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Abstract

A proper k-edge-colouring φ of a graph G is an assignment of colours from {1, . . . , k} to the edges
of G such that no two adjacent edges receive the same colour. If, additionally, φ guarantees
that no two adjacent vertices of G are incident to the same sets or sums of colours, then φ is
called an AVD or NSD edge-colouring, respectively (the abbreviations AVD and NSD standing for
“adjacent vertex distinguishing” and “neighbour sum distinguishing”). The chromatic index χ′(G)
of G is the smallest k such that proper k-edge-colourings of G exist. Similarly, the AVD and NSD
chromatic indices χ′AVD(G) and χ′NSD(G) of G are the smallest k such that AVD and NSD k-edge-
colourings of G exist, respectively. These chromatic parameters are quite related, as we always
have χ′NSD(G) ≥ χ′AVD(G) ≥ χ′(G).

By a well-known result of Vizing, we know that, for any graph G, we must have χ′(G) ∈
{∆(G),∆(G) + 1}. Still, determining χ′(G) is NP-hard in general. Regarding χ′AVD(G) and
χ′NSD(G), it is conjectured that, in general, they should always lie in {∆(G),∆(G) + 1,∆(G) + 2}.

In this work, we prove that determining whether a given graph G has AVD or NSD chromatic
index ∆(G) is NP-hard for every ∆(G) ≥ 3. We also prove that, for a given graph G, determining
whether the AVD or NSD chromatic index is ∆(G) + 1 is NP-hard for every ∆(G) ≥ 3. Through
other NP-hardness results, we also establish that there are infinitely many graphs for which the
AVD and NSD chromatic indices are different. We actually come up, for every k ≥ 4, with infinitely
many graphs with maximum degree k, AVD chromatic index k, and NSD chromatic index k+1, and
similarly, for every k ≥ 3, with infinitely many graphs with maximum degree k, AVD chromatic
index k + 1, and NSD chromatic index k + 2. In both cases, recognising graphs having those
properties is actually NP-hard.

Keywords: proper edge-colouring; chromatic index; AVD chromatic index; NSD chromatic index.

1. Introduction

For any integer k ≥ 1, a k-edge-colouring φ : E(G) → {1, . . . , k} of a graph G assigns colours
from {1, . . . , k} to the edges of G. We say that φ is proper if no two adjacent edges uv and vw (i.e.,
sharing a vertex v) of G get assigned the same colour by φ. We denote by χ′(G) the chromatic
index of G, being the smallest k such that proper k-edge-colourings of G exist.

Proper edge-colourings are one of the most central notions of graph theory, due, in particular,
to numerous applications. In general, the main question, given a graph G, is to determine χ′(G).
Surprisingly enough, this question is hard to answer in general, recall the NP-hardness result by
Holyer [4], despite the fact, by a fundamental result of Vizing [8], that the chromatic index of a
graph is always one of two possible values. Indeed, for a graph G, its chromatic index χ′(G) is
either ∆(G), the maximum degree of a vertex in G, which stands as the natural lower bound for
the parameter, or, at worst, as proved by Vizing, ∆(G) + 1. In the former case, G is said to be of
class 1, while it is said to be of class 2 in the latter case. Many interesting works of the literature
are precisely on sufficient conditions guaranteeing a graph is of either of these two classes.

Restrictions of proper edge-colourings have also been attracting a lot of attention in the liter-
ature. In this area, we are interested in edge-colourings that are not only proper, but also fulfil
additional properties. In the context of this paper, we are interested in two such notions, in which



it is also required that adjacent vertices get distinguished accordingly to some parameter. The for-
mal definitions are as follows. Let G be a graph, and φ be a proper edge-colouring of G. For every
vertex v of G we denote by s(v) the set of colours assigned by φ to the edges incident to v, while
we denote by σ(v) the sum of these colours. We say that φ is an AVD edge-colouring if we have
s(u) 6= s(v) for every two adjacent vertices u and v, while we say that φ is an NSD edge-colouring
if we have σ(u) 6= σ(v) for every two adjacent vertices u and v. Lastly, we denote by χ′AVD(G) and
χ′NSD(G) the smallest k such that AVD k-edge-colourings and NSD k-edge-colourings of G exist.
We call these parameters the AVD chromatic index and NSD chromatic index of G, respectively.

For reference, let us mention that the terms “AVD” and “NSD” stand for “adjacent vertex dis-
tinguishing” and “neighbour sum distinguishing”. Note that an NSD edge-colouring must always
be an AVD edge-colouring, while the converse does not have to be true. In other words, we have
χ′NSD(G) ≥ χ′AVD(G) for every graph G, while χ′AVD(G) ≥ χ′(G) since AVD edge-colourings are
restrictions of proper edge-colourings. AVD edge-colourings have actually been studied under var-
ious names, such as “adjacent strong edge-colourings”, “neighbour-distinguishing edge-colourings”
and “1-strong edge-colourings”. It is worth mentioning that the AVD and NSD chromatic indices
are defined for all connected graphs but K2; throughout this paper, we thus implicitly deal only
with graphs that do not have K2 as a connected component.

It is believed that the AVD chromatic index should always be quite close to the chromatic
index. This presumption gave birth to the following leading conjecture, raised early in the 2000s:

AVD Conjecture (Zhang, Liu, Wang [9]). If G is a connected graph of order at least 6, then
χ′AVD(G) ≤ ∆(G) + 2.

The NSD chromatic index was introduced more recently, in the 2010s. Due, notably, to con-
nections with the AVD chromatic index, the following was raised:

NSD Conjecture (Flandrin, Marczyk, Przybyło, Sacle, Woźniak [2]). If G is a connected graph
of order at least 6, then χ′NSD(G) ≤ ∆(G) + 2.

The AVD Conjecture is older than the NSD Conjecture, and, as a result, it has received much
more attention to date. Note that these conjectures, if true, would, for each of the AVD and
NSD chromatic indices, classify graphs into a small number of classes, just like the chromatic
index does. In this work, we say that a graph G is of AVD class 1, 2, or 3, if χ′AVD(G) = ∆(G),
χ′AVD(G) = ∆(G) + 1, or χ′AVD(G) = ∆(G) + 2, respectively. Similarly, we say that G is of NSD
class 1, 2, or 3, if χ′NSD(G) = ∆(G), χ′NSD(G) = ∆(G) + 1, or χ′NSD(G) = ∆(G) + 2, respectively.

Most of the works done so far on the topic have been dedicated to proving the AVD and NSD
Conjectures for various classes of graphs, and sometimes to going even further by establishing
conditions for graphs to be of AVD or NSD class 1 or 2. For a recent survey, we refer the reader
to [3, 6], in which most of the works done on the topic to date have been summarised.

Our investigations in this work stem from legitimate questions one could ask regarding the
connections between the AVD and NSD chromatic indices of graphs. These two notions, due to
the definitions involved, are undoubtedly very close, and, as a matter of fact, most of the previous
works on the topic have actually dealt with these two notions as nearly similar ones. It is far less
clear, however, what the general discrepancies between the AVD and NSD chromatic indices are.
As made apparent in the definitions, an NSD edge-colouring is always an AVD edge-colouring, and
χ′NSD(G) ≥ χ′AVD(G) thus always holds for a graph G. It is not obvious, however, whether we
always have χ′NSD(G) = χ′AVD(G). One could think that, perhaps, especially when ∆(G) is large,
it could be that any graph G always admits so many AVD χ′AVD(G)-edge-colourings that one of
them must be an NSD edge-colouring. It is worth adding that examining small graphs does not
allow to come up with an obvious counterexample to that presumption.

