
HAL Id: hal-03608840
https://hal.science/hal-03608840v2

Preprint submitted on 30 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing roots of polynomials over number fields
using complex embeddings

Andrea Lesavourey, Thomas Plantard, Willy Susilo

To cite this version:
Andrea Lesavourey, Thomas Plantard, Willy Susilo. Computing roots of polynomials over number
fields using complex embeddings. 2022. �hal-03608840v2�

https://hal.science/hal-03608840v2
https://hal.archives-ouvertes.fr


COMPUTING ROOTS OF POLYNOMIALS OVER NUMBER FIELDS USING
COMPLEX EMBEDDINGS

ANDREA LESAVOUREY *

Univ Rennes, CNRS, IRISA

THOMAS PLANTARD

WILLY SUSILO

School of Computing & Information Technology, Institute of Cybersecurity and Cryptology, University
of Wollongong, Australia

Abstract. We explore a fairly generic method to compute roots of polynomials over number fields
through complex embeddings. Our main contribution is to show how to use a structure of a relative
extension to decode in a subfield. Additionally we describe several heuristic options to improve practical
efficiency. We provide experimental data from our implementation and compare our methods to the
state of the art algorithm implemented in Pari/Gp.

1. Introduction

In the past few years, the rise of cryptographic protocols using the structure of number fields has
driven attention to computational number theory. Indeed, in order to obtain efficient implementations of
such cryptosystems as well as testing their security, fast computations over number fields are required.
In particular, number field units and S-units are the main objects used to retrieve short generators of
principal ideals [16, 2, 25] and short elements of general ideal lattices [15, 32, 6, 7] respectively. Their
computation commonly requires a saturation process [35, 17, 10], which includes a necessary step of n-th
roots computations. This task is a special case of solving a polynomial equation with coefficients in a
number field.

We are therefore interested in the following problem. Given K a number field and f(T ) ∈ K[T ], find
the roots of f(T ) in K i.e. find ZK(f) = {x ∈ K | f(x) = 0}. As a matter of fact we will only consider
the cases such that all the roots can be expressed as integral combinations of a known basis of K i.e.

E-mail addresses: andrea.lesavourey@irisa.fr, thomas.plantard@gmail.com, wsusilo@uow.edu.au.
2020 Mathematics Subject Classification. 11R09,11Y40.
Key words and phrases. polynomial roots, number fields, relative extensions, LLL, complex embeddings.
* Corresponding author.
Andrea Lesavourey is funded by the Direction Générale de l’Armement (Pôle de Recherche CYBER), with the support

of Région Bretagne.
1



2 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

such that: ∃(bi)i ∈ Kn,∀x ∈ ZK(f),∃(xi)i ∈ Zn | x = x1b1 + · · · + xnbn. We believe that we are not
too restrictive as this is often the case in standard computations, such as S-units computations or the
Number Field Sieve [22, 41].

The state of the art algorithm to solve this problem – that we will call the algebraic or p-adic method
– is implemented in softwares such as Magma or Pari/GP [11, 31]. It follows the ideas used to factorise
polynomials over number fields developed for example in [3, 17, 36, 37] and uses finite places. More
precisely, the procedure is as follows:

(1) pick a prime ideal p which defines an isomorphism between OK/p and Fps for some prime number
p ∈ Z;

(2) compute the roots modulo p in Fps [X];
(3) lift these to elements to K modulo a power pk;
(4) if pk is large enough compared to the size of the solutions and it is given by a LLL-reduced basis

then we can recover a solution x given y ≡ x mod pk.

In practice, the method requires three main computational operations:

(1) compute first an “approximation” of the solutions;
(2) compute a reduced basis of a lattice;
(3) retrieve the solutions from the approximation using the lattice.

The third step – called the decoding phase – can be seen as solving instances of the Bounded Distance
Decoding (BDD) problem.

However, it is possible to use complex embeddings instead of prime ideals. Indeed, it is known at
least since the seminal paper introducing the LLL algorithm [23] how to use lattices in order to find
short integral relations between algebraic numbers or find the irreducible polynomial of a number field
element. As an example, assume one knows approximations of real numbers α1, . . . , αn. Now define the
embedding

Zn −→ Rn+1

(λi)i∈J1,nK 7−→ (C
n∑
i=1

λiαi, λ1, . . . , λn)

which gives a lattice of Rn+1 represented by the row matrix


Cα1 1 0 . . . 0

Cα2 0 1
. . .

