Abstraction in Data Integration
Gianluca Cima, Marco Console, Maurizio Lenzerini, Antonella Poggi

To cite this version:
Gianluca Cima, Marco Console, Maurizio Lenzerini, Antonella Poggi. Abstraction in Data Integration. 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Jun 2021, Rome, Italy. hal-03609375

HAL Id: hal-03609375
https://hal.science/hal-03609375
Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract—Data integration provides a unified and abstract view over a set of existing data sources. The typical architecture of a data integration system comprises the global schema, which is the structure for the unified view, the source schema, and the mapping, which is a formal account of how data at the sources relate to the global view. Most of the research work on data integration in the last decades deals with the problem of processing a query expressed on the global schema by computing a suitable query over the sources, and then evaluating the latter in order to derive the answers to the original query. Here, we address a novel issue in data integration: starting from a query expressed over the sources, the goal is to find an abstraction of such query, i.e., a query over the global schema that captures the original query, modulo the mapping. The goal of the paper is to provide an overview of the notion of abstraction in data integration, by presenting a formal framework, illustrating the results that have appeared in the recent literature, and discussing interesting directions for future research.

I. INTRODUCTION

Data integration is the problem of providing a unified and reconciled view of the data stored in a set of autonomous and heterogeneous sources [1]. Issues related to integrating data have been studied for many years, but the problem is still relevant today, when the volume of data and the need to collect, link and share them explodes. The theoretical works on data integration systems have fostered a three-tier architecture [2] comprising the data sources, with the associated source schema, the global view, with the associated global schema, and the mapping from the sources to the global view.

In the declarative approach to integration, a data integration system is formalized as a triple \(J = (G, S, M) \), where \(G \) is the global schema, \(S \) is the source schema and \(M \) is the mapping. The global schema is often aimed at providing an abstract representation of the domain of interest, rather than a mere data structure capturing the source data. Following this idea, the role of the system is to provide different types of services based on such abstract representation, thus freeing the users from the implementation details of the data sources when accessing the information content of the system. Also, the mapping is specified through logical assertions on the source and the global schema, describing how the data at the sources relate to the elements of the global view. Note that, since such assertions are typically expressed as logical implication, given a particular configuration of the data at the sources (a source database), there may be many global databases satisfying the mapping. It follows that data integration naturally leads to the issue of dealing with incomplete information.

Several specializations of the general architecture have been explored in the last two decades with the goal of capturing different variants of the problem: in data exchange [3] the goal is to move data from one source to the global view, in view-based query processing [4] the sources are modeled as materialized views defined on the basis of the global schema, in data warehousing [5] the global view is materialized in a relational database with associated data marts, in ontology-based data management [6] the global view is modeled through an ontology, and in (virtual) knowledge graphs [7] the global view is rendered as a (virtual) graph database.

In all these contexts, the task that received most attention by the research community is the one of answering queries expressed on the global schema. This task is typically based on the certain answer semantics, where the tuples satisfying a query \(q_g \) posed to the global schema \(G \) of a data integration system \(J \) are the answers to \(q_g \) in all the global databases satisfying the mapping of \(J \) w.r.t. the current source database \(D \). Note that, since the concrete data reside in the sources, a common approach to computing the certain answers to \(q_g \) is based on “rewriting” \(q_g \) into a query \(q_S \) over the source schema such that evaluating \(q_S \) over \(D \) yields exactly the certain answers to \(q_g \).

Recent works [8]–[12] address a novel issue in data integration: starting from a query \(q_S \) expressed over the sources, the goal is to find a query \(q_g \) over the global schema that captures the original query, modulo the mapping. The query \(q_g \) is called a perfect abstraction of the data service expressed by \(q_S \), because it provides a formulation of \(q_S \) on the basis of the abstract representation of the domain, obtained by leveraging on the mapping of the data integration system.

Obviously, the meaning of “capturing” a source query has to be made precise. Ideally, the query \(q_g \) that captures \(q_S \) at best is the one that, when it is evaluated over the incomplete global
database corresponding to a source database D, returns the answers of q_S over D. In this case, we call q_0 the perfect J-abstraction of q_S. We will see that, when a perfect abstraction does not exist, it may be possible to compute (sound or complete) approximations of such query.

We use an example for informally introducing some of the notions that we will discuss in the rest of the paper. In the example, we assume that the evaluation of a query expressed over the global schema is based on the certain answer semantics.

Example 1. Let $J = \langle G, S, M \rangle$ be a data integration system where the elements of the source schema S are the predicates (with associated arity $\{s_1/1, s_2/2, s_3/1, s_4/1, s_5/2\}$, the elements of the global schema G are $\{g_1/2, g_2/1, g_3/5, g_4/2, g_5/1\}$, and M contains the following assertions (where the free variables are implicitly universally quantified):

- $m_1 : s_1(x) \rightarrow \exists y.g_1(x, y)$
- $m_2 : s_2(x, y) \rightarrow g_1(x, y)$
- $m_3 : s_3(x) \land s_4(x) \rightarrow g_2(x)$
- $m_4 : s_3(x) \land s_4(x) \rightarrow g_3(x, y)$
- $m_5 : \exists x.s_5(x, y) \land s_2(x, y) \rightarrow g_4(x, y)$
- $m_6 : s_5(x, y) \rightarrow g_4(x, y)$
- $m_7 : s_1(x) \land s_4(x) \rightarrow g_5(x)$

Consider the query $q_3^S = \{x, y \mid s_2(x, y)\}$. It is easy to see that, for every database D, the certain answers of $q_3^M = \{x, y \mid g_1(x, y)\}$ coincides with the answer to q_3^S w.r.t. D. It follows that the CQ $q_3^G = \{x, y \mid g_1(x, y)\}$ is a perfect J-abstraction of q_3^S.

Consider the query $q_2^S = \{x \mid \exists y.s_2(x, y)\}$. A natural candidate for the perfect J-abstraction of q_2^S is $q_2^G = \{x \mid \exists y.g_1(x, y)\}$. Note, however, that the certain answers to q_2^S include tuples in s_1 that may not belong to s_2, and therefore q_2^G is not even a sound J-abstraction of q_2^S (i.e., it does not retrieve only tuples of q_2^S). Indeed, it can be shown that no UCQ exists that is a perfect J-abstraction of q_2^S. However, the query asking for those x such that $g_1(x, y)$ is known to be true, i.e., holds in every model of J, cannot exploit mapping m_1, and therefore avoids retrieving tuples from s_1. It follows that such q_2, which is not expressible as a UCQ, is a perfect J-abstraction of q_2^S.

Consider the query $q_3^S = \{x \mid s_1(x)\}$. Again, the natural candidate for the perfect J-abstraction of q_3^S is clearly $q_3^G = \{x \mid \exists y.g_1(x, y)\}$. However, because of m_2, the certain answers to q_3^G also include the values in the first component of s_2, and this means that q_3^G is not a sound J-abstraction of q_3^S, although it is a complete one (i.e., it retrieves all tuples of q_3^S). Another possible candidate is the query $q_3^G = \{x \mid \exists y.g_5(x)\}$. However, this query captures only the tuples occurring in s_1 which also occur in s_4. It follows that q_3^G is a sound J-abstraction, although not a complete one. Actually, it can be shown that no perfect J-abstraction of q_3^S exists in the class UCQ, but q_3^G and q_3^G are, respectively, the minimally complete and the maximally sound J-abstraction of q_3^S in the class UCQ.

