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Abstract—Recently adopted in the New Radio (NR) standard for 5G
control channel, polar codes represent one of the latest additions to the
family of forward error correction (FEC) codes. However, the stringent
requirements introduced by the 5G standard in terms of block length
and code rate flexibility, together with low end-to-end latency and high
error correction performance, pose a major challenge for their hardware
implementation. In this context, we study the impact of main code and
decoder design parameters on the latency and the hardware complexity of
semi-parallel decoding architectures. Detailed analytical and logic synthesis
results are provided and compared for a large range of values in order to
constitute a reference for the implementation of flexible, yet efficient FEC
decoders for polar codes.

Index Terms—5G, polar codes, successive-cancellation decoding, list
decoding, low latency, hardware complexity.

I. INTRODUCTION

Polar codes are a new class of forward-error correction techniques
that have been introduced in 2009 by Arikan [1]. Thanks to their channel
capacity-achieving feature and low complexity that have attracted the
attention of academia and industry in the past decade, they have been
recently adopted in the New Radio (NR) 5G standard for uplink
and downlink control channels. They have been first selected for
the enhanced mobile broadband (eMBB) service where polar codes
with short to moderate block lengths are specified [2]. To meet the
tremendous growth in the connectivity and data traffic needs, the
5G control channel imposes block length and code rate flexibility
levels far beyond previously published polar code designs. This high
flexibility constraint at the transmitter side, is combined with stringent
requirements at the receiver, i.e. polar decoder side. Indeed, low block
error rate (BLER) and low hardware complexity, added to a processing
throughput and latency of tens of Mbps and tens of µs respectively are
requested for the 5G control channel [3].

Suitable for hardware design, the low complexity successive-
cancellation (SC) algorithm is one of the most common decoding
techniques proposed for polar codes. Although sufficient for long
polar codes, its error correction performance degrades significantly
for medium and short code lengths. For the latter, list-augmented SC
decoding (SCL) is necessary to improve BLER. In SCL algorithm, a
list of L candidate codewords are considered during decoding [4] and
the most likely of them is declared as final estimate at the end of
the decoding process. Nonetheless, this comes at the cost of additional
latency, chip area occupation and reduction in throughput for hardware
implementations [5].

Being the cornerstone for all polar decoder types, several works
have targeted the improvement of throughput and latency through the
proposal of solutions at both hardware design and algorithmic levels
[6]–[11]. However, it is still challenging to find a good trade-off
between hardware complexity and key performance metrics particularly
when targeting a flexible design. While fully parallel unrolled and
pipelined architectures [12]–[15] yield high throughput, they are very
limited in terms of flexibility support. In this regard, semi-parallel
decoder architectures [16]–[19] are scalable and offer a broad spec-
trum of algorithmic and architectural options to explore and to adapt
depending on the desired performance and hardware limits imposed
at the implementation level. This makes them, in turn, a first choice
for a flexible implementation. However, selecting the right number

of processing elements and assessing its impact, together with other
flexibility parameters, on the performance metrics of the SCL decoder is
not straightforward. Nevertheless, studying this impact becomes crucial
in order to provide design guidelines for the implementation of 5G NR
polar decoders. In this regard, we investigate in this paper the impact
of main code and decoder design parameters on the latency and the
hardware complexity of semi-parallel decoding architectures. Detailed
analytical and logic synthesis results are provided and compared for
a large range of values in order to constitute a reference for the
implementation of flexible, yet efficient FEC decoders for polar codes.

The remainder of this paper is organized as follows. Section II
provides a brief overview on polar codes and their decoding algorithms.
Section III presents the hardware architectures used to implement
polar codes, together with the algorithmic and architectural parameters
considered in the proposed study. Latency performance analysis is
provided in Section IV while hardware complexity results are discussed
in Section V. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Polar codes

