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Time Series Analysis 

CONTENT 
 

A time series is a chronological sequence of 

observations on a particular variable. Usually the 

observations are taken at regular intervals (days, 

months, years), but the sampling could be 

irregular. A time series analysis consists of two 

steps:  

(1) building a model that represents a time 

series 

(2) validating the model proposed 

(3) using the model to predict (forecast) 

future values and/or impute missing values. 

 

If a time series has a regular pattern, then a 

value of the series should be a function of 

previous values. The goal of building a time 

series model is the same as the goal for other 

types of predictive models which is to create a 

model such that the error between the predicted 

value of the target variable and the actual value 

is as small as possible.  

 

The primary difference between time series 

models and other types of models is that lag 

values of the target variable are used as 

predictor variables, whereas traditional models 

use other variables as predictors, and the 

concept of a lag value doesn’t apply because the 

observations don’t represent a chronological 
sequence. 
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Introduction 

From a statistical point of view, time series are regarded as recordings of 

stochastic process which vary over time. We will concentrate on the case 

where observations are made at discrete equally spaced times .  

 

The distinguishing feature of time series is that of temporal dependence: the 

distribution of an observation at a certain time point conditional on previous 

value of the series depends on the outcome of those previous observations, 

i.e., the outcomes are not independent. For the purpose of analyzing a time 

series we will usually model the time series over all the non-negative integers. 

 

We assume that the time series values we observe are the realisations of 

random variables , which are part of a stochastic process . 

In other words,  are random variable whose value can not be 

predicted with certainty. Instead, the variable is said to vary according to a 

probability distribution which describes which values Y can assume and with 

what probability it assumes those values. 

 

Each realisation of  is assumed to be the result of a signal  and a noise 

term : 

 

 
 

The basic aims of time series analysis are the following : 

- Description: how can we describe a time series? 

- Inference: how to make inferences about the patterns in a time series, 

e.g., are there “cycles” in the data? 

- Prediction: use the past of a series (or several series) to predict the future. 

- Control: if we can predict the future from the past, how can we modify the 

current value(s) to obtain a desirable value in the future? 

 

 

1. Theory and Models 

A key idea in time series is that of stationarity. Roughly speaking, a time series 

is stationary if its behaviour does not change over time. This means, for 

example, that the values always tend to vary about the same level and that 

their variability is constant over time. Stationary series have a rich theory and 

their behaviour is well understood and they therefore play a fundamental role 

in the study of time series. Obviously, most of the time series that we observe 

are non-stationary but many of them are related in simple ways to stationary 

time series. 
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The mean function of a time series is defined to be  and the 

autocovariance function is defined to be  

 

There is a quite long tradition in time series to focus on only the first two 

moments of the process rather than on the actual observation distribution. If 

the process is normally distributed all information is contained in the first two 

moments and most of the statistical theory of time series estimators is 

asymptotic and more often than not only dependent on the first two moments 

of the process. 

 

Stationarity is a rather intuitive and is an invariant property which means that 

statistical characteristics of the time series do not change over time. For 

example, the yearly rainfall may vary year by year, but the average rainfall in 

two equal length time intervals will be roughly the same as would the number 

of times the rainfall exceeds a certain threshold. Of course, over long periods 

of time this assumption may not be so plausible. For example, the climate 

change that we are currently experiencing is causing changes in the overall 

weather patterns (we will consider nonstationary time series towards the end 

of this course). However in many situations, and over shorter intervals the 

assumption of stationarity is quite a plausibe. Indeed often the statistical 

analysis of a time series is done under the assumption that a time series is 

stationary. There are two definitions of stationarity, weak stationarity which 

only concerns the covariance of a process and strict stationarity which is a 

much stronger condition and supposes the distributions are invariant over 

time. A time series is said to be weakly stationary if ,  and 

 for all  and .  

 

When time series are stationary we can define the mean of the series to be 

 and the autocovariance function to be . 

 

The autocorrelation function, ACF, is defined as follows: 

 

 
 

 

 

1.1 Autoregressive Series 

 is called an autoregressive series of order , , if it satisfies 
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where is white noise and the  are parameter coefficients. The next value 

observed in the series is a slight perturbation of a simple function of the most 

recent observations. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1. An example of this AR(1) process, produced using a random number generator. 