Consider now the query $q_4^S = \{() \mid \exists x, y.s_5(x, y) \land s_3(x)\}$, and assume that we aim at checking whether its perfect J-abstraction can be expressed as a UCQ. We immediately observe that $\{() \mid \exists x, y.g_4(x, y) \land g_3(x, x_1) \land g_2(x_1)\}$ is a sound J-abstraction of q_4^S. Also, we can easily verify that $\{() \mid \exists x, y.g_4(x, y) \land g_2(x)\}$. More generally, all queries of the form $\{() \mid \exists x, y, x_1, ..., x_n.g_4(x, y) \land g_3(x, x_1) \land \ldots \land g_3(x_{n-1} \land x_n) \land g_2(x_n)\}$, for $n \geq 1$, are pairwise incomparable sound J-abstractions of q_4^S. Based on this observation, one can show that there exists no maximally sound J-abstraction of q_4^S in the whole class of monotone queries.

We argue that abstraction is relevant in a plethora of scenarios. We mention some of them here. Abstraction can be used for a kind of reverse engineering task, namely to automatically produce a semantic characterization of a data service implemented at the level of data sources [10]. Also, following the ideas in [8], it can be shown that abstractions can provide the semantics of open datasets and open APIs published by organizations, which is a key aspect for unchaining all the potentials of open data [13]. In the context of ontology-based data management, [9] has shown that abstraction can be used to study the concept of realization of source queries, i.e., checking whether the mapping provides the right coverage for expressing the relevant data services at the global schema level. Finally, abstraction can be the basis for a semantic-based approach to source profiling [14], in particular for describing the structure and the content of a data source in terms of the business vocabulary.

The goal of this paper is to provide an overview of the notion of abstraction in data integration, by

- presenting a formal framework for abstraction,
- illustrating the results that have appeared in the recent literature about checking the existence of and computing abstractions, and
- discussing open problems and interesting directions for future research.

The paper is organized as follows. In Section II we recall the basic notions about data management that will be used in the paper. Section III presents the framework for abstraction in data integration, and Section IV discusses the relationship between this notion and view-based query processing. Sections V and VI illustrate recent technical results on computing abstractions belonging to specific classes of queries, namely unions of conjunctive queries, and monotone queries, respectively. Finally, Section VII concludes the paper by discussing possible future research on abstraction.
II. PRELIMINARIES

We consider databases whose atomic values are from a denumerable set of constant symbols \(C \), and we assume that every alphabet mentioned in this paper includes such symbols.

A database schema (or simply schema) \(T \) is a logical theory (set of axioms) over an alphabet \(A_T \) (including a set of symbols called predicate symbols), and a \(T \)-database is a finite structure\(^1\) over \(A_T \) that satisfies all axioms in \(T \). As usual, we often see a database as a set of facts, where each fact asserts that a tuple of constants satisfies a given predicate in \(A_T \). In the usual meaning, a query over a schema \(T \), called \(T \)-query, is a function associating to each \(T \)-database a finite set of tuples of constants. A \(T \)-query \(q \) is **monotone** if for each pair of \(T \)-databases \(D_1, D_2 \) such that \(D_1 \subseteq D_2 \) we have \(q^{D_1} \subseteq q^{D_2} \).

In this paper we extend the notion of query to functions that are applied to sets of databases: a \(T \)-query of arity \(n \) is a function associating to each set of \(T \)-databases a finite set of \(n \)-tuples of constants in \(C \). Note that, if the set is a singleton, we obtain the usual notion. For a \(T \)-query \(q \) and a set of \(T \)-databases \(\Sigma, q^\Sigma \) denotes the answers of \(q \) for \(\Sigma \), i.e., the set of tuples obtained by applying \(q \) to \(\Sigma \), and we simply write \(q^D \) instead of \(q^\{D\} \). We observe that a common method for defining a query \(q \) for a nonempty set \(\Sigma \), based on the semantics of \(q \) for a single database, is through the certain answer semantics: the answers of \(q \) for \(\Sigma \) is the set of certain answers, defined as \(\bigcap_{D \in \Sigma} q^D \). For two \(T \)-queries \(q_1 \) and \(q_2 \), we write \(q_1 \sqsubseteq q_2 \) if \(q_1^\Sigma \subseteq q_2^\Sigma \) for each set \(\Sigma \) of \(T \)-databases, and we write \(q_1 \equiv q_2 \) if both \(q_1 \sqsubseteq q_2 \) and \(q_2 \sqsubseteq q_1 \).

Queries are often specified in terms of expressions using a particular language. In this paper, when we talk about a query language \(L \), we mean that the class of queries defined by such language are formulated in terms of expressions belonging to \(L \). A **query language is monotone** if all queries in such language are monotone. Notable monotone query languages correspond to the classes of conjunctive queries and unions of conjunctive queries. A **conjunctive query (CQ)** \(q \) over schema \(T \) is a query expressible as \(\{ \bar{x} \mid \exists \bar{y}. \phi(\bar{x}, \bar{y}) \} \), where \(\bar{x} \) is a tuple of variables, called the **distinguished variables** of \(q \), all appearing in \(\phi \), \(\bar{y} \) is a tuple of variables, called the **existential variables** of \(q \), and \(\phi(\bar{x}, \bar{y}) \) is a finite conjunction of atoms over \(T \), where an atom is a predicate symbol applied to variables. We often write \(\{ \bar{x} \mid \exists \bar{y}. \phi(\bar{x}, \bar{y}) \} \) simply as \(\phi(\bar{x}) \), and we assume that we can form atoms of any arity using \(T \) as predicate symbols, where such atoms are always interpreted true. Given a CQ \(q = \{ \bar{x} \mid \exists \bar{y}. \phi(\bar{x}, \bar{y}) \} \), we say that an existential variable \(y \in \bar{y} \) is a **join existential variable** of \(q \) if \(y \) occurs more than once in the atoms of \(\phi(\bar{x}, \bar{y}) \). In what follows, we say that a CQ \(q \) is a conjunctive query with joint-free existential variables (CQJFE) if there is no join existential variable occurring in \(q \).

The arity of \(q \) is the arity of \(x \). A union of conjunctive queries (UCQ) (resp., union of conjunctive queries with joint-free existential variables (UCQJFE)) is a finite union of CQs.

\(^1\)In principle, we could also consider databases that are infinite structures.
hence an exact \mathcal{V}-rewriting of q_S cannot exist.

In the latter approach, originated in [19], besides q_T and \mathcal{V} we are also given a \mathcal{V}-extension \mathcal{E}, the goal is to compute the so-called certain answers of q_T w.r.t. \mathcal{V} and \mathcal{E}, denoted by $\text{cert}_{q_T, \mathcal{V}}$, which are those tuples of constants \bar{c} such that $\bar{c} \in q_T^D$ for each \mathcal{S}-database D satisfying $\mathcal{E} \subseteq \mathcal{V}(D)$. We denote by $\text{cert}_{q_T, \mathcal{V}}$ the query over \mathcal{V} that, for every \mathcal{V}-extension \mathcal{E}, computes the certain answers of q_T w.r.t. \mathcal{V} and \mathcal{E}, and we call $\text{cert}_{q_T, \mathcal{V}}$ the perfect \mathcal{V}-rewriting of q_T under sound views, or simply perfect \mathcal{V}-rewriting of q_T.

III. Framework

A data integration system \mathcal{J} is specified by a triple $\langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$, where \mathcal{G}, the global schema, is a schema over an alphabet \mathcal{A}_G, the source schema, is a schema over an alphabet \mathcal{A}_S (disjoint from \mathcal{A}_G, except for the set C), and \mathcal{M} is a mapping relating \mathcal{S} to \mathcal{G}. Specifically, \mathcal{M} is a finite set of assertions of the form $q_S \rightarrow q_G$, where q_S is an \mathcal{S}-query and q_G is a \mathcal{G}-query of the same arity as q_S.

