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Abstract

In this work state estimation for unknown input discrete-time linear sys-
tems is tackled in a bounded error context. First, under the boundedness
assumption on both process and measurement noise as well as on system’s
initial state, the estimation problem is reformulated as a reachability prob-
lem. Then, by preprocessing the set-valued expression of the general so-
lution of the state equation and applying zonotopic set computation rules,
a non-conservative and computationally tractable algorithm is proposed to
characterize efficiently the solution set of this problem. Numerical examples
are presented to show the performance of the proposed zonotopic unknown
input state estimator.

Keywords: Discrete-time linear systems, Unknown input observers,
Zonotopic set computation, Reachability analysis, Set-membership
estimation

1. Introduction

In many real world applications, online knowledge of the internal state of
dynamical systems is essential to perform efficiently control and monitoring
tasks. Thus, state estimation has gained great interest in control system
theory. Numerous approaches have been proposed to solve this problem for
different class of systems, where assumptions on the nature of the system
uncertainty are needed. In general, state estimation is formulated as an
online inversion-like problem, where the internal state of a system has to be
deduced from the model, the input and the measurements. In the framework
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of discrete-time linear systems, most of the available techniques are based on:
Kalman Filter (Kalman, 1960; Sorenson, 1985) for the stochastic case, and
Luenberger Observer (Luenberger, 1964, 1966, 1971) for the deterministic
case. However, this problem is more complicated in the case where some
parts of the system are poorly-known or uncertain, for example when there
are no statistical distributions capable to accurately describe the behavior
of the uncertain parts. As examples of uncertainties one can emphasize
actuator and sensor noises and deterministic modeling errors. To face these
complex situations, set-valued estimation offers a promising framework. In
this context, the uncertainties are modeled by bounded sets, and as a result
the set of consistent values of the state vector is provided at each time instant.
It is worth pointing out that, in the literature, there exist two families of
methods designed to solve this set-valued estimation problem. The first one
is a natural extension of the classical Luenberger observer to the interval case
(J. L. Gouzé and Hadj-Sadok, 2000; Meslem and Ramdani, 2011; Mazenc
et al., 2014; Cacace et al., 2015; Efimov and Raissi, 2016; Meslem et al.,
2018), while the second one relies on an extension of the prediction-correction
principle to the set-valued case (Chisci et al., 1996; Kurzhanski and Vilyi,
1996; Jaulin et al., 2001; Combastel, 2003; Alamo et al., 2005; Ben Chabane
et al., 2014; Meslem and Ramdani, 2019).

On the other hand, systems may be subject to completely unknown in-
puts, for instance actuator faults or exogenous state disturbances. To manage
the impact of the unknown inputs on the estimation error, unknown input
observer design approaches have been proposed in the literature (Wang et al.,
1978; Wang and Davison, 1978; Chen and Patton, 1999; Valcher, 1999; Hou
and Miiller, 1992; Maquin et al., 1994; Meditch and Hostetter, 1973; Patton
et al., 1989). These approaches have also been extended to the set-valued
case (Xu et al., 2016; Robinson et al., 2017; Meyer et al., 2018). The idea
behind this extension is to build state estimators robust against bounded
uncertainties and insensitive to unknown inputs. In (Robinson et al., 2017),
this problem is tackled in the framework of positive systems. A reduced-order
unknown input interval observer is proposed, where the dynamics of its esti-
mation error is described by a stable positive system. To reach this purpose,
specific state-coordinate transformations are applied. In (Meyer et al., 2018),
a full-order unknown input interval observer is introduced. In their work the
authors established LMIs conditions to ensure both positivity and stability
of the estimation error of their proposed unknown input interval observer.
In (Xu et al., 2016), this problem is tackled differently, where zonotopic set
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computations (Shephard, 1974; Kiithn, 1998; Combastel, 2003) are applied to
characterize enclosures of the actual state vector.

In this present work, based on an explicit reachability method, we pro-
pose a zonotopic extension of the full-order unknown input observers intro-
duced in (Chen and Patton (1999), Theorem 3.1, page 74). More precisely,
based on zonotopic set computation, the developed reachability method al-
lows one to obtain a guaranteed enclosure of all the possible estimation errors
of the unknown input observer. It is worth pointing out that the proposed
reachability algorithm is converging, computationally tractable and free from
conservatism linked to the wrapping effect.

The remaining parts of this paper are organized as follows. In Section
2, a brief introduction about zonotopic set computation is given and a new
reachability method for discrete-time linear systems is proposed. This lat-
ter represents the first contribution of the paper. Section 3 formulates the
considered set-valued state estimation problem. Then, a zonotopic extension
of an unknown input observer is introduce in Section 4, which is the main
novelty of this work. Section 5 is dedicated to show, throughout a numerical
example, the performance of the proposed set-valued state estimator, while
Section 6 is devoted to compare our method with other approaches selected
from the literature. A conclusion and perspectives are given in Section 7.

