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Abstract—Conventional wired Network-on-Chip (NoC) designs
suffer from performance degradation due to multi-hop long-
distance communication. To address such a problem, in the past
decade, researchers have been focused on investigating Wireless
NoC (WiNoC), which evolved as a viable solution to mitigate
this communication bottleneck by using single-hop long-range
wireless links. However, many researchers reported that these
interconnects may suffer failure due to the complexity of imple-
mentation. Although few works in the literature tackle faults in
WiNoC, none of them provides a comprehensive study related to
channel access mechanisms in the presence of faults. To fill this
gap, we propose a fault aware WiNoC architecture. We discuss
two types of faults in wireless interconnects, namely, transceiver
faults and token controller faults. We provide different fault-
tolerant techniques to deal with such faults. The proposed
FTWiNoC presents, on average, 17.8% and 8.9% improvement
in latency compared to two different fault mitigation strategies
in the literature.

Keywords— Wireless Network-on-Chip; Fault Detection;
Fault Mitigating strategies.

I. INTRODUCTION

Network-on-Chip (NoC) is used as the communication
backbone for multi/many-core platforms due to its scalability,
flexibility, and parallelism. However, as the number of core
increases wired NoC faces a serious communication bottleneck
due to long multi-hop packet communication. Some works
introduce long-range wires [1] and express channels [2] for
on-chip long-distance communication. Both these techniques
require long metal wires and need efforts to synchronize the
timing of these links. Also, they require high radix routers giv-
ing rise to issues of area and power consumption. Therefore,
researchers started to explore new interconnect paradigms. Re-
searchers reported that emerging interconnect architectures can
improve network performance by limiting long distance multi-
hop communication observed in conventional wired NoCs [3].
There are three main emerging interconnects that are currently
being explored by different research communities, which are
three dimensions (3D) [4], photonic [5], and millimeter (mm)
wave range wireless on-chip communication networks [6].
Among them, wireless NoC (WiNoC) has gained popularity
and emerged as a viable solution that handles long-distance
communications using a single-hop wireless link for large
many-core systems.

One of the drawbacks of wireless interconnects is that
wireless components have higher failure rates compared to
other on-chip components due to their increased design com-
plexity [7], and high utilization rate since they are used for

performance enhancement [8]. Therefore, the most important
issue regarding the design of a wireless interconnection frame-
work for the large multicore system is fault tolerance, which
indicates the ability of a system to function correctly even
if some of its on-chip components fail. Faults in WiNoC
are broadly classified into two categories, that is transient
and permanent faults. Transient faults occur when one or
more bits in the transmitted message become faulty. They are
handled using software methods such as ECC [9]. However,
it is different to deal with permanent faults, as they cause
irreversible changes in the chip. It may occur during the
manufacturing process or infield operation of the chip due to
aging. A manufacturing test is used to detect permanent faults
caused by the manufacturing process and dismiss the faulty
circuits [10]. If a permanent fault emerges during the operation
of the chip, it may cause degradation in system performance
and may lead to system failure. Fault tolerance methods can
provide means to alleviate such situations. The methods to
tolerate permanent faults in wireless interface include detour
and re-direction-based routing strategies [7], [8], [11], [12].

This work focuses on strategies to detect and mitigate
permanent faults in WiNoC. We consider two types of faults
in the WiNoC, that is, the transceiver faults and token con-
troller faults. Failure of the transceiver section will hamper
the transmission and reception of packets communicated via
wireless route. We use a spare component to handle transceiver
faults, where one of the transceivers is active while the other
is switch-off. When the active transceiver fails, we switch it
off and turn on the spare. We use token passing to ensure fair
access to the wireless resource by all the network components.
Therefore, the failure of the token controller may disrupt the
proper functioning of the entire system. To mitigate token
controller failure, we use a bypass mechanism. The packets
which want to communicate via the wireless interface are
detoured through the wired NoC.

The contribution of this work is twofold: (1) An online
fault detection technique for WiNoC; (2) A novel method
to mitigate permanent faults in WiNoC, considering both
transceiver and token controller faults.