The semantics of \mathcal{J} is defined relative to an \mathcal{S}-database D, and, intuitively, is the set of all interpretations for \mathcal{J} over the domain \mathcal{C} that satisfy both the axioms of \mathcal{G} and the mapping \mathcal{M} with respect to D. An interpretation for \mathcal{G} is actually a \mathcal{G}-database, and one such database B satisfies \mathcal{M} with respect to D, denoted by $(D, B) \models \mathcal{M}$, if it satisfies all assertions in \mathcal{M}, where B satisfies $(q_S \rightarrow q_G) \in \mathcal{M}$ with respect to D if $q_G^D \subseteq B$.

Formally, the semantics of \mathcal{J} relative to D, denoted as $\text{mod}(\mathcal{J}, D)$, is defined as $\{ B \mid B \text{ is a } \mathcal{G}\text{-database such that } (D, B) \models \mathcal{M} \}$. We say that \mathcal{J} is consistent with \mathcal{M} if $\text{mod}(\mathcal{J}, D) \neq \emptyset$. The answers to a \mathcal{G}-query q w.r.t. a data integration system $\mathcal{J} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$ and an \mathcal{S}-database D is simply $q_{\text{mod}(\mathcal{J}, D)}$, that we often write simply as $q_{\mathcal{J}, D}$.

For two \mathcal{G}-queries q_1 and q_2, we write $q_1 \subseteq_{\mathcal{J}} q_2$ if $q_1^D \subseteq q_2^D$ for each \mathcal{S}-database D; $q_1 \subseteq_{\mathcal{J}} q_2$ and \mathcal{J}-equivalence are defined accordingly.

Specific classes of mappings considered in the literature are GAV, LAV, GLAV, PGAV and SPGAV. We introduce them under the assumption that the queries appearing in mapping assertions are conjunctive queries or restricted forms thereof.

A GLAV mapping is a set of assertions of the form $q_S(\bar{x}) \rightarrow q_G(\bar{x})$, where both q_S and q_G are conjunctive queries over \mathcal{S} and \mathcal{G} respectively, with distinguished variables \bar{x}, implicitly universally quantified.

A GAV mapping is a special case of GLAV, constituted by a set of assertions of the form $q_S(\bar{x}) \rightarrow A(\bar{x})$, where (i) q_S is a conjunctive query over \mathcal{S}, (ii) $A \in \mathcal{A}_G$, and (iii) the arity of A is the same as the arity \bar{x}. A pure GAV mapping (PGAV) is a GAV mapping in which each assertion $q_S(\bar{x}) \rightarrow A(\bar{x})$ is such that no repeated variables appear in \bar{x}. A PGAV mapping is called SPGAV (PGAV with single assertion per predicate) if it does not contain a pair of assertions with the same predicate symbol in the head.

A LAV mapping is a special case of GLAV, constituted by a set of assertions of the form $A(\bar{x}) \rightarrow q_G(\bar{x})$, where (i) $A \in \mathcal{A}_S$, (ii) q_G is a conjunctive query over \mathcal{G} with distinguished variables \bar{x}, and (iii) the arity of A is the same as the arity \bar{x}.

In what follows, we implicitly refer to a data integration system $\mathcal{J} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$, and when we denote a query by q_G (resp., q_S) we mean that the query is a \mathcal{G}-query (resp., \mathcal{S}-query). We follow [10] for the basic definitions related to abstraction. We say that q_G is a perfect \mathcal{J}-abstraction of q_S if $q_G^D = q_S^D$, for each \mathcal{S}-database D consistent with \mathcal{J}. Clearly, if a perfect \mathcal{J}-abstraction of q_S exists, then it is unique up to \mathcal{J}-equivalence, and therefore in the following we will talk about the perfect \mathcal{J}-abstraction of q_S.

Borrowing the above mentioned idea on view determinacy [18], it is easy to prove the following characterization theorem for the existence of a perfect \mathcal{J}-abstraction for q_S.

Theorem 1. There exists a perfect \mathcal{J}-abstraction of q_S if and only if for all pair D, D' of \mathcal{S}-databases, $\text{mod}(\mathcal{J}, D) = \text{mod}(\mathcal{J}, D')$ implies $q_S^D = q_S^{D'}$.

As the condition for a global schema query to be a perfect \mathcal{J}-abstraction of a source query is a strong one, it might be very well the case that a perfect abstraction of a source query does not exist. It is then reasonable to consider weaker notions, such as sound or complete approximations of perfectness.

We say that q_G is a complete (resp., sound) \mathcal{J}-abstraction of q_S if $q_S^D \subseteq q_G^D$ (resp., $q_G^D \subseteq q_S^D$), for each \mathcal{S}-database D consistent with \mathcal{J}.

Obviously, we might be interested in complete or sound abstractions that approximate q_S at best, at least in the context of a specific class of queries. If \mathcal{L}_G is a class of queries, we say that a global schema query $q_G \in \mathcal{L}_G$ is an \mathcal{L}_G-minimally complete (resp., \mathcal{L}_G-maximally complete) \mathcal{J}-abstraction of q_S if q_G is a complete (resp., sound) \mathcal{J}-abstraction of q_S and there is no global schema query $q'_G \in \mathcal{L}_G$ such that $q'_G \subseteq q_G$ (resp., $q_G \subseteq q'_G$).

The class of monotone queries in the context of a data integration system is particularly important in this paper. A \mathcal{G}-query q is monotone in the context of a data integration system $\mathcal{J} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$ if for every pair D, D' of \mathcal{S}-databases, $\text{mod}(\mathcal{J}, D) \subseteq \text{mod}(\mathcal{J}, D')$ implies $q_G^D \subseteq q_G^{D'}$. This captures the intuition of monotonicity of queries in logic: when the knowledge possessed by the system increases (i.e., the set of models shrinks), the answers to a query does not decrease. Note that the class of monotone queries includes the whole class of First Order queries, that is arguably the most studied class in both the Knowledge Representation and the Data Management literature. In the following, we use $\mathfrak{M}^\mathcal{J}$ to denote the class of monotone queries in the context of $\mathcal{J} = \langle \mathcal{G}, \mathcal{S}, \mathcal{M} \rangle$, and when \mathcal{J} is understood, we simply use \mathfrak{M}.

It is easy to see that if an \mathfrak{M}-maximally sound \mathcal{J}-abstraction of q_S exists, then it is unique up to \mathcal{J}-equivalence, and the same holds for \mathfrak{M}-minimally complete \mathcal{J}-abstractions. Analogously, if a UCQ-maximally sound (resp., UCQ-minimally complete) \mathcal{J}-abstraction of q_S exists, then it is unique up to...
integration system complications that can arise when this assumption is removed.

In the next sections, we will deal with data integration systems of a specific form, namely where (i) the mapping is of type GLAV or special cases of GLAV, and (ii) if not otherwise stated, the set of axioms of both the global schema and the source schema is empty. Also, we will limit our analysis to abstractions of UCQ source queries.

IV. COMPARISON WITH VIEW-BASED QUERY PROCESSING

It is well-known that there is a relationship between data integration and view-based query processing, based on the idea that the sources of a LAV data integration systems can be considered as views over the global schema, in particular sound views [2]. In this section, we take another approach and establish a relationship between GAV data integration systems and views, based on the idea that the elements of the global schema can be considered sound views over source databases.

We start by describing how to obtain, from any data integration system \mathcal{J} with PAGV mapping, a suitable set of UCQ views\(^3\) \mathcal{V}_J, and, vice versa, from any set of UCQ views \mathcal{V}, a suitable data integration system $\mathcal{J}_\mathcal{V}$ with PAGV mapping.