Polar codes concept is based on channel polarization that creates
extremal good and bad channels. Information bits are mapped to the K
most reliable bit-channels while the remaining bits are set to a known
value, usually ’0’, and represent the frozen set. For a codeword length
N = 2n, n ≥ 1, a (N,K) polar code is a block code with K input bits
and N output bits whose generator matrix G is the n−th Kronecker

power of matrix F =

[
1 0
1 1

]
, i.e., GN = F⊗n. The encoding

process is performed by the matrix multiplication x = u.G where
u = (u0, u1, . . . , uN−1) stands for the sequence input vector consisting
of information bits and frozen bits and x = (x0, x1, . . . , xN−1) stands
for the encoded vector. With stringent constraints on rate flexibility and
low decoding latency, polar codes were chosen in 5G NR to encode
the uplink and the downlink control information over the physical
uplink control/shared channels (PUCCH/PUSCH) and the physical
downlink control/broadcast channels (PDCCH/PBCH). Therefore, they
are required to support a wide range of information block length,
encoded block and mother polar code lengths [2].

B. Successive-cancellation decoding based algorithms

The decoding of SC algorithm can be performed through a binary
tree as illustrated in Fig. 1a for the polar code PC(16,8). It consists
of log2N+1 stages where each stage j comprises N

2j
nodes and each

node represents a polar code of length 2j . The top tree node at stage
j = log2 N includes the channel LLRs (Log-Likelihood-Ratio) and the
final Partial Sums (PS). At leaf nodes, the frozen and information bits
are represented by white and black circles respectively. A given node v
receives αv LLRs and produces βv PS. Assuming that the processing
of an activated stage can be performed in one time step, the latency
required to decode a codeword can be expressed as:

Lref =

n−1∑
j=0

2n−j = 2N − 2 (1).

On  the  Latency  and  Complexity  of  Semi-Parallel  Decoding
Architectures  for  5G  NR  Polar  Codes
    Oualid Mouhoubi1  Charbel Abdel Nour1         Amer Baghdadi1

1IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France 
(e-mail: firstname.lastname@imt-atlantique.fr)



j=0 j=1 j=2 j=3 j=4

j=2 j=3 j=4

Frozen

R0

Info.

R1

REP

SPC

(a) SC decoder tree (b) SC decoder pruned tree

𝛼v

𝛽v

𝑣

Fig. 1: SC-based decoder tree and related pruned tree of PC(16,8).

The major drawback of the SC algorithm resides in its inability
to recover wrong bit estimates when occurring at the early stages of
decoding. A SCL algorithm was proposed to avoid resorting to hard
decisions when computing partial sums during the sequential decoding
phase. Hard decisions are replaced by soft hypotheses on the error-prone
bits identified by low reliability values. This leads to the simultaneous
exploration of several codeword candidates or equivalently paths in
the graph of Fig. 1a, each corresponding to one or more varying bit-
hypotheses. Hence, for each bit ui decoding step, both its possible
values 0 and 1 are considered and 2L new candidate paths are explored.
However, in order to break the exponential growth of the number of
candidate paths, a subset L of the most likely paths is set to survive. The
choice is made by selecting the L lowest path metric (PM) values. In
terms of complexity, the SCL decoder can be seen as the concatenation
of L competing SC decoders. Assuming that a path selection can be
performed in one time step, the latency required to decode one codeword
with SCL can be expressed as [20]:

LSCL(N,K) = Lref +K = 2N +K − 2. (2)

A simplified SC-based decoding algorithm (SSC) was presented in
[21] in which the tree search is pruned. In fact, a tree with only
frozen bits at leaves does not need to be traversed since its output
is already known and is equal to an all-zero vector. This type of nodes
is referred to as R0. Moreover, a tree with only information bits can
directly be decoded by applying a threshold decision at the root node.
This type of nodes is referred to as R1. Furthermore, the authors in
[22] have introduced the Fast-SSC algorithm variant by identifying
two other special types of nodes among the constituent codes of rate
0 < R < 1. Hence, a repetition node (REP) is a constituent code
where all the bits are frozen except for the last one, and the single
parity check (SPC) node is a constituent code where at the exception
of the first bit, all the bits are information. The pruned tree of the Fast-
SSC decoder is shown in Fig. 1b where the four types of constituent
codes are colored differently. This pruning technique was then extended
to the SCL decoder. Therefore, the Simplified SCL (SSCL) in [23]
propose an efficient way to decode R0, REP, and R1 nodes of length Nj