2. Preliminaries and a new reachability analysis method

To model bounded uncertainties and to manage their propagation in the
context of dynamical system, zonoptope shapes have been proposed (Kiihn,
1998; Combastel, 2003; Alamo et al., 2005). By definition, a zonotope is a
symmetric convex polytope. Given a vector p € R" and a matrix M € R"*™,
the zonotope Z(p,M) of order m in R™ (also called m-zonotope) is the
bounded set:

ZpM)=paeMB" ={p+Mz|zcB"} (1)

where B™ is a box or interval vector of dimension m where all its entries are
unitary intervals B = [—1, 1] and by @ one denotes the Minkowski sum of
sets. The complexity of zonotopes is increasing with respect to the number of
its generators m (the columns of M) and the dimension of the space n. Thus,
based on (1), one can characterize a complex geometrical form by using one
vector and one matrix. Notice, an interval vector or box of dimension m is



a degenerated zonotope where the generator matrix M is a diagonal matrix
or when m = 1.

Let Z1(p1,M;) = p1 @ M;B™ and Z5(p2, Ms) = ps @ MaB™2 be two
zonotopes in R"”. The Minkowski sum of Z; and Z; is a zonotope given by

Z1(p1, M1) @ Z5(p2, M) = Z3(p3, M3) (2)

where p3 = p1 + p2, M3 = [My, My] and m3 = my + ma.
Now, let Z(p, M) = p & MB™ be a zonotope in R” and A € R"*" be a
real matrix, the linear transformation of Z by the matrix A is a zonotope in

R™ Z,(pa, M,) defined by
Za(pm Ma) = AZ(pa M) (3)

where p, = Ap and M, = AM.
Let Z(p,M) = p&@MB™ be a zonotope in R"™. The smallest box (interval
vector) containing this zonotope is computed by:

O0Z(p,M)=pa&DyB". (4)
where D, is a diagonal matrix such that

m

(Da)is =D _|(M)y], i=1,....n (5)

j=1
More precisely, the endpoints of the box 0Z(p,M) can be computed as
follows:

NN

where 1,, is a vector-column of dimension n and all its entries are equal to 1.

Reduction criterion. (Alamo et al., 2005)

Let Z(p,M) = p @ MB™ be a zonotope in R". Consider an integer s
such that n < s < m and denote by M = [Ml,Mg, .. ,Mm] the matrix
resulting from the permutation of the columns of M in decreasing order of

their euclidean norms. Then, the following inclusion holds:

Z(p,M) Cp® M, B (7)



where M, = [Ms_n, QJ, with Ms_n is an horizontal concatenation of the
first s — n columns of the matrix M and Q € R™*" is a diagonal matrix
computed as follows

m

(Qui= Y |M)yli=1,..n (8)

j=s—n+1

Note that, inclusion (7)-(8) allows one to reduce the complexity of zono-
topes, especially in iterative numerical schemes. It manages the growth of
the number of segments used to describe zonotopes, which is an important
issue in the context of uncertain dynamical systems.

Remark 1. In the literature there exist other zonotope order reduction meth-
ods, for instance interval hull method, parallelotope hull method and cascade
reduction method, see (Le et al., 2013) and references therein.

In what follows, for sake of simplicity, we denote by,

e Size-Reduction(.,.) a function that implements the reduction operator.
That is, M, = Size-Reduction(M, s).

e dim(M) a function that returns the number of columns of the matrix

M.

e size(Z) a function that computes the volume of the smallest box con-
taining the zonotope Z.

2.1. Zonotopic reachability analysis method

Characterizing the reachable set of dynamical systems is a fundamental
issue that arises in many engineering areas, especially when the safety re-
quirement is crucial. The reachability problem consists in computing outer
approximation of all the possible state trajectories generated from a given
set of initial states and governed by uncertain dynamics. In the case of
discrete-time linear systems described by,

Xk41 = Ax; + Ewy (9>

zonotopic set computation represents an efficient approach to solve this prob-
lem. Note that, the state disturbance wy and the initial state xo of (9) are



assumed to be unknown but belonging into bounded sets W and AXj, re-
spectively. In other words, (9) can be considered as a difference inclusion.
Therefore, there exist zonotopes that include these sets. That is,

Xg € Xy C Z()(po, Mo) Cc R" (10)

and there exists a centered zonotope Z,(0,M,) in R" with M, € R™*"™
such that,
Vwy, € W, Ewy, € Z,(0,M,) (11)

Thus, at every time instant k + 1 the exact reachable set Xj;; of (9) is
included in the following zonotope

Zi1(Prt1, Myg1) = Prg1 ® My B (12)
where
Prt1 = Apg
13
My = [AM,, M, (13)

Note that, the direct application of the sum of two zonotopes and Affine
transformation of a zonotope properties allows one to ensure,

Vk >0, &, C Z(pr, My)

where X}, stands for the exact reachable set of (9) at the time instant k& and
Z1(pr, My) is its outer approximation.

Remark 2. In (13) the size of the matriz My, is growing up with respect to
k, which increases the complexity of this method. Thus, to manage this issue,
the criterion-based reduction techniques is used.

Remark 3. For the sake of simplicity, we have assumed that the center of
zonotope Z,, 1s a zero vector. However, this method can be also applied for
the case where the center of this zonotope is not equal to zero.