...
...

...
. . . . . . 0

Cαn 0 . . . 0 1

 .

Here C is a large coefficient used to ensure the shortness of the solution. Reducing this basis would allow
us to retrieve a short vector (λi)i∈J1,nK such that C

∑n
i=1 λiαi is small. Note that this strategy can be

seen as solving an instance of the Shorstest Vector Problem (SVP). Similarly it is common to use LLL
algorithm to solve knapsack problems. Assume we are given (α1, . . . , αn) ∈ Zn and S ∈ Z, and that we
want to find a short vector (λ1, . . . , λn) such that

∑n
i=1 λiαi = S. Then one can consider the similar



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 3

matrix 

−Cα1 1 0 . . . 0

−Cα2 0 1
. . .

...
...

...
. . . . . . 0

−Cαn 0 . . . 0 1
CS 0 . . . . . . 0


.

Again a LLL reduction would yield a small solution of the linear equation.

Our work. One can combine both approaches to retrieve the coefficient of x ∈ Z[B] from an embedding
σi(x), where B = (b1, . . . , bn) is a Q-basis of K. This is done through solving an instance of BDD. For
all j ∈ J1, nK, denote by βj an approximation of σi(bj) and S an approximation if σi(x). Now consider
(xi)i∈J1,nK ∈ Zn the coefficients of x in the basis B. Then one can expect S −

∑n
i=1 xiβi to be close to 0.

Thus solving a BDD instance with input the row matrix
−β1 1 0 . . . 0

−β2 0 1
. . .

...
...

...
. . . . . . 0

−βn 0 . . . 0 1


and target vector [S, 0, . . . , 0] is expected to yield the solution [ε, x1, . . . , xn] if approximations are com-
puted with high enough precision.

In this article, we study this last method and apply it to the problem of retrieving polynomial roots
in number fields. In particular, under the conjecture that the lattices we consider follow the Gaussian
heuristic, we establish a heuristic precision for which one is ensured to retrieve an element, see Theo-
rem 3.17. We note that a similar study has been done in [33] when considering the version solving a
SVP instead of a BDD. Following their analysis, we provide in Theorem 3.11 a proven precision ensuring
correctness of the decoding, yet larger than the heuristic one.

Additionally, one of our main contribution is to show how to take advantage of a number field extension
L/K to replace the decoding of an element in L by the decoding of [L : K] elements in K. We will call it
the relative method. When applied to the problem of solving polynomial equations, applying this method
comes with the cost of searching through a set of size d[L:K], where d is the degree of the equation
considered.

In order to improve the practical efficiency of our algorithms, we develop several heuristic strategies
and observations allowing for substantial speed-ups.

• We describe a modification of the LLL algorithm – called SpecLLL – which improves its running
time when B is of the form (1, α, . . . , αn−1) : we pre-reduce each new basis vector of index i+ 1
using the relation used to size-reduce the previous vector of index i with respect to the lattice
generated by the (i− 1)-th first rows, see Algorithm 9. Note that this modification was inspired
by [34], which is a version of LLL using the specific structure of ideal lattices. Asymptotically, we
gain between 20% and 50% in the execution time, depending on which implementation of LLL is
tested, as shown in Figure 2 and 3.
• We provide a tighter evaluation of the precision required to retrieve the coefficients of a targetted

element – see Section 5.2.



4 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

• We use a early abort strategy in the decoding phase (with Babäı’s nearest plane algorithm [1])
to avoid unnecessary computations, see Algorithm 10. This is particularly impactful when using
our relative method.

Using our implementation in Gp [31]1, we study the generic behaviour of our algorithms, how our
improvements impact their running time, and compare them to the function nfroots implemented in
Pari/Gp [31]. In most of our experiments we consider number fields defined by polynomials whose
coefficients are randomly drawn in a given segment. Respectively to this definition of “random number
fields”, we are then able to study the average behaviour of the aforementioned algorithms.

Concerning the absolute method we can observe the following facts.

