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A B S T R A C T

Pounding research has been gaining momentum in the last decades with large earthquakes hitting cities with
insufficiently separated buildings. Even if no major structural damage may be observed in the case of slab–
slab pounding, large acceleration pulses may influence the response of equipment and cause disruption in
their functionality. In this work, two different models are set up for reproducing shake table tests concerning
two-storey adjacent structures, with slab–slab pounding. For the slab representation, the first model uses
hexahedral finite elements, while the second one uses shell elements. One of the main objectives of the study
is to predict the floor response spectra over a broad frequency range, up to 400Hz. Transient computations of
the pounding problem under earthquake excitation are carried out using the explicit CD-Lagrange approach.
Rayleigh damping is employed to filter out the spurious high frequency oscillations. The comparison between
numerical and experimental results in terms of displacements and floor acceleration spectra shows that the
numerical models are able to reproduce the eccentric pounding during the shake table tests. No parameter
adjustment related to the contact is required underlining the robustness of the approach.
1. Introduction

Pounding has been gaining attention of structural engineers and
researchers over the last decades due to large earthquakes hitting the
cities. The collision between structures, in the worst case, can lead
them to total collapse as observed during the earthquake in Mexico
City in 1985 [1]. When there is no collapse, the effects of pounding
can vary from architectural damage to major structural problems [2–4].
urthermore, even when pounding does not result in severe structural
amage, it can be harmful to building equipment as observed in a
ounding survey concerning the 1989 Loma Prieta earthquake [5]. In-
eed, mechanical solicitations from impacts between adjacent buildings
re characterized by short duration acceleration pulses with a high
requency content. These high frequencies can disrupt the functionality
f some buildings content, for example, nuclear power plant equipment
uch as electrical cabinets. The influence of pounding on the floor
esponse spectra is the main concern of this work, requiring to adopt a
etailed 3D analysis in order to represent eccentric pounding occurring
etween the slabs of the adjacent buildings.

Several numerical methods have been proposed in the literature
in order to better understand the complexity of pounding. The single-
degree-of-freedom (SDOF) model of colliding structures has been
adopted in various works. Taking advantage of this simplified rep-
resentation, parametric and sensitivity analyses have been carried
out to derive the most influential parameters [6–8]. The numerical
approach for modeling the impact usually employed contact element
based on Hertz contact. Anagnostopoulos used SDOF systems to study
series of several buildings in a city block, analyzing a wide range of
parameters [9]. The same city block was studied by Athanassiadou
et al. but considering a time lag in the earthquake excitation for
the different oscillators so as to roughly model the traveling wave
effect [10]. Davis [11] analyzed a SDOF oscillator impacting a rigid
neighboring structure. Naderpour and co-authors studied the influence
of various parameters related to the contact element and concluded
that gap between structures, coefficient of restitution, impact velocity
and stiffness of contact element have a strong influence on the output
parameters [12,13]. Nonetheless, SDOF models cannot represent the
different vibration modes of the colliding structures. More detailed
vailable online 8 November 2021
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sis have been carried out on multi-degree-of-freedom (MDOF) 
ms to determine the most unfavorable conditions in relation to 
ding and its damaging consequences [14]. The effect of the initial 
nfluence, the building relative frequencies and the characteristics 
e contact element have been investigated in parametric stud-
15–18]. Slab-slab pounding produces high magnitude and short 
tion floor acceleration pulses as well as increased shear force at 
us storey levels in comparison to the no-pounding case. The worst 
where the floor of a building collides against the column of the 
ent one has been considered by Karayannis et al. [19] and Favvata 

. [20,21] in order to assess the high ductility demand of critical 
ns. A MDOF model was also adopted by Wolf et al. to investigate 

ounding between a nuclear reactor and an adjacent structure [22]. 
authors observed that high frequency modes are strongly excited 
concluded that pounding can increase the high frequency range 
e response spectra inside the structure. The study of pounding 
een a 15-floor building and an 8-floor one was conducted by Kasai 
 with MDOF systems [5]. The authors observed that the peak floor 
eration at the pounding level can be more than 10 times compared 
e case without pounding. Moreover, the floor acceleration response 
ra are also amplified by a factor of 10 in the high frequency 
e, reaching even 30 at some frequencies, thus potentially harmful 
uipment or secondary systems having short periods.
he eccentric seismic pounding plays a fundamental role for an 
rate simulation of the amplification of floor response spectra. 
vich et al. investigated the eccentric pounding with a simple 
l including a rotational degree of freedom [23]. A more refined 
l was proposed by Papadrakakis et al. with 3D structures modeled 

 beam elements and rigid floors concerned by the slab-slab impacts 
 neighboring structures [24]. The flexibility of the slabs as well as 
linear material behavior have been taken into account in a more 
lex Finite Element (FE) analysis by Jankowski [25], using shell 
ents, to simulate the pounding between the Olive View Hospital 
 building and one of its independently standing stairway towers. 
 recently, Karayannis and Naoum also studied the torsional be-
r of RC frame structure due to assymetric pounding using 3D 
-elements and lumped plasticity [26]. By considering a detailed 
-dimensional model with shell elements and non-linear material 
vior, Bi and Hao simulated the pounding damage to bridge struc-
 by taking into account eccentric impacts between girders [27]. 
et et al. adopted a three-dimensional model to reproduce the shake 
 tests conducted on two representative scale adjacent structures 
ct to pounding, and then, on the basis of the set up 3D model, 
ted a simplified model by taking into account the first six eigen-
s for each structure [28,29]. The experimental campaign carried 
n the main shake table of the French Commissariat à l’Energie 
ique (CEA) in Saclay, France, mainly focused on the pounding 

ence on the floor response spectra [30]. The very substantial 
erical results provided by this experimental campaign allow us to 
ate the numerical approach proposed in this work
𝛤

Explicit time integration for pounding using Lagrange multipliers is
prone to generate spurious high frequency oscillations due to the high
frequency modes contained in a refined FE mesh. Such high frequency
oscillations require to be damped out to avoid the complete blur of the
structure response.