We organize the paper as follows. Section 2 describes
related works. The system architecture that includes routing
algorithm, wireless interface architecture, and communication
protocol are discussed in section 3. The fault model and
detection methods are discussed in Section 4. Fault-aware
wireless NoC is presented in section 5. Section 6 presents the



results of the performance evaluation, and Section 7 concludes
this work.

II. LITERATURE REVIEW

The paper [13] adopts complex network based architectures,
along with an adaptive routing algorithm that reduces the effect
of wireless link failures on the performance of the NoC. In
[11], the authors present a fault-tolerant hybrid wireless NoC
with a hierarchical configuration. They consider a 2D mesh
architecture and divide it into clusters. Some of the nodes are
selected to the cluster head (CH) used for long-range commu-
nication. In case of failure of one CH, the other CH is used
for long-distance communication. A fault-tolerant table-based
routing algorithm is used for short-distance communication.
Also, they present a provision for long-range communication,
considering all CHs have failed, using wired NoC. Similar
work is done in [7], where the authors have used node-disjoint
communication structures in the hybrid wireless NoC to deal
with permanent faults in the wireless routers. The authors
in [8] present a new WiNoC topology along with a routing
mechanism to tolerate both intermittent and permanent faults
on Wireless Hub (WH). The base architecture consists of a
2D mesh which is divided into subnets consisting of 16 nodes.
All the nodes are connected to a single WH. In this scheme,
when a WH becomes faulty, the adjacent hub is selected for
the long-range packet communication. In [12], authors present
link faults which include failure of wireless links. They update
the routers regarding the faults and use a look-ahead detour
based routing strategy to bypass the faulty links.

There are three main drawbacks to the above-reviewed
works. First, the works in [7], [8], [11] redirect packets to the
alternative WI, which may lead to network congestion. Sec-
ond, they do not consider fault detection, which is important
regarding faults in WiNoC. The works presented in [7], [8],
[11], [12] do not focus on the medium access control (MAC)
protocol and its effects in case of faults. Lastly, none of the
works present a fault detection mechanism. In this work, we
address all these issues. We use spare wireless transceivers
and detour-based routing mechanisms to handle faults in
WiNoC. Also, we provide fault detection, mitigation, and
reconfiguration of MAC protocol for the proper functioning
of the WiNoC in the presence of faults.

III. SYSTEM ARCHITECTURE

We consider a 2D Mesh based Wireless NoC, which is
divided into equal sized non-overlapping clusters as shown
in Fig 1a. Each cluster consists of 16 routers present in a
4×4 arrangement. Every cluster has a centrally placed wireless
hub (WH) providing inter-cluster wireless links. It consists of
the different modules required for wireless communication.
Details about WH are present in Section III-B. The WH is
connected to one router in the cluster, which is known as a hub
connection (HC) router. Thus, all packets communicated using
the WH, flow through the HC router. The architecture of our
WiNoC is similar to the work [14]. We have considered a 5-
port router in our system architecture, which consists of North,
South, East, West, and Local port, respectively. The HC routers

have a sixth port that is exclusively used to connect to the
hub. This sixth port connection is used for sending/receiving
packets to/from the hub for wireless transmission.

A. Routing Algorithm

We use a threshold-based XY routing algorithm to route
packets from the source to the destination node [15]. The
algorithm is aware of the wireless capabilities of the NoC,
including the location of the HC router. Let us briefly explain
the working of this algorithm. We allocate an address to every
router based on their XY coordinate. Also, every router knows
their cluster id and the address of the corresponding HC router.
The head flit in the packet contains the source and destination
address. At the source router, the Manhattan distance between
the source and destination nodes is calculated. If the Manhat-
tan distance between the source-destination pair is greater than
the threshold, the packet is routed using the WH. To route a
packet through WH, first it is routed using XY routing to the
HC router which sends it to the hub. The source hub transmits
the packet to its destination hub using wireless transmission.
Next, the packet is routed to its destination following the XY
route. If the Manhattan distance is less than the threshold, the
packet is routed using XY routing through the wired NoC.
The threshold for wireless communication for any packet is
calculated employing the equation, Eq 1.