• We first remark that our absolute method is more stable than the p-adic algorithm implemented
in Pari/Gp. Indeed, there can be as much as 10% of fields over which the execution time of
nfroots explodes. From experiments, these are fields for which nfroots do not find a suitable inert
prime. Consequently, our algorithm in its certified version has similar running time in average,
depending on the parameters, despite being slower than nfroots at its best.

• It is more influenced than Pari/Gp nfroots function by several parameters : the dimension [K : Q]
and the size of the roots. This is mostly linked to the fact that the lattices we use to decode
take longer to be reduced than powers of prime ideals as in nfroots. Our heuristic improvements
have significant impact on the time efficiency of our algorithm (10 times faster than the certified
version in dimension 100 for example, see Figure 5).

Then when we consider relative extensions L/K and our relative method we have the following main
observations:

• the heuristic observations allow us to obtain a more efficient algorithm as well in the relative
case: between 10 and 100 times faster for relatively small parameters chosen for our experiments,
see Figure 7;

• when the relative degree [L : K] and the degree of the equation are relatively small, our relative
algorithm can offer significant speed-ups compared to the absolute one: again for small param-
eters, our relative algorithm can already be up to 10 times faster than the absolute one, see
Figure 8 and Figure 9 for example.

Finally we study specific families of number fields, namely cyclotomic fields and real Kummer extensions
of the form Q( p

√
m1, . . . , p

√
mr) with (m1, . . . ,mr) ∈ Nr and p a prime integer. We can observe the

following facts:

• over cyclotomic fields, our relative method applied to the extension Km/K
+
m – it has relative

degree [Km : K+
m] = 2 – does not outperforms Pari/Gp nfroots function, which highlights the

fact that cyclotomic fields are “good” fields for this method;
• over real Kummer extensions, which are “bad” fields for nfroots, the situation is completely

different, and our relative algorithm can be up to 500 times faster than Pari/Gp nfroots function,
see Section 6.3.4.

Future work. First we plan to study the possibility of using the structure of relative extensions within
the p-adic method. If we were to be successful, it might be adapted to general global fields as well, which
are a natural generalisation of number fields [5].

1Code publicly available at https://github.com/AndLesav/nf_polynomial_roots

https://github.com/AndLesav/nf_polynomial_roots


POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 5

Since the main bottleneck of our method is the reduction of lattices to decode, we plan to improve
SpecLLL. One direction would be to follow the strategy described in [21] for knapsack-like lattices which
could lead to smaller running times. Then when there is no subfield, it is possible to adapt the strategy
by using several embeddings. Intuitively, adding relations should allow us to decode more easily.

Outline. The rest of this article is as follows. We give necessary recalls on number fields and Euclidean
lattices are in Section 2. In Sections 3 and 4 we describe the generic methods considered. Then Section 5
is used to detail the improvements that we developed to speed-up the running time of our algorithms.
Finally, we provide experimental results obtained from our implementation in Section 6. We also give
additional data in Appendix B.

2. Recalls on number fields and lattices

In this section, we recall some notions and facts that we will use in the rest of the article. First we
will quickly mention number fields, then describe Euclidean lattices and reduction algorithms.

Notations 2.1. The inner product is denoted by (· | ·). Given x ∈ R, we denote by {x} its fractional
part x− bxe.

Algebraic closures of number field extensions considered will be designated by Ω. Given a ring mor-
phism σ : A → B and a ∈ A, aσ can be used to design σ(a). This extends to any object f which can
be identified to a vector with coefficients in A, such as polynomials in A[X]. Additionally, if A ⊂ B and
f(X) ∈ A[X] we write ZB(f) the set of roots of f(X) in B.

Given two ordered sets A and B we will denote by A ⊗ B the tensor product of A and B (when it
makes sense), i.e. A⊗B = {ab, b ∈ B | a ∈ A}. If A and B are not ordered A⊗B will be the collection of
all the products ab such that a ∈ A and b ∈ B. Finally, we also use this notation for the tensor product
of vectors and matrices.

Given a matrix M , we will denote by M [i] its i-th row and MT its transpose. Given a vector v we will
write s(v) for log2 ‖v‖∞. This notation extend to any object that can be expressed as a vector, such as
polynomials.

2.1. Number fields. We refer the reader to [4, 12, 13, 28, 38] for anything related to number fields and
computational number theory.

Definition 2.2. A number field K is a field which is a finite extension of Q, i.e. a finite dimensional
Q-vector space.

