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Abstract—Data integration provides a unified and abstract
view over a set of existing data sources. The typical architecture
of a data integration system comprises the global schema, which
is the structure for the unified view, the source schema, and
the mapping, which is a formal account of how data at the
sources relate to the global view. Most of the research work
on data integration in the last decades deals with the problem of
processing a query expressed on the global schema by computing
a suitable query over the sources, and then evaluating the latter
in order to derive the answers to the original query. Here, we
address a novel issue in data integration: starting from a query
expressed over the sources, the goal is to find an abstraction of
such query, i.e., a query over the global schema that captures
the original query, modulo the mapping. The goal of the paper
is to provide an overview of the notion of abstraction in data
integration, by presenting a formal framework, illustrating the
results that have appeared in the recent literature, and discussing
interesting directions for future research.

I. INTRODUCTION

Data integration is the problem of providing a unified and
reconciled view of the data stored in a set of autonomous
and heterogeneous sources [1]. Issues related to integrating
data have been studied for many years, but the problem is
still relevant today, when the volume of data and the need
to collect, link and share them explodes. The theoretical
works on data integration systems have fostered a three-
tier architecture [2] comprising the data sources, with the
associated source schema, the global view, with the associated
global schema, and the mapping from the sources to the global
view.

In the declarative approach to integration, a data integration
system is formalized as a triple J = (G,S, M), where G
is the global schema, S is the source schema and M is the
mapping. The global schema is often aimed at providing an
abstract representation of the domain of interest, rather than a
mere data structure capturing the source data. Following this
idea, the role of the system is to provide different types of
services based on such abstract representation, thus freeing the
users from the implementation details of the data sources when
accessing the information content of the system. Also, the
mapping is specified through logical assertions on the source
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and the global schema, describing how the data at the sources
relate to the elements of the global view. Note that, since such
assertions are typically expressed as logical implication, given
a particular configuration of the data at the sources (a source
database), there may be many global databases satisfying the
mapping. It follows that data integration naturally leads to the
issue of dealing with incomplete information.

Several specializations of the general architecture have been
explored in the last two decades with the goal of capturing
different variants of the problem: in data exchange [3] the
goal is to move data from one source to the global view, in
view-based query processing [4] the sources are modeled as
materialized views defined on the basis of the global schema,
in data warehousing [5] the global view is materialized in
a relational database with associated data marts, in ontology-
based data management [6] the global view is modeled through
an ontology, and in (virtual) knowledge graphs [7] the global
view is rendered as a (virtual) graph database.

In all these contexts, the task that received most attention
by the research community is the one of answering queries
expressed on the global schema. This task is typically based
on the certain answer semantics, where the tuples satisfying a
query gg posed to the global schema G of a data integration
system J are the answers to gg in all the global databases
satisfying the mapping of J w.r.t. the current source database
D. Note that, since the concrete data reside in the sources,
a common approach to computing the certain answers to qg
is based on “rewriting” g¢g into a query ¢s over the source
schema such that evaluating gs over D yields exactly the
certain answers to ¢g.

Recent works [8]-[12] address a novel issue in data inte-
gration: starting from a query ¢s expressed over the sources,
the goal is to find a query gg over the global schema that
captures the original query, modulo the mapping. The query q¢
is called a perfect abstraction of the data service expressed by
gs, because it provides a formulation of gs on the basis of the
abstract representation of the domain, obtained by leveraging
on the mapping of the data integration system.

Obviously, the meaning of “capturing” a source query has to
be made precise. Ideally, the query gg that captures gs at best
is the one that, when it is evaluated over the incomplete global
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database corresponding to a source database D, returns the
answers of gs over D. In this case, we call gg the perfect J-
abstraction of ¢s. We will see that, when a perfect abstraction
does not exist, it may be possible to compute (sound or
complete) approximations of such query.

We use an example for informally introducing some of
the notions that we will discuss in the rest of the paper.
In the example, we assume that the evaluation of a query
expressed over the global schema is based on the certain
answer semantics.

Example 1. Ler J = (G, S, M) be a data
integration system where the elements of the source
schema S are the predicates (with associated arity)
{s1/1,82/2,55/1,84/1,55/2}, the elements of the global
schema G are {g1/2,92/1,93/2,94/2,95/1}, and M
contains the following assertions (where the free variables
are implicitly universally quantified):

my :s1(x) = Fy.g1(x,y)

my : s2(w,y) = g1(x,y)

ms : s3(x) A sa(x) = go2(x)

my @ s3(x) A sa(z,y) = g3(z,y)

ms : 3z.85(y, 2) A sa(z,y) = g3(x,y)
me : 85(x,y) — ga(z,y)

my : s1(x) A sa(z) — g5(x)

Consider the query q5 = {z,y | sa(z,y)}. It is easy to see
that, for every database D, the certain answers of qé ={z,y |
g1(x,y)} coincides with the answer to qs w.r.t. D. It follows
that the CQ qé ={z,y | g1(x,y)} is a perfect J-abstraction
of q}g.

Consider the query q% = {z | Jy.s2(z,y)}. A natural
candidate for the perfect J-abstraction of q% is ¢ = {x |
Jy.q1(z,y)}. Note, however, that the certain answers to qé
include tuples in s1 that may not belong to so, and therefore
qé is not even a sound [J-abstraction of q?g (i.e., it does not
retrieve only tuples of q%). Indeed, it can be shown that no
UCQ esists that is a perfect J-abstraction of q%. However, the
query asking for those x such that g1(x,y) is known to be true,
i.e., holds in every model of J, cannot exploit mapping m1,
and therefore avoids retrieving tuples from sy. It follows that
such query, which is not expressible as a UCQ, is a perfect
J-abstraction of q%.

Consider the query q% = {x | s1(z)}. Again, the natural
candidate for the perfect J-abstraction of qs is clearly
a¢ = {x | Jy.g1(x,y)}. However, because of ms, the certain
answers to qé also include the values in the first component of
So, and this means that qé is not a sound T -abstraction of qg,
although it is a complete one (i.e., it retrieves all tuples of qg ).
Another possible candidate is the query ¢ = {x | 3y.gs(x)}.
However, this query captures only the tuples occurring in s;
which also occur in s4. It follows that qg is a sound [J-
abstraction, although not a complete one. Actually, it can be
shown that no perfect [J-abstraction of qg exists in the class
UCQ, but qé and qg are, respectively, the minimally complete
and the maximally sound J-abstraction of q3 in the class
Uuco.

