EV Solar charging at CEA: experimental results
Bruno Robisson, Sylvain Guillemin, Alexandre Mignonac

To cite this version:
Bruno Robisson, Sylvain Guillemin, Alexandre Mignonac. EV Solar charging at CEA: experimental results. IEA-PVPS-Task 17, Nov 2021, On-line, France. hal-03609019

HAL Id: hal-03609019
https://hal.science/hal-03609019
Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EV (SOLAR) CHARGING @CEA: EXPERIMENTAL RESULTS
BRUNO ROBISSON, SYLVAIN GUILLEMIN, ALEXANDRE MIGNONAC

PV2E_MOBILITY
French Contribution to IEA PVPS T17 - PV & Transport

Virtual Task 17 Meeting T17 18-19 November 2021
AGENDA

• CEA EVCI & PV
 • CEA EVCI
 • EV charging & PV @Cadarache
 • Objectives

• Smart charging
 • Control architecture
 • User journey
 • Definitions
 • Control algorithm

• Experimental results

Associated R&D projects:
EvolIVE Project with RTE
G. Vignal

Neemo Project with MCAST
http://neemo-project.eu/
B. Azzopardi & R. Mikalauskiene

INES.2S
https://www.ines-solaire.org/ines-2s/

PV2e_Mobility
M. Sechilariu
CEA CENTERS

- **9** research centers (5 civil / 4 military)
- **8** technological platforms
- **20 181** employees (included 1 233 PhD students and 176 postdoctoral researchers)
- **Budget of 5 billion** euros
CEA CADARACHE – NEAR AIX-EN-PROVENCE

5500 workers

1600 Ha 900ha fenced (22 km of fence)

480 buildings and 500 000 m2 of floor

70 Km of paved roads, 6 km of landscaped footpath, around 5500 people / day on site

29 Bus lines carrying a thousand employees

75 km of water distribution network (drinking water station, industrial water, purification station)

Private power network

• 63kV / 15kV substation
• 18 MV loops (85km of 15kV underground lines)
• EVCI : 81 charging points at 22kVA
• 3kV public lighting network
30 EV charging areas
81 22kW Charge points

G2Mobility (now Total EV Charge)
Diva (2*22kW)

Setup mid-2016
EVCI CADARACHE – EV & USERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Brand</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoé</td>
<td>Renault</td>
<td>148</td>
</tr>
<tr>
<td>e208</td>
<td>Peugeot</td>
<td>38</td>
</tr>
<tr>
<td>Twingo</td>
<td>Renault</td>
<td>26</td>
</tr>
<tr>
<td>M3</td>
<td>Tesla</td>
<td>21</td>
</tr>
<tr>
<td>Leaf</td>
<td>Nissan</td>
<td>21</td>
</tr>
<tr>
<td>Kangoo</td>
<td>Renault</td>
<td>16</td>
</tr>
<tr>
<td>E-Niro</td>
<td>Kia</td>
<td>9</td>
</tr>
<tr>
<td>Berlingo</td>
<td>Citroën</td>
<td>5</td>
</tr>
<tr>
<td>Ioniq</td>
<td>Hyundai</td>
<td>5</td>
</tr>
<tr>
<td>Twizy</td>
<td>Renault</td>
<td>4</td>
</tr>
<tr>
<td>e2008</td>
<td>Peugeot</td>
<td>4</td>
</tr>
<tr>
<td>MS</td>
<td>Tesla</td>
<td>3</td>
</tr>
<tr>
<td>Golf-GTE</td>
<td>Volkswagen</td>
<td>3</td>
</tr>
<tr>
<td>ID3</td>
<td>Volkswagen</td>
<td>3</td>
</tr>
<tr>
<td>Fortwo</td>
<td>Smart</td>
<td>2</td>
</tr>
<tr>
<td>Outlander</td>
<td>Mitsubishi</td>
<td>2</td>
</tr>
<tr>
<td>I3</td>
<td>BMW</td>
<td>2</td>
</tr>
<tr>
<td>e3008</td>
<td>Peugeot</td>
<td>2</td>
</tr>
<tr>
<td>e-UP</td>
<td>Volkswagen</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>External companies</td>
<td>27</td>
</tr>
<tr>
<td>Personal</td>
<td>212</td>
</tr>
<tr>
<td>Service</td>
<td>90</td>
</tr>
<tr>
<td>Taxi</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL = 332