In this paper, the time integration of the equation of motion is
done with the explicit Central Difference (CD) scheme and the con-
tact/impact conditions are handled by the CD-Lagrange algorithm
which imposes the contact/impact conditions in a velocity-impulse
format via Lagrange multipliers [35]. This approach was also validated
n a series of benchmarks in non-smooth transient dynamics [36] and
sed for Rate and State frictional contact [37]. As the main purpose of
his work is to accurately predict the floor response spectra, special
ttention should be paid to the numerical approach to introduce a
ufficient damping without altering the spectral accelerations over a
road frequency range. Classical Rayleigh damping, including both
ass and stiffness contributions, is adopted in the pounding simulations

o filter out the high frequency oscillations generated by the impacts.
In the following, three-dimensional FE analyses are carried out

o reproduce the results of the experimental campaign conducted by
rozet et al. [28,30] in terms of displacements, accelerations and floor
esponse spectra. In this experimental campaign, the case of pounding
etween two structures, impacting at their first and second floors, is
nvestigated. Three different gap values between the structures were
ested for four excitation signals. The eccentric pounding between the
labs is reproduced using two different models: the first one adopts shell
lement for the slabs, with edge-to-edge impact, whereas the second
odel adopts solid elements with face-to-face impact, to better repro-
uce the time history of the complex pounding phenomena between
he two slabs.

Section 2 presents the equations on which this work is based, in
articular the explicit CD-Lagrange scheme with Rayleigh damping.
n Section 3, the construction of the two numerical models for the

adjacent structures is presented as well as the damping parameters.
The results are exhibited in Section 4, demonstrating the ability of the
et up models to accurately reproduce the complex eccentric pounding
henomena in terms of displacements, accelerations and especially in
erms of floor response spectra which is the special focus of this work.
inally, the conclusions and main perspectives of this work are drawn
n Section 5.

. Methods

In this section, we summarize the formulation developed in [35]
or explicit contact dynamics, called CD-Lagrange time integrator. The
trong and the weak form of the problem with the Hertz–Signorini–
oreau (HSM) contact conditions are first introduced. After classical

E discretization, the Lagrange multipliers allow us to ensure the
mpact/contact conditions according to the velocity-impulse format as
roposed by Moreau [38,39]. We employ Rayleigh damping with stiff-
ess matrix contribution to filter out the high frequency oscillations due
o the impacts and the space discretization of the colliding structures.
s underlined by Belytschko, the Rayleigh viscous matrix with stiffness
ontribution leads to the decrease of the time step when using explicit
entral Difference method [40]. This aspect will be handled in the

ollowing section by computing the maximal angular frequency of the
E model so as to ensure the stability of the CD-Lagrange scheme.

.1. HSM contact conditions

Two deformable bodies 𝛺1 and 𝛺2 are considered, as depicted in
ig. 1, with initial and deformed configurations. 𝛺1 and 𝛺2 belong to
𝑑 with regular boundaries, 𝑑 being the number of space dimensions
ssumed to be equal to 3 in the following. On the body boundaries,
enoted by 𝛤1 and 𝛤2, three distinct fields are distinguished: 𝛤𝐷1

and
for Dirichlet conditions, 𝛤 and 𝛤 for Neumann conditions and
𝐷2 𝑁1 𝑁2
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Fig. 1. Two deformable bodies in contact, 𝛺1 being the master body and 𝛺2 the slave
body.

𝛤𝐶1
and 𝛤𝐶2

for the contact interface between the two bodies. For
a pair of contact points, 𝑋𝑘 belonging to the contact interface 𝛤𝐶𝑘

𝑘 = 1, 2), the HSM conditions for a frictionless contact, under the small
isplacement assumption, are written as:

⎧

⎪

⎨

⎪

⎩

𝑔𝑁 = [(𝑋2 + 𝑢2) − (𝑋1 + 𝑢1)] ⋅ 𝑛1 ≥ 0
𝜏𝑁 = 𝜎

𝑘
⋅ 𝑛𝑘 ⋅ 𝑛𝑘 ≤ 0 , 𝑘 = 1, 2

𝑔𝑁 ⋅ 𝜏𝑁 = 0

(1)

ith 𝑔𝑁 the gap between the two points of the contact interface and
he displacements 𝑢1 and 𝑢2 of the two contact points. The normal
tress is represented by 𝜏𝑁 , 𝜎

𝑘
is the stress tensor at the contact

oints and 𝑛𝑘 the normal to the surface at the contact points. The first
inequality is the condition of impenetrability, 𝑖.𝑒. bodies cannot occupy
the same point at the same time. The second inequality imposes that the
normal contact stress 𝜏𝑁 is always negative, 𝑖.𝑒. that only compression
is possible between the bodies. Finally, the third condition imposes
that there is compression only when the bodies are in contact and
also that the work done by the contact forces is zero. According to
Moreau’s lemma of viability [39], it is also possible to write the contact
conditions in Eq. (1) in terms of velocity given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

if 𝑔𝑁 > 0 then 𝑖𝑁 = 0

if 𝑔𝑁 = 0 then
⎧

⎪

⎨

⎪

⎩

�̇�𝑁 ≥ 0
𝑖𝑁 ≤ 0
�̇�𝑁 ⋅ 𝑖𝑁 = 0

(2)

here 𝑖𝑁 is the contact impulse; �̇�𝑁 is the normal component of the
elative velocity between the two points, 𝑖.𝑒. the gap velocity, defined
s:

�̇�𝑁 = (�̇�2 − �̇�1) ⋅ 𝑛1 (3)

with �̇�1 and �̇�2 the velocity of the two contact points.