Consider now the query q¢& = {() | Jz,y.s5(z,y) A
s3(x)}, and assume that we aim at checking whether its
perfect J-abstraction can be expressed as a UCQ. We im-
mediately observe that {() | Jzx,y.g4(x,y) A g2(x)} is a
sound [J-abstraction of qfé. Also, we can easily verify that
{0 | Fz,y,21.94(z, y) A g3(z,21) A g2(x1)} is also sound,
and may retrieve tuples that are not retrieved by {()
Jz,y.94(x, y) Ag2 () }. More generally, all queries of the form
{0 | 3z,y, 21,y ngalz,y) Ags(x,x1) Aot Aga(Tn_1 A
Zn) N g2(zn)}, for n > 1, are pairwise incomparable sound
J -abstractions of qu. Based on this observation, one can show
that there exists no maximally sound [J-abstraction of q& in
the class UCQ. However, the following Datalog query (with
goal Ans) is the maximally sound [J-abstraction of q§ in the
whole class of monotone queries:

93(z,y) - ti(z,y)
t1(z,y) N1 (y, 2) = ti(x,2)
94(2,y) A g2() —  Ans()
ga(z,y) Nt1(z,2) AN ga(z) —  Ans()

A

We argue that abstraction is relevant in a plethora of
scenarios. We mention some of them here. Abstraction it can
be used for a kind of reverse engineering task, namely to
automatically produce a semantic characterization of a data
service implemented at the level of data sources [10]. Also,
following the ideas in [8], it can be shown that abstractions
can provide the semantics of open datasets and open APIs pub-
lished by organizations, which is a key aspect for unchaining
all the potentials of open data [13]. In the context of ontology-
based data management, [9] has shown that abstraction can
be used to study the concept of realization of source queries,
i.e., checking whether the mapping provides the right coverage
for expressing the relevant data services at the global schema
level. Finally, abstraction can be the basis for a semantic-based
approach to source profiling [14], in particular for describing
the structure and the content of a data source in terms of the
business vocabulary.

The goal of this paper is to provide an overview of the
notion of abstraction in data integration, by

o presenting a formal framework for abstraction,

o illustrating the results that have appeared in the recent
literature about checking the existence of and computing
abstractions, and

o discussing open problems and interesting directions for
future research.

The paper is organized as follows. In Section II we recall
the basic notions about data management that will be used in
the paper. Section III presents the framework for abstraction
in data integration, and Section IV discusses the relationship
between this notion and view-based query processing. Sections
V and VI illustrate recent technical results on computing
abstractions belonging to specific classes of queries, namely
unions of conjunctive queries, and monotone queries, respec-
tively. Finally, Section VII concludes the paper by discussing
possible future research on abstraction.



II. PRELIMINARIES

We consider databases whose atomic values are from a
denumerable set of constant symbols C, and we assume that
every alphabet mentioned in this paper includes such symbols.

A database schema (or simply schema) 7T is a logical
theory (set of axioms) over an alphabet A+ (including a set
of symbols called predicate symbols), and a T -database is a
finite structure! over A; that satisfies all axioms in 7. As
usual, we often see a database as a set of facts, where each
fact asserts that a tuple of constants satisfies a given predicate
in A7. In the usual meaning, a query over a schema 7, called
T-query, is a function associating to each 7 -database a finite
set of tuples of constants. A T-query ¢ is monotone if for
each pair of 7 -databases D1, D5 such that D; C Dy we have
qDl - qu'

In this paper we extend the notion of query to functions
that are applied to sets of databases: a T -query of arity n
is a function associating to each set of 7 -databases a finite
set of n-tuples of constants in C. Note that, if the set is a
singleton, we obtain the usual notion. For a 7-query ¢ and
a set of T-databases ¥, ¢* denotes the answers of q for %,
i.e., the set of tuples obtained by applying ¢ to X, and we
simply write ¢ instead of ¢{P}. We observe that a common
method for defining a query q for a nonempty set X, based on
the semantics of ¢ for a single database, is through the certain
answer semantics: the answers of ¢ for X is the set of certain
answers, defined as [ Dex qP. For two T-queries ¢; and ¢o,
we write q; C qq if ¢ C ¢3 for each set X of T-databases,
and we write q; = ¢ if both ¢; C ¢2 and g2 C ¢;.

Queries are often specified in terms of expressions in a
particular language. In this paper, when we talk about a query
language £, we mean that the class of queries defined by such
language are formulated in terms of expressions belonging
to L. A query language is monotone if all queries in such
language are monotone. Notable monotone query languages
correspond to the classes of conjunctive queries and unions of
conjunctive queries. A conjunctive query (CQ) q over schema
T is a query expressible as {Z | 37.¢(Z,y)}, where Z is a
tuple of variables, called the distinguished variables of q, all
appearing in ¢, ¥ is a tuple of variables, called the existential
variables of ¢, and ¢(Z,y) is a finite conjunction of atoms
over 7, where an atom is a predicate symbol applied to
variables. We often write {Z | 37.4(Z,4)} simply as ¢(Z),
and we assume that we can form atoms of any arity using T
as predicate symbol, where such atoms are always interpreted
true. Given a CQ ¢ = {Z | 37.¢(Z,9)}, we say that an
existential variable y € ¢ is a join existential variable of g
if it occurs more than once in the atoms of ¢(Z,y). In what
follows, we say that a CQ q is a conjunctive query with join-
free existential variables (CQJFE) if there is no join existential
variable occurring in gq.

The arity of ¢ is the arity of Z. A union of conjunctive
queries (UCQ) (resp., union of conjunctive queries with join-
free existential variables (UCQJFE)) is a finite union of CQs

'In principle, we could also consider databases that are infinite structures.

(resp., CQJFEs) with same arity, called its disjuncts. Note that,
for a UCQ ¢ and a T -database D that can be seen as a First
Order Logic (FOL) interpretation over A, ¢” is obtained
by evaluating the FOL formula expressing g over D. Other
classes of queries considered in this paper, such as Datalog,
Disjunctive Datalog, and Disjunctive Datalog with inequalities
(denoted by DD*), are generalizations of UCQs. For CQs,
UCQs, and the queries of the above mentioned classes, we
assume that, when they are evaluated over a set of databases,
the certain answer semantics is used. Observe that all these
languages are monotone query languages.

View-based query processing is a general term denoting
several tasks related to the presence of views in databases. A
set of views V over a schema 7 is constituted by a finite set of
view predicate symbols, where each V' € V has a specific arity,
and an associated view definition V-, i.e., a query over T of the
same arity of V. An extension of a view V' is simply a set of
facts for V, and a V-extension £ is constituted by an extension
for each view in V. Given a 7 -database D, we denote by
V(D) the V-extension {V(¢) | V € V and ¢ € V;2}. In what
follows, we use the term £ views to indicate a set of views in
which all view definitions are queries expressed in the query
language L.