3 involvement levels:
- Control, information = 48 people
- No control, information = 28 people
- No control, no information = 256 people
OBJECTIVES

Production → Network → Consumption

Network + Production = Consumption

Control algorithm: maximize

Selfproduction rate = (PV & consumption) / consumption
AGENDA

• CEA EVCI & PV
 • CEA EVCI
 • EV charging & PV @Cadarache
 • Objectives

• Smart charging
 • Control architecture
 • User journey
 • Definitions
 • Control algorithm

• Experimental results
CONTROL ARCHITECTURE

GRID

User Interface

Charge request, state, power

Departure time Initial SoC

Supervision SIGE

Planning Simulation KPI

SIGE

- Information system
 - Solar forecast & Measures
 - Charge request
 - Users & Vehicles
 - Electrical network
 - Charging station state

- Planning
- Simulation
- Key Performance Indicators

Solar production forecast & measures

Physical flows

Information flows

24 out of the the 81 22kW charge points @ Cadarache

FOR 328 E

PV2e_Mobility | Robisson B. – Guillemin S. - Mignonac A.
USER JOURNEY

• The user connects his EV and passes his badge
• The supervision software sends an SMS inviting the user to confirm his departure time and the SOC of his car (default values are proposed).
• The EV is supplied with a test profile.
• Optimization and recharging are made on the basis of these data
DEFINITION: AVAILABLE POWER

Available Power = **CorrectedPowerForecast**
DEFINITION: AVAILABLE POWER

- rawPowerForecast
- clearskyPower
- powerForecast

- Power
- CorrectedPowerForecast
DEFINITION: LEAD TIME

The lead time is the difference between the amount of time before departure and the amount of time to fill up the battery at PMax.

Estimate the SOC(t_n) of the EV

Power

PMax

Time to fill up @Pmax

Energy to fill up the battery @SOC(t_n)

Time before departure

Lead Time

DepartureTime = t_d

| t |
CONTROL ALGORITHM - PRINCIPLE

Estimate the SOC of all the EVs and the lead time of the controlled EV

‘Distribute’ the available power

if LT(ev4) < LT(ev2) < LT(ev3)

Available Power

No Control, PMax1

Control, PMax2

Control, PMax3

Control, PMax4

Current Time = \(t_0 \)

\(t_1 = t_0 + \Delta t \)

\(\ldots \)

\(t_n = t_0 + n\Delta t \)

\(\text{SP}(ev,t) \) is the setpoint at time \(t \) of the charging point on which the ev is connected.
AGENDA

• CEA EVCI & PV
 • CEA EVCI
 • EV charging & PV @Cadarache
 • Objectives

• Smart charging
 • Control architecture
 • User journey
 • Definitions
 • Control algorithm

• Experimental results
EXPERIMENTAL RESULTS

- 19/10/2021: Cloudy day
- 16 charging sessions
- PV plant = 160kWp

Cumulated simulated charging power without control:

- PV measurements: KO
- ClearSkyPower
- CorrectedPowerForecast
EXPERIMENTAL RESULTS

Cumulated power setpoints with control:
EXPERIMENTAL RESULTS

Cumulated measured charging power with control:

Large increase of the self-production ratio thanks to control
Cumulated measured charging power with control:

Users’ behaviour strongly influences the results
PERSPECTIVES

- Follow the experiments during at least 9 months
- Increase the participants number
- Integrate the participants feedback in the control algorithm
- Improve the EV charging models and parameters estimation
- Improve the planning algorithm
- Add KPI, for example, that estimate the state of half of the batteries with and without control
- Improve the human-machine interfaces
Thank you for your attention

Contact : bruno.robisson@cea.fr