For a data integration system $\mathcal{J} = (\mathcal{G}, \mathcal{S}, \mathcal{M})$ with $\mathcal{M} \in$ PAGV, the set of UCQ views \mathcal{V}_J is such that (i) the set of view symbols coincides with \mathcal{A}_G, and (ii) for each view symbol q, the associated view definition g_S is the following UCQ over \mathcal{S}:

$$
\{ \bar{x}_1 | \exists \bar{y}_1. \phi^G_S(\bar{x}_1, \bar{y}_1) \} \cup \ldots \cup \{ \bar{x}_1 | \exists \bar{y}_1. \phi^G_S(\bar{x}_1, \bar{y}_1) \},
$$

where we have one disjunct $\exists \bar{y}_1. \phi^G_S(\bar{x}_1, \bar{y}_1)$ for each mapping assertion in \mathcal{M} of the form $\exists \bar{y}_1. \phi^G_S(\bar{x}_1, \bar{y}_1) g(\bar{x}_1)$. Note that, if $\mathcal{M} \in$ PAGV, then all view definitions in \mathcal{V}_J are CQs.

Example 2. Let $\mathcal{J} = (\mathcal{G}, \mathcal{S}, \mathcal{M})$ be a data integration system such that $\mathcal{M} = \{ m_1, m_2, m_3 \}$ with:

$$
m_1 : \exists y_1, y_2. \phi_1(y_1, x, y_2) \land \phi_2(x, y_2) \rightarrow g_1(x)
$$

$$
m_2 : \exists y_1, y_3. \phi_2(y_1, x, y_3) \land \phi_3(x, y, y_3) \rightarrow g_2(x, x_2)
$$

$$
m_3 : \exists y_1, y_3. \phi_4(x_1, y_1, y_2) \rightarrow g_2(x_1, x_2)
$$

Then, the UCQ views \mathcal{V}_J over \mathcal{S} is $\mathcal{V}_J = \{ g_1, g_2 \}$, where $g_1 = \{ x | \exists y_1, y_2. \phi_1(y_1, x, y_2) \land \phi_2(x, y_2) \}$ and $g_2 = \{ x | \exists y_1, y_2. \phi_2(y_1, x, y_2) \land \phi_3(x, y, y_3) \} \cup \{ x | \exists y_1. \phi_4(x_1, y_1, y_2) \} \rightarrow g(\bar{x}_1)$. Note that, in general, $\mathcal{M} \in$ PAGV. However, if \mathcal{V} is a set of CQ views, then $\mathcal{M} \in$ SPAGV.

Example 3. Let $\mathcal{V} = \{ V_1, V_2 \}$ be a set of UCQ views over \mathcal{S} such that: $V_1 = \{ x_1, x_2, x_3 | \exists y. \phi_1(x_1, x_2) \land \phi_2(y, x_2, x_3) \}$ and $V_2 = \{ x_1, x_2, x_3 | \exists y. \phi_3(y, x_1, x_2) \}$.

Then, the UCQ views \mathcal{V}_J over \mathcal{S} is $\mathcal{V}_J = \{ g_1, g_2 \}$, where $g_1 = \{ x | \exists y. \phi_1(x_1, x_2) \land \phi_2(y, x_2, x_3) \} \rightarrow V_1(x_1, x_2, x_3)$, and $g_2 = \{ x | \exists y. \phi_3(y, x_1, x_2) \} \rightarrow V_2(x_1, x_2, x_3)$.

\mathcal{V} for a data integration system \mathcal{J} with PAGV mapping and a set of UCQ views \mathcal{V}, the pair $(\mathcal{J}, \mathcal{V})$ is said to be coherent if (i) the schema over which the set of views \mathcal{V} is defined and the source of \mathcal{J} coincide, and (ii) $\mathcal{J} = \mathcal{J} \cap \mathcal{V} \cap \mathcal{V}$. In what follows, when we talk about a coherent pair $(\mathcal{J}, \mathcal{V})$, we use \mathcal{S} to denote the common schema between \mathcal{J} and \mathcal{V}.

Based on the relationship between $\mathcal{J} \cap \mathcal{V}$ and \mathcal{S}, the following proposition provides a connection between existence of perfect abstractions and existence of exact rewritings.

Proposition 1. If $(\mathcal{J}, \mathcal{V})$ is a coherent pair and q_S is an S-query, then there exists a perfect \mathcal{J}-abstraction of q_S if and only if there exists an exact \mathcal{V}-rewriting of q_S.

Proof. We recall that there exists an exact \mathcal{V}-rewriting of q_S if and only if $V \rightarrow q_S$, i.e., $\mathcal{V}(D_1) = \mathcal{V}(D_2)$ implies $q^D_1 = q^D_2$ for each pair of S-databases D_1, D_2.

Let $\mathcal{J} = (\mathcal{G}, \mathcal{S}, \mathcal{M})$ with $\mathcal{M} \in$ PAGV. Due to Theorem 1, there exists a perfect \mathcal{J}-abstraction of q_S if and only if $\mathcal{mod}(\mathcal{J}, D_1) = \mathcal{mod}(\mathcal{J}, D_2)$ implies $q^D_1 = q^D_2$ for each pair of S-databases D_1, D_2. Since \mathcal{G} has no axiom, every S-database is consistent with \mathcal{J}, and, if D is an S-database in B is a G-database, then $B \in \mathcal{mod}(\mathcal{J}, D)$ if and only if $M(D) \subseteq B$. It follows that there exists a perfect \mathcal{J}-abstraction of q_S if and only $\mathcal{M}(D_1) = \mathcal{M}(D_2)$ implies $q^D_1 = q^D_2$ for each pair S-databases D_1, D_2.

Then the claim trivially follows from the fact that, since $(\mathcal{J}, \mathcal{V})$ is a coherent pair, by construction $\mathcal{M}(D) = \mathcal{V}(D)$ holds for every S-database D.

\square

In the rest of this section, when we use L, we refer to a sub-language of $\mathcal{D}^\mathcal{F}$. (therefore, L is a monotone query language). By exploiting well-known results, we provide connections between the notion of \mathcal{J}-abstractions and \mathcal{V}-rewritings in the context of monotone query languages. To this end, we first introduce some terminology.

Given a mapping $\mathcal{M} \in$ PAGV relating S to \mathcal{G} and a G-query q in a certain query language L, the \mathcal{M}-unfolding of q [2], denoted by $\mathcal{M}(q)$, is the S-query obtained by replacing each atom α occurring in the expression corresponding to q by

\[... \]
the logical disjunction of all the left-hand sides of the mapping assertions in M having the predicate symbol of α in the right-hand side (being careful to use unique variables in place of those variables that appear in the left-hand side of the mapping assertions but not in the right-hand side of those).

Given a set of UCQ views \mathcal{V} over \mathcal{S} and a \mathcal{V}-query q in a certain query language \mathcal{L}, the \mathcal{V}-expansion of q [17], denoted by $exp_\mathcal{V}(q)$, is the \mathcal{S}-query obtained by replacing each atom α occurring in in the expression corresponding to q by the view definition associated to the view predicate name of α (again, being careful to use unique variables in place of those variables that appear in the bodies of the view but not in the heads of those).

Proposition 2. If (J, V) is a coherent pair, q_S is an S-query in \mathcal{L}, and q is a query in \mathcal{L}, then q is a sound (resp., perfect) J-abstraction of q_S if and only if q is a V-rewriting (resp., exact V-rewriting) of q_S.