Two particular notions have been subject to extensive inves-
tigations in the view-based processing literature, namely view-
based query rewriting and view-based query answering [15],
[16].

In the former notion, originated in [17], we are given a query
g7 over a schema 7 and a set of views V over 7, and the goal
is to reformulate ¢7 into a query gy, called a V-rewriting, in
terms of the view predicate symbols of V. We obtain different
variants of V-rewritings depending on the relationship between
gr and ¢y we aim at. We call gy (i) a V-rewriting of qr
under exact views, or simply V-rewriting of qr, if for every
T-database D it holds that qx(D) C 42, (ii) an exact V-
rewriting of q if for every T -database D it holds that qg (0) _
qu). Note that, if we fix a specific query language Ly for
expressing V-rewritings, we might lose power in expressing
V-rewritings. In this case, a reasonable goal is to compute V-
rewritings expressible in £y, that are “maximal” in the class
Ly . Formally, we say that a query gy € Ly is an Ly, -maximal
V-rewriting of qr, if (i) qy is a V-rewriting of g7; and (ii)
there is no ¢; € Ly such that (a) g1 is a V-rewriting of ¢r,
(b) qE(D) - qI}(D) for each 7 -database D, and (c) there is a

T -database D for which q:j(D) - qY(D).

As argued in [18], given g7 and V, the problem of check-
ing whether there exists an exact V-rewriting of ¢ (called
losslessness with respect to rewriting [16]) is equivalent to the
problem, called view determinacy [18], of checking whether
g7 1is determined by V, denoted V — ¢, i.e., whether
V(Dy) = V(D2) implies q?l = q?z for each pair of 7-
databases Dy and Ds,. Indeed, on the one hand, if V — g7,
then the function ¢y associating to each V(D) the tuples ¢2,
for each T -database D, is an exact V-rewriting of ¢, on the
other hand, if V 4 ¢r, then such ¢y is not a function, and



hence an exact V-rewriting of gs cannot exist.

In the latter approach, originated in [19], besides ¢7 and V
we are also given a V-extension £, and the goal is to compute
the so-called certain answers of g w.r.t. V and £, denoted by
certgﬂv, which are those tuples of constants ¢ such that ¢ €
g% for each S-database D satisfying & C V(D). We denote
by cert,, v the query over V that, for every V-extension &,
computes the certain answers of g7 w.r.t. V and &, and we call
certq, v the perfect V-rewriting of qr under sound views, or
simply perfect V-rewriting of qr.

III. FRAMEWORK

A data integration system J 1is specified by a triple
(G,S8, M), where G, the global schema, is a schema over
an alphabet Ag, S, the source schema, is a schema over an
alphabet As (disjoint from Ag, except for the set C), and M
is a mapping relating S to G. Specifically, M is a finite set of
assertions of the form ¢s — qg, where gs is an S-query and
qg is a G-query of the same arity as ¢s.

The semantics of J is defined relative to an S-database D,
and, intuitively, is the set of all interpretations for J over the
domain C' that satisfy both the axioms of G and the mapping
M with respect to D. An interpretation for G is actually a G-
database, and one such database B satisfies M with respect
to D, denoted by (D, B) = M, if it satisfies all assertions in
M, where B satisfies (¢gs — gg) € M with respect to D if

a8 C a5

Formally, the semantics of J  relative to
D, denoted as mod(J, D), is defined as
{B | B is a G-database such that (D,B) = M}. We

say that D is consistent with J if mod(J, D) # (. The
answers to a G-query g w.rt. a data integration system
J = (G,S, M) and an S-database D is simply ¢"°H7.D),
that we often write simply as ¢7 7.

For two G-queries ¢; and go, we write ¢1 C 7 g9 if qf’D C
qQJ P for each S-database D; ¢1 C7 g2 and J-equivalence
are defined accordingly.

Specific classes of mappings considered in the literature are
GAV, LAV, GLAV, PGAV and SPGAV. We introduce them
under the assumption that the queries appearing in mapping
assertions are conjunctive queries or restricted forms thereof.

A GLAV mapping is a set of assertions of the form gs(Z) —
qg (%), where both ¢s and ¢g are conjunctive queries over S
and G respectively, with distinguished variables &, implicitly
universally quantified.

A GAV mapping is a special case of GLAV, constituted by
a set of assertions of the form ¢s(¥) — A(Z), where (i) gs is
a conjunctive query over S, (ii) A € Ag, and (i4i) the arity
of A is the same as the arity Z. A pure GAV mapping (PGAV)
is a GAV mapping in which each assertion ¢s(Z) — A(Z) is
such that no repeated variables appear in . A PGAV mapping
is called SPGAV (PGAV with single assertion per predicate) if
it does not contain a pair of assertions with the same predicate
symbol in the head.

A LAV mapping is a special case of GLAV, constituted by
a set of assertions of the form A(Z) — qg(Z), where (i) A €

As, (ii) qg is a conjunctive query over G with distinguished
variables Z, and (4i%) the arity of A is the same as the arity
Z.

In what follows, we implicitly refer to a data integration
system J = (G,S, M), and when we denote a query by
qg (resp., gs) we mean that the query is a G-query (resp.,
S-query). We follow [10] for the basic definitions related to
abstraction. We say that qg is a perfect J-abstraction of qs if
qg - qg , for each S-database D consistent with 7. Clearly,
if a perfect J-abstraction of ggs exists, then it is unique up to
J-equivalence, and therefore in the following we will talk
about the perfect J-abstraction of ¢s.

Borrowing the above mentioned idea on view determi-
nacy [18], it is easy to prove the following characterization
theorem for the existence of a perfect [7-abstraction for gs.

Theorem 1. There exists a perfect [J-abstraction of qs if
and only if for all pair D, D' of S-databases, mod(J,D) =
mod(J, D') implies qF = q&".

As the condition for a global schema query to be a perfect
J -abstraction of a source query is a strong one, it might be
very well the case that a perfect abstraction of a source query
does not exist. It is then reasonable to consider weaker notions,
such as sound or complete approximations of perfectness.

We say that qg is a complete (resp., sound) [J-abstraction
of qs if qg C qu’D (resp., qgj’D C qg), for each S-database
D consistent with 7.