during at most logNj , 1+logNj and Nj time steps, respectively. This
leads to significant improvement with respect to the conventional SCL
algorithm which requires 3Nj−2 time steps (assuming adding together
Nj values requires at most logNj time steps). Furthermore, the SSCL-
SPC proposed in [24] provides efficient decoder for SPC nodes which
requires only Nj + 1 time steps to decode SPC nodes. However, these
two algorithms fail to address the effect of list size on the maximum
number of path split performed in R1 and SPC nodes. This leads the
authors in [25] to propose Fast-SSCL and Fast-SSCL-SPC algorithms
which can reduce the latency of more than 75% without any degradation
in error-correction performance. With these algorithms, the number of

time steps required to decode R1 and SPC becomes min (L− 1, Nj)
and min (L,Nj)+1, respectively. These numbers can further be reduced
with negligible error-correction degradation.

III. HARDWARE ARCHITECTURES

In the last decade, multiple hardware implementations dedicated to
decode polar codes have been proposed for both FPGA and ASIC tar-
gets [9], [20], [25]–[28] Two main architecture models are investigated
in the literature: unrolled and semi-parallel architectures.

A. Unrolled architectures

Unrolled architecture model consists in allocating a dedicated hard-
ware resource for each of the operations that occur during the decoding
process. A deeply-pipelined fully-unrolled architecture is able to output
one decoded frame at every clock cycle by introducing pipeline stages
between the operations. Consequently, such decoder architecture can
reach hundreds of Gbps of throughput on ASIC technology at the cost
of high memory requirements. However, the quadratic increase with
code length of the hardware resources used to support this kind of
parallelism leads to a high-complexity decoders [14]. The main idea
behind unrolling a decoder is to increase its throughput. However,
this results in limited length and rate flexibility implementations, in
particular when tree-pruning algorithms are used to decode polar codes.
Indeed, bringing a small change to the location of the information
and the parity bits withing the frozen set of the polar code leads to
a completely different list of special node types and sizes. This limits
their suitability for low-latency flexible 5G NR polar decoders.

B. Semi-parallel architectures

Semi-parallel architecture model consists in integrating a certain
number of processing elements (PEs) dedicated to compute a single
or multiple operation types regardless of the length or the rate of the
targeted set of polar codes. In the case where the number of operations
to perform in parallel at a given time is greater than the instantiated
PEs, these operations are scheduled in sub-groups to be processed
sequentially. Therefore, the achievable throughput is typically lower
than that of the unrolled fully-parallel architecture model. However,
semi-parallel architectures enable the use of specific hardware optimiza-
tions such as arithmetic resource sharing and memory access sharing.
Considering the flexibility requirement, this leads to improved hardware
efficiency. Due to the sequential decoding nature of SC algorithm, its
two main operations f and g cannot be overlapped and are always
performed in two distinct time periods. Thus, an area-efficient combined
processing element is proposed in [17] in which these two operations
are carried out by a single PE that exploits resource sharing and
can perform both operations alternately. Indeed, semi-parallel decoder
architectures are scalable and offer a broad spectrum of algorithmic
and architectural options to explore and to adapt depending on the
desired performance and hardware limits imposed at the implementation
level. This makes them a first choice for a flexible implementation.
The semi-parallel architecture model for SCL decoders used in this
study is depicted in Fig. 2. It includes a set of processing elements,
path selection unit and partial sum computation unit. Four memory
blocks store the LLRs, partial sums, decoded codewords and the frozen
set. The architecture comprises in addition multiplexing networks to
interface between memories and computation units. A control unit is
used to produce all control signals required in the decoding process.
This architecture model may include in addition a unit to decode special
nodes when they are considered (dotted block).

C. Architectural and algorithmic parameters

Targeting a semi-parallel architecture model to design low-latency
flexible polar decoders, the impact of several algorithmic and architec-
tural parameters needs to be investigated. The main parameters that are
considered in this work are listed below:
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Fig. 2: Semi-parallel architecture model for SCL decoders.

• Number of instantiated PEs: The number of processing elements
is a main architectural parameter of the semi-parallel architecture
model. Selecting the right number is not straightforward and needs
a thorough analysis with respect to the other flexibility parameters.

• Tree-pruning techniques: Identifying special nodes in the polar
decoder tree and applying tree-pruning techniques with corre-
sponding special decoding algorithms impact significantly the per-
formance metrics of the polar decoder. The influence of different
pruning techniques cited in Section II-B are analysed in this work.