Proof. For data integration systems $J = \langle \mathcal{G}, \mathcal{S}, M \rangle$ with $M \in PGAV$ and monotone query languages \mathcal{L}, it is well-known that $q^{\mathcal{G}, \mathcal{D}} = unif_M(q)^\mathcal{D}$ for every $q \in \mathcal{L}$ and \mathcal{S}-database D [2]. So, by definition, q is a sound (resp., perfect) J-abstraction of q_S if and only if $unif_M(q) \equiv q_S$ (resp., $unif_M(q) \equiv q_S$), for every pair of queries $q_S, q \in \mathcal{L}$. On the other hand, for UCQ views \mathcal{V} and monotone query languages \mathcal{L}, it is easy to see that q is a V-rewriting (resp., exact V-rewriting) of q_S if and only if $exp_\mathcal{V}(q) \equiv q_S$ (resp., $exp_\mathcal{V}(q) \equiv q_S$), for every pair of queries $q_S, q \in \mathcal{L}$.

Let $\mathcal{J} = \langle \mathcal{G}, \mathcal{S}, M \rangle$. The claim holds because the fact that $(\mathcal{J}, \mathcal{V})$ is a coherent pair implies $unif_M(q) = exp_\mathcal{V}(q)$ for every $q \in \mathcal{L}$.

Actually, as shown in [21, Lemma 1], if \mathcal{L} allows for the union operator, then for any pair of UCQ views \mathcal{V} over \mathcal{S} and query $q_S \in \mathcal{L}$ over \mathcal{S}, if an \mathcal{L}-maximal V-rewriting of q_S exists, then it is unique up to V-equivalence, and, moreover, it coincides with the perfect V-rewriting of q_S.

From Proposition 2 and the above observation, we can derive the following result.

Corollary 1. If $(\mathcal{J}, \mathcal{V})$ is a coherent pair and \mathcal{L} allows for the union operator, then for every pair of queries $q_S, q \in \mathcal{L}$, we have that q is the L-maximally sound J-abstraction of q_S if and only if q is the perfect V-rewriting of q_S.

By exploiting the above provided relationships, we are now ready to investigate how results and techniques from the view-based processing literature can be directly translated into results and techniques in the context of abstraction, and vice versa.

A. Novel results on abstraction

By combining Proposition 1 with a well-known undecidability result about view determinacy, we can derive a novel, negative result about an arguably fundamental problem for the notion of abstraction, namely the existence problem (with no restrictions on the query language to express perfect abstractions) of perfect abstractions, even in very restricted settings.

Theorem 2. Given a data integration system $J = \langle \mathcal{G}, \mathcal{S}, M \rangle$ with $M \in SPGAV$ and a CQ \mathcal{S}-query q_S, checking whether there exists a perfect J-abstraction of q_S is undecidable.

Proof. Proposition 1 provides a reduction from the view determinacy problem in the case of CQ views and CQs q_S to our problem. Specifically, given a set of CQ views \mathcal{V} over a schema \mathcal{S} and a CQ \mathcal{S}-query q_S, we have that $\mathcal{V} \rightarrow q_S$ (i.e., there exists an exact V-rewriting of q_S) if and only if there exists a perfect $J_\mathcal{V}$-abstraction of q_S, where $J_\mathcal{V} = \langle \mathcal{G}, \mathcal{S}, M \rangle$ with $M \in SPGAV$. Since the view determinacy problem in the case of CQ views \mathcal{V} and CQs q_S is undecidable [23], it follows that checking whether there exists a perfect J-abstraction of q_S is undecidable as well.

By exploiting Corollary 1, we now illustrate how to use off-the-shelf algorithms for rewriting queries in the presence of views as algorithms for computing abstractions. By results of [17], for CQ views V, perfect V-rewritings of UCQs q_S can be always expressed as UCQs, and can be always computed (e.g., by means of the bucket algorithm [24] or the MiniCon algorithm [25]). Thus Corollary 1 implies that, given a data integration system $J = \langle \mathcal{G}, \mathcal{S}, M \rangle$ with $M \in PGAV$ and a UCQ \mathcal{S}-query q_S, we can compute the UCQ-maximally sound J-abstraction of q_S as follows: (i) compute J_V, and (ii) compute and return the UCQ corresponding to the perfect J_V-rewriting of q_S.

Corollary 2. If J is a data integration system with SPGAV mapping and q_S is a UCQ \mathcal{S}-query, then the UCQ-maximally sound J-abstraction of q_S exists and is computable.

Things get more complicated when we consider a data integration system J with PGAV mappings, which are clearly more expressive than SPGAV, for which \mathcal{V}_J is a set of UCQ views, rather than CQ views. Indeed, for UCQ views \mathcal{V}, UCQ-maximal V-rewritings of CQs q_S are not guaranteed to exist [20], [21], and thus, in general, perfect V-rewritings of CQs q_S are not expressible as UCQs. However, the perfect V-rewritings of UCQs (actually, even of Datalog queries) q_S can always be expressed in DD^\exists, and can always be computed using the technique presented in [21]. Thus, Corollary 1 implies that, given a data integration system $J = \langle \mathcal{G}, \mathcal{S}, M \rangle$ with $M \in PGAV$ and a UCQ \mathcal{S}-query q_S, we can compute the DD^\exists-maximally sound J-abstraction of q_S as follows: (i) compute \mathcal{V}_J, and (ii) compute and return the DD^\exists query corresponding to the perfect \mathcal{V}_J-rewriting of q_S.

Corollary 3. If J is a data integration system with PGAV mapping and q_S is a UCQ \mathcal{S}-query, then the DD^\exists-maximally sound J-abstraction of q_S exists and is computable.

3This is not the case when view definitions are expressed as regular path queries rather than UCQs [22].
B. Novel results on view-based query processing

As already observed, [20], [21] show that for a given set V of UCQ views, UCQ-maximal V-rewritings of CQs may not exist. Combined with an observation made above, this means that perfect V-rewritings of CQs are in general not expressible as UCQs. We point out that the CQ q_S used to prove such results contain more than one join existential variable. As a consequence, in the case of UCQ views V, it is still open whether (i) the result holds even for q_S with just one join existential variable (ii) perfect V-rewritings of UCQJFEs are expressible as UCQs. By combining Corollary 1 with results of [10] (that we will discuss in Section V), we can actually answer positively to both questions.

Corollary 4. For a set V of UCQ views, the UCQ-maximal V-rewritings of q_S may not exist, even if q_S is a CQ with one join existential variable.

On the other hand, in Section V, we will show that for a data integration system J with PGAV mapping, UCQ-maximally sound J-abstractions of UCQJFEs are guaranteed to exist, and we will provide an algorithm to compute them (Theorem 5). Thus, given a set of UCQ views V over a schema S and a UCQJFE S-query q_S, we can compute the perfect V-rewriting of q_S as follows: (i) compute J_V, and (ii) compute and return the UCQ-maximally sound J_V-abstraction of q_S. This leads to the following positive result for V-rewritings of UCQJFEs.

Corollary 5. If V is a set of UCQ views and q_S is a UCQJFE S-query, then the perfect V-rewriting of q_S is computable and can be expressed as a UCQ.

V. UCQ ABSTRACTIONS

In this section we investigate the problem of checking the existence of abstractions in the class UCQ, and of their computation. We first study the case of UCQ-minimally complete J-abstractions, then we switch to UCQ-maximally sound J-abstractions, and finally we tackle perfect J-abstractions in the class UCQ. We observe that all the results presented in this section appear in [10].

On the positive side, we show that UCQ-minimally complete abstractions always exist, by providing an algorithm to compute them. In a nutshell, given a data integration system $J = \{G, S, M\}$ and a UCQ $q_S = q_S^1 \cup \ldots \cup q_S^n$, an algorithm to compute the UCQ minimally-complete J-abstraction of q_S returns the union of CQs of the form $\{x_i | 3y_i. M(q_S^i) \land \top(x_i)\}$ obtained by simply "applying" the mapping M to each CQ q_S^i in q_S, using \top to bind the distinguished variables that are not involved in the application of M to q_S^i. Formally, applying the GLAV mapping M to a CQ q means to chase [26] the atoms in q by using the tuple generating dependencies corresponding to the assertions in M.