Our first intuitions on that question were inspired from [1], in which similar questions were
answered for non-proper versions of AVD and NSD edge-colourings. In brief, therein, the authors
consider k-labellings, which are, essentially, k-edge-colourings (no properness condition is required
whatsoever). The goal, given a graph G, is to determine χ′M(G) and χ′S(G), which are the smallest
k such that k-labellings distinguishing any two adjacent vertices through their multisets and sums
of incident labels exist, respectively. Note that the parameters χ′M and χ′S do stand as non-proper
versions of χ′AVD and χ′NSD. In particular, χ′S(G) ≥ χ′M(G) holds for any graph G. Similarly as for
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the AVD and NSD chromatic indices, a question was then whether we always have χ′S(G) = χ′M(G).
In [1], the authors answered this question negatively, showing that, for a graph G with χ′M(G) = 2,
it is NP-hard to decide whether χ′S(G) = 2. This shows that there exist infinitely many graphs G
with χ′M(G) 6= χ′S(G). The authors also discussed the structure of these graphs, which seem to be
rather large in general, justifying why spotting a single one did not seem obvious at first.

These considerations led us to realising a surprising fact, being that we were not able to come
up with any reference of the literature discussing the complexity of determining the AVD and NSD
chromatic indices of graphs. There is of course a chance that we just missed such a reference,
especially when taking into account, as mentioned earlier, that the literature on the topic is far
from being uniform, many notions being reintroduced and investigated under different names. Still,
complexity aspects, especially when it comes to colouring problems, are fundamental aspects, and
we would thus be surprised if something was known but not mentioned in any on the latest works on
the topic. One of our additional motivations in this work, is thus to provide hints on the complexity
of determining the AVD and NSD chromatic indices of a given graph. It is worth mentioning that,
in any case, the main results we prove in this work, on the existence of graphs for which the AVD
and NSD chromatic indices differ, are actually intimately related to those complexity questions.

In this work, we thus provide results regarding two different questions. Using graphs with
particular colouring properties introduced in Section 2, we first establish, in Section 3, that deter-
mining whether a given graph with maximum degree k is of AVD or NSD class 1 or 2, is NP-hard1

for every2 k ≥ 3. Then, in Section 4, we prove that there exist infinitely many graphs with max-
imum degree k of AVD class 1 and NSD class 2 (which we prove for every k ≥ 4, which is best
possible), and similarly infinitely many graphs with maximum degree k of AVD class 2 and NSD
class 3 (which we prove for every k ≥ 3). This is done mainly by refining our NP-hardness proofs
from Section 3, by making sure to design reduced graphs with certain edge-colouring properties.
Thus, not only infinitely many graphs with differing AVD and NSD chromatic indices exist, but
also recognising them is NP-hard. Let us emphasise that our results are thus on very particular
aspects of AVD and NSD edge-colourings, which, consequently, do not bring much on the main
open questions of the field, being the AVD and NSD Conjectures. We end up this work in Section 5,
in which we comment on these results, and suggest additional questions for further work on this
topic.

2. Some gadgets and their edge-colouring properties

In many complexity results dealing with edge-colourings, one of the most important points is
designing forcing mechanisms. That is, in order to design an NP-hardness reduction for some edge-
colouring problem, the first step is often to come up with graphs (gadgets) for which all certain
edge-colourings behave in a very anticipated way. This can concern e.g. the fact that certain edges
must always be assigned the same colour or pairwise distinct colours, or the fact that certain
vertices must be incident to edges being assigned certain colours. Our main results in this work
deal precisely with such forcing mechanisms. For this reason, it is not surprising that some notions
and gadgets introduced through what follows are, in spirit at least, reminiscent of ones designed
for related different problems (such as those from [1]).

The main gadgets to be used in our reductions in the next sections build upon the following
construction (see Figure 1(a) for an illustration3).

Definition 2.1 (Gadget Mk). For any k ≥ 2, the graph Mk is obtained as follows. Start from
the complete bipartite graph Kk−1,k with bipartition U ∪ V , where U = {u0, . . . , uk−2} and V =
{v0, . . . , vk−1}, and add an edge viwi for every i ∈ {0, . . . , k − 1}, where wi is a new degree-1

1All decision problems considered here being obviously in NP, their NP-hardness implies their NP-completeness.
2Graphs with maximum degree 2 are paths and cycles, for which the AVD and NSD chromatic indices are easy

to determine; investigating hardness results thus makes sense only for graphs with maximum degree at least 3.
3Throughout this work, unless specified otherwise, we deal with the elements of any graph introduced through a

figure following the terminology given in that very figure. In contexts where multiple copies of one such graph are
present, we will, however, have to tweak this terminology a bit to avoid any ambiguity. In such situations, elements
will be renamed in an explicit way.
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u0 u1

v0 v1 v2

w0 w1 w2

(a) M3

(b) G4,4

Figure 1: The gadgets M3 and G4,4 from Section 2. In (a), wiggly edges are outputs. In (b), wiggly edges are
outputs of the four copies of M4 in G4,4, those surrounded by bold lines being the four outputs of G4,4. In (b),
the white vertices are the four support vertices of G4,4. In each case, is also given an AVD edge-colouring using
the least number of colours possible (4 in (a), 5 in (b)). In (a), the set of incident colours is given for every vertex
of maximum degree (3). Note also that, in (b), the edges of the four copies of M4 are not coloured the same way,
to illustrate the fact that, in an AVD 5-edge-colouring of G4,4, even though we have some control over the sets of
incident colours achieved for the support vertices, we have less control on how those sets are obtained.

vertex. The resulting graph is Mk. Note that the k edges v0w0, . . . , vk−1wk−1 of Mk are pending
edges (i.e., edges incident to a degree-1 vertex); we call these edges the outputs of Mk, the wi’s
being their ends.

Mk has several colouring properties of interest, due, in particular, to its structure and to
the degrees of its vertices, which make the following obvious observation (to be used implicitly
throughout this work) applicable.

Observation 2.2. Let G be a graph, and φ be a proper edge-colouring of G. If u and v are two
adjacent vertices of G with d(u) 6= d(v), then s(u) 6= s(v).

Theorem 2.3. For every k ≥ 2, the graph Mk fulfils the following:

• ∆(Mk) = k.

• χ′AVD(Mk) = k + 1.

• By every AVD (k+ 1)-edge-colouring of Mk, the k outputs must be assigned the same colour.

• There is an AVD (k + 1)-edge-colouring of Mk such that s(ui) = {1, . . . , k} for every i ∈
{0, . . . , k − 2} and s(vi) = {1, . . . , k + 1} \ {i+ 1} for every i ∈ {0, . . . , k − 1}.

• Every AVD (k + 1)-edge-colouring of Mk is also an NSD (k + 1)-edge-colouring. Thus,
χ′NSD(Mk) = k + 1, and, by every NSD (k + 1)-edge-colouring of Mk, the k outputs must
be assigned the same colour. Also, there is an NSD (k + 1)-edge-colouring of Mk such that
σ(ui) = k(k+1)

2 for every i ∈ {0, . . . , k − 2} and σ(vi) = (k+1)(k+2)
2 − (i + 1) for every

i ∈ {0, . . . , k − 1}.