2.2. Ezplicit reachability method

This subsection presents the first contribution of this work. Unlike the
classical reachability methods that apply set-valued computation to the dy-
namics (9), this work proposes to extend set-valued computation the to gen-
eral solution of (9). That is, to the following analytic expression,

k—1
x, = AFxy + Z AT Ew, (14)

1=0
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This allows to avoid, by construction, the conservatism generated by the
wrapping effect that appears in iterative numerical schemes, as those de-
scribed in (9). Note that, by the wrapping effect one means the conservatism
introduced at each iteration by over-approximating the exact solution set by
a simpler form which is usually larger (Kiihn, 1998).

Proposition 1. Given the zonotopes Zy(po, Mo) and Z,(0,M,,) defined in
(10) and (11). Then, Algorithm 1 provides the vectors py and the matrices
M, such that:

o forallk >0
Xy C Z1.(pr, My) (15)

where Xy, is the exact reachable set of (9), and

o for all x, € X}
Xp S Xp SXp (16)

where x;, and X, stand for the endpoints of the smallest box containing
Zi(Pr, My,).

Proof 1. On the one hand, based on the sum of two zonotopes and affine
transformation of a zonotope properties, one can use the steps 1 to 3 of
Algorithm 1 to define the following Minkowski sums,

Zi1(Prs1, Myy1) =AM Zi(po, M) @ Ry (0, Si)

Ri(0,Sp41) = AFLZ,(0,M,)® Ry(0,S) (17)

with Ro(0,So) = Z,(0,M,,). On the other hand, by applying zonotopic set
computation to (14), one obtains:

k—1

Zp1 (Pt Misr) = AR Z5(po, M) @ Y AM171Z,(0,M,)  (18)
1=0

Thus, one can state that all the possible solutions to (9) at k+1 are included
inside the zonotope computed by (18). Now, to complete this proof we have
to show that (18) is equivalent to (17). To achieve that, first, by direct com-
putation one can develop the second equation in (17) to obtain the following



Algorithm 1: Explicit-Reachability-Method
e Require: py, My, M, A, s
e Set: SO = Mw

e While £ > 0 do

L. pry1 = AFtlp,
2. My = [AMIM,, Sy
3. Spp1 = [AMIM,, Sy
4. Xpy1 = Pr+1 + Dy 1
5. Xp41 = Prt1 — Dag 1
6. if dim(Mgi1) > s
o My := Size-Reduction(My41, $)
7. end

8. if dim(Sky1) > s
o Sgi1 := Size-Reduction(Sgy1, )
9. end

e end




ETPTeSSIOn:

Ri(0,S;) = AFZ,(0,M,)® Ry_1(0,Si_1)
— Aka(O, Mw) &) Ak”Zw(O, Mw) @D Rk_g(o, Sk_z) (19>
= A*Z,(0,M,)® A 1Z,(0,M,)® - @& Z,(0,M,)

Then, by substituting Ry (0, Sk) by its expression (19) in the first equation
of (17) we obtain:

Z41 (pk+1, Mk+1) = AkHZo (p0> Mo)

® A*Z,(0,M,) dA1Z,(0,M,) - D Z,(0,M,)

k—1
= Ak+120(p07 MO) S Z Ak_l_iZw(Oa Mw)
i=0
(20)
That is ezxactly the zonotopic sum (18). Thus, one can affirm that the steps
1 to 3 of Algorithm 1 compute a center and a matrixz shape of a zonotope that
encloses all the possible solutions of (14).

Now, thanks to the interval hull properties (4), we have
X C Zi(pr, My) C OZ(p, My) = pr + Dy, B° (21)

Thus, based on (21) one can state that the upper and lower bounds, of the
actual state vector x;, computed in lines 4 and 5 of Algorithm 1 guarantee
the double inequality (16). This ends the proof. O

In addition, it is worth pointing out that if the matrix A is Schur stable,
the proposed reachability method guarantees the convergence of the size of
the zonotopes Z(px, My) for a sufficiently large k.

Proposition 2. If the matriz A in (9) is Schur stable, then

lim size(Z(pr, My)) < S (22)

k—4o00

where [ is a positive real number.



Proof 2. By direct computation, we have:

lim size(Zk41(Prr1, Mrs1)) < kgglw||Ak+1||ooSiZ€(Zo(P0,Mo))

k—4o00

+  lim size (Rk(O, Skz))

k—+o0
(23)
where ||.||w stands for the subordinate matriz infinity norm. On the other
hand, since A is assumed to be Schur stable, we obtain

1A | =0 (24)

lim
k——+o0

Thus, from (23) and (24) we can state that:
lim size(ZkH(pkH,MkH)) < klim Size(Rk(O,Sk)) (25)

k—+o00 —+00

Now, based on the same argument, we can show that for k — 400 we have:
Ri41(0,Sk11) = Ri(0, Si) (26)

which leads to conclude that the zonotopic sequence generated by the second
equation in (17) has a fived set or an invariant set. That is, at the steady
state, the estimation error reaches a bounded set and stays in it. This allows
one to claim that there exists a positive real number 5 such that:

lim size(Ri(0,Sy)) < 8 (27)

k—4o0
This completes the proof. 0

2.3. Comparison throughout a numerical example

To emphasize the effectiveness of the explicit reachability method to face
the pessimism propagation, its performance is compared on a numerical ex-
ample to that obtained by the iterative reachability method. Consider a
discrete-time linear system (9), with