Notation 2.3. Given an extension L/K of number fields, we will call the dimension of L over K the
degree of L/K. It will denoted by [L : K].

Proposition 2.4. Let L/K be an extension of number fields. Then there is an irreducible polynomial
P (X) ∈ K[X] such that

L ∼=
K[X]

(P (X)) .

and [L : K] = degP (X). Moreover P (X) has [L : K] distinct roots in an algebraic closure Ω of K
containing L. These roots define [L : K] distinct K − isomorphisms of L into Ω. If α is such a root,



6 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

then the corresponding isomorphism σα is the following,

σα : K[X]
(P (X)) −→ K[α] ⊂ Ω

[L:K]−1∑
i=0

ciX
i 7−→

[L:K]−1∑
i=0

ciα
i.

Notation 2.5. We call any such polynomial a defining polynomial of L over K, and use denote it by
PK(X).

An element σα ∈ Hom(K,C) is a field embedding of K into C corresponding a root α of PK(X) in
C. There are r1 real embeddings and r2 pairs of (strictly) complex embeddings. The two elements of a
given pair are conjugates one from each other. It is usual to write σ1, . . . , σr1 the real embeddings and
to consider that σj+r2 = σj for all j ∈ Jr1 + 1, r1 + r2K.

Definition 2.6 (Minkowski embedding). Given a number field K defined by a degree n irreducible
polynomial P (X), the canonical embedding or Minkowski embedding is defined as

(2.1)
σK : K −→ Rr1 × Cr2 ∼= Rn

x 7−→ (σi(x))i∈J1,r1+r2K .

Then K can be seen as embedded in Rn. We will relax this classical definition by considering any
algebraic closure Ω instead of C. This way σK defines an embedding of K into Ω. Then one can define
a relative version of the Minkowski embedding: for a field extension L/K we define

σL/K : x 7−→ (σ(x))σ∈HomK(L,Ω).

We call this map the Minkowski embedding relative to L/K.

2.2. Euclidean lattices. We refer the reader interested in more in-depth presentations on Euclidean
lattices to [27, 14].

Gram-Schmidt orthogonalisation. An important and classical computation in linear algebra is the Gram-
Schmidt orthogonalisation (GSO). It allows transforming a free family of a vector space (with a scalar
product) into in an orthogonal family. The naive algorithm can be found in Algorithm 1.

Algorithm 1 GSO

Require: A free family B = {b1, .., br} of Rn

Ensure: A family B̃ = {b̃1, .., b̃n} with b̃1 = b1 and (b̃i | b̃j) = 0 for i 6= j

1: B̃ ← B
2: for i = 1 to r do
3: b̃i ← bi

4: for j = 1 to i− 1 do

5: b̃i ← b̃i −
(bi | b̃j)
(b̃j | b̃j)

b̃j

6: end for
7: end for
8: return B̃

Definition 2.7 (GSO). Given a basis B, we will call the basis B̃ outputted by Algorithm 1 the GSO of
B.



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 7

For the GSO computation, one can follow a QR decomposition as described in [29] for example which
gives an algebraic complexity of O(n3).

Definition and first properties.

Definition 2.8. A Euclidean lattice is a discrete subgroup of Rn where n is a positive integer. We say a
lattice is an integral lattice when it is a subgroup of Zn or rational when it is in Qn. A basis of a lattice
L is a basis of L as a Z-module. The cardinal of said basis is called the rank of the lattice.

Notation 2.9. Given a matrix B we will write L(B) the lattice generated by its row vectors.

Definition 2.10. Consider a Euclidean lattice L with basis matrix B. Then the determinant of L,
denoted by det(L), is the value

√
det(BBT).

Notation 2.11. The determinant of a lattice L is also called its volume because it is the volume of the
fundamental domain defined by the vectors of one of its bases. Thus it is also written vol(L).

One of the most important problem over lattices is to compute short vectors. In particular, an
important quantity is the length of one of the shortest non-zero vector. It is usually denoted by λ1(L).
We can give a minimal bound of λ1 using the Gram-Schmidt orthogonalisation of a basis we have at
hand.

Theorem 2.12. Let B = (bi)i∈J1,rK be a basis of a lattice L. Then λ1(L) > min{‖b̃i‖ | i ∈ J1, rK}.