TH = α× (MD(src r, src HC r)+

MD(dst r, dst HC r) +WD)
(1)

Here, src r, src HC r, dst r, and dst HC r are source
router, source HC router, destination router and destination
HC router respectively. MD is the Manhattan distance, which
is the number of hops between two routers. Next, WD is the
wireless distance. In this work, we have considered single-hop
wireless communication. Lastly, we present a new parameter
α which helps to specify the desired hop count between
the source and destination routers. The value of alpha is
represented as α ∈ Z|0 < α ≤ ((N +M) − 1). N and M
denoted the length and breadth of the WiNoC platform. The
user can select the value of α depending upon the network
traffic. In this work, we use ‘1’ as the α value.

B. Wireless Hub Architecture and Medium Access Control

The primary components for wireless communication are
an on-chip antenna and transceiver. A metal zigzag antenna is
adopted from [16]. In this work, we employ a non-coherent
On-Off keying (OOK) modulation scheme based transceiver
for WiNoC from [17]. The transmitter (TX) circuitry consists
of input buffers, a serializer, a modulator, and a power am-
plifier (PA). On the receiver (RX) side, a direct-conversion
topology is adopted, consisting of a low noise amplifier (LNA),
demodulator, deserializer, and output buffers. The input and
output buffers are 32 bit wide with a buffer depth of 8 flits.
As we consider the entire packet is transmitted and received
during the wireless communication, these buffers are used to
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Fig. 1: The system architecture along with the WH architecture

hold the entire packet. We refer to the wireless communication
architecture as wireless hub. This is shown in Fig 1b.

A Medium Access Control (MAC) mechanism is used
to share wireless channels among multiple users. We use
Time Division Multiple Access (TDMA) based token passing
technique, where a single token is circulated among all the
hubs. This scheme is implemented as follows. First, we assign
a label to each of the WH. This label is called Hamiltonian
labeling. The hub label is calculated depending on the cluster
coordinate and the total number of hubs present in the network.
We assign two bits for representation of the hub labels as there
are 4 hubs in the network. If the number of clusters increases
(topology size increases), then three or more bits may be
used for their representation. Therefore, the hubs belonging
to clusters 0, 1, 2, 3 will be assigned as a label ”00”, ”01”,
”10”, and ”11” respectively.

Tokens are passed among the hubs using their wireless
infrastructure. First, a directed Hamiltonian path of the hub
network (consisting of all the hubs in the WiNoC) is con-
structed. We implement a token passing scheme based on the
Hamiltonian ring, where the token is passed through all the
hubs only once; finally reaching the starting hub. Every hub
has a register known as the hub address register (HAR), shown
in Fig 1b. HAR contains the address (label) of the next hub in
the ring. Once a hub receives the token, it checks whether there
is any request for wireless communication. If there exists no
such request, the token is passed to the next hub. Otherwise,
the hub holds the token till all the flits of the packet are
transferred. Each hub has the right to send one packet each
time it receives the token. Once the destination hub receives
the tail flit, it generates an acknowledgment (ACK) and sends
it to the source hub. On receiving the ACK, the source hub
gets confirmation that the packet transmission is successful
and releases the token. This policy helps to avoid collisions
between different hubs. Please note that a hub starts wireless

transmission, if and only if the hub has the token. In case the
token is not available, packets need to wait for the availability
of the token.

IV. FAULT MODEL AND DETECTION

In this section, we discuss the different faults that we have
considered in this paper, and we present the first contribution
of this work, which is the fault detection in the token controller
and transceiver. Note that we are assuming coarse gain faults,
i.e., the failure of any component in the transmitter, receiver
or token controller will lead to the failure of the hub. Also,
we consider at any time instant only one hub can get faulty.