0.9  0.63 0.02  —0.01
A= ( —0.05 0.7 ) and B = ( ~0.03  0.04 > (28)

and the state disturbance vector wy is assumed unknown but belongs in the
box B2. That is Vk > 0 one has:

wi €[-1, 1] x [-1, 1] (29)
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The initial domain of the state vector of this system is a box defined by,
xg € Xy = [-2, 2] x [-2, 2] (30)

To apply the zonotopic reachability methods (12)-(13) implemented in
Algorithm 1, we need to define the following two initial zonotopes:

Zo(po,My) 2 A
(31)
Z,(0M,) > Ew,, Vk>0

where pg = 0, My = 21, and M,, = E. The simulation results are shown in
Figure 1. The blue solid lines represent the upper and lower bounds of the
state variables computed by the iterative method (12)-(13), while the green
dashed lines correspond to the bounds computed by the explicit method,
Algorithm 1. Note that these upper and lower bounds are obtained by the
projection of the zonotopes based on the interval full method (4)-(6), steps
4 and 5 of Algorithm 1. The dotted lines represent the state trajectory of
the system started from xo = (1, 2)7 and driven by the disturbance vector

wy = (sin(0.2k), sin(3k))T. On the other hand, to limit the increasing
dimension of the matrices M and S;, the criterion-based reduction method
(7)-(8) is applied with s = 5.

These results show the advantage, in term of accuracy, of the proposed
reachability method. In fact, as observed in Figure 1, at each time instant
k the proposed method provides an outer approximation of the reachable
set of the system included inside the outer approximation computed by the
classical iterative method.

Note that, it is possible to improve the accuracy of the iterative method
by increasing the order of the zonotopes. That is, we have to authorize using
a larger number of segments s. For instance, for this example to obtain
similar results to that generated by the explicit method, we have to run the
iterative method with s larger than 50.

3. Problem formulation

3.1. System description

This work addresses state estimation for discrete-time linear systems with
unknown inputs. This class of systems can be modeled by the following state

11



Figure 1: Outer approximation of the reachable set. Top figure shows the state enclosures
of first state variable while the bottom figure corresponds to the second state variable.

space representation,

Xk+1 = AXk -+ Buk + EWk -+ Hdk

Yk = CXk + FVk <32>

where both state and output equations are considered uncertain. Notice
that, x; € R™ is the state vector, y, € R™ is the output vector, u, € R™
is the known input vector while d; € R™ is the unknown input vector. The
uncertain parts of this system are:

e State disturbance vector w;, € R™ which could also include process
noises and deterministic modeling errors. The only available informa-
tion about this signal is its feasible domain W C R™». That is,

Vk >0, w, €W (33)

e Output error vector vy € R™ which could encompass measurement
noises and deterministic sensor imperfections. Apart from its feasible
domain ¥V C R™ there is no additional information about its evolution.
That is,

VEk > O, Vi € V (34)
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e The initial state xq is unknown but belongs into a given set &y. That
is for k =0,
X € Xo (35)

The matrices A, B, C, E, F and H are of appropriate dimensions. In
addition, we assume that n, > ng and C is a full row rank matrix and H is
a full column rank matrix. Note that, due to the nature of the considered
uncertainties in (33)-(35), system (32) can be viewed as a difference inclusion.

3.2. State estimation problem

State estimation is an important problem in practice. Many control,
diagnosis and monitoring methods are based on the online knowledge of the
internal state of the system. This problem is especially problematic for the
cases where the considered systems are uncertain, as in (32). That is, when
some parts of the real world system are partially or completely unknown.
However, in the literature, the concept of unknown input observer (Wang
et al., 1978; Wang and Davison, 1978; Chen and Patton, 1999; Valcher, 1999;
Hou and Miiller, 1992; Maquin et al., 1994; Meditch and Hostetter, 1973;
Patton et al., 1989) has been introduced to deal with state estimation in the
presence of unknown inputs for linear systems without state disturbances
and measurement noises. That is, systems that could be described by the
following state space model:

Xk+1 — AXk + Buk -+ Hdk

ye = Cxg (36)

This kind of state observers allows one reconstructing the internal state with-
out demanding any information about the unknown input vector dy.

3.2.1. Unknown input observer (ideal case)
For the class of discrete-time linear systems described by (36), the follow-
ing dynamical system,

zry1 = Nzp + GBug + Ly,

. 37
X = zr+ Ky (37)

is a structure for estimating the state vector, despite the presence of the
unknown inputs. The design matrices of (37) are gathered in the following
list (Chen and Patton (1999), Table 3.1, page 77):
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e K = H(CH)*, where (CH)* stands for the pseudo-inverse matrix of
CH.

e G = (I, — KC), where I, is the identity matrix of dimension n.
[ ] A1 = GA

L; is a gain matrix that can be computed, for instance, by pole place-
ment techniques, LQE method or H,, synthesis method.

e N =A,; —L;C is a Schur stable matrix.
e I, =NK and L =L; + Ls.

As stated in (Chen and Patton (1999), Theorem 3.1, page 74), an un-
known input observer (37) can be designed for (36) if and only if the following
assumption holds.