• Code length N : A length-flexible implementation increases the
complexity of the decoder. Furthermore, the code length may
significantly alter the influence of the the above-mentioned pa-
rameters on the performance metrics of the polar decoder. For
this parameter, the following lengths specified in 5G NR will be
considered: N = 64, 128, 256, 512 and 1024.

• Code rate R: A rate-flexible implementation decreases the hard-
ware efficiency of the decoding architecture especially when sup-
porting a wide range of values. In this work, we consider the polar
codes of PUCCH 5G NR with R ranging from 1/8 to 5/6.

Typical values, convenient for 5G NR polar codes, are considered for
other parameters such as data format, quantization scheme, and list size
for SCL algorithms. LLR values are represented in sign and magnitude
(SM) format and quantized on five and seven bits in PEs and special
nodes decoders, respectively, whereas the list lize L is set to eight.

IV. LATENCY ANALYSIS

In this section, we propose to evaluate the decoding latency of the
5G NR polar codes under the architectural and algorithmic parameters
defined in the previous section. For the upcoming equations of latency
and for the analytical results we assume that each elementary operation
of the decoding process requires one time-step. Therefore, the reported
number of clock cycles (CC) required to decode a single frame
corresponds to that number of time-steps, which represents the latency.
Following this assumption, the latency of decoding one codeword of
length N with K information bits using SC on semi-parallel (SP)
architecture can be expressed as:

LSP
SC =

p∑
j=0

2n−j

︸ ︷︷ ︸
NON-AFFECTED STAGES

+

n−1∑
j=p+1

2n−j2j−p

︸ ︷︷ ︸
AFFECTED STAGES

.

= 2N +
N

P
log

(
N

4P

) (3)

where p = log2 P and n = log2 N . This expression is derived from
(2) by taking into consideration both affected and non-affected decoding
stages j by the introduction of P PEs [17]. For an SCL decoder that
comprises P PEs per list, this latency is increased by K as path selection
needs to be performed K times [20].

However, if fast decoding techniques relying on decoding simple
constituent codes are used, the latency formula will be sensitive to any
change of the rate R. Therefore, assuming having the size of all the
constituent codes defined for a given N and R, we define E such as
E = {E0, E1, . . . , Elog2 M−1} is the set whose element Em, 0 ≤ m ≤
log2 M−1, represents the number of constituent codes of length 2m+1

and M is the size of the largest constituent codes that are considered
during the tree-pruning technique. Therefore, to derive the latency of the
Pruned Decoder (PD) on a semi-parallel architecture, we should remove
the latency of traversing the sub-trees corresponding to the identified
special nodes (constituent codes) from the latency of the semi-parallel
decoder provided in (3) for N = 2n. This latency reduction can be
computed through (1) with N = 2m+1 for special nodes that satisfy
m ≤ p, and through (3) with N = 2m+1 for the remaining special
nodes. We should also add the latency that is required to decode each
of the identified special nodes and add K′ which is the number of
remaining information bits that do not constitute special nodes. Thus,
the latency of the SCL PD semi-parallel decoder can be expressed as:

LSP
SCL PD = LSP

SC + LSN
SCL +K′ −

p∑
m=0

(
m∑

j=0

Em · 2m−j+1

)
︸ ︷︷ ︸

L1

−
log2 M−1∑
m=p+1

(
p∑

j=0

Em · 2m−j+1

)
︸ ︷︷ ︸

L2

−
log2 M−1∑
m=p+1

(
m∑

j=p+1

Em · 2m−j+1 · 2j−p

)
︸ ︷︷ ︸

L3

.

= LSP
SC + LSN

SCL +K′ −
p∑

m=0

Em ·
(
2 · 2(m+1) − 2

)
−

log2 M−1∑
m=p+1

Em ·
(
2 · 2(m+1) +

2(m+1)

P
log

(
2(m+1)

4P

))
,

(4)

where LSP
SC and LSN

SCL refer to the latency of the SC semi-parallel decoder
(3) and the latency required to decode the constituent codes (special
nodes), respectively. Also, L1 is the reduced latency due to constituent
codes {E0, E1, . . . , Ep} of length smaller or equal to 2p+1 = 2P
while L2 and L3 represent the reduced latency due to the presence of
constituent codes {Ep+1, . . . , Elog2 M−1} of lengths greater than 2P .