A. Token Controller Failure

In case the token controller becomes faulty, the functionality
of the entire system will disrupt. The hubs require the token
to get access to the wireless channel for packet transmission.
After the completion of packet transmission, they transfer the
token to the next hub whose address is in the HAR. In case
of failure of the token controller, two situations may arise (1)
the token controller holds the token and does not release it;
(2) the token controller releases the token however the next
hub does not receive it. In (1), one hub holds the token and all
other hubs starve. While in (2), none has the token, and hence
all of them starve. In both cases, the packets that need to be
transferred by the WHs will wait without being served. This
will cause back pressure leading to congestion in the network.

B. Token Controller Fault Detection

We detect the fault in the token controller (TC) by using
three counters PTC= Packet Transmit Count; THC= Token
Hold Counter; TWC= Token Wait Counter. We position these
counters inside the dynamic fault controller (DFC) discussed
in Section V-A. Every time the transmitter sends a flit, we
increment the PTC. In this work, we consider every packet is
8 flits long. Therefore, PTC has 3 bits.



When a hub receives the token, THC is set. THC is
incremented by 1 during the time the hub holds the token.
When the hub releases the token the THC is reset. THC has
4 bits. The reason of this size is to provide extra time for
receiving the ACK. The TWC is set when the hub releases
the token and reset when the hub receives the token. The
TWC is incremented by 1 at each clock cycle if the token
is not available. The function of the TWC is to ensure every
hub gets the token and no hub is starving. TWC has 8 bits.
Therefore, it provides a maximum wait time (MWT ) of 256
cycles. Please note that the user may increase the MWT of
TWC depending on the number of WH present in the network
such that it respects the fault detection procedure.

To detect whether the TC is faulty, we check THC and PTC.
If PTC is 0 while THC reached the threshold, the source hub’s
token controller is faulty. As soon as a fault is detected in the
source hub, it is switched off. Otherwise, the faulty TC could
have released the token. However, the token did not reach the
next hub due to fault. Therefore, THC (in the source hub)
will not reset and holds the maximum value. During fault-free
operation, a hub that does not have the token, its THC is reset
while the TWC is set and incremented. For all other hubs,
TWC is set and start counting. As the TWC for each hub
starts at different times, therefore they will reach the MWT
at different times. The hub that reaches the MWT first will
send a token controller fault query (TCFQ) to all other WHs in
the network. After receiving TCFQ, all the other hubs check
the value of TWC and THC. If the value of THC and TWC do
adhere to the above rule, then the hub is faulty and is switched
off. All the hubs send ACK to the sender hub, except the faulty
one. Using the received information, it is possible to identify
the hub with a faulty TC and take the necessary measures to
tolerate the fault.

C. Wireless Transceiver Failure

We consider the source transmitter (Src Tx) or receiver
(Src Rx) faulty or destination transmitter (Dst Tx) or re-
ceiver (Dst Rx) faulty. Also, both Src Tx and Src Rx, or
Dst Tx and Dst Rx may become faulty. In case of failure in
the Src Tx, the transfer of packets between communicating
WHs will fail. The Src Tx failure will lead to backward
pressure as the packets for wireless transmission will not
be served and remain waiting in the routers along the path,
which ultimately will lead to network congestion. A fault in
the Src Rx will also disrupt the packet transmission process
between the source and destination hub. The source hub will
not receive ACK from the destination hub. The source hub
will not release the token as the wireless transaction remains
incomplete, leading to back pressure resulting in network
congestion. Similar effect will be seen if the Dst Rx and
Dst Tx becomes faulty.

D. Wireless Transceiver Fault Detection

We use the registers PTC and THC for the detection of faults
in transceiver. Source Hub acquires the token and checks if
there is any packet in the input buffer. If the input buffer is

Dynamic
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Fig. 2: Spare based Wireless Hub Design

empty, the token is released else packet transmission begins.
We set the PTC and THC. Source hub sends the flits in the
packet one by one to the destination hub. We increment THC
and PTC. Next, we check PTC. If PTC is equal to the packet’s
size, packet transmission terminates. On receiving the tail flit
in the destination hub, it sends an ACK to the source hub.
The source hub, on receiving the ACK, releases the token as
packet transmission is successful. Thereafter, we reset PTC
and THC. However, if ACK is not received, we check THC.
If THC reached the maximum value, we start fault detection
else THC is incremented and rechecked.