Obviously, we might be interested in complete or sound
abstractions that approximate ¢s at best, at least in the context
of a specific class of queries. If Lg is a class of queries, we
say that a global schema query gqg € Lg is an Lg-minimally
complete (resp., Lg-maximally sound) [J-abstraction of qs
if gg is a complete (resp., sound) J-abstraction of gs and
there is no global schema query g; € Lg such that g; is a
complete (resp., sound) J-abstraction of gs and q’g Cs qg
(resp., 4g C7 q5)-

The class of monotone queries in the context of a data
integration system is particularly important in this paper. A
G-query q is monotone in the context of a data integration
system J = (G, S, M) if for every pair D, D’ of S-databases,
mod(J,D) C mod(J,D') implies ¢7-P" C ¢7-P. This
captures the intuition of monotonicity of queries in logic:
when the knowledge possessed by the system increases (i.e.,
the set of models shrinks), the answers to a query does not
decrease. Note that the class of monotone queries includes the
whole class of First Order queries, that is arguably the most
studied class in both the Knowledge Representation and the
Data Management literature. In the following, we use 91’
to denote the class of monotone queries in the context of
J = (G,5, M), and when J is understood, we simply use
M.

It is easy to see that if an 9)1-maximally sound J-abstraction
of gs exists, then it is unique up to J-equivalence, and the
same holds for 2-minimally complete 7-abstractions. Anal-
ogously, if a UCQ-maximally sound (resp., UCQ-minimally
complete) J-abstraction of gs exists, then it is unique up to



J-equivalence. Thus, in the following, we simply talk about
the 9MM-maximally (resp., UCQ-maximally) sound and the 901-
minimally (resp., UCQ-minimally) complete .7-abstraction of
qs.

In the next sections, we will deal with data integration
systems of a specific form, namely where (¢) the mapping is of
type GLAV or special cases of GLAV, and (3) if not otherwise
stated, the set of axioms of both the global schema and the
source schema is empty. Also, we will limit our analysis to
abstractions of UCQ source queries.

IV. COMPARISON WITH VIEW-BASED QUERY PROCESSING

It is well-known that there is a relationship between data
integration and view-based query processing, based on the
idea that the sources of a LAV data integration systems can
be considered as views over the global schema, in particular
sound views [2]. In this section, we take another approach and
establish a relationship between GAV data integration systems
and views, based on the idea that the elements of the global
schema can be considered sound views over source databases.

We start by describing how to obtain, from any data
integration system .7 with PGAV mapping, a suitable set of
UCQ views? V 7, and, viceversa, from any set of UCQ views
V, a suitable data integration system 7, with PGAV mapping.

For a data integration system J = (G,S, M) with M €
PGAV, the set of UCQ views V7 is such that (¢) the set of view
symbols coincides with Ag, and (é¢) for each view symbol g,
the associated view definition gs is the following UCQ over
S:

{1 | o5 (a1, 90)} V... U{E | Fg¢s (@, 3) )

where we have one disjunct 3y;.¢%(;, y;) for each mapping
assertion in M of the form 3g;.¢% (&, ;) — g(&;). Note that,
if M € SPGAV, then all view definitions in V7 are CQs.

Example 2. Let 7 = (G, S, M) be a data integration system
such that M = {my, ma, m3} with:

my : 1, Y2.51 (Y1, T, @) A s2(x, y2,y2) — g1(7)
ma : Y1, Y2, Y3.51 (Y1, 1, T2) A s2(22, Y2, Y3) — g2(x1, 22)
mg 1 y1.83(x1, T2, Y1) = g2(z1, 22)

Then, the UCQ views V7 over S is Vg = {g1,92}, where
g1s = {7 | 3y, y2.51(y1, 2, 2) A s2(2,y2,92)} and gas =
{z1, 22 | 3y1, 92, y3.51 (Y1, T1, T2) Asa(w2, Y2, y3) }U{w1, 22 |
3y1.83(1‘1,$2,y1)}. A

For a set of UCQ views V over a schema S, the data
integration system Jy = (G,S, M) is such that (i) Ag
coincides with the view predicate symbols in V, (i) G has
no axiom, and (4i7) M is defined as follows: for each view
symbol V' € V and for each CQ {Z | 35.¢s(Z,7)} that is a
disjunct in the UCQ Vs, the mapping M includes a mapping
assertion of the form: 33.¢s(Z,y) — V(Z). Note that, in

2When we refer to UCQ views, we in fact assume that view definitions are
UCQs without repeated variables in the target list. We refer to [20] for the
complications that can arise when this assumption is removed.

general, M € PGAV. However, if V is a set of CQ views,
then M € SPGAV.

Example 3. Let V = {V1,Va} be a set of UCQ views over S
such that: VlS = {$1,1‘2,1?3 | 83(1‘1,2132,133)} U {xl,l'g,l'g |
Jy.s1(z1,y) A s2(y,m2,73)} U {@1, 22,73 |
Jyi,ye.s1(x1, 1) A sa(ye,w2,x3)}  and  Vag =
{z1, 29,23, 24 | Jy.s1(x1,22,y) A s3(y, 3, 24) }.

Then, the data integration system is Jy = (G, S, M), where
Ag = {V1,Va} and M = {mq,ma, ms, my} with:

:s3(w1, @2, 23) = Vi(an, 22, x3),
s Jy.s1(z1,9) A s2(y, x2, x3) = Vi(ar, ze, x3),
D 3yn, y2.51(21, 91) A sa(y2, 22, w3) — Vi(21, 72, 23),

s Jy.so(x1, w2, ) A sa(y, x3, x4) — Vo(x1, 2, 73, T4).
AN

For a data integration system 7 with PGAV mapping and a
set of UCQ views V, the pair (J,V) is said to be coherent if
(7) the schema over which the set of views V is defined and
the source of J coincide, and (i) J = Jy or ¥V = V4. In
what follows, when we talk about a coherent pair (7,V), we
use S to denote the common schema between 7 and V.

Based on the relationship between 7, and V7, the follow-
ing proposition provides a connection between existence of
perfect abstractions and existence of exact rewritings.

Proposition 1. If (J,V) is a coherent pair and qs is an S-
query, then there exists a perfect [J-abstraction of qs if and
only if there exists an exact V-rewriting of qs.

Proof. We recall that there exists an exact V-rewriting of qs if
and only if V — gs, i.e., V(D1) = V(D) implies ¢5' = ¢5>
for each pair of S-databases D1, Ds.

Let J = (G,S, M) with M € PGAV. Due to Theorem 1,
there exists a perfect [J-abstraction of ¢gs if and only if
mod(J,D1) = mod(J,Ds) implies ¢5' = ¢5> for each
pair of S-databases Dy, Ds. Since G has no axiom, every S-
database D is consistent with 7, and, if D is an S-database
and B is a G-database, then B € mod(J, D) if and only
if M(D) C B. It follows that there exists a perfect J-
abstraction of ¢g if and only M(Dy) = M(D3) implies
qgl = qu for each pair S-databases D1, Ds.