Assumption 1. The matrices H, C and A, satisfy the following conditions:

1. rank(CH) = rank(H)
2. (C,A,) is a detectable pair

3.2.2. The uncertain case

In the following, an unknown input observer is developed for the case of
uncertain systems, where the noise and disturbance, as well as the initial
state, belong into bounded sets.

Assumption 2. (Boundedness) The sets W,V and Xy defined in (33), (34)
and (35), respectively, are assumed to be bounded with known bounds.

Thus, based on Assumption 2 the objective is to design an algorithm able
to compute, independently of the unknown input d, at each time instant k
a tight outer approximation of the exact reachable set of (32) defined by:

( 3

Xp+1 € R",

E|Xk € Xk, Elwk € W, E|Vk+1 ey
X1 = | (38)
Xpt+1 = AXk + Buk + EWk + Hdk

Cxpt1 = Yrt1 — Fvipp )

14



More precisely, the sought outer approximation or state enclosure, denoted
by Zj, has to ensure these two properties:

e Framing property:
Vk >0, X C 2 (39)

That is, no consistent solution of this problem will be lost.
e Converging property:
lim size(Z) <c (40)

k—+4o0
where ¢ is a positive constant, which can be viewed as an indicator of
the tightness of the estimated state enclosure at the steady state.

To solve this problem, we propose a reliable set-membership estimation
method. More precisely, based on the structure of the unknown input ob-
server (37), a set-valued algorithm able to compute an enclosure for the set
(38) with the framing and converging properties (39) and (40) is designed.

4. Main result: Zonotopic unknown input state estimator

This section introduces the second contribution of this work. Based on
Proposition 1 and Proposition 2, a zonotopic extension of the unknown input
observer (37) is proposed. This extension allows one to be robust against the
unknown but bounded state disturbances and measurements noises. Before
introducing the main result, let us introduce some design parameters. By
definition the initial estimation error is eg = Xq — Xg, where X is the initial
estimate state vector picked inside the zonotope Zy(po, M) that encloses
the initial state domain X of (32). Thus, the zonotope which includes all
possible initial estimation errors is defined as follows:

Eo(do, My) = =% & Zo(po, M) (41)

where qo = po—Xp is its center. On the other hand, denote by J the following
matrix,

J=[1,-KC)E, —-L,F, —KF] (42)

and under the boundedness assumption of the signals wy and vy, we define
the following zonotope which includes the feasible domain of the following
vector:

Vk >0, Jhy € Z,(0,M,,) (43)
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where hy, = (w{, vg, Vg+1)T, M,, = JD;, and D,, is a diagonal matrix with
appropriate diagonal elements.

Proposition 3. Let Assumptions 1 and 2 hold. Then, Algorithm 2 provides
the centers py and the shape matrices My of zonotopes enclosing the exact
reachable set (38) of system (32). That is:

o forallk >0

o for all x, € X}
X, < X < X (45)

In addition, since the matriz N is Schur stable, there exists a positive real
number o such that:

lim size(Z(pr, My)) < (46)

k—+o0

Proof 3. By direct computation we can describe the dynamics of the esti-
mation error e as follows:

€1 = Nek + Jhk (47)

Thus, based on steps 8, 5 and 6 of Algorithm 2 and on the results of Proposi-
tion 1 and Proposition 2, one can claim that the following zonotopic system,

Err1(Arr1, Myy1) = NFFLE (qo, Mp) @ R (0, S)
(48)
Ri+1(0,Sps1) = NFTZ,(0,M,,) ® Ri(0,Sy)

provides converging zonotope sets that include all possible estimation errors.
That is:
vk 2 0, e, € Ek(qk; Mk) (49)

where qi. and My, are the centers and the shape matrices of these zonotopes,
respectively. Hence, based on (49) and the definition of the estimation error
one can state that:

Vk >0, x, € Xp, + Ek(ar, My) = Z(pr, Mg) (50)
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Algorithm 2: Zonotopic-Unknown-Input-State-Estimator
e Require: qo, My, M,,, N, B, G, L, K| s
e Set: Sy :=M,, z9 := %9 — Ky
e While £ > 0 do

zi+1 ‘= Nz + GBu, + Ly
Xpt1 = Zr1 + Kyrga
dr+1 = N*Flqq
Pi+1 i= Xpt1 + Qi
Mj41 = [NkHMo, Sk1]
Sk41 = [NkHMvw, Sk+1]
Xit1 := Prr1 + Dag,, 1s
Xp11 = Prr1 — Do, Ls
if dim(Mj4q1) > s

o My := Size-Reduction(My41, s)
10. end
11. if dim(Sgs1) > s

S AT I

o Sgi1 = Size-Reduction(Sg+1, )
12. end

e end
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and
Vk >0, x, < xp < Xy (51)

where x;, and Xy, are computed in lines 7 and 8 of Algorithm 2. On the other
hand, since by construction N is Schur stable, one can state that:

. . _ . <
kEI—Poo size (Zk(pk, Mk)) ksgr-l{loo size (Ek(qk, Mk)) <« (52)
This completes the proof. 0

Remark 4. It is possible to improve the performance of the proposed set-
valued state estimator by putting some columns of the matriz E in the matrix
H without violating the conditions of Assumption 1. Doing that, allows to
manage the effect of some unknown but bounded state disturbance on the
estimation error.