Then one can analyse further the geometry to obtain approximate values on λ1.

Heuristic 1 (Gaussian heuristic). Given a lattice L of rank r, an approximate value for λ1(L) is

(2.2) λ1(L)gauss =
√

r

2πe ×
r
√

vol(L).

In our context, the problem that we will be interested in is the Bounded Distance Decoding with it
approximate version.

Definition 2.13 (BDD: Bounded Distance Decoding). Given a basis B of a lattice L and a point x
such that d(x,L) < λ1(B)/2, find the lattice vector v ∈ L closest to x.

Definition 2.14 (BDDγ : γ-Approximate Bounded Distance Decoding). Given a basis B of a lattice L,
a point x and a approximation factor γ ensuring d(x,L) < γλ1(B) find the lattice vector v ∈ L closest
to x.

In practice, one considers BDDγ for γ < 1
2 . This ensures that there is only one lattice vector v

satisfying d(x, v) < γλ1(B).

Algorithms for lattices. Intuitively if a basis B is composed by vectors globally more orthogonal to
each other than the vectors of another basis matrix B′ are, then the vectors of B will be globally shorter
than the vectors of B′. Therefore, given a basis it is natural to orthogonalise it as much as possible to
solve problems on lattices. Since it likely results in a basis with shorter vectors, we call such a process a
reduction process or reduction algorithm.

First let us define a weak notion of basis reduction due to Hermite [19].



8 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

Definition 2.15 (Size-reduce). A basis B = (b1, . . . , br) of a lattice is said to be size-reduced if its GSO
satisfies the following condition: ∀i ∈ J1, rK,∀1 6 j < i, |µi,j | 6 1

2 .

One can find the simple algorithm computing a size-reduced basis in Algorithm 2, which is essentially
an approximation of the GSO algorithm (Alg. 1).

Algorithm 2 SizeReduce
Require: A free family B = {b1, .., bk} of L such that |µi,j | 6 1/2 for all i 6= j, an element b /∈ L.
Ensure: An element bk+1 such that bk+1 ≡ b mod L and |µ′k+1,i| 6 1/2 for i 6= k + 1

1: bk+1 ← b

2: B̃, G← GSO(B)
3: for i = k to 1 do
4: bk+1 ← bk+1 −

⌊
(bk+1 | b̃i)
‖b̃i‖2

⌉
bj

5: Update G
6: end for
7: return B ∪ {bk+1}, G

A fairly natural way of reducing a basis would be to follow Algorithm 1, and replace all coefficients
µi,j by their closest integers. This way one could obtain a basis close to the GSO of the starting matrix,
i.e. which is size-reduced. In order to obtain a polynomial time algorithm outputting a basis which is
proven to be reduced for varying dimension, one has to introduce a new reduction condition. This is the
result of the ground breaking work by A. K. Lenstra, H. W. Lenstra and L. Lovász in [23]. They define
a new notion of reduced basis, that is then called LLL-reduced.

Definition 2.16. Consider a lattice L defined by a basis B = (b1, . . . , br) and δ ∈] 1
4 , 1[. Then B is called

LLL-reduced with parameter δ (or δ-LLL reduced) if it satisfies the following conditions:

(1) It is size-reduced: ∀i ∈ J1, rK,∀1 6 j < i, |µi,j | 6 1
2 ;

(2) It satisfies the Lovász conditions: ∀i ∈ J2, rK, δ‖b̃i−1‖ 6 ‖b̃i+µi,i−1b̃i−1‖2 = ‖b̃i‖2 +µ2
i,i−1‖b̃i−1‖2.

The LLL algorithm shown in Algorithm 3 essentially consists of applying SizeReduce to new vector
basis incrementally, verify if Lovász condition is true and continue if so. Otherwise we swap the two last
vectors and reduce again.

Theorem 2.17. Consider L a lattice of rank r, B = (b1, . . . , br) a δ-LLL reduced basis of L for δ = 3/4,
and B̃ the GSO of B. Then the following properties are true.

(1) ∀i ∈ J1, rK,∀1 6 j 6 i, ‖bj‖ 6 2(i−1)/2‖b̃i‖
(2) For any x ∈ L \ {0}, ‖b1‖ 6 2(r−1)/2 ‖x‖.