.2. Strong formulation

We note 𝛺 such that 𝛺 = 𝛺1 ∪ 𝛺2 and 𝛤𝐶 refers to all the contact
interfaces: 𝛤𝐶 = 𝛤𝐶1

∪ 𝛤𝐶2
. Similarly, all the interfaces with Dirichlet

conditions are denoted by 𝛤𝐷 = 𝛤𝐷1
∪ 𝛤𝐷2

and all the interfaces with
Neumann conditions are denoted by 𝛤𝑁 = 𝛤𝑁1

∪𝛤𝑁2
. In addition to the

small displacement assumption, the materials are assumed to be linear
elastic. The mechanical behavior of both deformable bodies is governed

by the equilibrium equation completed with the HSM conditions as i
shown below:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑖𝑣(𝜎) + 𝑏 = 𝜌�̈� in 𝛺

𝜎 = 𝐶 ∶ 𝜖 in 𝛺

𝜖 = 1
2 [𝑔𝑟𝑎𝑑(𝑢) + 𝑔𝑟𝑎𝑑(𝑢)𝑇 ] in 𝛺

𝑢 = 𝑢𝐷 on 𝛤𝐷

𝜎 ⋅ 𝑛 = 𝑡𝑁 on 𝛤𝑁

HSM contact conditions on 𝛤𝐶

(4)

𝑏 being the volumetric force, 𝜎 the stress tensor, 𝜖 the deformation

tensor, 𝐶 the constitutive tensor, 𝑢𝐷 the prescribed displacements and

𝑡𝑁 the prescribed surface forces.

2.3. Weak formulation

The solutions 𝑢1(𝑡) and 𝑢2(𝑡) in subdomains 𝛺1 and 𝛺2 are sought
in the appropriate spaces 𝑉1 =

{

𝑢1 ∈ [𝐻1(𝛺1)]𝑑 ∶ 𝑢1 = 𝑢𝐷1 𝑜𝑛 𝛤𝐷
1
}

and
𝑉2 =

{

𝑢2 ∈ [𝐻1(𝛺2)]𝑑 ∶ 𝑢2 = 𝑢𝐷2 𝑜𝑛 𝛤𝐷
2
}

, respectively, whereas the test
pace functions 𝑣1 and 𝑣2 belong to the spaces 𝑉 0

1 and 𝑉 0
2 , satisfying

the zero value at the Dirichlet conditions. At the contact interface, we
consider the Lagrange multipliers 𝜆 as well as its related test functions
𝜇, belonging to the appropriate spaces, corresponding to the adapted
dual trace space denoted by 𝑀 .

The virtual work for transient dynamics problems can be written for
the two subdomains: ∀𝑡 ∈ [0, 𝑇 ], find 𝑢1(𝑡) ∈ 𝑉1, 𝑢2(𝑡) ∈ 𝑉2, 𝜆(𝑡) ∈ 𝑀 ,
uch that the following weak form is satisfied ∀𝑣1 ∈ 𝑉 0

1 , ∀𝑣2 ∈ 𝑉 0
2 ,

𝜇 ∈ 𝑀 :

∫ 𝛺1
𝜌1𝑣1 ⋅ �̈�1𝑑𝛺 + ∫ 𝛺1

𝜖(𝑣1) ∶ 𝜎
1
𝑑𝛺

+ ∫ 𝛺2
𝜌2𝑣2 ⋅ �̈�2𝑑𝛺 + ∫ 𝛺2

𝜖(𝑣2) ∶ 𝜎
2
𝑑𝛺

= ∫ 𝛺1
𝑣1 ⋅ 𝑏1𝑑𝛺 + ∫ 𝛺2

𝑣2 ⋅ 𝑏2𝑑𝛺 + ∫ 𝛤𝑁1
𝑣1 ⋅ 𝑔𝑁1

𝑑𝛤

+ ∫ 𝛤𝑁2
𝑣2 ⋅ 𝑔𝑁2

𝑑𝛤+

∫ 𝛤𝐶
(𝑣2 − 𝑣1) ⋅ 𝜆 𝑑𝛤 + ∫ 𝛤𝐶

𝜇 ⋅ (�̇�1 − �̇�2)𝑑𝛤

(5)

with 𝜆 the Lagrange multipliers, and 𝜇 the weight functions related to
Lagrange multipliers. The HSM contact conditions for normal velocities
are prescribed in weak form by the term ∫ 𝛤𝐶

𝜇 ⋅ (�̇�1 − �̇�2)𝑑𝛤 . The term
𝛤𝐶

(𝑣2 − 𝑣1) ⋅ 𝜆 𝑑𝛤 corresponds to the contact energy.

2.4. CD-Lagrange scheme with Rayleigh damping

We use the Finite Element Method for the spatial discretization. A
restriction operator, denoted by 𝐋𝑁 , is also introduced which selects
the degrees of freedom involved in the contact such as: �̇�𝑁 = 𝐋𝑁 �̇�,

ith �̇� the relative velocity vector for the two bodies.
From the weak formulation of the problem in Eq. (5), we write the

iscrete equations in space and time according to the explicit Central
ifference scheme on the time step 𝛥𝑡 = [𝑡𝑛; 𝑡𝑛+1] as:

{

𝐌�̈�𝑛+1 + 𝐂�̇�𝑛+1∕2 +𝐊𝐔𝑛+1 = 𝐟𝑒𝑥𝑡,𝑛+1 + 𝐟𝑐𝑜𝑛𝑡,𝑛+1
+ HSM contact conditions

(6)

ith 𝐌 the lumped mass matrix, 𝐂 the damping matrix, 𝐊 the stiffness
atrix, 𝐟𝑒𝑥𝑡,𝑛+1 the external forces, 𝐟𝑐𝑜𝑛𝑡,𝑛+1 the contact forces and 𝐔𝑛+1,
̇
𝑛+1∕2 and �̈�𝑛+1 the displacements, velocities and accelerations for the

wo bodies. It can be noted that the damping matrix operates on the
id-step velocities, at 𝑡𝑛+1∕2, so as to provide a fully-explicit formula-

ion for the Central Difference scheme [40]. Here the adopted damping
atrix is the classical Rayleigh viscous damping matrix, defined as:
= 𝛼𝐌 + 𝛽𝐊, where the parameters 𝛼 and 𝛽 have to be chosen as a

unction of the target damping ratios at two frequencies of each struc-
ure [25]. It is important to underline that stiffness matrix contribution

n the damping matrix is mandatory to filter out the spurious high
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frequencies. Indeed, without this stiffness contribution, the solution can
e completely blurred by high-frequency vibration modes contained in 
he refined mesh, and excited by the use of Lagrange multipliers for
eproducing the non-smooth dynamics. Rayleigh viscous matrix with
 stiffness matrix term is efficient to damp out the high frequency
scillations generated by the Lagrange multipliers, without altering the
ccuracy of accelerations over a broad range of frequencies. However,
t leads to a decrease of the critical time step when using the Central 
ifference scheme, due to the time lag introduced in the viscous terms

n the discrete equation of motion in Eq. (6) [40]. In the following
ection, this decrease of the critical time step is accurately assessed by
omputing the maximal angular frequency of the structure model. An-
ther way to control the spurious numerical oscillations inherent to the
se of Lagrange multipliers is to use explicit time integration scheme
ith numerical damping such as the explicit 𝛼-generalized scheme [41]
r explicit Noh–Bathe scheme [42], but with the difficulty of tuning
he time integration parameters for the investigated complex pounding
ituation. To handle the contact, we use the approach proposed by [35],
ased on the velocity-impulse formulation, written at time 𝑡𝑛+3∕2. This
pproach is inspired by the works of Moreau and Jean [38,39,43]. Thus
e multiply the equation of motion in Eq. (6) by the time step 𝛥𝑡
nd we use the Central Difference approximation for the acceleration:

�̈�𝑛+1 =
�̇�𝑛+3∕2−�̇�𝑛+1∕2

𝛥𝑡 . It leads to the following expression:

�̇�𝑛+3∕2 = 𝐌�̇�𝑛+1∕2 + 𝛥𝑡
(

𝐟𝑒𝑥𝑡,𝑛+1 − 𝐂�̇�𝑛+1∕2 −𝐊𝐔𝑛+1
)

+ 𝐈𝑛+1 (7)

ith 𝐈𝑛+1 the impulse of the nodes in contact defined by: 𝐈𝑛+1 =
𝑡𝐟𝑐𝑜𝑛𝑡,𝑛+1. This formulation allows us to handle the velocity jumps
uring the first impact and the following contact conditions. The impact
ector can also be written as follows:

𝑛+1 = (𝐋𝑁,𝑛+1)𝑇 𝝀𝑁,𝑛+3∕2 (8)

ith 𝝀𝑁,𝑛+3∕2 the Lagrange multipliers defined at time 𝑡𝑛+3∕2 and 𝐋𝑁,𝑛+1
he restriction operator identifying the degrees of freedom involved in
he contact in the normal direction to the interface. Finally, multiplying
oth sides of Eq. (7) by 𝐋𝑁,𝑛+1𝐌−1, we obtain the dual problem at the
nterface whose unknowns are the Lagrange multipliers:

𝑁𝝀𝑁,𝑛+3∕2 = 𝐛𝑁,𝑛+3∕2 (9)

here 𝐇𝑁 , also known as the Steklov–Poincaré operator, and the
ight-hand side vector 𝐛𝑁,𝑛+3∕2, are defined by:
{

𝐇𝑁 = 𝐋𝑁,𝑛+1𝐌−1(𝐋𝑁,𝑛+1)𝑇

𝐛𝑁,𝑛+3∕2 = −𝐋𝑁,𝑛+1
(

�̇�𝑛+1∕2 + 𝛥𝑡𝐌−1 (𝐟𝑒𝑥𝑡,𝑛+1 − 𝐂�̇�𝑛+1∕2 −𝐊𝐔𝑛+1
))

(10)

3. Numerical model

3.1. Two-storey structure models

Finite Element models of the two 5 m high two-floors structures,
ith steel columns and beams, are depicted in Fig. 2. The masses of
tructures 1 and 2 are equal to 9200 kg and 7000 kg, respectively.

The concrete slabs have 22 cm of thickness. For the concrete material
of the slab, Young’s modulus, Poisson’s coefficient and density are:
𝐸 = 30 MPa, 𝜈 = 0.2 and 𝜌 = 2400 kg m−3. For the steel material
of the beams, columns and diagonal cross bar bracing, the material
characteristics are: 𝐸𝑠 = 200 000 MPa, 𝜈𝑠 = 0.3 and 𝜌𝑠 = 7800 kg m−3.
Structure 1 is more flexible than Structure 2. More geometric and
materials details about the two adjacent structures tested on the shake
table AZALEE (CEA, France) and the tested structures can be found
in [28].

The pre-processing is made with the FE code Cast3M [44]. Two
numerical models are illustrated in Fig. 2. For the first one, the slab is
represented by 3D hexahedral elements, whereas, for the second one,
the slabs are only represented by shell elements. The first model has
been set up to better represent the time history of the impacts and
contacts between the two faces of the colliding slabs. The second model
is also explored because it is more cost efficient than the first one and
shell elements are widely used in practice for modeling slabs in civil
engineering structures. In the following, the models are denoted by
‘‘Model A’’ and ‘‘Model B’’, respectively.