 

 

  
 

Figure 2. As we will see later in this report, the correlogram, as a diagram such as the one 

above is called, is an important mechanism to identify the underlying structure of a time 

series.  For the AR(1), the autocorrelations decline exponentially. 

 

In the case of the -th order the correlation between  and  can in part be 

due to the correlation these observations have with the intervening lags , 

,..., . To adjust for this correlation the partial autocorrelations, PACF, 

are calculated. 

 

 

1.2 Moving Average Series 

 is called a moving average process of order , , if it satisfies 
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where  are parameters coefficients. In practice it is easy to distinguish  

and AR series by the behaviour of their ACFs: the MA ACF cuts off sharly while 

the AR ACF decays exponentially. 

 

It is important to note that a finite AR model is equivalent to an infinite MA  

model and a finite MA model is equivalent to an infinite AR model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. An example of this MA(1) process, produced using a random number generator. 

 

 

  
Figure 4. For the MA(1), the autocorrelations decline after lag 1. 

 

 

 

1.3 Integrated Series 

An integrated series is one in which the value of  is simply the sum of 

random shocks. In general, the order of integration  can be thought of as the 

number of differencings a series requires to be made stationary. 

 

A random walk process is an example of : 
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where the differenced series  is just a function of the random term . 

 

 

 

1.4 Autoregressive Moving Average Series 

 is called a autoregressive moving average process of order , , 

if it satisfies 

 

 
 

 

 

1.5 Integrated Autoregressive Moving Average Series 

If  is an  series than  is said to be an integrated 

autoregressive moving-average series,  

 

Many time series exhibit strong seasonal characteristics. We’ll use  to denote 

the seasonal period. For monthly series, , and for quarterly series . 

Seasonal patterns can show up in many contexts (e.g. weekly patterns in daily 

observations or daily patterns in hourly data).  

Seasonal effects can be modelled by including coefficients at lags which are 

multiples of the seasonal period. 

 

  
 

Figure 5. Differencing, AR or MA parameters may be needed at various lags.  For quarterly 

data you may need to look at lags of 4. 

 

 

To identify the appropriate  model for a time series, you begin by 

identifying the order(s) of differencing needed to stationarise the series and 

remove the gross features of seasonality. If the resulting time series shows a 

j 
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strong trend (growth or decline), then the process is clearly not stationary, and 

it should be differenced at least once.  

 

The second test that can be used is to examine the estimated autocorrelation 

of the time series. For a stationary time series, the autocorrelations will 

typically decay rapidly to 0. For a nonstationary time series, the 

autocorrelations will typically decay slowly if at all. 

 

 

 

2.  Fitting and Forecasting 

Suppose that we have identified a particular  model which appears 

to describe a given time series. We now need to fit the identified model and 

assess how well the model fits.  

 

Fitting can be carried out using maximum likelihood estimation procedures 

which allows to produce both estimates and standard errors for the parameter 

coefficients. 

 

Once a model has been fitted to a set of data it is always important to assess 

how well the model fits. This is because the inferences we make depend 

crucially on the appropriateness of the fitted model. The usual way of 

assessing goodness of fit is through the examination of residuals. A simple 

diagnostic is to simply plot the residuals and to see whether they appear to be 

a white noise series. 

 

After deciding on an appropriate model, estimated its unknown parameters 

and established that the model fits well the data, we can turn to the problem 

of forecasting future values of the series. Once a forecast is obtained for  

we can use it to obtain a forecast for and then use these two forcasts to 

generate a forecast for , and so on.  

 

The process can be continued to obtain forecasts out to any point in the future. 

Because uncertainty increases as we predict further and further from the data 

we have, we can expect the standard errors associated with our predictions to 

increase. 
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2.1 The Box-Jenkins procedure 

The Box-Jenkins methodology is a strategy for identifying, estimating and 

forecasting autoregressive integrated moving average models. The 

methodology consists of a three step iterative cycle of: 

 

• Identification 

• Estimation 

• Verification 

The data may require pre-processing to make it stationary. To achieve 

stationarity we may do any of the following: 

 

• Look at the time series 

• Re-scale it (for instance, by a logarithmic or exponential transform) 

• Remove deterministic components 

• Difference it until stationary. In practice d = 1, 2 should be sufficient. 

 

For the moment we will assume that our series is stationary. The initial model 

identification is carried out by estimating the sample autocorrelations and partial 

autocorrelations and comparing the resulting sample autocorrelograms and partial 

autocorrelograms with the theoretical ACF and PACF derived already. 