Theorem 3. The UCQ-minimally complete J-abstraction of q_S always exists and is computable.

On the negative side, the following shows that UCQ-maximally sound abstractions may not exist.

Theorem 4. The UCQ-maximally sound J-abstractions of q_S may not exist if at least one of the following is true:

(a) q_S contains a join existential variable;
(b) M contains a LAV mapping assertion;
(c) M contains a non-PGAV mapping assertion.

Interestingly, in order to illustrate the case (a) of the above theorem we can refer to a slight modification of the data integration system J introduced in Example 1. In particular, let $J_1 = \{G, S, M_1\}$ be obtained from J by removing from M the mapping m_1, and consider the query q_S^1 of Example 1. Note that $M_1 \in$ PGAV and q_S^1 contains a join existential variable, x. Clearly, removing m_1 has no impact on the abstraction of q_S^1. Thus, as already discussed in Example 1, there exists no UCQ-maximally sound J_1-abstraction of q_S^1.

Motivated by Theorem 4, we next introduce a specific scenario, that we call restricted, obtained from the general one by limiting the mapping language to PGAV, and q_S to be UCQJFEs. It can be shown that for such a restricted scenario, UCQ-maximally sound abstractions always exist. Intuitively, the latter can be derived by showing that for any UCQJFE q_S and data integration system $J = \{G, S, M\}$ with $M \in$ PGAV, a CQ-maximally sound J-abstraction of q_S may comprise at most $k_{q_S}^M$ atoms, where $k_{q_S}^M$ is an integer that depends on the number of atoms occurring in q_S and the number of mapping assertions occurring in M. Hence, given a data integration system J with PGAV mapping and an UCQJFE q_S, an algorithm to compute the UCQ-maximally sound J-abstraction of q_S simply returns the union of all CQs q_S comprising at most $k_{q_S}^M$ atoms, that are sound J-abstractions of q_S. The crucial observation here is that in order to check whether q_S is a sound J-abstraction of q_S, it is sufficient to check whether $\text{unf}(q_S) \subseteq q_S$, which is decidable, since both q_S and $\text{unf}(q_S)$ are UCQs [27].

Theorem 5. In the restricted scenario, the UCQ-maximally sound J-abstractions of q_S always exist and is computable.

To conclude the section, we provide the last positive result about perfect abstractions in the class UCQ. Namely, we show that checking whether there exists a UCQ that is the perfect J-abstraction of q_S is decidable. In particular, given a data integration system J with GLAV mapping and a UCQ q_S, an algorithm to decide whether there exists a UCQ that is a perfect J-abstraction of q_S proceeds as follows. First, it computes the query q_S^* that is the UCQ-minimally complete J-abstraction of q_S. Then, it checks whether q_S^* is a sound abstraction of q_S (as discussed above). If the answer is negative, then there exists no UCQ that is a perfect J-abstraction of q_S. If the answer is positive, then q_S is actually a UCQ, and is the perfect J-abstraction of q_S. Thus the algorithm also solves the computation problem for perfect abstractions in the UCQ language.

Theorem 6. Checking whether there exists a query q in the class UCQ that is the perfect J-abstraction of q_S is decidable. Moreover, there is an algorithm that computes q, whenever it exists.
VI. MONOTONE ABSTRACTIONS

We remind the reader that a \(\mathcal{G} \)-query \(q \) is monotone in the context of a data integration system \(\mathcal{J} = (\mathcal{G}, \mathcal{S}, \mathcal{M}) \) if for every pair \(D, D' \) of \(\mathcal{S} \)-databases, \(\text{mod}(\mathcal{J}, D) \subseteq \text{mod}(\mathcal{J}, D') \) implies \(q^{\mathcal{J},D'} \subseteq q^{\mathcal{J},D} \). Monotonicity is natural yet broad enough to characterize some of the most popular classes of queries. In particular, first-order queries and several Datalog variants are monotone, if evaluated under the certain answer semantics. In the light of these considerations, it is natural to ask whether perfect and approximated abstractions in the class of monotone queries always exist for a given class of source queries, and, in case, which algorithms can be used for computing them.

In the remainder of this section, we present recent results on monotone abstractions of UCQs. We introduce a novel language of monotone queries, called \(\text{DD}^K \), with attractive computational properties (Section VI-A). For the case of data integration systems with no axioms in both the global schema and in the source schema, we show that minimally complete and maximally sound monotone abstractions for UCQ source queries always exist, and are expressible in \(\text{DD}^K \). From these results, we also derive the decidability of checking whether a perfect monotone abstraction of a given source query exists (Section VI-B).

A. A language for monotone abstractions

Monotone queries form a natural yet expressive class of queries. Unsurprisingly, perfect and approximated monotone abstractions require a suitably expressive query language. We now introduce one such language and discuss some of its most compelling computational characteristics. The language, called \(\text{DD}^K \), is based on disjunctive Datalog, extended with an epistemic operator. We present it in a form specifically tailored for querying data integration systems.

Assume a data integration system \(\mathcal{J} = (\mathcal{G}, \mathcal{M}, \mathcal{S}) \) and an alphabet of predicate symbols \(\text{Int} \), called intensional predicate symbols, disjoint from the alphabets of \(\mathcal{G} \) and \(\mathcal{S} \). In this subsection we consider the case where the logical theories corresponding to both \(\mathcal{G} \) and \(\mathcal{S} \) may have a nonempty set of axioms.

A \(\text{DD}^K \) query for \(\mathcal{J} \) includes a set of rules, each one of two possible forms:

- the typical form of disjunctive Datalog, i.e.,
 \[
 b_1 \land \ldots \land b_m \rightarrow i_1 \lor \ldots \lor i_n \tag{1}
 \]
 where \(b_1, \ldots, b_m \) and \(i_1, \ldots, i_n \) are atoms on intensional predicates, and

- a new form specified as follows
 \[
 \text{K}(\phi_1(\bar{x}) \lor \ldots \lor \phi_m(\bar{x})) \rightarrow \bigvee_{i \in \{1, \ldots, n\}} \exists y_i. \psi_i(\bar{x}, y_i) \tag{2}
 \]
 where each \(\psi_i \) is a conjunction of intensional predicates, and each \(\phi_i \) is of the form \(\exists z. \gamma(\bar{x}, \bar{z}) \land \xi(\bar{x}) \), with \(\gamma(\bar{x}, \bar{z}) \) a conjunction of atoms over \(\mathcal{G} \), and \(\xi(\bar{x}) \) a conjunction of inequalities involving variables in \(\bar{x} \).

An \(n \)-ary \(\text{DD}^K \) query \(q \) for \(\mathcal{J} \) is a pair \(q = (\text{Ans}, \mathcal{R}) \) where \(\mathcal{R} \) is a finite set of \(\text{DD}^K \) rules, called the definition of \(q \), and \(\text{Ans} \) is an \(n \)-ary intensional predicate in \(\text{Int} \), called the answer predicate of \(q \).