Proof. The first item follows from the construction of Mk. Regarding the second and third items,
we note first that we have χ′AVD(Mk) ≥ k + 1 since the ui’s and vi’s all have degree k and are
adjacent. We claim that we also have χ′AVD(Mk) ≤ k + 1, and, in particular, that by all AVD
(k + 1)-edge-colourings of Mk, the condition of the third item must be met.
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• First off, we claim that an AVD (k + 1)-edge-colouring φ of Mk is obtained when colouring
the edges of Mk in the following way. We consider the ui’s one after another. Whenever
considering ui for some i ∈ {0, . . . , k − 2}, we simply set φ(uivi+j mod k) = (j mod k) + 1
for every j ∈ {0, . . . , k − 1}. To make it more precise, note that, for u0, this results in
φ(u0vj) = j + 1 for every j ∈ {0, . . . , k − 1}. For u1, this results in φ(u1v0) = k and
φ(u1vj) = j for every j ∈ {1, . . . , k − 1}. In other words, for every ui, we assign colours
1, . . . , k to the edges uivi, uivi+1, . . . uivi+k−1 following that order, taking into account that
the operations over the subscripts are modulo k.
Note that, at this point, this colouring pattern clearly results in φ being a partial proper
edge-colouring. Also, we currently have s(ui) = {1, . . . , k} for every i ∈ {0, . . . , k − 2}, as
well as s(vi) = {1, . . . , k} \ {i+ 1} for every i ∈ {0, . . . , k − 1}. To finish off the construction
of φ, we just consider every i ∈ {0, . . . , k− 1}, and set φ(viwi) = k+ 1. As a result, every ui
still satisfies s(ui) = {1, . . . , k}, while every vi now satisfies s(vi) = {1, . . . , k + 1} \ {i + 1}.
Thus, the ui’s and vi’s cannot be in conflict, and the wi’s also cannot be in conflict with the
vi’s, their degree being 1. Note that φ actually fulfils the property described in the fourth
item. The existence of φ also proves the second item of the statement.

• We now focus on the third item of the statement. Consider an AVD (k + 1)-edge-colouring
φ of G. For every vertex x ∈ {u0, . . . , uk−2, v0, . . . , vk−1}, note that there is exactly one
colour in {1, . . . , k+ 1}, which we denote by m(x), that is not assigned to any of the k edges
incident to x. Without loss of generality, we may assume that all colours in {2, . . . , k + 1}
are assigned to edges incident to v0, i.e., m(v0) = 1. This implies that m(ui) 6= 1 for every
i ∈ {0, . . . , k − 2} (as otherwise we would have a set conflict contradicting that φ is an AVD
edge-colouring). Since no ui can miss colour 1, we can suppose without loss of generality
that φ(uivi+1) = 1 for every i ∈ {0, . . . , k− 2}. This implies that for every i ∈ {1, . . . , k− 1},
m(vi) 6= 1. By applying a similar argument to the other vi’s, we obtain that no two vi miss
the same colour. Without loss of generality, we can suppose that m(vi) = i + 1 for every
i ∈ {0, . . . , k − 1}. Hence, we deduce that m(ui) = k + 1 for every i ∈ {0, . . . , k − 2}. Now,
for every i ∈ {0, . . . , k − 1}, we have m(vi) 6= k + 1, and thus vi is incident to an edge
coloured k+1. Note that, that edge cannot be of the form viuj since m(uj) = k+1 for every
j ∈ {0, . . . , k − 2}. This implies that φ(viwi) = k + 1 for every i ∈ {0, . . . , k − 1}.

Regarding the fifth item, notice that, indeed, an AVD (k + 1)-edge-colouring φ of Mk must be
an NSD edge-colouring, as degree-1 vertices cannot be involved in sum conflicts, and all ui’s and
vi’s have degree k. In particular, every ui or vi has sum

(k+1)(k+2)
2 −α for some α ∈ {1, . . . , k+ 1}.

From this, we deduce that having σ(ui) = σ(vj) for some ui and vj would imply that s(ui) = s(vj),
a contradiction to φ being an AVD edge-colouring. From these arguments, the rest of the fifth
item follows directly from the other items of the statement.

We now consider the following construction, which consists essentially in connecting several
copies of some Mk in a sequential way, resulting in a path-like graph Gk,r (see Figure 1(b)).

Definition 2.4 (Gadget Gk,r). Let k ≥ 3 and r ≥ 1 be fixed. The graph Gk,r is obtained as
follows. Start from r disjoint copies G1, . . . , Gr of Mk. Since k ≥ 3, recall that each Gi has at least
three outputs. For each i ∈ {1, . . . , r}, we choose three arbitrary outputs of Gi, which we denote by
ei, fi, gi. We now consider every i ∈ {1, . . . , r − 1} in turn, and identify the edges fi and ei+1 so
that the maximum degree of the resulting graph remains k. More formally, for some i, if we denote
fi = uv and ei+1 = xy so that v and x are the two ends, then identifying fi and ei+1 essentially
means identifying u and x, identifying v and y, and making sure to keep the graph simple. The
resulting graph is Gk,r. The r pending edges g1, . . . , gr of Gk,r are called its outputs. Furthermore,
for every output gi, we call its degree-1 vertex an end (that of gi being the ith one) while we call
its other vertex a support (being the ith one, w.r.t. gi).

It is important to emphasise that Gk,r does have r outputs only, while it might have much more
pending edges, in particular when k and r are large, most of which are not defined as outputs.
Note also that the construction above introduces the edges e1 and fr of Gk,r, which actually serve
no purpose other than making the description above more general and easier to give.

Colouring properties of Mk extend to Gk,r; namely:
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Theorem 2.5. For every k ≥ 3 and r ≥ 1, the graph Gk,r fulfils the following:

• ∆(Gk,r) = k.

• χ′AVD(Gk,r) = k + 1.

• By every AVD (k+1)-edge-colouring of Gk,r, the r outputs must be assigned the same colour.

• For any r subsets F1, . . . , Fr of cardinality k of {1, . . . , k+ 1}, there is an AVD (k+ 1)-edge-
colouring of Gk,r such that for every ith support x we have s(x) 6= Fi.

• Every AVD (k + 1)-edge-colouring of Gk,r is also an NSD (k + 1)-edge-colouring. Thus,
χ′NSD(Gk,r) = k + 1, and, by every NSD (k + 1)-edge-colouring of Gk,r, the r outputs must
be assigned the same colour. Also, for any r positive integers f1, . . . , fr, there is an NSD
(k + 1)-edge-colouring of Gk,r such that for every ith support x we have σ(x) 6= fi.

Proof. The first item follows from the construction of Gk,r. Also, because Gk,r contains Mk as a
particular induced subgraph, we have χ′AVD(Gk,r) ≥ χ′AVD(Mk) ≥ k + 1 (recall the second item of
Theorem 2.3). Now, it can be observed that AVD (k+1)-edge-colourings of the r copies G1, . . . , Gr

of Mk contained in Gk,r can be extended to one of Gk,r. This can be done e.g. in the following
way, from which we deduce that also the fourth item of the statement holds. Let F1, . . . , Fr be
subsets of {1, . . . , k + 1} of cardinality k. Start from an AVD (k + 1)-edge-colouring φ1 of G1,
which exists by Theorem 2.3. Recall that all k outputs of G1 are assigned the same colour, say 1,
by φ1. Also, since k ≥ 3, then, by the fourth item of Theorem 2.3, we can make sure that, by φ1,
the support of Gk,r in G1 has its set of incident colours being different from F1. Now, consider G2.
By similar arguments, G2 admits an AVD (k + 1)-edge-colouring φ2 such that all k outputs are
assigned colour 1. Still because k ≥ 3, we can also make sure that the support of Gk,r in G2 has its
set of incident colours being different from F2, and that, for the unique edge xy shared by G1 and
G2 in Gk,r (where, say, x has degree k and y has degree 1 in G1, and vice versa in G2), the set of
colours incident to x by φ1 is different from the set of colours incident to y by φ2. Repeating these
arguments to G3, . . . , Gr one after another, we deduce AVD (k + 1)-edge-colourings φ1, . . . , φr of
G1, . . . , Gr, respectively, which, when combined, yield one of Gk,r fulfilling the property of the
fourth item. This also proves that χ′AVD(Gk,r) ≤ k + 1, thus the second item.