Then the claim trivially follows from the fact that, since
(J,V) is a coherent pair, by construction M(D) = V(D)
holds for every S-database D. O

In the rest of this section, when we use £, we refer to a sub-
language of DD7 (therefore, £ is a monotone query language).
By exploiting well-known results, we provide connections
between the notion of [J-abstractions and V-rewritings in the
context of monotone query languages. To this end, we first
introduce some terminology.

Given a mapping M € PGAV relating S to G and a G-query
q in a certain query language L, the M-unfolding of q [2],
denoted by unfa(q), is the S-query obtained by replacing
each atom « occurring in the expression corresponding to g by



the logical disjunction of all the left-hand sides of the mapping
assertions in M having the predicate symbol of « in the right-
hand side (being careful to use unique variables in place of
those variables that appear in the left-hand side of the mapping
assertions but not in the right-hand side of those).

Given a set of UCQ views V over S and a V-query ¢ in a
certain query language £, the V-expansion of q [17], denoted
by expy(q), is the S-query obtained by replacing each atom
« occurring in in the expression corresponding to g by the
view definition associated to the view predicate name of «
(again, being careful to use unique variables in place of those
variables that appear in the bodies of the view but not in the
heads of those).

Proposition 2. If (J,V) is a coherent pair, qs is an S-query
in L, and q is a query in L, then q is a sound (resp., perfect)
J-abstraction of qs if and only if q is a V-rewriting (resp.,
exact V-rewriting) of qs.

Proof. For data integration systems J = (G,S, M) with
M € PGAV and monotone query languages L, it is well-
known that ¢7-P = unfyr(q)” for every ¢ € £ and S-
database D [2]. So, by definition, ¢ is a sound (resp., perfect)
J-abstraction of ¢s if and only if unfyr(q¢) T gs (resp.,
unfr(q) = gs), for every pair of queries gs,q € L. On the
other hand, for UCQ views V and monotone query languages
L, it is easy to see that ¢ is a V-rewriting (resp., exact
V-rewriting) of ¢s if and only if ezpy(q) T gs (resp.,
expy(q) = gs), for every pair of queries gs,q € L.

Let 7 = (G,S, M). The claim holds because the fact that
(J,V) is a coherent pair implies unfy(q) = expy(q) for
every g in L. O

Actually, as shown in [21, Lemma 1], if £ allows for the
union operator, then for any pair of UCQ views V over S
and query gs € L over S, if an L-maximal V-rewriting
of ¢s exists, then it is unique up to V-equivalence, and,
moreover, it coincides with the perfect V-rewriting of ¢s°.
From Proposition 2 and the above observation, we can derive
the following result.

Corollary 1. If (J,V) is a coherent pair and L allows for
the union operator, then for every pair of queries qs,q € L,
we have that q is the L-maximally sound [J-abstraction of qs
if and only if q is the perfect V-rewriting of qs.

By exploiting the above provided relationships, we are
now ready to investigate how results and techniques from
the view-based processing literature can be directly translated
into results and techniques in the context of abstraction, and
viceversa.

A. Novel results on abstraction

By combining Proposition 1 with a well-known unde-
cidability result about view determinacy, we can derive a
novel, negative result about an arguably fundamental problem

3This is not the case when view definitions are expressed as regular path
queries rather than UCQs [22].

for the notion of abstraction, namely the existence problem
(with no restrictions on the query language to express perfect
abstractions) of perfect abstractions, even in very restricted
settings.

Theorem 2. Given a data integration system J = (G,S, M)
with M € SPGAV and a CQ S-query qs, checking whether
there exists a perfect J-abstraction of qs is undecidable.

Proof. Proposition 1 provides a reduction from the view
determinacy problem in the case of CQ views and CQs gs
to our problem. Specifically, given a set of CQ views V over
a schema S and a CQ S-query gs, we have that V — ¢s (i.e.,
there exists an exact V-rewriting of ¢s) if and only if there
exists a perfect Jy-abstraction of ¢s, where Jy, = (G, S, M)
with M € SPGAV. Since the view determinacy problem in the
case of CQ views V and CQs ¢gs is undecidable [23], it follows
that checking whether there exists a perfect J-abstraction of
gs is undecidable as well. O

By exploiting Corollary 1, we now illustrate how to use
off-the-shelf algorithms for rewriting queries in the presence
of views as algorithms for computing abstractions. By results
of [17], for CQ views V, perfect V-rewritings of UCQs gs can
be always expressed as UCQs, and can be always computed
(e.g., by means of the bucket algorithm [24] or the MiniCon
algorithm [25]). Thus Corollary 1 implies that, given a data
integration system J = (G,S, M) with M € SPGAV and
a UCQ S-query ¢s, we can compute the UCQ-maximally
sound [J-abstraction of ¢s as follows: (i) compute V7, and
(i) compute and return the UCQ corresponding to the perfect
V) 7-rewriting of ¢s.

Corollary 2. If J is a data integration system with SPGAV
mapping and qs is a UCQ S-query, then the UCQ-maximally
sound J-abstraction of qs exists and is computable.

Things get more complicated when we consider a data
integration system .7 with PGAV mappings, which are clearly
more expressive than SPGAV, for which V7 is a set of UCQ
views, rather than CQ views. Indeed, for UCQ views V,
UCQ-maximal V-rewritings of CQs gs are not guaranteed to
exist [20], [21], and thus, in general, perfect V-rewritings of
CQs gs are not expressible as UCQs. However, the perfect V-
rewritings of UCQs (actually, even of Datalog queries) gs can
always be expressed in DD7, and can always be computed
using the technique presented in [21]. Thus, Corollary 1
implies that, given a data integration system J = (G, S, M)
with M € PGAV and a UCQ S-query ¢s, we can compute
the DDi—maximally sound [J-abstraction of gs as follows:
(i) compute V7, and (if) compute and return the DD” query
corresponding to the perfect Vs-rewriting of gs.

Corollary 3. If J is a data integration system with PGAV
mapping and qs is a UCQ S-query, then the DD¢—maximally
sound J-abstraction of qs exists and is computable.



B. Novel results on view-based query processing

As already observed, [20], [21] show that for a given set VV
of UCQ views, UCQ-maximal V-rewritings of CQs may not
exist. Combined with an observation made above, this means
that perfect V-rewritings of CQs are in general not expressible
as UCQs. We point out that the CQ gs used to prove such
results contain more than one join existential variable. As a
consequence, in the case of UCQ views V), it is still open
whether (i) the result holds even for gs with just one join
existential variable (ii) perfect V-rewritings of UCQJFEs are
expressible as UCQs. By combining Corollary 1 with results
of [10] (that we will discuss in Section V), we can actually
answer positively to both questions.