A. Influence of N and the number of PE on latency

In the case of semi-parallel architectures, algorithmic and architec-
tural parameters are likely to have a strong impact on the latency when
they are considered during the designing of polar decoders. In order
to study the influence of N and the number of PE P on the decoding
latency, we plot the number of clock cycles required to decode one
frame of polar code of four different lengths N = {64, 128, 512, 1024}
with P varying from 2 to 64. For each value of P , three different
algorithms are considered and consist of SCL, SSCL-SPC and the Fast-
SSCL-SPC. Based on the speed optimization proposed for the latter
[25], three additional values of {SRate-1, SSPC} = {1, 2} , {1, 4} , {2, 4}
are considered in addition to the optimal variant of this algorithm
{SRate-1, SSPC} = {L− 1, L}. We refer to them as F-SSCL-SPC12,
F-SSCL-SPC14 and F-SSCL-SPC24. SRate-1 is the number of path split
in a R1 node and SSPC is the number of path split in a SPC node. The
simulation results are reported in Fig. 3 while limiting the length of
constituent codes to M = 16.

As expected, the decoding latency decreases as P increases. However
the reduction rate of latency is not linear with respect to P as observed
in (3) and this is due to the fact that the degree of parallelism offered
by the SC decoder is reduced by half from one higher decoding stage
to another lower one. This can be seen in Fig. 3a and Fig. 3d when
F-SSCL-SPC12 is used where the latency is reduced by 70% and 52%
when P varies from 2 to 8, respectively, while it is reduced by a smaller
ratio of 58% and 13% when P varies from 8 to 64, respectively. In
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Fig. 3: Number of clock cycles required to decode one polar code frame
for a varying number of PEs. Worst-case latency is reported while
varying the value of R. Results are given for SCL and five related
variants of simplified algorithms.

addition to that, the same latency is obtained with P = 64 and P = 32
when N = 64 since a maximum number of 32 parallel operations are
granted to be processed in parallel.

Furthermore, we can clearly observe the impact of the algorithmic
choice on the decoding latency. Therefore, using SSCL-SPC instead
of SCL with P = 8 leads to 44%, 50%, 52% and 49% reduction in
latency when N =1024, 512, 128 and 64, respectively. However, a less
significant reduction in latency is measured when using Fast-SSCL-
SPC instead of SSCL-SPC with P = 8. The latency reduction in this
case is equal to 22%, 22%, 13% and 4% when N =1024, 512, 128
and 64, respectively. That disparity in latency between the different
values of N is due to the fact that for short polar codes the presence
of constituent codes is less significant in comparison to relatively long
codes. In addition to that, when they are identified, their size is usually
smaller than M = 16.

B. Influence of tree-pruning on latency

The decoding tree of polar codes may feature multiple constituent
codes of different types and sizes. However, some of these identifiable
constituent codes are most likely to appear at low code rates such as R0
and REP while others are most likely to appear at high code rates such
as R1 and SPC. Supporting a wide range of code rates, as required in
5G NR, does not offer much flexibility in this regard. On the other hand,
large constituent codes are increasingly encountered as the code length
increases. To show the impact of M on the latency, we plot in Fig. 4
the number of clock cycles required to decode one frame of polar codes
of lengths N ∈ [64, 1024] for M = {4, 8, 16, 32}. The same analysis
is repeated with SSCL, SSCL-SPC, Fast-SSCL and Fast-SSCL-SPC.