We can try to fit an  model. We consider the correlogram and the partial 

autocorrelations.  

In particular we know that: 

 

• An  process has negligible ACF after the -th term. 

• An  process has negligible PACF after the -th term. 

• An  process has -th order sample ACF and PACF decaying 

geometrically for . 

 

The method involves a subjective element at the identification stage. This can be an 

advantage since it allows non-sample information to be taken into account. Thus a 

range of models may be excluded for a particular time series. The subjective element 

and the tentative nature of the identification process make the methodology 

difficult for the non experienced forecaster. 

 

In the estimation of an ARMA model it is possible to estimate the likelihood conditional 

on the early observations. With modern software there is no need to do this and if you 

should use full Maximum Likelihood. The estimation of the likelihood can be achieved 

with many different software packages on a PC. 

The procedure outlined above requires considerable intervention from the 

statistician completing the forecast. Various attempts have been made to 

automate the forecasts. The simplest of these fits a selection of models to the 
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data, decides which is the “best” and then if the “best” is “good enough” uses 

that. The most common criterions to select the best model among a set of 

competing ones are: 

 

• Relatively small of  (or Schwarz criterion)  

• Relatively small of standard error ( )   

• Relatively high coefficient of determination .   

 

The third stage in the Box-Jenkins algorithm is to check whether the model fits 

the observed data. There are several tools we may use: 

 

• Overfitting. Add extra parameters to the model and use likelihood ratio test ort-

test to check that they are not significant. 

 

• Residuals analysis. Calculate the residuals from the model and plot them. The 

autocorrelation functions, ACFs, PACFs, spectral densities, estimates, etc., and 

confirm that they are consistent with white noise. 

 

The selection of a forecasting method is a difficult task that must be base in 

part on knowledge concerning the quantity being forecast. With forecasting 

procedures, we are generally trying to recognize a change in the underlying 

process of a time series while remaining insensitive to variations caused by 

purely random effects. The goal of planning is to respond to fundamental 

changes, not to spurious effects. 

With a method based purely on historical data, it is impossible to filter out all 

the noise. The problem is to set parameters that find an acceptable tradeoff 

between the fundamental process and the noise.   

 

We need to adopt a formal mathematical criterion to calculate model forecasts. 

A plausible criterion is based on the mean squared error of prediction MSEP. 

Suppose that we have a sample of observed data ,...,  and that we would 

like to predict . This approach consists in choosing the function  

that minimizes MSEP. 

The general solution to this minimization problem is to consider the followin 

function : 

 

 

 

i.e., the conditional expectation of , given the observed data ,..., . The 

estimate produced by this function is called the minimum mean squared error 

(MMSE) forecast. 
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3.  A Toy Example 

We analyze the series F data set in Box, Jenkins, and Reinsel, 1994 (Figure 6). 

The data do not appear to have a seasonal component or a noticeable trend. 

 

 
 

Figure 6. Series F. Yields from a Batch Chemical Process 

 

We compute the ACF of the data for the first 35 lags to determine the type of 

model to fit to the data. We list the numeric results and plot the ACF (along 

with 95 % confidence limits) versus the lag number. 
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The ACF values alternate in sign and decay quickly after lag 2, indicating that 

an AR(2) model should be appropriate for the data. 

 

The model fitting results are shown below. 

 

Source  Estimate  Standard Error 

------  --------  -------------- 

φ1       -0.3198      0.1202 

φ2        0.1797      0.1202 

 

δ = 51.1286  

Residual standard deviation = 10.9599 

 

Test randomness of residuals: 

Standardized Runs Statistic Z = 0.4887, p-value = 0.625 

 

The historical time series data and some forecasted values (blue line) with 

90% confidence intervals (red lines) are shown in the figure below. 
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4. Other Techniques 

The logic behind time series methods is that past data incorporate enduring  

patterns that will carry forward into the future and that can be uncovered  

through quantitative analysis. Thus the forecasting task becomes, in essence, 

a careful analysis of the past plus an assumption that the same patterns and  

relationships will hold in the future. There are a number of time-series analysis 

and forecasting methods, differing mainly in the way past observations are 

related to the forecasts.   

 

 

4.1 Smoothing 

 

The notion underlying smoothing methods is that there is some specific pattern 

in the values of the variables to be forecast, which is represented in past 

observations, along with random fluctuations or noise.  