We have to make sure that the mesh size is able to reproduce the
floor accelerations over a broad band frequency in the investigated
pounding situation. We choose the highest frequency as: 𝑓𝑚𝑎𝑥 = 400 Hz.
The P-wave speed in the slab is 𝑐𝑝 =

√

𝜆 + 2𝜇∕𝜌, where 𝜆 and 𝜇 are
Lamé’s coefficients. It gives 𝑐𝑝 ≈ 3300 m∕s. The shortest wavelength
𝜆𝑚𝑖𝑛 can be assessed as 𝜆𝑚𝑖𝑛 = 𝑐𝑝∕𝑓𝑚𝑎𝑥, leading to 𝜆𝑚𝑖𝑛 ≈ 11 m.
A minimal ‘‘rule of thumb’’, stated for example in [45], is 10 nodes
per wavelength, therefore 1.1m. We adopt a fine FE element size to
model the slabs equal to 12 cm which guarantees an accurate numerical
prediction of the longitudinal waves.

Moreover, a mesh sensitivity analysis is carried out to ensure the
convergence of the results. It is found that a finer mesh has minor
changes on the results, especially in terms of floor response spectra,
and a coarser mesh can deteriorate the results. Furthermore, for the
model with the hexahedral elements (Model A), increasing the number
of elements in the thickness does not improve the results due to wave
propagation predominantly in the plane of the slab. Thus we model
the slab with only one element in the slab thickness for reducing the
computation time. In both models, beams and columns are modeled by
Euler–Bernoulli beam elements whereas the diagonal cross bracing is
modeled by bar elements. The materials are considered in their elastic
domain and we adopt the small displacement assumption. Considering
Model A, Structures 1 and 2 have 20 520 and 15 528 degrees of freedom
(dofs), respectively. For Model B with shell elements, Structure 1 and
2 have 19 464 and 14 664 dofs, respectively. Considering the reference
(𝑋, 𝑌 ,𝑍) in Fig. 2, the principal direction is according to the longitu-
dinal 𝑋 axis, the transverse direction corresponds to the 𝑌 axis and
the vertical axis to the 𝑍 axis. During the experimental campaign, the
𝑋, 𝑌 and 𝑍 accelerations of each corner of the shaking table were
recorded. The four accelerations are close but yet different. Thus the
accelerations, recorded according to the three directions, are averaged
and then applied as input accelerations in transient computation.

3.2. Modal analysis

Eigenfrequency discrepancies of the structure models can have sig-
nificant influence on the time–history results, in particular when impact
and contact phenomena occurred [28]. So, in order to minimize the
difference between the experimental and numerical eigenfrequencies,
the geometric parameters related to two types of elements have been
calibrated: first, the section area of cross-bracing bar elements and,
second, the section area and inertia moments of the beam elements
called here as joint-elements. These latter elements represent the bolted
connections between steel beams and columns, illustrated in Fig. 3:
only the steel frame is shown, without the concrete slab, with the
highlighted joint-elements.

The choice of these two modifications has an intuitive physical
meaning. For the first eigenfrequencies in the 𝑌 direction and around
the 𝑍 axis, whenever a bar of the cross bracing bars is pulled, the other
bar of the diagonal cross bracing is compressed and, since these bars
are very slender, the compressed ones do not increase the stiffer of the
frame due to the buckling. In order to consider the possible buckling,
we decrease the cross-section area. The second modification concerning
the joint-elements can be justified by the fact that the tested structures
have strongly bolted rigid connections between beams and columns.
This is why stiff beam elements were used at the corners of the steel
frame.

The modification of the parameters mentioned above is empirically

done in such a way that the eigenfrequencies of the numerical models
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Fig. 2. Meshes of the colliding structures for the two models with the slab modeled by (a) hexahedral elements and (b) shell elements.
Fig. 3. Steel frame of Structure 2 with highlighted joint-elements (in red).

able 1
odal analysis for Models A and B: Comparison between numerical results and

xperimental data.

match the experimental ones. Once fixed the parameters from the
modal analysis, they are not changed for the following transient sim-
ulations with impact/contact phenomena. The results from the modal
analysis are summarized in Table 1, which compares the modal analysis
results, for the two structures, to the experimental data [28], for the
two numerical models.
3.3. Initial gap values between the contacting slabs

An important point about the initial configuration of the two adja-
cent structures is the presence of geometric defects of the slabs that
makes the impacting faces, one of each structure, not parallel [28].
These geometric defects can induce noticeable rotational motion for
both structures, even if the torsional response is attenuated thanks
to the diagonal cross bracing. The torsional response is excited by
the induced eccentric pounding which plays a significant role in the
predicted accelerations. As a consequence, these defects observed in
the initial configuration of the two colliding structures are introduced
in the models. The defect values are different for each configuration
of the structures (𝑔𝑎𝑝 = 5 cm, 𝑔𝑎𝑝 = 2 cm and 𝑔𝑎𝑝 = 0 cm) and
were measured during the experimental campaign. Fig. 4 illustrates the
geometric defects by giving the distance between the extremities of the
impacting faces of the slabs. We assume that the faces in contact are
plane, but they are not parallel. If we do not consider the observed
defects in the initial slab configuration, the distances A, B, C and D
should be equal to 5 cm for the structure configuration of 𝑔𝑎𝑝 = 5 cm,
and, in the same manner, 2 cm for the 𝑔𝑎𝑝 = 2 cm configuration
and 0 cm for the 𝑔𝑎𝑝 = 0 cm. In order to consider the experimental
discrepancies in the initial gap values, the mesh of Structure 2 is slightly
modified by shortening or lengthening the elements whose faces are in
contact with Structure 1.