As expected, the number of clock cycles required to decode a
constituent code varies according to its type and size. Furthermore, the
identification of constituent codes highly depends on M . Some polar
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Fig. 4: Number of clock cycles required to decode one polar code frame
as N varies from 64 to 1024. Average latency is reported while varying
the value of R. Results are provided for various values of M and are
reported for four different algorithms.

codes may benefit better from increasing M than others, especially
when they feature large low-latency decoding constituent codes. Indeed,
among the set of considered polar codes, the one which achieves the
best latency reduction for a fixed value of M does not necessarily
produce the same achievement with M ′, (M ̸= M ′). This means that
relying on the worst-case latency to evaluate the reduction brought by
varying M on a set of rate-variable polar codes that share the same code
length leads to an unfair comparison. Therefore, we consider in this
analysis the average latency reduction that is obtained as M is varied.
We can see from Fig. 4 that a decoder that can decode constituent
codes of size M = 32 when targeting polar codes of length N = 1024
reduces the latency by 24%, 24%, 36% and 42% in comparison with
M = 4 under SSCL, SSCL-SPC, FastT-SSCL and Fast-SSCL-SPC,
respectively. However, very small improvement in latency is noticed
beyond M = 32 and are not worth to be considered. Moreover, we
notice that setting M to 32 for N = 64 does not bring any improvement
in latency since most of the polar codes at this length do not feature
constituent codes larger than M = 4.

V. HARDWARE COMPLEXITY ANALYSIS

A. Influence of the number of PE on hardware complexity

As the latency is decreased with increasing P , the complexity of
the decoder increases. In order to analyse the relation between the
complexity of the semi-parallel architecture and P , we propose to
implement the processing element of [17] and estimate the complexity
considering the published results for N = 1024 as a reference. In
[17], two semi-parallel architectures are designed with P = 16 and
P = 64. Taking as reference the design with P = 16, and the logic
synthesis results obtained from the design of a single PE, we estimated
the hardware complexity for P = 2, 8, 32, and 64. In this estimation,
we simply add and subtract from the reference design the hardware
resources (lookup tables and flip-flops) corresponding to the number
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of PEs, while assuming the remaining components of the decoder
unchanged. Complexity results in terms of lookup tables (LUTs), which
are predominant in quantity and variation compared to flip-flops (FFs),
are reported in Fig. 5. Comparing the results for P = 64 reveals a slight
inaccuracy in the complexity estimation approach, which is expected as
part of the design was assumed unchanged. Nevertheless, the relative
comparison with respect to different values of P provides good insights
on their impact on the hardware complexity. The results show that the
impact of the number of PE on complexity is relatively limited. In
fact, when P increases by a factor of ×32, from 2 to 64, the overall
number of LUTs of the semi-parallel decoder architecture increases by
only a factor of ×1.55. On the other hand, this increase in the number
of PEs leads to an increase in information throughput by a factor of
×2.7 when considering the latency expression provided in (3) and an
operating frequency of 100 MHz. It is interesting to notice here that the
increase in the information throughput when varying P gradually from
2 to 64 is not linear. It is higher for small values of P . For instance, the
throughput increases by 57% when P increases from 2 to 4, whereas it
increases by only by 3% when P increases from 32 to 64. This is due
to the parallelism bottleneck of SC algorithms. Indeed, as the number
of PE increases, less stages of the decoding tree of polar codes take
benefit from the added PEs. In the example of Fig. 5 for N = 1024,
when P = 64 only the highest four stages make a full use of the 64
PEs. However, no change in decoding speed happens for the lowest
seven stages when increasing P from 32 to 64.

B. Influence of tree pruning on hardware complexity

The decoding of constituent codes obtained with tree-pruning tech-
niques requires dedicated hardware resources, beyond those required
by the classical SCL semi-parallel decoder. A specific hardware unit
namely Special Node List Decoder (SNLD), depicted in Fig. 6, is
designed to support decoding the constituent codes R0, REP, R1 and
SPC according to SSCL and SSCL-SPC algorithms independently
from the PEs. The complexity due to tree-pruning techniques is then
evaluated taking into consideration the implementation of the SNLD
for L = 8.
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Fig. 7: Number of FFs and LUTs required by SNLD to decode special
nodes R0, REP, R1 and SPC as a function of M according to three
scenarios.