The third item follows from the fact that an AVD (k+1)-edge-colouring of Gk,r, when restricted
to the edges of the Gi’s, must yield AVD (k + 1)-edge-colourings of G1, . . . , Gr. The third item of
Theorem 2.3 thus implies the third item of the current statement.

The last item follows from the fact that all vertices of Gk,r have degree 1 or k. In particular,
because Gk,r does not have adjacent vertices of degree 1, and (k+1)-edge-colourings assign strictly
positive colours, by such an edge-colouring a degree-1 vertex can never be incident to the same
sum of colours as its unique neighbour. Regarding any two adjacent vertices u and v of degree k,
note that, by an AVD (k+ 1)-edge-colouring φ of Gk,r, we always have s(u) = {1, . . . , k+ 1} \ {α}
and s(v) = {1, . . . , k + 1} \ {β}, for some α 6= β (as otherwise we would have s(u) = s(v)). This
means that σ(u) = (k+1)(k+2)

2 − α and σ(v) = (k+1)(k+2)
2 − β, thus, since α 6= β, that σ(u) 6= σ(v).

From this, we get that φ is also an NSD (k+ 1)-edge-colouring of Gk,r. These arguments, and the
other items we have proved, show that Gk,r fulfils all the properties of the last item.

In later proofs, we will repeatedly use the fact that certain edge-colourings of Gk,r must all
have particular properties, in particular regarding their outputs and support vertices. To exploit
this, we will manipulate Gk,r through the next two operations (see Figure 2).

Definition 2.6 (Connection operation). Let G be a graph with p pending edges e1 = v1u1, . . . , ep =
vpup where d(ui) = 1 for every i ∈ {1, . . . , p}, the vi’s are pairwise different, and d(vi) ≥ 2 for
every i ∈ {1, . . . , p}. By connecting e1, . . . , ep to x we mean identifying all of u1, . . . , up to a single
vertex x.

Definition 2.7 (Attachment operation). Let G be a graph with a pending edge e = vu where
d(u) = 1, and let w 6∈ N(v) be another vertex of G. By attaching u at w we mean identifying u
and w.
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v1 v2 vp

u1 u2 up

v1 v2 vp

x

(a) Connecting v1u1, . . . , vpup to x

v

u

w

v

w

(b) Attaching u at w

Figure 2: Illustration of the connection and attachment operations.

3. Base reductions

We start by proving that deciding whether a given graph is of AVD class 1 is an NP-hard
problem. We actually prove a stronger result, namely that this remains true when restricted to
graphs with maximum degree k for every k ≥ 3.

Theorem 3.1. For every k ≥ 3, it is NP-hard to decide whether a given graph with maximum
degree k is of AVD class 1.

Proof. Let k ≥ 3 be fixed. We prove the result by reduction from the problem of determining
whether a given k-regular graph is of class 1 (w.r.t. the chromatic index), which is known to be
NP-hard [7]. That is, given a k-regular graph G, we construct, in polynomial time, a graph H with
maximum degree k, such that χ′(G) = k if and only if χ′AVD(H) = k.

The construction of H is achieved starting from G, by replacing every edge of G by a copy of
Mk−1 (which is well defined, since k ≥ 3). More formally, we consider every edge e = uv of G in
turn, remove e from the graph, add a new copy Ge of Mk−1, choose any two outputs wx and yz of
Ge where w and z are the ends, and identify w and u, and similarly z and v. Note that, in H, the
original vertices (from G) are still of degree k, while all other vertices (from the Ge’s) have degree
k − 1 or 1. Thus, H has maximum degree k, and it is clearly obtained in polynomial time.

We now prove that we have the desired equivalence between G and H:

• Assume first that H admits an AVD k-edge-colouring φ. By Theorem 2.3, recall that, for
each copy Ge ofMk−1, by φ all outputs must be assigned the same colour. Let thus φ′ be the
k-edge-colouring of G obtained by considering every edge e ∈ E(G) and setting φ′(e) = x,
where x is the colour assigned by φ to all outputs of Ge in H. We claim that φ′ is proper.
Take two incident edges of G, say uv and uw. By construction, one output of Guv in H
and one output of Guw in H is incident with u, forcing that the outputs of Guv and Guw

have different colors in φ′. Therefore, by construction, uv and uw have different colors in the
edge-coloring φ.

• Assume now that G admits a proper k-edge-colouring φ. To obtain an AVD k-edge-colouring
φ′ of H, we consider every edge e = uv of G in turn, assign colour φ(e) by φ′ to the exactly
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a

b
c

d

e

(a) Part of G

Ge Gc Gb

Ga

Gd

(b) Part of H

Figure 3: Illustration of the reduction in the proof of Theorem 3.3. (a) depicts part of a graph G and of a proper
vertex-colouring. (b) depicts part of the reduced graph H and of a corresponding AVD edge-colouring. In (b),
wiggly edges of H are outputs of the Gv ’s.

two edges (actually outputs) of Ge incident to u and v, and extend this pre-colouring of Ge

in an AVD way to all its edges, which is possible according to Theorem 2.3. The fact that the
resulting φ′ is indeed an AVD edge-colouring of the whole of H, follows from the fact that,
generally speaking, for two vertices to have the same set of incident colours, they must be of
the same degree. Note that, in H, all adjacent vertices with the same degree belong to the
Ge’s, and they have degree precisely k − 1. By how φ′ was obtained, in particular through
Theorem 2.3 to colour the edges of the Ge’s, we deduce that there cannot be set conflicts.

Note that, in the proof of Theorem 3.1, the graphsH of maximum degree k we construct have all
their vertices being of degree k, k−1, or 1. By any proper k-edge-colouring, note that a vertex v of
degree k verifies σ(v) = k(k+1)

2 . Similarly, a vertex v of degree k−1 verifies σ(v) = k(k+1)
2 −α where

α ∈ {1, . . . , k} is the only colour not assigned to an edge incident to v. Note also that since we are
assigning strictly positive integers as colours, a degree-1 vertex cannot get the same sum of incident
colours as its unique neighbour, unless the graph is K2. From all these arguments, we deduce that
any AVD k-edge-colouring of H in the proof of Theorem 3.1 is also an NSD k-edge-colouring. This
implies the following:

Theorem 3.2. For every k ≥ 3, it is NP-hard to decide whether a given graph with maximum
degree k is of NSD class 1.

We now prove similar results for graphs of AVD and NSD class 2. It is important to emphasise,
at this point, that the NP-hardness reduction we give in the proof of the next result will be the
starting point for the proofs of most of our main results in later sections.

Theorem 3.3. For every k ≥ 3, it is NP-hard to decide whether a given graph with maximum
degree k is of AVD class 2.