Corollary 4. For a set V of UCQ views, the UCQ-maximal
V-rewritings of qs may not exist, even if qs is a CQ with one
Jjoin existential variable.

On the other hand, in Section V, we will show that for a data
integration systems J with PGAV mapping, UCQ-maximally
sound J -abstractions of UCQJFEs are guaranteed to exist, and
we will provide an algorithm to compute them (Theorem 5).
Thus, given a set of UCQ views V over a schema S and a
UCQIJFE S-query gs, we can compute the perfect V-rewriting
of gs as follows: (i) compute Jy, and (i) compute and return
the UCQ-maximally sound Jy-abstraction of gs. This leads
to the following positive result for V-rewritings of UCQJFEs.

Corollary 5. IfV is a set of UCQ views and qs is a UCQJFE
S-query, then the perfect V-rewriting of qs is computable and
can be expressed as a UCQ.

V. UCQ ABSTRACTIONS

In this section we investigate the problem of checking the
existence of abstractions in the class UCQ, and of their com-
putation. We first study the case of UCQ-minimally complete
J -abstractions, then we switch to UCQ-maximally sound 7 -
abstractions, and finally we tackle perfect [J-abstractions in
the class UCQ. We observe that all the results presented in
this section appear in [10].

On the positive side, we show that UCQ-minimally com-
plete abstractions always exist, by providing an algorithm to
compute them. In a nutshell, given a data integration system
J =(G,8, M) and a UCQ gs = q5U...UgZ%, an algorithm to
compute the UCQ minimally-complete 7 -abstraction of gs re-
turns the union of CQs of the form {z; | I¥;. M (g5) AT (&)}
obtained by simply “applying” the mapping M to each CQ g%
in gs, using T to bind the distinguished variables that are not
involved in the application of M to ¢%. Formally, applying the
GLAV mapping M to a CQ ¢ means to chase [26] the atoms
in g by using the tuple generating dependencies corresponding
to the assertions in M.

Theorem 3. The UCQ-minimally complete [J-abstraction of
qs always exists and is computable.

On the negative side, the following shows that UCQ-
maximally sound abstractions may not exist.

Theorem 4. The UCQ-maximally sound [J-abstractions of
qs may not exist if at least one of the following is true:

(a) qs contains a join existential variable;

(b) M contains a LAV mapping assertion;

(¢) M contains a non-PGAV mapping assertion.

Interestingly, in order to illustrate the case (a) of the above
theorem we can refer to a slight modification of the data
integration system J introduced in Example 1. In particular,
let 71 = (G,S, M) be obtained from J by removing from
M the mapping m1, and consider the query g% of Example 1.
Note that M; € PGAV and ¢& contains a join existential
variable, x. Clearly, removing m; has no impact on the
abstraction of qg. Thus, as already discussed in Example 1,
there exists no UCQ-maximally sound 7;-abstraction of ¢3.

Motivated by Theorem 4, we next introduce a specific
scenario, that we call restricted, obtained from the general
one by limiting the mapping language to PGAV, and ¢s to be
UCQIJFEs. It can be shown that for such a restricted scenario,
UCQ-maximally sound abstractions always exist. Intuitively,
the latter can be derived by showing that for any UCQIJFE ¢s
and data integration system J = (G, S, M) with M € PGAV,
a CQ-maximally sound [J-abstraction of gs may comprise
at most ké\; atoms, where k‘(jl\s’l is an integer that depends
on the number of atoms occurring in ¢s and the number
of mapping assertions occurring in M. Hence, given a data
integration system 7 with PGAV mapping and an UCQIJFE
gs, an algorithm to compute the UCQ-maximally sound J-
abstraction of gs simply returns the union of all CQs gg
comprising at most kq/\;t atoms, that are sound .7 -abstractions
of gs. The crucial observation here is that in order to check
whether g¢ is a sound [J-abstraction of ¢s, it is sufficient to
check whether unfa(qg) C gs, which is decidable, since both
gs and unfy(qg) are UCQs [27].

Theorem 5. In the restricted scenario, the UCQ-maximally
sound [J-abstractions of qs always exists and is computable.

To conclude the section, we provide the last positive result
about perfect abstractions in the class UCQ. Namely, we
show that checking whether there exists a UCQ that is the
perfect J-abstraction of qs is decidable. In particular, given
a data integration system J with GLAV mapping and a
UCQ gs, an algorithm to decide whether there exists a UCQ
that is a perfect J-abstraction of gs proceeds as follows.
First, it computes the query gg that is the UCQ-minimally
complete J-abstraction of ¢s. Then, it checks whether gg is
a sound abstraction of gs (as discussed above). If the answer
is negative, then there exists no UCQ that is a perfect [J-
abstraction of ¢s. If the answer is positive, then gg is actually
a UCQ, and is the perfect J-abstraction of ¢gs. Thus the
algorithm also solves the computation problem for perfect
abstractions in the UCQ language.

Theorem 6. Checking whether there exists a query q in the
class UCQ that is the perfect J -abstraction of qs is decidable.
Moreover, there is an algorithm that computes q, whenever it
exists.



VI. MONOTONE ABSTRACTIONS

We remind the reader that a G-query ¢ is monotone in the
context of a data integration system J = (G,S, M) if for
every pair D, D’ of S-databases, mod(J,D) C mod(J,D’)
implies ¢7-?" C ¢7-P. Monotonicity is natural yet broad
enough to characterize some of the most popular classes of
queries. In particular, first-order queries and several Datalog
variants are monotone, if evaluated under the certain answer
semantics. In the light of these considerations, it is natural
to ask whether perfect and approximated abstractions in the
class of monotone queries always exist for a given class of
source queries, and, in case, which algorithms can be used for
computing them.

In the remainder of this section, we present recent results
on monotone abstractions of UCQs. We introduce a novel
language of monotone queries, called DD¥, with attractive
computational properties (Section VI-A). For the case of data
integration systems with no axioms in both the global schema
and in the source schema, we show that minimally complete
and maximally sound monotone abstractions for UCQ source
queries always exist, and are expressible in DD¥X. From these
results, we also derive the decidability of checking whether a
perfect monotone abstraction of a given source query exists
(Section VI-B).

A. A language for monotone abstractions

Monotone queries form a natural yet expressive class of
queries. Unsurprisingly, perfect and approximated monotone
abstractions require a suitably expressive query language. We
now introduce one such language and discuss some of its
most compelling computational characteristics. The language,
called DDK, is based on disjunctive Datalog, extended with an
epistemic operator. We present it in a form specifically tailored
for querying data integration systems.