To do that, the proposed SNLD unit has been described in VHDL
and synthesized on a Xilinx Virtex-7 XC7VX-485T FPGA device for
three different scenarios. In the first scenario, the SNLD is designed
to support only the decoding of R0 and REP nodes. The support of
R1 nodes is added in the second scenario through the addition of the
green-colored blocks in Fig. 6. The third scenario supports in addition
R1 and SPC nodes through the addition of the orange-colored blocks
(Fig. 6). The SNLD allows resource sharing of the operations that are
common to the different special nodes. In the synthesis results, the
contribution of the sorter unit has been removed as it is unchanged for
all the explored decoding algorithms. The LLR values are represented
in sign and magnitude (SM) format, and both LLR and PM values are
quantized to 7 bits. For each of the three scenarios, M is varied from
2 to 32 assuming each time that P = M so that the SNLD receives
its LLRs in one clock cycle. From the synthesis results presented in
Fig. 7, we note that the number of FFs used to decode R0-REP special
nodes is almost constant regardless of M . However, the number of FFs
starts to increase with M when decoding R1 nodes. This is due to
the register array, implemented to store the input LLRs until they are
all processed one by one. Since the SC-based decoder does not process
multiple nodes simultaneously due to its sequential nature, R1 and SPC
nodes do not overlap and the same LLR register array is used store the
LLRs of both nodes. Therefore no additional FFs are required during the
third scenario that includes further the decoding of SPC nodes. On the
other hand, the number of LUTs involved in the first scenario increases
linearly with M . This is due to the fact that M − 1 adders, designed
as a tree-structure fully parallel adder, are implemented to decode R0
and REP nodes. Furthermore, the number of LUTs is increased when
R1 nodes start to be considered for M = 2 and keep increasing as
M increases. This is due to the use of crossbars required to support
candidate competition during the successive decoding of the bits of R1
nodes. The decoding of SPC nodes implies performing a parity check
equation via a XOR array and searching for a minimum LLR value.
Yet, similarly to the first scenario, the complexity of these operations
grow linearly with M .

The number of LUTs used by the R0-REP-R1-SPC decoder for M =
8 is 3.9 times higher than that for M = 2, and that for M = 32 is
3.43 times higher than that for M = 8. This significant increase in the
number of LUTs is mainly due to the growth of the number of adders,
and the number of comparators used in the minimum finder unit.

In a second approach, we consider an accumulator register based
implementation (dotted blocks in Fig. 6) with reduced tree size for
the adders, comparators and XOR gates. This leads to a semi-parallel
architecture of the SNLD with D adders, comparators, and XOR gates,
where D < M − 1. Synthesis results when using this second approach
are shown in Fig. 8 for D = 8. When compared to the results of Fig. 7
for the third scenario, a significant improvement can be observed where
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Fig. 8: Number of FFs and LUTs required by SNLD to decode special
nodes R0, REP, R1 and SPC when considering the second approach with
accumulator registers to reduce the number of adders, comparators and
XOR gates.

the number of LUTs is reduced by 26% and 55% for M = 16 and
M = 32, respectively. This comes at the cost of slight increase in
the number of FFs due to the presence of accumulator registers. With
this approach, the increase in the number of LUTs when moving from
M = 8 to M = 32 drops from ×3.42 to ×1.42. This significantly
reduces the influence of tree pruning on the hardware complexity.

VI. CONCLUSION

In this paper, we proposed a detailed analysis of the impact that
main code and decoder design parameters have on the latency and the
hardware complexity of polar decoding architectures when targeting
the polar codes of the highly flexible 5G NR. For this, the semi-
parallel architecture, which offers a broad spectrum of algorithmic and
architectural flexibility at design level, is chosen. Therefore, based on
a detailed analytical study and logic synthesis results, the latency and
the complexity of the decoder were evaluated for multiple variants of
fast SCL decoding algorithms and for a varying number of processing
elements. Results have shown that length- and rate-flexible designs limit
the benefit of increasing the number of processing elements, defining
various types of constituent codes, and increasing the level of tree
pruning. Indeed, while a large number of processing elements brings
significant reduction of latency at high code length, the benefit becomes
negligible at low code lengths inducing a decrease in the hardware
efficiency of the decoder. Furthermore, some constituent code types are
more likely to appear at low code rates, such that R0 and REP, while
others are more likely to appear at high codes rates, such as R1 and
SPC. Adding to that, large constituent codes may completely disappear
at short code lengths. Therefore, multiple trade-offs between algorithmic
and architectural parameters can be drawn from these results. Finally,
the analysis conducted in this paper can be further performed on any
other set of polar codes and extended to support list size variation as
well.
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