Next, we introduce the method for fault detection. Source
hub sends a transceiver fault query (TRFQ) to all the hubs. All
hubs send ACK to the source hub after a specified delay. The
delay mechanism helps to avoid collision. There may occur
two cases. Case 1: If no ACK is received, then two scenarios
may occur: (i) Src Tx faulty or (ii) Src Rx faulty. If the
Src Tx is faulty, it will not be able to send any query and
will not receive ACK. Next, it will not receive any ACK if the
Src Rx is faulty. Case 2: ACK is received from all except
one. This reflects that in the destination hub, Dst Tx or
Dst Rx are faulty. Also, we need to employ a mechanism for
the destination hub to understand that it is faulty and recover
from the fault. To do so, we use TWC. The TWC will reach
its MWT and it will initiate fault detection. It will send a
query to every hub. Similarly to the source hub, based on the
outcome, the destination hub will deduce that it is faulty.

V. FAULT AWARE WIRELESS NOC

This section presents the second contribution of this work.
We detail the techniques proposed to mitigate faults at runtime
in the transceiver and token controller. A fault aware WH with
spare architecture is presented in Fig 2. Each WH has two
transceiver section, one active and another spare. A 2:1 mux
and demux is used to connect the input and output links of
the HC router with the two transceivers. The select line of the
mux is controlled by dynamic fault controller (DFC). Also,
the individual components are connected with the DFC with
controls there functionality.

A. Dynamic Fault Controller

The DFC consists of comparators that compare the value of
PTC, THC, and TWC and decide whether a fault has occurred
in the system. We use a finite state machine (FSM) for the
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representation of the working of the DFC. We implement
separate FSM for transceiver and token controller faults as
their fault recovery processes are different. First, we discuss
transceiver faults. The FSM for the same is shown in Fig. 3a.
In this case, we have 3 states of operation for the WH as
follows: (1) Normal (N), (2) Suspend (S), and (3) Recovery
(R). We use three variables to decide the changes in the state
i.e. fault (F) and local (L). In a fault-free case, the source hub
operates in N state (the initial state). However, if it encounters
a fault it goes to the S state. If the fault is local (L = 1), it
goes to the R state else it remains in the S state. The other
hubs which are not participating in the packet communication
remain in N state. If the transceiver in the source hub is faulty,
the active faulty transceiver is switched off, and the spare one
becomes active. It goes back to the N state. Next, we consider
fault in the destination hub. The TWC attains its MWT , there
exists a fault in the system. Hence, the fault (F) is ‘1’. The
fault status is not known; L = ‘X’. The hub goes to S state. It
performs the fault detection process and infers that it is faulty.
As, F = ‘1’ and L = ‘1’ indicates that the hub goes to R state.
After fault recovery, it returns to N state.

Next, we consider the TC faults. We present the recovery
model for token controller fault in Fig. 3b. We introduce one
new state eliminate (E) and one new variable trigger (T). If
the fault is local (L = 1) then the WH is switched off. The
TWC in one of other hubs reaches the MWT and initiates the
fault detection process. We call this hub as the initiator hub
(IH). The IH will know there is fault in the system (F = 1) and
move to S state. As soon as the other hubs receives the TCFQ,
they halt their TWC counting and move to S state. Depending
on the information received, IH will generate a trigger signal
(T = 1) and move to R state. Once the fault is recovered, IH
sends an update message to all the hubs and moves to N state.
All other hubs on receiving the update message update their
token ring and move back to N state.

B. Mitigation of transceiver faults

In fault free condition, data communication takes place
between the HC router and active transceiver. On occurrence
of transceiver fault, the active transceiver is turned off and
the spare one takes its place. The spare transceiver is kept
switched off during normal operations. Therefore, we use a
spare transceiver to handle fault of transmitter or receiver in

the active one. Two different issues may occur (1) Packet
duplication and (2) Error-free packet transmission.