Proof. Let k ≥ 3 be fixed. The result follows from the reduction below, from the problem of
determining whether a given graph G has chromatic number χ(G) = k+ 1 (which is NP-hard since
k + 1 ≥ 4 is fixed, see [5]), i.e., admits proper (k + 1)-vertex-colourings, that is, partitions of its
vertex set V (G) into k + 1 stable sets (i.e., sets in which no two vertices are adjacent). Given a
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graph G, we construct, in polynomial time, a graph H with maximum degree ∆(H) = k such that
χ(G) = k + 1 if and only if χ′AVD(H) = k + 1.

We construct H as follows (see Figure 3). Set D = ∆(G). For every vertex v of G, we add, in
H, a copy Gv of Gk,D. Now, for every edge uv of G, we connect, in H, a new output of Gu and
and a new output of Gv. By “new output”, we mean that every output of any Gv must be involved,
through the whole construction, in at most one output connection. That is, any vertex of H
resulting from some identification (through some output connection) must be of degree precisely 2.

Clearly, H is obtained in polynomial time from G. Also, H being obtained by connecting
disjoint outputs of copies of Gk,D, its maximum degree is precisely k. Actually, the vertices of H
have degree k (non-end vertices), 2 (identified ends), or 1 (non-identified ends).

Let us prove that we have the desired equivalence.

• Assume first that G admits a proper (k+ 1)-vertex-colouring φ. Let us consider the (k+ 1)-
edge-colouring φ′ of H obtained by simply considering an AVD (k + 1)-edge-colouring φv of
every Gv where all outputs are assigned colour φ(v) (such an edge-colouring of Gv exists by
Theorem 2.5), and combining all φv’s to form φ′. Clearly, all edges of H get assigned a colour
by φ′. For every edge uv of G, note that, in H, the only two adjacent edges of Gu and Gv

must be assigned distinct colours by φ′, since we have φ(u) 6= φ(v). This, and the fact that
the φv’s are AVD edge-colourings, imply that φ′ is proper. The fact that φ′ is also an AVD
edge-colouring is because any two adjacent vertices of degree k from some Gv cannot be in
conflict since φv was obtained through Theorem 2.5. So the only possible conflicts involve
ends, which are of degree at most 2 while their neighbours (which are part of the Gv’s) are
of degree k ≥ 3; thus, here as well, we cannot have set conflicts.

• Assume now that H admits an AVD (k + 1)-edge-colouring φ. By Theorem 2.5, all outputs
of any Gv must be assigned the same colour by φ, and, for φ to be proper, any Gu sharing
an end with Gv cannot have its outputs being assigned the same colour as that assigned to
the outputs of Gu. It follows that the (k + 1)-vertex-colouring φ′ of G where every vertex v
is assigned, by φ′, the colour assigned by φ to the outputs of Gv in H, is proper.

Again, we note that the reduction in the proof of Theorem 3.3 also applies to NSD (k + 1)-
edge-colourings. Namely, in the graphs H we construct, vertices have degree k, 2, or 1. Recall
that vertices of degree 1 cannot have the same sum of incident colours as their unique neighbour,
unless the graph is K2. By how AVD (k+ 1)-edge-colourings are obtained in the proof, vertices of
degree k have sum (k+1)(k+2)

2 −α for some α ∈ {1, . . . , k+1}, any two adjacent vertices of degree k
missing different α’s as otherwise their sets of incident colours would be the same. Note also that
H does not have two adjacent vertices of degree 2. Actually, the last possible sum conflicts are
between degree-2 vertices and degree-k vertices. Note that the largest possible sum for a degree-2
vertex by a proper (k+ 1)-edge-colouring is k+ k+ 1 = 2k+ 1, while the smallest possible sum for
a degree-k vertex is k(k+1)

2 . When k ≥ 4, note that we always have k(k+1)
2 > 2k+ 1, and thus such

sum conflicts cannot occur. For the case k = 3, note that, to avoid conflicts between a degree-3
vertex x and a degree-2 vertex y, we can invoke the fifth item of Theorem 2.5 to make sure that,
by AVD 4-edge-colourings of the Gv’s, in H the resulting sum of colours incident to x (which is
the support of some Gv) is different from that to y. Thus, the following also holds:

Theorem 3.4. For every k ≥ 3, it is NP-hard to decide whether a given graph with maximum
degree k is of NSD class 2.

4. Enhanced reductions

In this section, we build upon the reduction in the proof of Theorem 3.3 to prove that deter-
mining the AVD chromatic index of a graph is NP-hard even when its NSD chromatic index is
fixed, and vice versa. As a side result, we thus get that there are infinitely many graphs G such
that χ′AVD(G) < χ′NSD(G); actually, recognising such graphs cannot be done in polynomial time,
unless P=NP.

We begin by raising and recalling a few preliminary facts.
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Observation 4.1. If G is a graph of AVD class 1 with maximum degree 3, then G is of NSD class
1.

Proof. Assume G admits an AVD 3-edge-colouring φ. We claim that φ is an NSD edge-colouring.
Indeed, let us consider the possible sets (and sums) of colours incident to any vertex v of G:

• if d(v) = 3 and the edges incident to v are e1, e2, e3, then, because φ is proper, we must have
{φ(e1), φ(e2), φ(e3)} = {1, 2, 3}, and thus σ(v) = 6;

• if d(v) = 2 and the edges incident to v are e1, e2, then we must have {φ(e1), φ(e2)} = {1, 2},
{φ(e1), φ(e2)} = {1, 3}, or {φ(e1), φ(e2)} = {2, 3}, and thus σ(v) = 3, σ(v) = 4, or σ(v) = 5,
respectively;

• if d(v) = 1 and the edge incident to v is e1, then we must have {φ(e1)} = {1}, {φ(e1)} = {2},
or {φ(e1)} = {3}, and thus σ(v) = 1, σ(v) = 2, or σ(v) = 3, respectively.

Assume we have σ(u) = σ(v) for some edge uv of G. If d(u) = d(v), then note that, by the
classification above, we must have s(u) = s(v), a contradiction to φ being an AVD edge-colouring.
Now, if d(u) 6= d(v), then, still by the classification above, we must have σ(u) = σ(v) = 3, which
occurs only when, say, d(u) = 2 and d(v) = 1. More precisely, the only edge incident to v must be
assigned colour 3 by φ, while the two edges incident to u must be assigned colours 1 and 2. This
is clearly impossible, since u and v are adjacent. So, φ must be an NSD 3-edge-colouring.

Lemma 4.2. For every k ≥ 3, it is NP-hard to decide whether a given graph G with χ(G) ≤ k+ 1
verifies χ(G) = k.

Proof. This follows from the fact that, for every k ≥ 3, it is NP-hard to decide whether a k-regular
graph H is of class 1 (recall [7]). Indeed, recall that χ′(H) ∈ {k, k+1} by Vizing’s Theorem, and, in
particular, that proper (k+ 1)-edge-colourings of H always exist [8]. Now consider G = L(H), the
line graph of H (edges of H become vertices of G, every two of which are adjacent if and only if the
corresponding two edges of H are adjacent). It is well known that finding a proper edge-colouring
of H is exactly equivalent to finding a proper vertex-colouring of G. In particular, G is properly
(k + 1)-vertex-colourable, and finding a proper k-vertex-colouring of G is equivalent to finding a
proper k-edge-colouring of H. The result thus follows, since constructing the line graph of any
given graph can clearly be done in polynomial time.