Using smoothing methods, the analyst tries to distinguish the underlying 

pattern from the random fluctuations by eliminating the latter.  For example, 

by averaging out short-term fluctuations in a sales data series could reveal the 

longer-term patterns or cycles in sales. 

 

The moving average is simply the un-weighted mean of the previous N 

observations. The new forecast is a function of the preceding moving-average 

forecast. 

 

The  exponential-smoothing  approach is very similar to the moving average 

method, differing in that the weights given to past observations are not 

constant—they decline exponentially so that more recent observations get 

more weight than earlier values. Choice of the smoothing factor is left to the 

analyst. Most often the analyst selects a value experimentally from a set of two 

or three different trial values. 
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Adaptive filtering (i.e., removing noise from signal) is another approach for 

determining the most appropriate set of weights, where the weights change to 

adjust to the changes in the time series being filtered.  Notice that all the 

methods outlined so far are based on the idea that a forecast can be made as 

a weighted sum of past observations. 

 

4.1 Nonparametric Time Series Analysis 

 

For a given time series, nonparametric techniques are used to analyze various 

features of  interest. Generally, the idea underlying many of these techniques  

is that the characteristic of interest is allowed to have a general form which is 

approximated increasingly precisely with growing sample size. For example, if 

a process is assumed to be composed of periodic components, a general form 

of spectral density may be assumed which can be approximated with 

increasing precision when the sample size gets larger. Similarly, if the 

autocorrelation structure of a stationary process is of interest the spectral 

density may be estimated as a summary of the second moment properties. 

 

There are numerous other nonparametric  procedures and techniques that 

have been used in time series analysis. For instance, when a parametric time 

series model is specified it may be of interest to estimate the distribution of 

the residuals by nonparametric methods in order to improve the parameter 

estimators or to assess the statistical properties of the estimators. More 

precisely, density estimation for the residuals and bootstrap methods based on 

the residuals have been used in this context.  

 

Another important characteristic of a time series is its trending behaviour. 

Deterministic trend functions have also been analyzed nonparametrically. In 

addition, there are a number of nonparametric tests for stochastic trends. 

 

 

5  Short Time Series 

Short time series may be all there is available when data are acquired by an 

infrequent survey due to experimental factors or high costs. This type of data 

is obviously undersampled, and some important features of the temporal 

pattern can be obscured by the stochastic noise.  

Traditional forecasting models like ARIMA have been shown very effective in 

forecasting time series with stochastic seasonality as well as deterministic 

seasonality. To perform effective model identification and estimation on 

standard ARIMA procedures, analysts need sufficient historical data. 
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Under such conditions, however, most standard forecasting models are no 

longer applicable. 

 

 

 

5.1 Exceptional Values and Outliers 

There are two types of exceptional values: 

 

• Logical errors (e.g. negative population values) 

• Statistical outlier (e.g. unusually high values) 

An outlier is an observation that appears to deviate markedly from other 

observations in the sample. 

Identification of potential outliers is important for the following reasons : 

1. An outlier may indicate bad data. For example, the data may have been 

coded incorrectly or an experiment may not have been run correctly. If it 

can be determined that an outlying point is in fact erroneous, then the 

outlying value should be deleted from the analysis (or corrected if 

possible). 

2. In some cases, it may not be possible to determine if an outlying point is 

bad data. Outliers may be due to random variation or may indicate 

something scientifically interesting. In any event, we typically do not 

want to simply delete the outlying observation. However, if the data 

contains significant outliers, we may need to consider the use of robust 

statistical techniques. 

There are basically two types of identification methods to deal with them: 

 

• Logical errors: deterministic techniques (e.g. hierarchical consistency) 

• Statistical outliers: statistical techniques (e.g. outlier detection methods) 

 

 

5.2 Outliers Detection 

Time series outliers can be defined as data points that do not follow the 

general (historical) pattern of regular variation seen in the data sequence. One 

particular reason for the importance of detecting the presence of outliers is 

that potentially they have strong influence on the estimates of the parameters 

of a model that is being fitted to the data. This could lead to mistaken 
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conclusions and inaccurate predictions. It is therefore important that these 

outliers are detected and removed or replaced. 