5. Illustrative example

In this section, the performance of the proposed zonotopic unknown input
state estimator is illustrated throughout a numerical example. The consid-
ered system has the form described in (32) and its matrices are defined as
follows:

05 —05 0 1 0.1
A= -1 o 08 |.B=[0o], E=] 01
0 -09 —03 1 0.1
(53)
—1
100 0.1 0
a0 ) oo (30 ) (U )

The initial state of this system is unknown but belongs to a box of known

bounds:
(=5, 5]

-5
Xg € Xy = [—5, 5} (54)
[_57 5}

The process and measurement noises are poorly-known but the endpoints of
their feasible domains are known:

VE >0, wi € [-1, 1] (55)
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Vk >0, v € ( E H ) (56)

The known input of this system uy, is given by the following function:
u; = 5co0s(0.5k), k>0 (57)
Note that, this system is also subject to a completely unknown input dy.

5.1. Design parameters of the zonotopic state estimator

For this example, the numerical values of the four matrices that define
the classical unknown input observer (37) are:

=035 0 0 000
N = 0 0 0083 |,G=]01020
0 -0.9 -0.05 0 01
(58)
0 0 10
L= -1 07167 |, K= 0 O
0 —0.25 0 0

Note that, the tuned eigenvalues for the matrix IN are:
A1 = —0.35, Ay = —0.025 4 0.27277, A3 = —0.025 — 0.2727% (59)

In addition, for this example, the matrix J that represents the distribution
of the uncertain input on the dynamics of the estimation error (47) is:

0 —0.035 0 —0.
J=1| 01 01 -0.0717 0O
0.1 0 0.025 0

10
0 (60)
0

On the other hand, the initial domains of the state vector and the feasible
domains of the process and measurement noises affecting the dynamic of the
estimation error can be represented by the following zonotope sets:

XO - ZO<07 MO)
(61)
\V/k? 2 0, Jhk S Zw(oa Mvw)

where My = 513 and M, = JI5.
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5.2. Simulation results

For the simulation purpose, we have assumed that: xJ = (1, 1, 1), w;, =
sin(0.1k) and vi = (sin(100k), sin(100k + %)). Moreover, the considered
unknown input is defined by:

0, if k < 20
d, = (62)
10, if k& > 20

On the other hand, we set xJ = (4.5, —4.5, 4.5). Thus, we obtain:
zi = (3.5, —4.5, 4.5) (63)

and
ab = (—4.5, 4.5, —4.5) (64)

For this example, the maximal number s of the authorized segments of the
zonotopes is fixed to s = 20. This allows one to master the computational
complexity of the proposed state estimator (Algorithm 2).

The simulation results are depicted in Figure 2. As shown, the proposed
zonotopic unknown input state estimator provides a tight enclosure of the
actual state vector of the system. The black tiny lines show the evolution
of this state vector, whereas the blue solid lines correspond to the estimated
state enclosure. The red dashed lines represent the point estimate of the
actual state vector. Note that, the upper and lower bounds of the estimated
state enclosure are computed by the interval hull projection method, lines 7
and 8 of Algorithm 2, applied at each iteration to the estimated zonotope.

In Figure 3, the width of the estimated intervals of each state variable
are plotted. They stand for the distance between the estimated upper and
lower state trajectory bound that are computed as follows:

ei,k = fm — gi,k, Z = 1, 2, 3 (65)

where T; is the upper bound of the ith state variable and z,, is its lower
bound. These bounds are computed by the interval hull method defined
in (6). The convergence property of the proposed state estimator is well
illustrated in Figure 3. In this figure, we observe that the vector of the
estimation error converge at the steady state towards its equilibrium point
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Figure 2: Estimates state enclosure. Solid lines stand for the upper and lower estimate
bounds of the actual state vector plotted by the tiny lines. Dashed lines show the point
estimate of the actual state vector.

e* = (0.42,0.61,0.81). Thus, from this equilibrium point one can determine
the a parameter of Proposition 3 as follows:

a = e].e5.e5=0.21 (66)

Moreover, this figure shows that the estimation error is not impacted by the
unknown input. In fact, at £ = 20 the unknown input switches from 0 to 10,
but no variation is observed on the curves of the estimation error.

6. Comparison with some related works

6.1. Comparison with an interval observer method:

In this subsection we compare the simulation results of the proposed
method with those obtained by the interval observer approach introduced in
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Figure 3: The widths of the estimated intervals of each state variable.

(Meyer et al., 2018). The considered system is borrowed from this reference
and described by the following matrices:

0.3 —0.7 10
A(O.G —0.5)’]3(0 1)’
0 1
E:(1>,H:(O>,C:(1 0),F=1.