We are now ready to prove our main results in this section.

4.1. Determining χ′AVD when χ′NSD is fixed
Recall that the next result does not hold for k = 3, because of Observation 4.1.

Theorem 4.3. For every k ≥ 4, it is NP-hard to decide whether a given graph of NSD class 2
with maximum degree k is of AVD class 1.

Proof. Let k ≥ 4 be fixed. We prove the result by reduction from the problem of deciding whether
a given graph that is properly k-vertex-colourable is properly (k − 1)-vertex-colourable (which is
NP-hard by Lemma 4.2, since k ≥ 4). Given a graph G that is properly k-vertex-colourable, we
construct, in polynomial time, a graph H of NSD class 2 with maximum degree ∆(H) = k such
that G is properly (k − 1)-vertex-colourable if and only if H is of AVD class 1.

We construct H as follows (see Figure 4). Start from k copies G1, . . . , Gk of Gk−1,r (which is
well defined, since k ≥ 4). The value of r we need will be clarified as the construction is achieved;
for now, let us assume that r is sufficiently large so that we always have a new output of any Gi in
hands whenever we need one. Consider now k outputs e1, . . . , ek of the Gi’s, where every ei is an
output of Gi, and connect e1, . . . , ek to a vertex x. Next, for every three pairwise distinct integers
i, j, ` ∈ {1, . . . , k}, take one new output e of Gi, one new output f of Gj , and one new output g of
Gk, connect e and f to a vertex ui,j,`, and, denoting vi,j,` the end of g, add the edge ui,j,`vi,j,`.
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Reduced graph from Theorem 3.3

Ga Gb

G1

G2

G3

G4

x

u1,2,3

v1,2,3

u1,3,4

v1,3,4

Figure 4: Part of the reduction in the proof of Theorem 4.3, in the special case where k = 4. Wiggly edges are
outputs of some Gk,r. Due to space limitation, note that not all pairs {ui,j,`, vi,j,`} are represented.

To end up the construction of H, we now proceed similarly as in the reduction in the proof of
Theorem 3.3. That is, assuming4 D = ∆(G), for every vertex v of G we add a copy Gv of Gk−1,D+1

(which, again, is well defined) to the graph, and for every edge uv ∈ E(G) we connect an output of
Gu and an output of Gv. Lastly, for every Gv, we connect an output of Gv and an output of G1.

Note that, for any Gi, the value of r we need is bounded above by 1 + k3 + |V (G)|: one output
is used for creating x, at most k3 outputs are used to create ui,j,`’s and vi,j,`’s, and |V (G)| outputs
might be connected to outputs of the Gv’s. Thus, H is obtained in polynomial time.

Note also that H is of maximum degree exactly k: vertex x is of degree exactly k, while it
can be checked that, by construction, every other vertex has degree at most k − 1. We claim
also that H is of NSD class 2. Indeed, assume, towards a contradiction, that H admits an NSD
k-edge-colouring φ. By Theorem 2.5, every Gi must have all its outputs being assigned the same
colour by φ since ∆(Gi) = k − 1. Since all the Gi’s have an output incident to x, we deduce that
some Gi must have all its outputs assigned colour 1 by φ, and similarly some Gj and G` (with i, j, `
being pairwise distinct) must have all their outputs assigned colours 2 and 3 by φ, respectively.
But then we deduce that σ(ui,j,`) = σ(vi,j,`) = 3 + φ(ui,j,`vi,j,`), a contradiction.

To see now that H admits NSD (k + 1)-edge-colourings, one can consider e.g. the following
construction for an edge-colouring φ of H. Start by edge-colouring every Gi in an NSD way with
only colours 1, . . . , k. As mentioned earlier, we may assume that Gi has all its outputs assigned
colour i for every i ∈ {1, . . . , k}. Now, consider every ui,j,`, and change to k+1 the colour assigned
by φ to the output of Gi incident to ui,j,`. Note that this raises no properness issues. In particular,
we always have σ(ui,j,`) > σ(vi,j,`) since ui,j,` is incident to an edge with colour k + 1 while vi,j,`
is not, and d(ui,j,`) = 3 > 2 = d(vi,j,`). Now, assign a valid colour to every edge ui,j,`vi,j,` so
that the resulting edge-colouring remains proper and no sum conflicts arise. Note that this is
always possible, as only three colours are forbidden for every edge ui,j,`vi,j,` due to the properness
requirement, while, regarding the sum requirement, by the fifth item of Theorem 2.5 we can freely
modify (if needed) the edge-colourings of the Gi’s so that the supports of the outputs incident to
the ui,j,`’s have the largest sum possible, to guarantee they cannot be involved in sum conflicts

4Note that there is no constraint on ∆(G) in Lemma 4.2, which might, in particular, verify ∆(G) > k.
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with their neighbours in the Gi’s. We now extend φ to the Gv’s. For that, we consider ψ, a proper
{2, . . . , k + 1}-vertex-colouring of G, which exists by our original hypothesis on G. We consider
now every Gv, and extend φ to its edges in an NSD way with colours 2, . . . , k+1 in such a way that
all its outputs are assigned colour ψ(v) (this can be done starting from an NSD k-edge-colouring,
by eventually adding 1 to all assigned colours). Note that we do not get properness issues, because
ψ is a proper vertex-colouring of G and no Gv has its outputs assigned colour 1 (recall indeed that
every Gv has an output connected to an output of G1, which has its outputs assigned colour 1).
Furthermore, the fact that we assign colours in {2, . . . , k+ 1}, because in the Gv’s all vertices have
degree k − 1, has no impact on the fact that every Gv can be edge-coloured so that sum conflicts
are avoided around the outputs, as described in the fifth item of Theorem 2.5. All in all, we can
thus obtain an NSD (k + 1)-edge-colouring of H, which shows that it is of NSD class 2.

We claim that we also have the desired equivalence between G and H:

• Assume H is of AVD class 1, i.e., H admits an AVD k-edge-colouring φ. By Theorem 2.5,
all outputs of G1 must be assigned the same colour by φ. Without loss of generality, we may
assume that colour is k. Similarly, all Gv’s have their outputs assigned the same colour, and
no Gv can assign colour k to its outputs due to a connection with G1. Also, by construction,
if uv ∈ E(G), then Gu and Gv share an end in H, and thus they cannot assign the same
colour to their outputs by φ. It follows that the (k − 1)-vertex-colouring φ′ of G, obtained
by setting φ′(v) = α for every v ∈ V (G), where α is the colour assigned by φ to the outputs
of Gv, is a proper (k − 1)-vertex-colouring of G.

• Assume now that G admits a proper (k− 1)-vertex-colouring φ. Free to rename the colours,
we can assume φ is a {2, . . . , k}-vertex-colouring. To obtain an AVD k-edge-colouring φ′

of H, we can proceed as earlier. Start from an AVD k-edge-colouring of every Gi where
all outputs are assigned colour i (which exists, by Theorem 2.5). Note that, this far, no
properness issues are raised, the ui,j,`’s and vi,j,`’s cannot be in set conflicts due to their
degrees being different, and, by conveniently choosing set colours through the fourth item of
Theorem 2.5, we can make sure no other set conflicts involve ends of the Gi’s. Now extend
φ′ in an AVD way to the Gv’s with making sure that all outputs of any Gv are assigned
colour φ(v), and so that no set conflicts arise around the outputs. This is possible, still by
the fourth item of Theorem 2.5. Now, since φ is a proper vertex-colouring of G, and G1 has
all its outputs assigned colour 1 while none of the Gv’s has this property, we deduce that φ′
must be an AVD k-edge-colouring of H. Hence, H is of AVD class 1.