Assume a data integration system J = (G, M,S) and an
alphabet of predicate symbols Int, called intensional predicate
symbols, disjoint from the alphabets of G and S. In this
subsection we consider the case where the logical theories
corresponding to both G and S may have a nonempty set of
axioms.

A DD¥ query for J includes a set of rules, each one of
two possible forms:

« the typical form of disjunctive Datalog, i.e.,
byN...Nby, > i1 V... Vi, @))

where by,...,b,, and iq,..
predicates, and
« a new form specified as follows

K@) V..Vou(@) = \/ Jmbi@a) @

i€{l..n}

.,y are atoms on intensional

where each v); is a conjunction of intensional predicates,
and each ¢; is of the form 3z.v(z, 2) A{(T), with v(Z, 2)
a conjunction of atoms over G, and £(Z) a conjunction
of inequalities involving variables in Z.

An n-ary DD¥ query ¢ for 7 is a pair ¢ = (Ans, R) where
R is a finite set of DD¥ rules, called the definition of ¢, and
Ans is an n-ary intensional predicate in Int, called the answer
predicate of q.

Answers for DD¥ queries are defined based on the notions
presented in [28]. An interpretation for ¢ is a pair I = (F, f),
where E is a set of interpretations for 7, and f is an interpre-
tation for Int with domain C. An interpretation I = (E, f)
satisfies a DD¥ rule p of g (written I |= p) if the following
conditions hold:

o If p is a formula of the form (1), then I |= p if f | p,

i.e., f satisfies the implication in (1).

o If p is a formula of the form (2), then I |= p if for all

tuples ¢ of values in C, if ¢ is an answer to the query

{Z ]| $1(Z)}U...U{Z | ¢n(Z)} in all the interpretations

in E, then there is a j such that 3y;.1;(¢;, g;) is true in

f
An interpretation I for ¢ is called a model of ¢ if all the
rules in the definition of ¢ are satisfied by I. It should be
clear that, under this definition of semantics, K represents the
“knowledge” operator of the modal logic system S5. In other
words, the formula Ko should be read as “« is known (i.e.,
logically implied) by the system”.

We are ready to define what is the answer ¢7-2 of a DD¥
query ¢ = (Ans,R) with respect to J and the S-database
D. Specifically, ¢7-P = N { ¢ € Ans’ |(mod(J, D), f) is a
model of ¢}.

While a thorough analysis of DD¥ is outside the scope of
the present work, we mention some of its most appealing char-
acteristics. Firstly, we observe that DD¥ generalizes UCQs.
In particular, every UCQ ¢ of m disjuncts is equivalent to a
DD¥ query with one rule of the form (2) where the disjuncts
of ¢ are in the scope of K. Secondly, every DD¥ query q over
J inherits the monotonicity property of disjunctive Datalog.
Intuitively, monotonicity follows from the fact that the K
operator controls the interaction between ¢ and .7, based on a
form of stratification separating the certain answers to UCQs
(rules of the form (2)) and the computation according to the
rules (1). This simple form of stratification guarantees that
answering g over J boils down to the following: (i) computing
certain answers for the UCQs in the scope of K in the left-
hand side of rules of the form (1) in ¢, and (if) computing the
answers for the remaining rules (form (2)) over the result of
the previous step. Monotonicity follows from the monotonicity
of certain answers to UCQs, and from the fact that the rules
of the form (2) define a monotone query. These considerations
indicate a third appealing characteristic of DDK. Specifically,
the decidability of answering a DDX query ¢ w.r.t. J and D
depends exclusively on the decidability of answering UCQs
over J, as the following proposition shows.

Proposition 3. Answering DD¥ queries w.r.it. J and D is
decidable if and only if computing the certain answers of
UCQs w.rt. J and D is decidable.

These results sharply contrast with similar results obtained
for plain (non-disjunctive) Datalog. In particular, the undecid-



ability of the latter can be proved even in the case of global
schema axioms expressed in very simple Description Logics
of the DL-Lite family (see, e.g., [29], [30]).

From the algorithm sketched above, we can even derive a
tighter upper bound for the complexity of answering DD¥
queries. In particular, we can show that answering a DD¥
query ¢ w.r.t. J and D is in coNP in data complexity (i.e.,
the complexity w.r.t. the size of the S-database) whenever
computing certain answers for UCQs w.r.t. J and D is in
coNP in data complexity. The following result follows from
the observations above and well-known lower bounds for
answering disjunctive Datalog queries.

Proposition 4. If computing the certain answers of UCQs
w.rt. J and D is in coNP in data complexity, then computing
the answers to DD¥ queries w.r.t. J and D is coNP-complete
in data complexity.

B. Monotone abstractions via DD¥

We now turn our attention to discussing the use of DD¥
in expressing monotone abstractions. We start by observing
that, in terms of computational complexity, DDX perfectly
fits the problem of computing approximated abstractions, as
the following proposition shows.

Proposition 5. There exists a data integration system [J with
PGAV mapping and a UCQ qs such that answering the It-
maximally sound [J-abstraction of qs is coNP-hard in data
complexity.

In the remainder of this section, we show that DD¥ is

well-suited to express monotone abstractions, both perfect and
approximated. In discussing this issue, we go back to our
assumption of dealing with data integration systems with no
axioms in both the global and the source schema. So, in what
follows, we implicitly deal with a data integration system
J ={(G, M,S), where G and S have no axioms, and a UCQ
S-query gs = 1 U...Ugy, where ¢; = {Z | 37:.¢(Z,7)}, for
i=1,...,n.
IM-Maximally Sound Abstractions. In [31], it is shown that
DD¥ can always express 91-maximally sound J-abstractions
of UCQs, by illustrating a technique that, given query g¢s,
builds a set R of DD rules whose intensional predicates
are the predicates in S, and then uses such rules to construct
the 91-maximally sound 7 -abstractions of gs as a DDX query.
We do not describe the technique in detail here. Rather, we
use an example to give an intuition of the construction.

