 = 𝜖 of breaking waves depends on the fifth power
of wave celerity, when this parameterization is used in the
constant strength model, an accurate tracking of wave crest
locations as a function of time 𝑥𝑐(𝑡) and the calculation of
the time derivative 𝑑𝑥𝑐∕𝑑𝑡 = 𝑐 are important for accurate
simulations. With the method used here to compute 𝑐 (see
Appendix), some spurious oscillations are still observed
when taking the derivative of the crest position, which
results in small oscillations of Π𝑏 = 𝜖 and thus wave heights
in the breaking region. Another issue is the accurate real-
time identification of wave crests/troughs in irregular sea-
states. In situations where small breaking waves ride on
top of larger waves, the estimation of the spatial extent
of dissipation could be misinterpreted, which could cause
instabilities.

By using a breaking dissipation rate Π𝑏 = 𝜖 proportional
to a constant 𝑏, instead of using the HJ analogy, the need
to compute the local geometric characteristics of waves re-
quired in the HJ dissipation Eq. (13) is eliminated (e.g., water
depth under the trough, etc.), and the dissipation can simply
be related to the crest kinematics. This simpler formulation
clearly will yield its greatest advantages when applying the
model in three-dimensions, where the identification of local
wave parameters, even the crest location, is challenging.
Derakhti et al. (2018b, 2022) also showed that a constant
𝑏 might be expected in shallow water based on results
of a Navier-Stokes model. The present modeling approach
with the constant strength 𝑏 and dissipation rate Π𝑏 = 𝜖
parameterization could be generalized to intermediate or
deep water cases, by using the 𝑏(𝛾) breaking strength model
proposed by Derakhti et al. (2018a), who found that the
value of 𝑏 in deep or intermediate water (which is clearly
not constant) could be related to the kinematics of the wave
as well, specifically to 𝑑𝐵∕𝑑𝑡 and a relevant breaking period
𝑇𝑏 at breaking onset. Some additional work may be required,
however, to implement the deep-water parameterization, as
𝑏 obtained from a 3D finite volume NS solver, in which
energy is dissipated within the domain volume, may not have
the same distribution or effect in a FNPF model, where the
energy dissipation is applied to the surface and only acts on
the potential part of the flow.

In considering the kinematics of the shallow water break-
ing waves simulated here, the value of 𝛾 appears to provide
a parameter to distinguish spilling and plunging breakers,
with a threshold value around 1.3 − 1.4. For waves shoaling
on a plane slope, this may be loosely related to Battjes’ surf
similarity parameter and may be of interest for applications
beyond the scope of those envisioned here, such as of iden-
tifying breaker types from existing models that are unable to
simulate the breaking process.

Figure 17: Sketch showing the calculation of a local wave crest
location between discretization points on the simulated free
surface.

A. Calculation of wave crest kinematics
The instantaneous location of wave crests is first roughly

estimated on the 2D-FNPF models’ free surface, by finding
local maxima. Then, four model points surrounding each
wave crest location are identified with elevation, particle
velocity, and location (𝜂𝑖, 𝑢𝑖, 𝑥𝑖) (𝑖 = 1, 2, 3, 4) and mapped
to a local coordinate 𝜉 ∈ [−1, 1]. Cubic shape functions
(Eq. 22) are used to interpolate 𝜂(𝜉) between these points.

𝑁1(𝜉) =
1
16

(1 − 𝜉)(9𝜉2 − 1)

𝑁2(𝜉) =
9
16

(1 − 𝜉2)(1 − 3𝜉)

𝑁3(𝜉) =
9
16

(1 − 𝜉2)(1 + 3𝜉)

𝑁4(𝜉) =
1
16

(1 + 𝜉)(9𝜉2 − 1)

(22)

The wave crest location is then estimated based on the
𝜉𝑐 value at which 𝑑𝜂∕𝑑𝜉 = 0 (Fig. 17). Therefore, the
horizontal location of a local crest in the global coordinate
is calculated as

𝑥𝑐 = 𝑥1𝑁1(𝜉𝑐) + 𝑥2𝑁2(𝜉𝑐) + 𝑥3𝑁3(𝜉𝑐) + 𝑥4𝑁4(𝜉𝑐), (23)

and the horizontal particle velocity at the crest, 𝑢 as

𝑢 = 𝑢1𝑁1(𝜉𝑐) + 𝑢2𝑁2(𝜉𝑐) + 𝑢3𝑁3(𝜉𝑐) + 𝑢4𝑁4(𝜉𝑐). (24)

Prior to calculating 𝑐, 𝑥𝑐(𝑡) is smoothed by second-order ex-
ponential smoothing (Guthrie, 2020), described as follows,
denoting𝑋𝑡

𝑐 as the smoothed horizontal crest location at time
𝑡 = 0,

𝑋0
𝑐 = 𝑥0𝑐
𝑠0 = 𝑥1𝑐 − 𝑥0𝑐

(25)

For 𝑡 > 0,

𝑋𝑡
𝑐 = 𝛼𝑥𝑡𝑐 + (1 − 𝛼)(𝑋𝑡−1

𝑐 + 𝑠𝑡−1)

𝑠𝑡 = 𝛽(𝑋𝑡
𝑐 −𝑋𝑡−1

𝑐 ) + (1 − 𝛽)𝑠𝑡−1,
(26)
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where (𝛼, 𝛽) based on some preliminary tests are taken as
(0.05, 0.01).

Wave celerity of a crest at a time 𝑡, 𝑐(𝑡) is then cal-
culated by a linear fit to the smoothed data in the interval
[𝑋𝑡−𝑛

𝑐 , ..., 𝑋𝑡
𝑐], such that 𝑛Δ𝑡 < 0.04𝑇 , where Δ𝑡 is the

discretization in time and 𝑇 is a representative wave period.
In the test cases presented this study, 𝑛 = 8. To compute 𝛾 ,
the discrete values of 𝐵 = 𝑢∕𝑐 at the crest, when in the range
[0.82 − 0.85], are then linearly fit to obtain 𝑑𝐵∕𝑑𝑡|𝐵=𝐵𝑡ℎ

.
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