3.4. Rayleigh damping in CD explicit time integration

During the experimental campaign, the eigenfrequencies and related
damping ratios for both structures are identified [30]. The identified
damping values are at about 1.5%. As already mentioned, we use the
Rayleigh damping because it is widely used in earthquake simulations
in which implicit time integration is classically adopted. Nonetheless,
when a lot of impacts occur, the explicit CD time integration can be
preferred as in [27], where the explicit code LS-DYNA is employed.
The proposed approach, based on the CD-Lagrange scheme presented
before, is also explicit and special care has to be taken to ensure the
stability by accurately assessing the critical time step. In particular,
although Rayleigh damping with a stiffness matrix contribution is very
efficient to damp out spurious numerical oscillations coming from the
FE discretization and triggering by the impacts, Rayleigh damping also

leads to a reduction of the critical time step [40].
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Fig. 4. Distances between the extremities of the impacting faces of the two floors, in the three different gap configurations.
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able 2
arameters of the Rayleigh damping.

𝛼 𝛽

Structure 1 0.1562 1.2557 × 10−5

Structure 2 0.2723 1.2426 × 10−5

With the Rayleigh damping, expressed as a function of the mass
atrix and stiffness matrix as 𝐂 = 𝛼𝐌 + 𝛽𝐊, the more the high fre-

quencies are damped out, the more the stability time step is decreased.
As a result, the 𝛽 parameter of the Rayleigh matrix, related to the
stiffness matrix, has to be sufficiently high to damp out the numerical
oscillations but not too high to not excessively decrease the critical time
step. The coefficients of the Rayleigh damping for each structure are
presented in Table 2.

First we evaluate the critical time step without damping for the two
models A and B. From [40], the critical time step is obtained by:

𝛥𝑡𝑐𝑟𝑖𝑡 =
2

𝜔𝑚𝑎𝑥
(11)

ith 𝜔𝑚𝑎𝑥 the maximum angular frequency of the finite element mesh
btained by solving the classical eigenvalue problem: 𝑑𝑒𝑡(𝐊 − 𝜔2𝐌) =
. It is important to note here that the assessment of the maximum
ngular frequency is time consuming. This is why, in explicit dynamics,
n upper bound is usually preferred, computed as the ratio of the
inite element size and the speed of the pressure wave, known as the
ourant–Friedrichs–Lewy (CFL) stability criterion. Here, we compute a
ore accurate critical time step by solving the eigenvalue problem and

omputing the maximum angular frequency. The maximum angular
requency between the two Structures 1 and 2 is obtained: 𝜔𝑚𝑎𝑥 =
.05 × 105 rad s−1 for Model A and 𝜔𝑚𝑎𝑥 = 1.82 × 105 rad s−1 for Model
.

With Rayleigh damping, the expression for the stable time step for
he CD time integration scheme is reduced, accordingly to [40], as:

𝑡𝑐𝑟𝑖𝑡 =
2

𝜔𝑚𝑎𝑥

(

√

1 + 𝜉2𝑚𝑎𝑥 − 𝜉𝑚𝑎𝑥

)

, with 𝜉𝑚𝑎𝑥 = 𝛼
2𝜔𝑚𝑎𝑥

+
𝛽𝜔𝑚𝑎𝑥

2

(12)

with 𝛼 and 𝛽 the Rayleigh parameters of values given in Table 2. As a
consequence, the stability time step of the damped Model A becomes
1.58 × 10−6 s, that is 24% of the critical time step of the undamped
model, whereas the stability time step of the damped model B becomes
4.16 × 10−6 s, that is 38% of the critical time step of the undamped
model. These time steps are kept constant during the whole simulation
duration for both structures.

4. Numerical analysis

In earthquake engineering, a practical and widely used way of
characterizing floor motions and their effects on internal equipment
is based on pseudo-acceleration floor response spectra. Therefore, the
floor response spectra are largely investigated in the following results,
over a broad frequency range up to 400 Hz. The simulations with
 i
Table 3
PGA of the seismic excitations for each configuration.

Cadarache El Centro Northridge Kobe

gap = 5 cm 0.45 g 0.35 g 0.20 g 0.20 g
gap = 2 cm 0.20 g 0.15 g 0.10 g 0.20 g
gap = 0 cm 0.15 g 0.15 g 0.10 g 0.15 g

pounding are done under four different seismic excitations: Cadarache,
El Centro, Northridge and Kobe [28]. The three structure configurations
(𝑔𝑎𝑝 = 5 cm, 𝑔𝑎𝑝 = 2 cm, 𝑔𝑎𝑝 = 0 cm) are considered, giving 12
ifferent cases as resumed in Table 3 with the corresponding peak
round accelerations (PGA).

The results presented in the following are relative to the princi-
al direction (𝑖.𝑒. 𝑋 axis), that is the direction of impacts. Besides,
he experimental accelerations of each slab are averaged by consid-
ring accelerations recorded by four accelerometers, located close to
ach corner of the slab. For the numerical results, the acceleration is
ecorded at the closest nodes of the mesh to accelerometer locations
nd then they are averaged in the same way as in experimental results.
urther details about the experimental campaign can be found in Crozet
t al. [28–30].

The simulations are carried out for 25 s of seismic signals. The
D-Lagrange scheme presented before has been implemented in Mat-

ab environment. Meshes and FE models are built in the FE code
ast3M [44]. Mass and stiffness matrices are generated in Cast3M and
hen exported to Matlab environment for the transient computation
ith impacts using the CD-Lagrange scheme. Model A, without parallel

omputation takes 10 h with an Intel i5-6200U with 16 Gb of RAM
regular Notebook) whereas Model B, using the same Notebook, takes
.5 h.