Theorem 2.17 shows that a LLL reduced basis has good properties. It provides upper bounds related
to the norms of the basis vectors. In particular, one can remark that the norm of shortest basis vectors
cannot be too large compared to λ1(L). Indeed, the second point shows that the LLL algorithm solves
in deterministic polynomial time SVPγ , for γ = 2(r−1)/2. Many improvements and versions were devel-
oped since the original version of LLL. Among many others, one can consider the use of floating-point
arithmetic [29].



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 9

Algorithm 3 LLL
Require: B, a basis of L of rank r, and a constant δ ∈] 1

4 , 1[.
Ensure: B′, a δ−LLL reduced basis of L.

1: i← 2
2: B′ ← {b1}
3: while i 6 r do
4: B′ ← (b′1, . . . , b′i−1)
5: B′, G← SizeReduce(B′, bi)
6: if Lovász condition is satisfied for δ, i then i← i+ 1
7: else Swap(b′i, b′i−1) and i← max{2, i− 1}
8: end if
9: end while

10: return B

Theorem 2.18 (Complexity of LLL [30]). Consider L = L(B) ⊆ Rn a lattice of rank r, and M =
max{log2 ‖b‖2 | b ∈ B}. Then for input B, one can compute a LLL-reduced basis of L in time complexity

(2.3) O
(
r2n(r +M)MM(r)

)
.

Remark 2.19. When considering a full-rank lattice, i.e. r = n, we get an algebraic complexity O(n4M+
n3M2).

Babäı’s nearest plane algorithm. In order to solve BDD instances, one can use an algorithm due to [1],
and called the nearest plane algorithm. It is an inductive technique, described in Algorithm 4, which is
essentially a process of size-reduction (Alg. 2)

Algorithm 4 Babäı’s Nearest Plane Algorithm – NearestPlane
Require: t ∈ Rn, B = (b1, . . . , br) a basis of a lattice L, B̃ the GSO of B
Ensure: v ∈ L a close vector of t

1: v ← t

2: for i = r down to 1 do
3: v ← v −

⌊
(v|b̃i)
‖b̃i‖2

⌉
bi . Make t more orthogonal to bi

4: end for
5: return v − t

Again the output depends on the quality of the basis given as input. We can prove that the output is
not too far from the target given the basis is LLL-reduced.

Proposition 2.20. Consider a rank r lattice L, given by a basis B.Then for input t and B, Algorithm 4
outputs v ∈ L lying in t+ F(B̃). Thus it solves BDDγ for γ 6 1

2 min{
∥∥b̃i∥∥ | i ∈ J1, rK}.

Following [30], the algebraic complexity of NearestPlane is at most O
(
n3 + n2M

)
.

3. Absolute method

In this section, we study the methods to recover number field elements from complex embeddings, and
how to apply them for solving polynomial equations.



10 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

Definition 3.1. If x is in R, the approximation of x up to l-bits for l ∈ N is the integer b2lxe. If x ∈ C
then its approximation up to l-bits is b2l<(x)e+ ib2l=(z)e. In both cases it is be denoted by [x]l.

Remark 3.2. We commonly identify a complex number x with the pair of real numbers (<(x),=(x)).
We extend this identification to approximations.

3.1. Recovering elements from complex embeddings. First we describe how we compute the co-
efficients of an element given one of its complex embeddings.

Definition 3.3. Consider a number field K, B a Q-basis of K, σ ∈ Hom(K,C), and l ∈ N. We call a
basis lattice of K up to precision l relative to B and σ and denote by L(B, σ, l) the lattice generated by
the matrix B(B, σ, l) defined as follows:

(3.1) B(B, σ, l) =


−[σ(b1)]l C 0 . . . 0

−[σ(b2)]l 0 C
. . .

...
...

...
. . . . . . 0

−[σ(bn)]l 0 . . . 0 C


The matrix B(B, σ, l) is called the basis matrix of L(B, σ, l).

Remark 3.4. • When there is no ambiguity regarding K, B or σ, we will simply denote L(B, σ, l)
by Ll and call it the lattice basis of K up to precision l. Similarly the matrix B(B, σ, l) will be
written Bl.

• The constant C is used to ensure the validity of the decoding, and acceleratethe reduction algo-
rithm on Bl. It will be determined latter.