We discuss the method to address both issues. In the pro-
posed wireless hub, we include two buffers in the transceiver
section namely input and output buffer, as presented in Fig. 1b.
The input buffer stores the entire packet before it starts packet
transmission. The output buffer in the receiver collects the
entire packet before it communicates to the wired network.
If a fault occurs in the source transceiver, we do not transfer
the packet in the buffer of the active transceiver to the spare
one. We consider the transmission of the packet failed. During
the recovery process, a signal is sent to the source router
requesting for retransmission of the packet. At the receiver
hub, there may occur two situations. They are as follows (i)
there is a part of the packet in the receiver hub, or (ii) no packet
in the receiver hub. During recovery, we notify the destination
hub about the failure. In the former case, the receiver hub
flushes out the packet. The latter does not need such action.
This process helps to mitigate the issue of packet duplication
and ensure error-free packet transmission.

C. Mitigation of token controller faults

The process to mitigate token controller failure is divided
into two parts: (i) token passing and (ii) flow of packets.
To resolve the problem regarding flow of packets, we switch
off the hub as soon as token controller fault is detected.
Packets waiting in the HC router for wireless transmission are
redirected towards the destination node using the wired NoC.
Also, the system reconfigures itself such that other fault-free
hubs pass the token among themselves and operate correctly.

1) Mitigation of token passing problem: When the token
controller becomes faulty, the token passing from one hub to
another will be disrupted. To solve the above problem, we
eject the hub with a faulty token controller out of the ring. If
the total number of hubs is N, after ejection we will have N-1
hubs. Again, a Hamiltonian ring is constructed and the token
is passed from one hub to another. The hub reconfiguration in
case of faults is presented in Fig. 4. We observe that the hub
WH3 is faulty. As WH3 becomes faulty, it will not be able to
release the token. THC will reach maximum value. As soon as
THC reaches the threshold, the hub is switched off. All other
hubs, that is WH0, WH1, and WH2, after releasing their
token started incrementing their TWC. As it is a Hamiltonian
ring, the hub WH0 will reach the MWT first. It will send
TCFQ to all the hubs in the WiNoC. WH1 and WH2 on
receiving the TCQF will halt their TWC and send an ACK to
WH0. However, as WH3 is switched-off it will not receive
the TCFQ and hence will not send an ACK. WH0 will know
the faulty WH. It will generate a self trigger and start the
recovery process. Next, the WH0 sends an update message
to all the hubs. This message contains the id of the faulty
hub and the source hub. The HAR of the hub containing the
address of the faulty hub is replaced by the source hub address.
The source hub generates a new token and transfers the token
using the newly formed Hamiltonian ring. Next, all the HC
routers get updated about the fault information. Depending on
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this information, the HC router decides whether the incoming
packet should take a wireless route or a wired route to the
destination.

2) Detour based Routing: In this scheme, the packets with
source destination distance greater than a given threshold
are directed towards the HC router. However, if the WH is
not available they take the wired route to reach respective
destination node. The detour mechanism sometimes uses non-
minimal path for packet transmission, which may lead to
deadlock. To overcome such situations, we use 2 virtual
channels (VC0, and VC1) per physical channel along with
turn restriction in our proposed router design. We adopt the
following set of rules to avoid deadlock: (i) packets travelling
in X direction taking a turn to Y direction remains in the
same VC (ii) packets travelling in Y direction taking a turn in
X direction should change to a new VC (iii) packets from the
lower VC can travel to high VC but packets from higher VC
cannot travel to lower VC. In normal fault free condition VC0
is used for packet communication. In case of faults, a detour
takes place. We use VC1 for the packets that detour from the
HC router (due to fault in WI) to reach the destination.