Answers for \(\text{DD}^K \) queries are defined based on the notions presented in [28]. An interpretation for \(q \) is a pair \(I = (E, f) \), where \(E \) is a set of interpretations for \(\mathcal{J} \), and \(f \) is an interpretation for \(\text{Int} \) with domain \(C \). An interpretation \(I = (E, f) \) satisfies a \(\text{DD}^K \) rule \(\rho \) of \(q \) (written \(I \models \rho \)) if the following conditions hold:

- If \(\rho \) is a formula of the form (1), then \(I \models \rho \) if \(f \models \rho \), i.e., \(f \) satisfies the implication in (1).
- If \(\rho \) is a formula of the form (2), then \(I \models \rho \) if for all tuples \(\bar{c} \) of values in \(C \), if \(\bar{c} \) is an answer to the query \(\{ \bar{x} \mid \phi_1(\bar{x}) \} \cup \ldots \cup \{ \bar{x} \mid \phi_m(\bar{x}) \} \) in all the interpretations in \(E \), then there is a \(j \) such that \(\exists y_j. \psi_j(\bar{c}, y_j) \) is true in \(f \).

An interpretation \(I \) for \(q \) is called a model of \(q \) if all the rules in the definition of \(q \) are satisfied by \(I \). It should be clear that, under this definition of semantics, \(\mathcal{K} \) represents the "knowledge" operator of the modal logic system \(S5 \). In other words, the formula \(\mathcal{K}\alpha \) should be read as "\(\alpha \) is known (i.e., logically implied by) the system".

We are ready to define what is the answer \(q^{\mathcal{J},D} \) of a \(\text{DD}^K \) query \(q = (\text{Ans}, \mathcal{R}) \) with respect to \(\mathcal{J} \) and the \(\mathcal{S} \)-database \(D \). Specifically, \(q^{\mathcal{J},D} = \bigcap \{ \bar{c} \in \text{Ans} \mid (\text{mod}(\mathcal{J}, D), f) \) is a model of \(q \} \).

While a thorough analysis of \(\text{DD}^K \) is outside the scope of the present work, we mention some of its most appealing characteristics. Firstly, we observe that \(\text{DD}^K \) generalizes UCQs. In particular, every UCQ \(q \) of \(m \) disjuncts is equivalent to a \(\text{DD}^K \) query with one rule of the form (2) where the disjuncts of \(q \) are in the scope of \(\mathcal{K} \). Secondly, every \(\text{DD}^K \) query \(q \) over \(\mathcal{J} \) inherits the monotonicity property of disjunctive Datalog. Intuitively, monotonicity follows from the fact that the \(\mathcal{K} \) operator controls the interaction between \(q \) and \(\mathcal{J} \), based on a form of stratification separating the certain answers to UCQs (rules of the form (2)) and the computation according to the rules (1). This simple form of stratification guarantees that answering \(q \) over \(\mathcal{J} \) boils down to the following: (i) computing certain answers for the UCQs in the scope of \(\mathcal{K} \) in the left-hand side of rules of the form (1) in \(q \), and (ii) computing the answers for the remaining rules (form (2)) over the result of the previous step. Monotonicity follows from the monotonicity of certain answers to UCQs, and from the fact that the rules of the form (2) define a monotone query. These considerations indicate a third appealing characteristic of \(\text{DD}^K \). Specifically, the decidability of answering a \(\text{DD}^K \) query \(q \) w.r.t. \(\mathcal{J} \) and \(D \) depends exclusively on the decidability of answering UCQs over \(\mathcal{J} \), as the following proposition shows.

Proposition 3. Answering \(\text{DD}^K \) queries w.r.t. \(\mathcal{J} \) and \(D \) is decidable if and only if computing the certain answers of UCQs w.r.t. \(\mathcal{J} \) and \(D \) is decidable.

These results sharply contrast with similar results obtained for plain (non-disjunctive) Datalog. In particular, the undecid-
ability of the latter can be proved even in the case of global schema axioms expressed in very simple Description Logics of the DL-Lite family (see, e.g., [29], [30]).

From the algorithm sketched above, we can even derive a tighter upper bound for the complexity of answering DD queries. In particular, we can show that answering a DD query \(q \) w.r.t. \(\mathcal{J} \) and \(D \) is in coNP in data complexity (i.e., the complexity w.r.t. the size of the \(S \)-database) whenever computing certain answers for UCQs w.r.t. \(\mathcal{J} \) and \(D \) is in coNP in data complexity. The following result follows from the observations above and well-known lower bounds for answering disjunctive Datalog queries.

Proposition 4. If computing the certain answers of UCQs w.r.t. \(\mathcal{J} \) and \(D \) is in coNP in data complexity, then computing the answers to DD queries w.r.t. \(\mathcal{J} \) and \(D \) is coNP-complete in data complexity.

B. Monotone abstractions via DD

We now turn our attention to discussing the use of DD in expressing monotone abstractions. We start by observing that, in terms of computational complexity, DD perfectly fits the problem of computing approximated abstractions, as the following proposition shows.

Proposition 5. There exists a data integration system \(\mathcal{J} \) with PGAV mapping and a UCQ \(q_S \) such that answering the \(\mathcal{M} \)-maximally sound \(\mathcal{J} \)-abstraction of \(q_S \) is coNP-hard in data complexity.

In the remainder of this section, we show that DD is well-suited to express monotone abstractions, both perfect and approximated. In discussing this issue, we go back to our assumption of dealing with data integration systems with no axioms in both the global and the source schema. So, in what follows, we implicitly deal with a data integration system \(\mathcal{J} = (\mathcal{G}, \mathcal{M}, S) \), where \(\mathcal{G} \) and \(\mathcal{S} \) have no axioms, and a UCQ \(S \)-query \(q_S = q_1 \cup \ldots \cup q_n \), where \(q_i = \{ \bar{x} \mid \exists y_i \phi_i(x, y) \} \), for \(i = 1, \ldots, n \).

\(\mathcal{M} \)-Maximally Sound Abstractions. In [31], it is shown that DD can always express \(\mathcal{M} \)-maximally sound \(\mathcal{J} \)-abstractions of UCQs, by illustrating a technique that, given query \(q_S \), builds a set \(R_J \) of DD rules whose intensional predicates are the predicates in \(\mathcal{S} \), and then uses such rules to construct the \(\mathcal{M} \)-maximally sound \(\mathcal{J} \)-abstractions of \(q_S \) as a DD query. We do not describe the technique in detail here. Rather, we use an example to give an intuition of the construction.

Example 4. Given the following mapping in \(\mathcal{J} \):

\[
\begin{align*}
 m_1 & : \exists y \cdot s_1(x) \land s_2(x, y) \rightarrow g_1(x, x) \\
 m_2 & : s_1(x) \land s_2(x, y) \rightarrow g_1(x, y) \\
 m_3 & : s_2(x) \rightarrow \exists y \cdot g_1(x, y)
\end{align*}
\]

\(R_J \) is the following set of DD rules:

\[
\begin{align*}
 K(g_1(x, x)) & \rightarrow (\exists y \cdot s_1(x) \land s_2(x, y)) \lor (s_1(x) \land s_3(x, x)) \\
 K(g_1(x, y) \land x \neq y) & \rightarrow s_1(x) \land s_3(x, y) \\
 K(\exists y \cdot g_1(x, y)) & \rightarrow s_2(x) \lor (\exists y \cdot s_1(x) \land s_3(x, y)) \lor (\exists y \cdot s_1(x) \land s_2(x, y))
\end{align*}
\]

Intuitively, the rules of \(R_J \) specify, for the various facts over \(\mathcal{G} \) that are certain, i.e., that are known to hold, the queries over the sources that generate them. For example, the first rule of \(R_J \) specifies that, if a constant is known to satisfy \(g_1(x, x) \), then this knowledge derives either from the answers to the source query \(\{ x \mid \exists y \cdot s_1(x) \land s_2(x, y) \} \) or from the answers to the source query \(\{ x \mid s_1(x) \land s_3(x, x) \} \).