Theorem 4.4. For every k ≥ 3, it is NP-hard to decide whether a given graph of NSD class 3
with maximum degree k is of AVD class 2.

Proof. Let k ≥ 3. This result can be proved through a reduction quite similar to that in the proof
of Theorem 4.3, the main differences being the following:

• The reduction is from the problem of deciding whether a given properly (k + 1)-vertex-
colourable graph G is properly k-vertex-colourable. Recall that this problem is indeed NP-
hard by Lemma 4.2, since k ≥ 3.

• In H, we now have k + 1 Gi’s, G1, . . . , Gk+1, which are here copies of Gk,r.

• Instead of connecting outputs of the Gi’s to the single vertex x, we now connect them in
pairs. That is, for every two distinct i, j ∈ {1, . . . , k + 1}, we connect one output of Gi and
one output of Gj to a vertex xi,j .

• The Gv’s are copies of Gk,r.

The rest of the reduction is similar. In particular, for every pairwise distinct i, j, ` ∈ {1, . . . , k+
1} we create and join the vertices ui,j,` and vi,j,` as previously, and we create the Gv’s from G,
which are all connected to G1 and connected in pairs following the structure of G.

Note that the modifications above have no impact on the fact that the reduction is performed in
polynomial time. The most important difference is that the maximum degree of H is k, which is the
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Figure 5: Part of the reduction in the proof of Theorem 4.5, in the special case where k = 4. Wiggly edges are
outputs of some Gk,r. Due to space limitation, note that, in (a), not all pairs {ui,j , vi,j} are represented.

maximum degree of the vertices in the Gi’s (and Gv’s). From the second item of Theorem 2.5, we
thus deduce that χ′NSD(H) ≥ χ′AVD(H) ≥ k+ 1. Now, note that by an AVD (k+ 1)-edge-colouring
of H, we still have the property that all Gi’s (and Gv’s) must have all their outputs assigned the
same colour, and that any two of the Gi’s cannot assign the same colour to their outputs because of
the xi,j ’s. From these arguments, we essentially get that an AVD or NSD (k+ 1)-edge-colouring of
H here, behaves similarly as an AVD or NSD k-edge-colouring of H as constructed in the proof of
Theorem 4.3. In particular, here H is of NSD class 3 (which can be proved quite similarly as in the
proof of Theorem 4.3), and it is of AVD class 2 if and only if G is properly k-vertex-colourable.

4.2. Determining χ′NSD when χ′AVD is fixed
Again, the next result cannot be extended to the case where k = 3, by Observation 4.1.

Theorem 4.5. For every k ≥ 4, it is NP-hard to decide whether a given graph of AVD class 1
with maximum degree k is of NSD class 1.

Proof. Let k ≥ 4 be fixed. We prove the result by reduction from the problem of deciding whether
a properly k-vertex-colourable graph is properly (k − 1)-vertex-colourable (which is NP-hard by
Lemma 4.2). That is, given a properly k-vertex-colourable graph G, we construct, in polynomial
time, a graph H of AVD class 1 with maximum degree k such that G is properly (k − 1)-vertex-
colourable if and only if H is of NSD class 1.
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Before we start describing H, let us first introduce some graph Q, which is reminiscent of graphs
we have already constructed in previous proofs, and which will be needed for constructing H. We
start from k copies G1, . . . , Gk of Gk−1,r for r large enough. Again, we consider e1, . . . , ek, any k
outputs of the Gi’s, where ei is an output of Gi for every i ∈ {1, . . . , k}, and connect e1, . . . , ek to
a vertex x. Next, for every two distinct integers i, j ∈ {2, . . . , k}, we consider one new output e of
G1, one new output f of Gi, and one new output g of Gj , connect e and f to a vertex ui,j , and,
denoting vi,j the end of g, add the edge ui,jvi,j . The resulting graph is Q (depicted in Figure 5(a))

We are now ready to construct H (see Figure 5(b)). Set D = ∆(G). We start by considering
every vertex v of G, and add, to H, a copy Gv of Gk−1,D+1. Now, for every edge uv of G, we
connect a new output of Gu and a new output of Gv in H. Lastly, for every vertex v of G, we add
a copy Qv of Q to H, and connect a new output of the G1 in Qv and a new output of Gv.

It can be checked that H, which is clearly constructed in polynomial time, has maximum degree
exactly k, due notably to x. For the same reasons as in the proof of Theorem 4.3, there exist AVD
k-edge-colourings of Q. Precisely, in Q, all Gi’s must have their outputs being assigned the same
colour, and, because of x, no two of the Gi’s can share the same colour on their outputs. Also, the
ui,j ’s and vi,j ’s are of different degrees (3 and 2, respectively), while their neighbours have degree
at least 3. By the fourth item of Theorem 2.5, we can avoid any set conflict between ui,j and its
two neighbours in G1 and Gi, by conveniently choosing the set of colours incident to these two
vertices, which can be done at will. This implies that, when colouring any edge ui,jvi,j , we only
have to care about properness, which is fine since we have at least four colours in hands. Now, to
construct an AVD k-edge-colouring of H, one can proceed as follows. Let ψ be a proper k-vertex-
colouring of G, which exists by our assumption on G. For every vertex v of G, start, as in the proof
of Theorem 4.3, by k-edge-colouring Gv in an AVD way so that the outputs are assigned colour
ψ(v), which is possible according to Theorem 2.5. Note that for every two adjacent vertices u and
v of G, the connected outputs of Gu and Gv in H receive distinct colours by the edge-colouring,
as ψ(u) 6= ψ(v). Also, any vertex resulting from the connection of some Gu and Gv has degree 2
while its neighbours have degree at least 3, and thus we cannot have set conflicts involving such
vertices. Lastly, we consider every Qv, and extend the k-edge-colouring to the edges of Qv in an
AVD way and in such a way that the outputs of its G1 are assigned a colour different from ψ(v)
(to ensure properness – recall that AVDness is guaranteed due to degrees being different). From
these arguments and previous ones, we deduce that the resulting k-edge-colouring of H is an AVD
edge-colouring. Thus, H is of AVD class 1.

Now, we claim that we have the desired equivalence between G and H.

• Assume H admits an NSD k-edge-colouring. Let us first analyse how an NSD k-edge-
colouring φ behaves in Q. Once again, the Gi’s must assign the same colour to all their
outputs, and two of the Gi’s cannot assign the same colour to their outputs, because of x.
The important point here, is the role of the ui,j ’s and vi,j ’s. Recall that for every two distinct
i, j ∈ {2, . . . , k}, an output of G1 and an output of Gi were connected, resulting in ui,j , which
is adjacent to an end, vi,j , of some output of Gj . From this, we deduce that the outputs of
G1 must be assigned colour k by φ. Indeed, if that was not the case, then there would be
distinct i, j ∈ {2, . . . , k} such that either the outputs of G1 are assigned colour 1 and the
outputs of Gi are assigned colour some α 6= 1, or the outputs of G1 are assigned colour α and
the outputs of Gi are assigned colour 1, while the outputs of Gj are assigned colour α + 1.
Then we would have σ(ui,j) = α+ φ(ui,jvi,j) = σ(vi,j), a contradiction to the fact that φ is
an NSD k-edge-colouring of Q. So, the outputs of G1 in Q must be assigned colour k.