Let us focus on the example shown in Fig. 5. In this
case, we observed that WI3 is faulty. A packet from source-
destination pair S1-D1 communicates using the wireless hubs
WH2 and WH3. As WH3 is faulty, the packet gets to know
that WH3 is faulty at the HC router 41 (refer to section V-C1).
Therefore, wireless communication is not possible. Thus, it
travels through the wired link. For S1-D1, the source and the
destination are located on the same row, packets travel along
the X-direction without any turn. Therefore no transfer of VC
takes place. In the second example of S2-D2, the packet starts
from router 48 moves to router 49 along the X-direction. Next,
it takes a Y turn and reaches HC router 41. The destination
router 37 is in a different row and column. Therefore, the
packet has to take an X turn at HC router 41. The packet
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Fig. 5: Example of different fault scenarios

moves to VC1 following rule 2. Next, the packet takes a Y
turn at router 45. Following the above rule, the packet does not
shift to a new VC. In example 3, we observe that the packet
from S3-D3 takes a non-minimal path to reach the destination.
The packet from the source router 36 moves in the X-direction
towards the HC router 45. Packets take a Y turn at router 37
and reach the HC router 45. At the HC router, it takes an X
turn. Following rule 2, the packet moves to VC1. The packet
takes a Y turn at router 46. The packet remains in the same
virtual channel VC1 as mentioned in rule 1. Next, the packet
takes an X turn at router 6. Here, we follow two rules, that is
rules 2 and 3. As the packet is moving through VC1, taking
an X turn will not allow it to move back to VC0, due to the
fact that VC0 is lower than VC1. Likewise, it moves to VC2.
Finally, the packet reaches the digestion router 5. In this work,
we consider the wired network to be fault-free. Please note that
‘U’-turns are not allowed in the routers, which helps to avoid
livelock situations.

VI. RESULTS AND DISCUSSION

To analyze the performance of the proposed fault-tolerant
wireless NoC, we use the Noxim [18] network-on-chip sim-
ulator. Noxim has the mechanism to simulate regular WiNoC
architecture. We modified the Noxim simulator to demonstrate
the effects of faults and the respective mitigation techniques.
In the simulations, we considered two types of faults: (i)
transceiver faults, (ii) token controller faults. We injected faults
in the WiNoC by disabling the transceiver section or token
controller of the randomly selected hub. We used Snipersim
6.1 [19] for full system simulation. We select three SPLASH-2
[20] benchmarks (barnes, fmm, and raytrace) and three PAR-
SEC [21] benchmarks (blackscholes, fluidanimate, and radix),
as these represent both communication and computation-
intensive workloads. Next, we fed these traces into the Noxim
simulator for performance evaluation of WiNoC in terms
of network latency and throughput. The Noxim simulator
also reports the number of packets transmitted across the
WiNoC. We use wormhole routing. In the context of network
architecture, the input buffers of the routers are 8-flit long with
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Fig. 6: The effects of TRF and TCF on (A) % of Packet
Received and (B) Throughput
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Fig. 7: Throughput using fault-tolerant techniques for (A)
TRF and (B) TCF

a buffer depth of 32 bits. Please note that the simulation results
given in this paper are conducted on 8 × 8 with 4 WHs.

A. Effects of fault on system performance

In our experiments, we consider failure of one hub in the
WiNoC. We implement transceiver fault (TRF) in Noxim
simulator by disabling the hub WH3 in the WiNoC. To
implement token controller fault (TCF), we set the maximum
token hold time equal to the network simulation time (a worst-
case time, which will never be reached) for the hub WH3. If
the transceiver section becomes faulty, a hub will not be able
to receive or transmit any packet. Also, the faulty hub will
not be able to transfer/receive the token. Therefore, packets
awaiting for transmission using the faulty wireless hub will
keep waiting and not be served. This will create a congestion
in the network. Packets in other hubs will also starve as they
will not get the chance for wireless transmission due to the
unavailability of the token. This will create back pressure and
led to congestion in the entire network. In case of TCF, one
of the hub holds the token and all the hubs are kept waiting
for the token. This will also lead to back pressure and finally
the network will become congested. In Fig. 6(a), we observe
a 91.5% and 85.3% drop in received packets for transceiver
fault (TRF) and token controller fault (TCF) compared to fault
free (FF) operation. This in turn affects the system throughput,
where we observe on average 16x and 7x degradation for TRF
and TCF compared to FF as shown in Fig. 6(b).
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Fig. 8: The effects of fault-tolerant techniques on (A) % of
WH utilization and (B) Latency