As another example, the second rule of \(R_J \) specifies that the pairs of distinct constants \(x, y \) known to satisfy \(g_1(x, y) \) derive from the query \(\{ x, y \mid s_1(x) \land s_3(x, y) \} \).

It can be shown that this is crucial for ensuring that the abstraction of queries involving the join of \(s_1 \) and \(s_3 \), which is based on the certain answers of \(g_1 \), do not include data deriving from source queries whose abstraction is based on the certain answers of the projection of \(g_1 \). Finally, the third rule of \(R_J \) takes care of those constants \(x \) known to satisfy \(g_1(x, y) \), for some, not necessarily known, \(y \). Such constants may derive from each of source queries above.

Using the notion of \(R_J \), we can immediately obtain the \(\mathcal{M} \)-maximally sound \(\mathcal{J} \)-abstraction of \(q_S \), by adding to \(R_J \) the set \(A \) constituted by one rule of the form \(\phi_i(x, y) \rightarrow \text{Ans}(\bar{x}) \) for each disjunct \(q_i = \{ \bar{x} \mid \exists y_i \cdot \phi_i(x, y) \} \) in \(q_S \).

Proposition 6. The DD query \(\langle \text{Ans}, R_J \cup A \rangle \) is the \(\mathcal{M} \)-maximally sound \(\mathcal{J} \)-abstraction of \(q_S \).

In the light of Proposition 6 and from the existence of an algorithm to compute \(R_J \cup A \), we obtain the following.

Theorem 7. The \(\mathcal{M} \)-maximally sound \(\mathcal{J} \)-abstraction of \(q_S \) always exists, is computable, and can be expressed in DD.

\(\mathcal{M} \)-Minimally Complete Abstractions. We show that DD can always express \(\mathcal{M} \)-minimally complete \(\mathcal{J} \)-abstractions of UCQs.

Let us first introduce a useful notion. Given a CQ \(q = \{ \bar{x} \mid \exists y \cdot \phi(x, y) \} \), \(\text{Saturate}(q) \) denotes the UCQ with inequalities obtained as follows. For each possible unifier \(\mu \) on the variables in \(\bar{x} \cup \bar{y} \) such that \(\mu(x) \in \bar{x} \) for each \(x \in \bar{x} \), \(\text{Saturate}(q) \) contains a query obtained from \(\mu(q) \) by adding an inequality atom \((t_1 \neq t_2) \) for each pair of distinct variables \(t_1, t_2 \) occurring in \(\mu(q) \). For a UCQ \(q \), we denote by \(\text{Saturate}(q) \) the UCQ with inequalities consisting of the union of \(\text{Saturate}(q) \), for each disjunct \(q \) of \(Q \). It is easy to see that \(\text{Saturate}(Q) \) is equivalent to \(Q \), for every UCQ \(Q \).

Consider a disjunct \(q_h \) in \(\text{Saturate}(q_S) \). Clearly, \(q_h \) is a CQ with inequalities of the form \(q_h = \{ \bar{x} \mid \exists y \cdot \phi(x, y) \land \chi(x, \bar{y}) \} \), where \(\chi(x, \bar{y}) \) are inequality atoms. Let \(M(q_h) \) denote the result of chasing the set of relational atoms occurring in \(q_h \) with \(M \). Let \(\rho_{q_h} \) denote the DD rule \(K(M(q_h) \land \top(\bar{x}) \land \chi(x, \bar{y})) \rightarrow \text{Ans}(\bar{x}) \). Finally, let \(q_e \) denote the DD query consisting of all the rules \(\rho_{q_h} \) for the various \(q_h \) in \(\text{Saturate}(q_S) \) and with answer predicate \(\text{Ans} \). We can now prove the following.

Proposition 7. \(q_e \) is the \(\mathcal{M} \)-minimally complete \(\mathcal{J} \)-abstraction of \(q_S \).
The following statement is a straightforward consequence of Proposition 7.

Theorem 8. The \mathcal{M}-minimally complete J-abstraction of q_S always exists, is computable, and can be expressed in \mathbb{DD}^K.

Perfect Monotone Abstractions. From the results presented above, we can derive an algorithm for checking whether there exists a query in \mathcal{M} that is the perfect J-abstraction of q_S. In particular, observe that if the perfect J-abstraction of q_S can be expressed as a query in \mathcal{M}, then it is J-equivalent to the \mathcal{M}-minimally complete J-abstraction of q_S. Then, from Proposition 7 we know that, in order to check whether there exists a query in \mathcal{M} that is the perfect J-abstraction of q_S, we have to check whether q_S is equivalent to q_c modulo J.

To this end, we observe the following. There exists a UCQ with inequalities S-query q_{min} such that $q_{\text{min}} = q_c^D D$, for every S-database D. Moreover, q_{min} is computable. These two properties result from J being a GLAV data integration system with no source and global schema axioms, and from the specific form of q_c. Therefore, in order to check whether there exists a query in \mathcal{M} that is the perfect J-abstraction of q_S, we just need to check whether $q_{\text{min}} \subseteq q_S$. The next claim follows from these considerations.

Theorem 9. Checking whether there exists a query q in the class \mathcal{M} that is the perfect J-abstraction of q_S is decidable. Moreover, there is an algorithm that computes q, whenever it exists.

VII. Open Problems

We have provided an overview of abstraction in data integration, and we have illustrated some results obtained in recent years on computing abstractions. We conclude the paper by discussing a set of issues related to abstractions that deserve more investigation.

Languages for Abstractions. A crucial issue related to abstraction is to compute perfect and approximated abstractions within specific classes of queries. For the fundamental class UCQ, the decidability of checking whether there exists a UCQ-maximally sound abstraction of a UCQ source query is still open. More generally, there are many interesting classes of queries that can be used to express abstractions, and for which it would be interesting to compute perfect, or approximated abstractions. For example, in the case of graph databases as virtual views, relevant classes of queries for abstractions include regular path queries, or two-way conjunctive regular path queries.

Abstraction and Monotonicity. In this paper we have discussed the use of \mathbb{DD}^K to express monotone abstractions of source queries in the class UCQ. It would be interesting to investigate which is the minimal expressive power needed for capturing perfect and approximated monotone abstractions of source queries. Also, it is not difficult to see that there are queries for which the perfect abstraction is non-monotone. Although first results on non-monotone abstractions have appeared in [11], the issue of checking the existence of and computing non-monotone abstractions is largely unexplored.

Expressive Source Queries. The majority of work on abstraction so far focused on source queries in the class UCQ. It would be interesting to address the problem of computing perfect and approximated abstractions of source queries expressed in more expressive languages such as Datalog. More expressive mapping languages (e.g., UCQ with inequalities in the GLAV type of mapping) also deserve attention.

Axioms. The computation of abstractions in the presence of axioms in the global schema or in the source schema is another interesting problem to study. First results in this direction appeared in [8]–[10], but the topic requires a more thorough analysis.

Reverse Engineering. Abstraction has also interesting connections with the reverse-engineering problem [32]. When casted in data integration, given a source database D and set P of tuples, this problem aims at finding a global schema query q that captures P, i.e., such that the answers of q with respect to D captures the tuples in P. Despite the intuitive connection, a detailed analysis of the relationship between the two problems is missing.

User Requirements. Finally, crucial aspects of abstractions, such as succinctness and clarity, have not been considered in this paper. More generally, issues related to the adequacy of the formulation of abstractions with respect to user requirements deserve greater attention.

ACKNOWLEDGEMENTS

This work has been partially supported by the ANR AI Chair INTENDED (ANR-19-CHIA-0014), by MIUR under the PRIN 2017 project “HOPE” (prot. 2017MMJJRE), and by the EU under the H2020-EU.2.1.1 project TAILOR, grant id. 952215.

REFERENCES