Example 4. Given the following mapping in J:
my : Jy.s1(x) A sa(z,y) = q1(z, @)
ma : s1(x) A sz(z,y) = g1(x,y)
m3 : s4(x) — Fy.g1(x,y)

R is the following set of DDX rules:

K(g1(z,z)) = (Jy.s1(z) A s2(z,y)) V (s1(x) A s3(x, 7))

K(gi(z,y) Ao #y) — s1(x) A sz(z,y)

K(3y.g1(z,y)) = sa(x) V Fy.s1(2) A s3(z,9))V
(3y.s1(x) A s2(2,y))

Intuitively, the rules of Ry specify, for the various facts over
G that are certain, i.e., that are known to hold, the queries
over the sources that generate them. For example, the first
rule of Ry specifies that, if a constant is known to satisfy
g1(x, x), then this knowledge derives either from the answers
to the source query {x | Jy.s1(x) A s2(x,y)} or from the
answers to the source query {x | s1(x)Ass(x,x)}. As another
example, the second rule of R specifies that the pairs of
distinct constants x,y known to satisfy g1(x,y) derive from
the query {x,y | s1(x)Ass(x,y)}. It can be shown that this is
crucial for ensuring that the abstraction of queries involving
the join of s1 and ss, which is based on the certain answers
of g1, do not include data deriving from source queries whose
abstraction is based on the certain answers of the projection of
g1- Finally, the third rule of R 7 takes care of those constants x
known to satisfy g1(x,vy), for some, not necessarily known, y.
Such constants may derive from each of source queries above.

A

Using the notion of R 7, we can immediately obtain the 91-
maximally sound J-abstraction of ¢s, by adding to R the
set A constituted by one rule of the form ¢;(z,y) — Ans(Z)
for each disjunct ¢; = {Z | 3y;.6(Z, 7)} in gs.

Proposition 6. The DD¥ query (Ans, Rz U A) is the M-
maximally sound J-abstraction of qs.

In the light of Proposition 6 and from the existence of an
algorithm to compute R s U A, we obtain the following.

Theorem 7. The IM-maximally sound [J-abstraction of qs
always exists, is computable, and can be expressed in DDX.

IM-Minimally Complete Abstractions. We show that DDX
can always express 21-minimally complete [J-abstractions of
UCQ:s.

Let us first introduce a useful notion. Given a CQ ¢ =
{z | 3y.¢(z,7y)}, Saturate(q) denotes the UCQ with in-
equalities obtained as follows. For each possible unifier p
on the variables in Z U g such that u(x) € Z for each
x € T, Saturate(q) contains a query obtained from p(q) by
adding an inequality atom (¢; # t3) for each pair of distinct
variables t1,ts occurring in p(g). For a UCQ @, we denote
by Saturate(Q) the UCQ with inequalities consisting of the
union of Saturate(q), for each disjunct ¢ of Q. It is easy to
see that Saturate(Q) is equivalent to @, for every UCQ Q.

Consider a disjunct g, in in Saturate(gs). Clearly, g, is
a CQ with inequalities of the form ¢, = {Z | 37.¢0(Z,7) A
Xx(Z,9)}, where x(Z,y) are inequality atoms. Let M(q)
denote the result of chasing the set of relational atoms
occurring in g, with M. Let p,, denote the DD¥ rule
K(M(gn) ANT(Z) Ax(Z,7)) — Ans(Z). Finally, let g. denote
the DD¥ query consisting of all the rules p,, for the various
gn, in Saturate(gqs) and with answer predicate Ans. We can
now prove the following.

Proposition 7. q. is the O-minimally complete [J-abstraction
of gs.



The following statement is a straightforward consequence
of Proposition 7.

Theorem 8. The OM-minimally complete [J-abstraction of qs
always exists, is computable, and can be expressed in DDX.

Perfect Monotone Abstractions. From the results presented
above, we can derive an algorithm for checking whether there
exists a query in 91 that is the perfect [J-abstraction of gs.
In particular, observe that if the perfect J-abstraction of gs
can be expressed as a query in 21, then it is J-equivalent to
the -minimally complete 7-abstraction of ¢s. Then, from
Proposition 7 we know that, in order to check whether there
exists a query in )1 that is the perfect [J-abstraction of gs,
we have to check whether ¢s is equivalent to g. modulo 7.

To this end, we observe the following. There exists a UCQ
with inequalities S-query g, such that ¢2, = q7-P, for
every S-database D. Moreover, ¢,;, is computable. These
two properties result from J being a GLAV data integration
system with no source and global schema axioms, and from
the specific form of ¢.. Therefore, in order to check whether
there exists a query in 90 that is the perfect [J-abstraction of
gs, we just need to check whether ¢,,,;, C ¢s. The next claim
follows from these considerations.

Theorem 9. Checking whether there exists a query q in the
class M that is the perfect [J-abstraction of qs is decidable.
Moreover, there is an algorithm that computes q, whenever it
exists.

VII. OPEN PROBLEMS

We have provided an overview of abstraction in data integra-
tion, and we have illustrated some results obtained in recent
years on computing abstractions. We conclude the paper by
discussing a set of issues related to abstractions that deserve
more investigation.

Languages for Abstractions. A crucial issue related to ab-
straction is to compute perfect and approximated abstractions
within specific classes of queries. For the fundamental class
UCQ, the decidability of checking whether there exists a UCQ-
maximally sound abstraction of a UCQ source query is still
open. More generally, there are many interesting classes of
queries that can be used to express abstractions, and for which
it would be interesting to compute perfect, or approximated
abstractions. For example, in the case of graph databases
as virtual views, relevant classes of queries for abstractions
include regular path queries, or two-way conjunctive regular
path queries.

Abstraction and Monotonicity. In this paper we have discussed
the use of DD¥ to express monotone abstractions of source
queries in the class UCQ. It would be interesting to investigate
which is the minimal expressive power needed for capturing
perfect and approximated monotone abstractions of source
queries. Also, it is not difficult to see that there are queries for
which the perfect abstraction is non-monotone. Although first
results on non-monotone abstractions have appeared in [11],

the issue of checking the existence of and computing non-
monotone abstractions is largely unexplored.

Expressive Source Queries. The majority of work on abstrac-
tion so far focused on source queries in the class UCQ. It
would be interesting to address the problem of computing
perfect and approximated abstractions of source queries ex-
pressed in more expressive languages such as Datalog. More
expressive mapping languages (e.g., UCQ with inequalities in
the GLAV type of mapping) also deserve attention.

Axioms. The computation of abstractions in the presence of
axioms in the global schema or in the source schema is another
interesting problem to study. First results in this direction
appeared in [8]-[10], but the topic requires a more thorough
analysis.

Reverse Engineering. Abstraction has also interesting connec-
tions with the reverse-engineering problem [32]. When casted
in data integration, given a source database D and set P of
tuples, this problem aims at finding a global schema query ¢
that captures P, i.e., such that the answers of ¢ with respect to
D captures the tuples in P. Despite the intuitive connection, a
detailed analysis of the relationship between the two problems
is missing.

User Requirements. Finally, crucial aspects of abstractions,
such as succinctness and clarity, have not been considered in
this paper. More generally, issues related to the adequacy of the
formulation of abstractions with respect to user requirements
deserve greater attention.
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