 

Possible approaches to outlier detection in short time series: 

 

• Boxplot Analysis 

• Principal Components Analysis (PCA) 

• Geographically Weighted Principal Components Analysis (GWPCA) 

The first approach consists in assuming Gaussian errors and considering 

outliers all the time observations falling outside the 95% level interval. 

 

PCA is a way of identifying patterns in data, and expressing the data in such a 

way as to highlight their similarities and differences. Since patterns in data can 

be hard to find in data of high dimension, where the luxury of graphical 

representation is not available, PCA is a powerful tool for analysing data. 

The other main advantage of PCA is that once you have found these patterns 

in the data, and you compress the data, ie. by reducing the number of 

dimensions, without much loss of information. 

The PCA based methods allow us to consider more than simply pairs of time 

series simultaneously and use an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of linearly 

uncorrelated variables called principal components. All of the variance in the 

original m variables is retained during this transformation. The values of the 

new variables are known as scores and can be analysed so as to identify 

exceptional values. The PCA approach ignores the spatial arrangement of the 

geographic unit.  

 

With GWPCA we obtain local transformations by applying geographical 

weighting and this gives us a set of components for each  geographical unit. 

The scores deriving from these local transformations can be used to identify 

exceptional values. GWPCA is also able to indicate a identify spatial outlying 

observations in the data. The GWPCA method would appear to be very 

discriminating in identifying potentially exceptional values in the geographical 

units. 
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6. Estimating of Missing Data 

6.1 Deterministic Approches 

 

In general, deterministic models for time series refers to the use of numerical 

analysis  

techniques for modelling time series data.  

The principle of numerical analysis is to assume the time series data pattern is 

a realisation of an unknown function. The aim is to identify the most 

appropriate function to represent the data in order to estimate the missing 

values. We assume the behaviour of the time series data follows a polynomial 

function or combination of polynomial functions and examine the time interval 

that involved the missing values. Sometimes this is the most difficult part of 

the analysis process. We have to examine all the factors involved and decide 

the appropriate length of time interval to be considered. 

After finding a polynomial that fits the selected set of points and assume that 

the polynomial and the function behave nearly the same over the interval in 

question. Values of the polynomial should be reasonable estimates of the 

values of the unknown function. However, when the data appears to have local 

irregularities, then we are required to fit sub-regions of the data with different 

polynomials. This includes special polynomials called splines. For most of the 

time series data, we do not want to find a polynomial that fits exactly to the 

data. Often functions used to fit a set of real values will create discrepancies or 

the data set may come from a set of experimental measurements that are 

subject to error. A technique called least squares is normally  used in such 

cases. Based on statistical theory, this method finds a polynomial that is more 

likely to approximate the true values. 

 

 

6.3 Stochastic Approches 

 

Time series analysis is a specific type of data analysis in which we realize that 

successive observations are usually not independent and that the analysis 

must take into account the time order of the observations. In the previous 

section we have mentioned deterministic models, a time series that can be 

predicted exactly to its behaviour. However, most of the time series are 

realisations of stochastic models. Future values are only partly determined by 

the past values, so that exact predictions are impossible. We must therefore 

consider future values as realisations from a probability distribution which is 

conditioned by knowledge of past values. 

If missing values occurred within the time series data then it is impossible to 

compute any of these values. For this reason, ARIMA models may not be the 
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best choice and they cannot be applied directly to time series which includes 

the missing values.  

To apply Box-Jenkins’ method to time series data with missing values, we have 

to consider the following:    

 

 How often do the missing values occur?  

 Where are the missing values located in the time series?  

 Do we have sufficient data before, after or between the missing values to 

apply Box-Jenkins’ method to the remaining data?  

 

It is possible to indirectly apply Box-Jenkins’ method to time series with 

missing values. The accuracy of results is mainly dependent on the type of 

time series. Once missing values have been filled with estimates, Box-Jenkins’ 

method can  

then be applied. 

 

 

 

7. Spatial Time Series 

 

Research in statistical/econometric models that describe the spatio-temporal 

evolution of a single variable or multi-variable relationships in space and time 

has significantly increased during the last twenty years.  

The space-time autoregressive integrated moving average (STARIMA) model   

class is one example of this methodological development. Similarly to ARIMA 

model building for univariate time series, STARIMA model building is based on 

the same three-stage procedure (identification–estimation–diagnostic 

checking) and it has been applied to spatial time series data from a wide 

variety of disciplines. 
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