B. Evaluation of the proposed approach

1) Network Throughput: The throughput of the fault-
tolerant WiNoC is compared with the WiNoC affected by
faults. We see the improvement in Fig. 7. The improvement
of throughput for TRF+FT (fault-tolerant) over the faulty case
is 16x. The packet loss due to the fault in WH is mitigated by
using the spare transceiver. However, in the case of TCF+FT,
we observe an average of 6x improvement in throughput
compared to TCF as shown in Fig. 7. In the case of the TCF,
we eject the faulty hub from the token ring. Therefore, instead
of 4 WHs we now have 3 WHs in our WiNoC. Due to this,
packets communication to/from the cluster of the faulty hub
cannot use the advantage of a single-hop wireless route for
long-distance communication.

2) Network Latency: We now focus our attention on Fig 8.
We observe that there is a reduction in WH utilization in
TCF+FT compared to FF as depicted in Fig 8(a). This is
because the hub which encounters token counter faults is
switched off. Therefore, those packets which are supposed to
communicate through a wireless path are transferred via the
wired network resulting in latency degradation. Also, some
of the packets have to take a non-minimal route due to the
fault (as discussed in section V-C2), which negatively affects
the latency. Fig 8(b) shows an average degradation of 10%
latency TFC when compared to FF.

3) Area and Power Overhead: In the proposed fault-
tolerant WiNoC, every hub contains a spare transceiver sec-
tion. Thus, we discuss its overhead in terms of power con-
sumption and area. The total power consumption of the
transceiver section along with the auxiliary component is
32.3mW [22]. In standby mode, the transceiver section con-
sumes 6.7mW. To reduce this power consumption, we use
power gating for the backup transceiver section [15]. In
standby mode, its power consumption becomes negligible
compared to the active mode. Therefore, the power overhead
is minimum. In this work, we use 4 WH for the baseline 8 × 8
WiNoC. In the case of fault-tolerant WiNoC, we duplicate all
components of the transceiver. According to [17], the overhead
is less than 6% compared to the regular WiNoC architecture.
As the ratio of WH remains low with the NoC size, the fault
tolerance provided by the proposed design does not contribute
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Fig. 9: Comparison with related works in terms of (A)
Throughput and (B) Latency

to a large area overhead.

C. Comparison with related works

In previous works [7], [11], each node contains the address
of two WI. In case of failure of one WH, packets will
move to another WH. Authors in [8] transfer packets to the
non-faulty WH in the adjacent cluster. We name all these
works as redirect packets to adjacent WH, abbreviated as
RPA. The work [12] uses detour routing with a 2-Hop link
status checking mechanism to counter wireless link faults.
We abbreviate it as DR. All the above works use detour-
based routing in case of faults. The detour mechanism will
increase the hop count (as the packets will divert from their
original shortest path), which will lead to an increase in
network latency. To tackle this issue, we use the spare WI
in our fault-tolerant WiNoC. Thus, the packets can travel
using the original path without detour. We consider single
WH failure, i.e., transceiver failure of one WH. We observe
that the proposed method shows an average improvement of
17.8% and 8.9% latency improvement compared to RPA and
DR. The throughput improvement for the proposed work is (on
average) 8.6% and 3.8% compared to RPA and DR. We present
the results in Fig 9(a) and 9(b). The improvement against
RPA is because the packets from one cluster move to another
cluster, thereby increasing the load on the WH belonging to
that cluster. Also, these packets communicating to the other
cluster may lead to network congestion due to an increase in
traffic.

VII. CONCLUSION

In this paper, a fault-tolerant wireless NoC architecture is
proposed, which deals with two types of faults in the wireless
hub comprising of the transceiver and token controller failure.
We analyze the effects of these faults and propose methods
to detect them. To mitigate the former, a spare transceiver
is used while the latter is handled using a detour based
routing mechanism. We conduct experiments to evaluate the
proposed method. We observe that the proposed techniques
help to mitigate the faults with minimal degradation in system
performance. Also, the proposed work shows improvement in
terms of latency and throughput compared with other works
in the literature. The future scope of this work is to extend it
for larger platform sizes with multi-faults scenarios.
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