Now consider an NSD k-edge-colouring φ of H. By the argumentation above, for every vertex
v of G, in H the output of Qv connected to an output of Gv must be assigned colour k. This
means that every Gv must have all its outputs assigned the same colour (by Theorem 2.5),
which must be different from k. Also, due to how the Gv’s were connected, if u and v are
two adjacent vertices of G, then Gu must assign by φ the same colour to all its outputs, that
colour being different to the colour assigned to all the outputs of Gv. From this, we deduce
that if, for every v ∈ V (G), we set φ′(v) = α, where α ∈ {1, . . . , k− 1} is the colour assigned
by φ to all outputs of Gv in H, then φ′ must be a proper (k − 1)-vertex-colouring of G.

• Assume now that G admits a proper (k − 1)-vertex-colouring φ. We construct an NSD k-
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edge-colouring φ′ of H in the following way. For every Gv, we consider, by φ′, an NSD
k-edge-colouring where all outputs are assigned colour φ(v). Note that, φ being a proper
vertex-colouring, at this point φ′ must be proper. Also, due to the fifth item of Theorem 2.5,
in every Gv we can modify φ′ slightly, if needed, to avoid any sum conflict around vertices
that result from output connections. Furthermore, since φ is a (k − 1)-vertex-colouring, at
this point no output is assigned colour k by φ′. We now extend φ′ to the edges of the Qv’s. As
remarked earlier, Q admits NSD k-edge-colourings, and, in every such colouring, the outputs
of G1 in Q must be assigned colour k. In H, we consequently extend φ′ to the edges of the
Qv’s this way, with making sure that all outputs of the G1’s are assigned colour k, while no
sum conflict involves vertices resulting from the connection of Qv’s and Gv’s (which can be
guaranteed by the fifth item of Theorem 2.5). Eventually, this results in φ′ being an NSD
k-edge-colouring of H. This shows that H is of NSD class 1.

Theorem 4.6. For every k ≥ 3, it is NP-hard to decide whether a given graph of AVD class 2
with maximum degree k is of NSD class 2.

Proof. Let k ≥ 3 be fixed. Quite similarly as for Theorems 4.3 and 4.4, the result can be proved
by modifying the reduction in the proof of Theorem 4.5 slightly. Namely:

• Perform the reduction from the problem of deciding whether a given properly (k + 1)-
vertex-colourable graph G is properly k-vertex-colourable. This is an NP-hard problem by
Lemma 4.2, since k ≥ 3.

• In Q, we here have k + 1 Gi’s, G1, . . . , Gk+1, which are copies of Gk,r.

• In Q, instead of connecting outputs of the Gi’s through x, we connect them in pairs. Namely,
for every two distinct i, j ∈ {1, . . . , k + 1}, we connect one output of Gi and one output of
Gj to a vertex xi,j .

• The Gv’s are copies of Gk,r.

As earlier regarding Theorems 4.3 and 4.4, the modifications we made above to the construction
of H guarantee, essentially, that the edge-colouring mechanisms described in the proof of Theo-
rem 4.5 adapt the same way when considering k+1 colours here. The maximum degree of H being
k, and Gk,r containing adjacent vertices with degree k, we have χ′NSD(H) ≥ χ′AVD(H) ≥ k + 1
by Theorem 2.5. From proper (k + 1)-vertex-colourings of G, we can deduce AVD (k + 1)-edge-
colourings of H, which is thus of class 2. Because of the ui,j ’s and vi,j ’s, for the same reasons as
previously, in every NSD (k + 1)-edge-colouring of Q the outputs of G1 must be assigned colour
k+ 1. From this, similar arguments as in the proof of Theorem 4.5 apply here, and we can deduce
an NSD (k + 1)-edge-colouring of H from a proper k-vertex-colouring of G, and vice versa.

5. Conclusion

In this work, our main goal was to further increase our general knowledge of the AVD and NSD
chromatic indices, which led us to the following results:

• Through our results in Section 3, we have proved that deciding whether a graph is of AVD
or NSD class 1 or 2 is NP-hard. As mentioned earlier, AVD and NSD edge-colourings being
quite studied objects, it is surprising that these results have not been established already.
A remarkable fact is that we have proved these results for graphs with maximum degree k
for every k ≥ 3: contrarily to what one could think, there is no k0 such that graphs with
maximum degree more than k0 become easier to colour, due to the larger pool of colours.

To go a bit further, it would be interesting to wonder about restrictions of these results to
graphs with particular structural properties. Notably, the gadgets Mk we have introduced,
which stand as our main tools throughout our NP-hardness reductions, do not comply well
with planarity. Planar graphs being probably among the most investigated classes of graphs
in the context of AVD and NSD edge-colourings, it would definitely be interesting to wonder
about generalisations of our results to these graphs. Another quite investigated class of
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graphs is that of sparse graphs (i.e., with low density); again, it would be interesting to
wonder about our results for this class of graphs. As a first step, note that, in our proof of
Theorem 3.1, for the case k = 3 the reduced graph is actually obtained from a cubic graph
by subdividing each edge exactly 3 times. Note that this actually makes the reduced graph
bipartite. More interesting, is the fact that each edge of the cubic graph could actually be
subdivided x times, for any x being a multiple of 3. This implies that the case k = 3 of
Theorem 3.1 actually holds for bipartite subcubic graphs with arbitrarily large girth, thus
being quite sparse. One possible direction for further research, could be to wonder about
similar restrictions for our other results.

• Through our results in Section 4, we have proved that there exist infinitely many graphs for
which the AVD and NSD chromatic indices are different. Again, a remarkable fact is that
this holds for graphs with arbitrary maximum degree, which might sound surprising. Even
stronger, we actually proved that graphs with AVD class 1 and NSD class 1, and similarly
graphs with AVD class 2 and NSD class 2, are hard to recognise in general, unless P=NP.
Note that we actually proved this twice, as, regarding those concerns, Theorems 4.5 and 4.6
essentially accomplish the same things as Theorems 4.3 and 4.4. Nevertheless, we believe the
slightly different edge-colouring mechanisms in all these NP-hardness proofs are interesting,
in that they might be of some use towards going further with that line of research.

At this point, an appealing direction of research in those lines would concern the existence
of graphs of AVD class 1 and NSD class 3. Despite many attempts, we were unsuccessful
in designing even only one such graph. Towards this goal, one direction could be to wonder
about the existence of graphs with similar colouring properties as our Mk construction, plus
additional properties such as being of AVD class 1. Another direction could be to consider
small values of k first. Recall that, by Observation 4.1, every graph with maximum degree
k = 3 of AVD class 1 is also of NSD class 1. For every k ≥ 4, recall that a graph with
maximum degree k of AVD class 1 can be of NSD class 2, by Theorems 4.3 and 4.5. One
first step could thus be to wonder about the existence of graphs with maximum degree 4 of
AVD class 1 and NSD class 3.

Another question could be about the minimum order of graphs with differing AVD class and
NSD class. Upper bounds on this minimum can be obtained e.g. from the arguments in the proofs
we have provided in Section 4. For that, one can just consider any of the reduced graphs H
constructed in one of the four main proofs, with making the extra assumption that G is empty.
Due to our arguments, graphs of this sort can be constructed for any maximum degree k ≥ 3, and
they are of different AVD class and NSD class due to the arguments we have provided. It can be
noted, however, that they are rather large.
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