The system input vector is defined by u; = (sin(0.1%), cos(0.2k))T and the
bounded process and measurement noise are described by,

wr = 0sin(0.3k)

vy = esin(k)
respectively. Parameters 0 and e are assumed unknown but belong into

bounded intervals § € [—0.5,0.5] and ¢ € [-0.1,0.1]. The considered un-
known input of this system is given by,

dr = 6sin(0.5k. o)
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where xq, is the second state variable of the system. In (Meyer et al., 2018)
K = (0, 0.56)7 is considered as an optimal observer gain. Based on such
a gain value, the following matrices are chosen to reproduce the interval
observer in (Meyer et al., 2018):

0.3 0 0 —0.7
+_ - _
L _<o.04 o)’L _(o —0.5)’
0 0 -1 0
+ - _
(o) m= (ot 5 ),
0 0
+ - _
k= (050 ) 2= (o)

The simulation results of both methods are illustrated in Figure 4. As shown

4 T T T R e S S
2 d Proposed Method |1
————— Meyer Method
~— 1.5
1
0.5
0 |
0 10 20 30 40
k
2.5
241 LT
/
l,l
= !
I 1
© 221 1
Proposed M ethod
2.1 ————— Meyer Method
i i i 2 | | |
0 10 20 30 40 0 10 20 30 40
k k

Figure 4: The estimated state enclosure computed by both methods. Continuous lines
correspond to the results of the proposed method while dashed lines show those of Meyer’s
method.
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in this figure, in terms of estimation performance the proposed method is
better than that introduced in (Meyer et al., 2018). In fact, the interval
estimate of each state variable provided by the proposed method is tighter
than that computed by the interval observer method. This fact is illustrated
in the right column in Figure 1, where the widths of the interval estimates of
the state variables are plotted. Notice that, these curves are considered as key
performance indicators of conservatism. However, in terms of computation
cost interval observer method has got better performance. With a processor
"Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz” the used computational time
is about 0.018s for the proposed method while it is about 0.0045s for the
interval observer method.

Now, for completing this comparison, it is worth pointing out two major
advantages of the proposed method with respect to interval observer design
methods: (i) The restrictive positivity assumption on the dynamics of the
estimation error is not needed. Thus, an optimal observer gain in terms of
estimation performance can be applied without any restriction; (i7) A point
estimate is computed in the same time with the lower and upper bounds of
the estimation error.

6.2. Comparison with a zonotopic iterative estimator:

First, notice that the set-membership estimator introduced in (Xu et al.,
2016) is based on a different structure of the unknown input observer used in
the proposed methods. Thus, to be fair in the comparison, we have adapted
our method to this different structure of unknown input observers. The
considered example is that used in (Xu et al., 2016), where its matrices are
defined as follows:

0.3 0 1 0
A‘(o 0.4)’3_(0 0.5)’
0 030 0.5 0.1 0 10
E:(0.4 0 0.5)’H:<0.2)’C:(0 0.1)’F:(0 1)'

The input vector of this system is u, = (10sin(0.2k), 10 sin(O.Qk))T and its
process and measurement noise vectors are assumed unknown but bounded
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signals

01 0 0
wyel 0 010 |B
0 0 01

001 0\
Vke(o 0.01)8

Two simulation tests are performed. In the first one, the considered
simulation conditions are taken from (Xu et al., 2016), where the dynamics
of the estimation error is described by the real eigenvalues:

A1 = 0.3822, \y = —0.0847

while in the second test, the case of complex eigenvalues is considered.

Test 1: The obtained simulation results are plotted in Figure 5. The
width of the state enclosure of each variable provided by the proposed method
is slightly lower than that generated by the iterative zonotope method. How-
ever, in terms of computational time the iterative method is slightly faster.
Indeed, the proposed method spends 0.015s while the iterative method re-
quires 0.01s. Note that, for the two cases, to limit the computational effort
we have set s = 3.

Test 2: In this second test, complex eigenvalues for the dynamics of the
estimation error are chosen. The considered eigenvalues are:

A =05+0.3¢, Ay =05—-0.3

The simulation results are displayed in Figure 6. In this case, the proposed
method provides tighter state enclosure than that given by the zonotopic
iterative method. To show clearly this advantage we have plotted, in the
second column of Figure 6, the width of the estimated interval of each state
variable. On the other hand, we have the same remark about the computa-
tional time as that made in the first test.
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Figure 5: The estimated state enclosure computed by both methods. Continuous lines
correspond to the results of the proposed method while dashed lines show those of Xu’s
method, Test 1.

7. Conclusions

A zonotopic extension of the classical unknown input observer for discrete-
time linear systems has been proposed in this work. The state estimation
problem is tackled in an unknown but bounded error context and a set-
valued estimation algorithm is proposed to characterize, in a guaranteed
way, all the possible solutions of the problem. This algorithm is based on
a non-conservative reachability method applied to the dynamics of the esti-
mation error. In addition, the convergence of this algorithm is shown and
its efficiency is illustrated throughout numerical examples borrowed form the
literature.

In forthcoming works, we aim at extending, this set-valued estimation
methodology to a more complex class of uncertain systems. For instance, to
deal with the case of systems with parametric uncertainties, non-pessimistic
algorithms for computing the powers of interval matrices should be designed.
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Figure 6: The estimated state enclosure computed by both methods. Continuous lines
correspond to the results of the proposed method while dashed lines show those of Xu’s
method, Test 2.

References

Alamo, T., Bravo, J.M., Camacho, E.F., 2005. Guaranteed state estimation
by zonotopes. Automatica 41, 1035-1043.

Ben Chabane, S., Stoica Maniu, C., Alamo, T., Camacho, E.F., Dumur,
D., 2014. Improved set-membership estimation approach based on zono-
topes and ellipsoids, in: Proceedings of the European Control Conference,
Strasbourg, France. pp. 993-998.