.1. Drift and acceleration on the second floor

Fig. 5(a), (c) and (e) present the comparison of the inter-storey
ormalized displacements (or drifts), related to the second storey,
etween the numerical and experimental results, in the case of the
orthridge excitation and for the three structure configurations. The

nter-storey drift of Structure 2 is plotted. As it can be seen, one can
otice that the interstorey drifts are well represented by the numerical
odels.

In Fig. 5(b), (d) and (f), we show the comparison between nu-
erical and experimental accelerations, recorded on the second floor,

or different gap configurations. One can clearly see that the number
f impacts increases with the decreasing gap. The performance of
he explicit computation with the CD-Lagrange scheme is not altered
n the case of a zero gap value, when a lot of impacts take place,
ontrary to classical implicit time integration scheme. Regarding the
eak amplitude for the three structure configurations, one can see
hat, in general, the numerical models are in good agreement with the
xperimental data.

The comparison between the two numerical models and the exper-
mental pseudo-acceleration floor response spectra, computed at 5%
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Fig. 5. Inter-storey drift and acceleration of Structure 2 for Kobe excitation and the three different gap configurations.
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of damping ratio, is presented in Fig. 6 for the four excitations and
he three gap values, at the second floor of Structure 2. In addition,
esults with Model A, obtained without pounding have been plotted
or comparison purposes as well as results using Model A but without
ny geometric imperfections (symmetric geometry: gap values exactly
qual to 5 cm, 2 cm and 0 cm). Globally speaking, it can be observed in
ig. 6 that response spectra predicted by the two Models A and B are
onsistent with each other. In the low frequency range, response spectra
xhibit two first peaks, at 3.7 Hz and 10.3 Hz, corresponding to the
irst eigenfrequencies of Structure 2 in the longitudinal direction. In the
igh frequency range, the acceleration peaks generated by the impacts,
etermine the shape of the response spectrum. Obviously, the model
ithout pounding fails to reproduce the experimental floor response

pectra and the comparison with the other models highlights the impact
ffect in the high frequency range. The model without any geometric
mperfections is able to reproduce this high frequency branch, char-
cteristics of the impacts between the slabs, but it can be seen that
his branch is higher than the one related to the experimental data.
n the contrary, by taking into account the geometric imperfections
oncerning the gap values along the impacting faces of the slabs as
iven in Fig. 4, it is shown that results from Models A and B are
loser to the high frequency branch related to the experimental data.
t underlines the significant role of the eccentricity for reproducing
he accelerations recorded at the slabs. The relation between the high
requency branch in the response spectrum and the acceleration peaks
as already been explored by Crozet et al. [8], considering a simplified
ase of a single degree of freedom oscillator. In the following, thanks
o the refined FE mesh and the simulation of eccentric pounding, the
hape of the high frequency branch in the response spectrum is further
nvestigated by studying the influence of the peaks in the acceleration
ime–history. In particular we focus on the peak corresponding to
he largest impulse, computed as the integration in time of the slab
cceleration.
 r
4.2. Acceleration peak influence on the pseudo-acceleration

By analyzing spring–mass systems, Crozet et al. [8] observed that,
in the case of pounding, high impulsive impacts govern the pseudo-
acceleration response spectra in the high frequency range. Moreover,
the authors observed that, besides the value of the impact impulse, the
impact duration has also considerable influence. Despite the simplicity
of the systems employed in [8], these results remain true for more
complex models as the ones under consideration.

The contact duration related to an impulse corresponds to the
time period during which the slabs are in contact. Thanks to the
CD-Lagrange scheme, the impact time between the slabs for each accel-
eration peak is easily obtained and does not depend on contact stiffness
or damping parameters, as it is the case when adopted traditional
contact elements for pounding.

To assess the influence of acceleration peaks on the shape of the
high frequency branch in the response spectrum, we consider in Fig. 7
different signal treatment procedures of the time–history numerical
acceleration obtained with Model A, before computing the response
spectrum. The first treatment is the complete acceleration time–history
without any change, called ‘‘Complete’’. The second one, denoted in
Fig. 7(a) by ‘‘All peaks’’, gathers all the peaks in the time–history
acceleration, but the accelerations are set to zero between the peaks.
In the third treatment, only the peak with the highest impulse is kept
and it is called the ‘‘Highest impulsive peak’’ in Fig. 7(b). For the sake
of comparison, the fourth treatment corresponds to the complete time–
history acceleration but without the peaks, called ‘‘Without peaks’’ in
Fig. 7(c). One last treatment is considered in the analysis: a Dirac pulse
n acceleration having the same impulse as the highest impulsive peak
n the third treatment but with a very short duration. More precisely,
he duration of the Dirac is equal to twice the time step in the explicit
ime integration (one time step for the increase to the peak value and
nother one for the decrease to the zero value). The purpose is to
xplore the effect of the contact duration on the shape of the floor

esponse spectra.



Fig. 6. Floor response spectra (computed at 5% of damping) at the second floor of Structure 2 under (a) Cadarache, (b) El Centro, (c) Northridge and (d) Kobe excitation with
different gap values. Model A and B asymmetric (with geometric imperfections), Model A symmetric (without any geometric imperfections) and Model A asymmetric without
pounding.
Fig. 8 shows the floor response spectra, for the five previous treat-
ments, for all 12 cases (three gap values and four excitations). The
comparison between the ‘‘Complete’’ curve against the ‘‘All peaks’’ one
highlights the strong influence of the acceleration peaks on the high fre-
quency branch of the response spectrum. Indeed, the response spectra
computed from the modified signals containing all the peaks are very
close, in the high frequency range, to the ones from the complete time–
history excitation, and this observation can be checked for all the 12
cases investigated. When we compare the pseudo-acceleration spectra
related to the complete time–history to the ones computed from only
the highest impulsive peak, the match is always very good in the high
frequency range. This means that the acceleration of the highest impact
impulse mainly governs the high frequency branch of the response
spectrum. Finally, regarding the response spectra, computed from the
Dirac pulse characterized by the same impulse as the previous highest
impulse, it is possible to notice that the match is quite good over a
certain frequency range and then deviates from the complete response
spectra which tend to smoothly decrease in the highest frequency
range, at around 250 Hz. It clearly shows that the high frequency
branch of the response spectra depends on the impulse but also on the
contact duration.

To conclude about Fig. 8, the comparison between the above treat-
ments on time–history acceleration highlights the strong influence of
the acceleration peaks on the response spectrum, requiring an accu-
rate representation of the pounding phenomena. Not only the impulse
associated with the impact need to be well reproduced, but also the

contact duration. An impact with very small duration will strongly
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Fig. 7. Three different treatment procedures applied on numerical time–history acceleration (a) with only the peaks, (b) with only the peak with the highest impulse and (c)

ithout any peak.
Fig. 8. Response spectra (at 5% damping) for the four post-treatment procedures applied on the time–history acceleration at the second floor of Structure 2 under (a) Cadarache,
(b) El Centro, (c) Northridge and (d) Kobe excitation with different gap values.
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Fig. 9. Response spectra (at 5% damping) at the first floor of Structure 1 for 𝑔𝑎𝑝 = 5 cm, 𝑔𝑎𝑝 = 2 cm and 𝑔𝑎𝑝 = 0 cm configurations.
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xcite the high frequencies. The comparison between the numerical and
xperimental results in Fig. 6 puts in evidence that the used algorithm
or the impact simulation, the CD-Lagrange scheme [35], is able to
ell predict the eccentric pounding, with no significant discrepancies
etween the two Models A and B. Nonetheless, it has to be stressed
hat Model A is able to take into account contacting points over all the
urface of the contacting face of the slabs, including left–right eccentric
ounding but also the ability to impact successively the top and bottom
oints of the surface. This advantage of Model A over Model B will be
ighlighted in the following by focusing on floor response spectra at
he first floor.
.3. Impact influence on the first floor

The impact is detected on the second floor of Structure 2 for all
he 12 cases of Table 3, as shown in Fig. 8. However, at the first

floor, the impact is only detected in a few cases. As showed previously,
the acceleration peaks due to the impacts are the most influential
quantities on the high frequency branch of the response spectrum.
Here, on the first floor, even without impacts between the slabs, some
high frequency response can be observed as shown in Fig. 9 where the
response spectra of the first floor of Structure 1 are plotted for all the
12 cases. The two first peaks represent the two first eigenfrequencies
of Structure 1 in the longitudinal direction, at 2.1 Hz and 5.6 Hz. The
two first peaks are well captured in frequency and in amplitude by both



Fig. 10. Amplified anti-symmetric slab mode with eigenfrequency close to 200 Hz with the nodes locations (black dots) for (a) Model A and (b) Model B.
numerical models. However, we can observe that there is a third peak,
near 200 Hz, highlighted by a vertical red strip, which is predicted
by Model A, with hexahedral FE elements, but not by Model B, with
shell FE elements. It has to be noted that, in a few cases, for example
for Model A with 𝑔𝑎𝑝 = 2 cm and Kobe signal, the third peak does
not appear because impacts are predicted at the first floor: then, the
response spectra are characterized by a high frequency branch and the
third peak cannot be observed.

The experimental results show a peak in response spectra close to
200 Hz, which is explained by Crozet et al. [28] as an anti-symmetric
slab mode, with respect to the 𝑌 axis. This mode for the two numerical
models is illustrated in Fig. 10 with the black dots representing the
recorded node locations in the numerical model. It is shown that the
middle plane of the slab, which is what Model B represents, has a zero
displacement in the 𝑋 direction. What makes this slab mode significant
for the response spectra close to 200 Hz in the 𝑋 direction, is the
location of the nodes at which the accelerations are recorded. Indeed, in
the experimental campaign, the accelerations are recorded on the upper
part of the slab. Model A with hexahedral elements approximately
adopts the same recording points as in the experimental campaign but
it is not the case of Model B for which the recording points are located
in the medium plane of the shell elements.

5. Conclusions

The proposed numerical approach, based on an explicit time in-
tegration and Lagrange multipliers (CD-Lagrange scheme), is able to
reproduce the response of two colliding structures dynamically tested in
a well documented experimental campaign, in terms of displacements
and accelerations with a special focus on the pseudo-acceleration floor
response spectra. Floor response spectra are predicted over a wide
frequency range, up to 400 Hz. The eccentric pounding is simulated
for different earthquake excitations and different gap configurations,
characterized by a small number of impacts (𝑔𝑎𝑝 = 5 cm configuration)
to a large number of impacts (𝑔𝑎𝑝 = 0 cm configuration). The analysis of
the acceleration peaks on the second floor indicates that the numerical
approach is able to well represent the impacts, characterized by their
impulse and duration, which govern the high frequency branch of the
floor response spectra. There is no need of parameter tuning inherent
to contact elements usually employed in pounding analyses, demon-
strating the robustness of the proposed approach based on the explicit
CD-Lagrange scheme. Floor response spectra obtained from the two
investigated models (slabs modeled with hexahedral or shell elements)
are consistent between each other. It was shown that some slab vibra-

tion modes, not reproduced by the model based on shell elements, have
been detected by the model with hexahedral elements. Nonetheless,
the computation time related to the model with hexahedral elements
is 4 times bigger than the one related to shell elements due to the
higher number of degrees of freedom and lower time steps in explicit
computations. Work is in progress to apply the proposed numerical
approach to 𝑖𝑛 − 𝑠𝑖𝑡𝑢 adjacent electrical buildings representative of a
nuclear power plant.
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