Cacace, F., Germani, A., Manes, C., 2015. A new approach to design interval
observers for linear systems. IEEE Transaction on Automatic Control 60,

1665-1670.

Chen, J., Patton, R., 1999. Robust Model-Based Fault Diagnosis for Dynamic
Systems. Springer, New York.

Chisci, L., Garulli, A., Zappa, G., 1996. Recursive state bounding by paral-
lelotopes. Automatica 32, 1049-1055.

27



Combastel, C., 2003. A state bounding observer based on zonotopes, in:
Proceedings of European Control Conference, Cambridge, UK. pp. 2589—
2594.

Efimov, D., Raissi, T., 2016. Design of interval observers for uncertain dy-
namical systems. Automation and Remote Control 77(2), 191-225.

Hou, M., Miiller, P.; 1992. Design of observers for linear systems with un-
known inputs. IEEE Transactions on Automatic Control 37, 871-875.

J. L. Gouzé, A.R., Hadj-Sadok, Z., 2000. Interval observers for uncertain
biological systems. Ecological modelling 133, 45-56.

Jaulin, L., Kieffer, M., Didrit, O., Walter, E., 2001. Applied interval analy-
sis: with examples in parameter and state estimation, robust control and
robotics. Springer-Verlag, London.

Kalman, R., 1960. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME-Journal of Basic Engineering 82, 35-45.

Kiihn, W., 1998. Rigorously computed orbits of dynamical systems without
the wrapping effect. Computing 61, 47-67.

Kurzhanski, A.B., Valyi, 1., 1996. Ellipsoidal calculus for estimation and
control. Birkhatiser Boston.

Le, V.T.H., Alamo, T., Camacho, E.F., Stoica, C., Dumur, D., 2013. Zono-
topes: From Guaranteed State Estimation to Control. ISTE Ltd and John
Wiley & Sons, Inc.

Luenberger, D., 1964. Observing the state of a linear system. IEEE Trans-
actions on Military Electronics 11, 74-80.

Luenberger, D., 1966. Observers for multivariable systems. IEEE Transac-
tions on automatic control 11, 190 — 197.

Luenberger, D., 1971. An introduction to observers. IEEE Transactions on
automatic control 16, 596-602.

Maquin, D., Gaddouna, B., Ragot, J., 1994. Estimation of unknown inputs
in linear systems, in: Proceedings of 1994 American Control Conference -

ACC "94, Baltimore, MD, USA. pp. 1195-1197.

28



Mazenc, F., Dinh, T.N., Niculescu, S.I., 2014. Interval observers for discrete-
time systems authors. International journal of robust and nonlinear control
24, 2867-2890.

Meditch, J.S., Hostetter, G.H., 1973. Observers for systems with unknown
and inaccessible inputs, in: 1973 IEEE Conference on Decision and Control
including the 12th Symposium on Adaptive Processes, San Diego, CA,

USA. pp. 473-480.

Meslem, N., Loukkas, N., Martinez, J.J., 2018. Using set invariance to design
robust interval observers for discrete-time linear systems. International
Journal of Robust and Nonlinear Control. 28, 3623-3639.

Meslem, N.; Ramdani, N.; 2011. Interval observer design based on nonlin-
ear hybridization and practical stability analysis. International Journal of
Adaptive Control and Signal Processing 25(3), 228-248.

Meslem, N., Ramdani, N., 2019. A new approach to design set-
membership state estimators for discrete-time linear systems based
on the observability matrix. International Journal of Control.

https://doi.org/10.1080/00207179.2019.1628296.

Meyer, L., Ichalal, D., Vigneron, V., 2018. Interval observer for Ipv systems
with unknown inputs. IET Control Theory & Applications. 12, 649-660.

Patton, R.J., Frank, P.M., Clarke, R.N., 1989. Fault diagnosis in dynamic
systems: theory and application. Prentice Hall, New York.

Robinson, E.I., Marzat, J., Raissi, T., 2017. Interval observer design for
unknown input estimation of linear time-invariant discrete-time systems,
in: Proceedings of the 20th IFAC World Congress, Toulouse, France. pp.
4021-4026.

Shephard, G., 1974. Combinatorial properties of associated zonotopes. Cana-
dian Journal of Mathematics 26, 302-321.

Sorenson, H.W., 1985. Kalman filtering: Theory and Application. IEEE
Press selected reprint series.

Valcher, M., 1999. State observers for discrete-time linear systems with un-
known inputs. IEEE Transactions on Automatic Control 44, 397-401.

29



Wang, S., Davison, E., 1978. Observing partial states for systems with un-
measurable disturbances. IEEE Transactions on Automatic Control 23,
481-483.

Wang, S., Wang, E., Dorato, P., 1978. Observing the states of systems with
unmeasurable disturbances. IEEE Transactions on Automatic Control 20,
716-717.

Xu, F., Tan, J., Wang, X., Puig, V., Liang, B., Yuan, B., 2016. A novel
design of unknown input observers using set-theoretic methods for robust
fault detection, in: 2016 American Control Conference (ACC), Boston,
MA, USA. pp. 5957-5961.

30