• If the embedding σ is not a real embedding, then the first column of the matrix in Equation 3.1
is in fact two columns, containing respectively the real and imaginary parts of the corresponding
complex numbers.

Notation 3.5. If σ(K) ⊂ R, we denote by σ(B)l the first column vector of a basis matrix B(B, σ, l).
If σ(K) 6⊂ R, we write σ(B)l = [< (σ(B)l) ,= (σ(B)l)] for the matrix composed of the two first column
vectors of B(B, σ, l).

As before, consider K a number field, B = (b1, . . . , bn) a Q-basis of K, and x ∈ K such that there is
(xi)i∈J1,nK ∈ Zn with x = x1b1 + · · ·+ xnbn. Now assume that [σ(x)]l is known for some σ ∈ Hom(K,C)
and l ∈ N. Then one can use Babäı’s nearest plane algorithm (see Algorithm 4) using L(B, i, l) and
t = ([σ(x)]l, 0, . . . , 0). It is also better to reduce B(B, σ, l) with LLL first, and use Algorithm 4 with input
this reduced basis and t. This leads to Algorithm 5.

Notation 3.6. Given K a number field, B a Q-basis of K, σ ∈ Hom(K,C) and a precision l, we denote
by L(B, σ, l) the LLL-reduced basis of B(B, σ, l). Similarly, we will write Ll when there is no ambiguity.

The output of Algorithm 5 is a vector of coefficients which are expected to be the coefficients of x
in the basis B. The correctness of the outcome depends on the parameters chosen, i.e. the precision
l and the constant C. We will determine a lower bound on the precision in Section 3.2, then under a
reasonnable conjecture on lattices Ll we will exhibit a slightly better lower bound in Section 3.3.

Given x ∈ OK , if one denote by tx the target vector
[
b2lxσe, 0, . . . , 0

]
we wish to evaluate a precision l

for which ex := NearestPlane(Ll, tx) is equal to [ε, Cx1, . . . , Cxn]. It is known that Babäı’s nearest plane



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 11

Algorithm 5 TestDecode
Require: An integer l, the matrix Ll of a reduced basis of L(B, σ, l), [σ(x)]l for some x ∈ K.
Ensure: A candidate y = (y1, . . . , yn) for the vector of coefficients of x expressed in B.

1: r ← [Kσ : R] . r = 1 if σ(K) ⊂ R, and 2 otherwise
2: t← ([σi(x)]l, 0, . . . , 0) ∈ Zn+r

3: v ← NearestPlane(t, Ll) . (Alg. 4)
4: return [vr+1, .., vn+r+1]/C

algorithm outputs a vector with norm smaller than half the norm of the shortest vector of the GSO.
Thus, obtaining a lower bound on the first minimum of Ll will allow us to obtain a bound on the norm
of the output of NearestPlane(Ll, tg). Coupled with an upper bound on the norm of eg, this will give a
condition for a correct decoding, corresponding to

(3.2) ‖eg‖2 6
λ1(Ll)

2n .

Proposition 3.7. Consider K a number field, Ll = L(B, σ, l) a basis matrix of K, and x ∈ Z[B]. Let m
be an integer such that m = 1 if σ(K) ⊂ R and m = 2 otherwise. Then Algorithm 5 outputs the correct
vector of coefficients (x1, . . . , xn) of x in B if the following holds:

(3.3)
2m−1 (1 + ‖x‖1)2

4 + C2 ‖x‖22 6
λ1(Ll)2

22n .

Proof. In TestDecode we wish to solve the BDD with respect to the lattice L(B, σ, l) and target vector
t = ([σ(x)]l, 0, . . . , 0). As Proposition 2.20 states, the output is known to be correct if the distance
between the target and the lattice is smaller than 1

2 min
{∥∥b̃i∥∥2 | i ∈ J1, rK

}
. The lattice vector v which

is expected to be the closest to t is v = (
∑n
i=1 xi[σ(bi)],−Cx1, . . . ,−Cxn). The error vector e = t− v is

then equal to (
[σ(x)]l −

n∑
i=1

xi[σ(bi)], Cx1, . . . , Cxn

)
.

Now let us consider the case where m = 1 and look at the first coordinate of e. First write (η, ε1, . . . , εn) ∈
[− 1

2 ,
1
2 ]n+1 the vector of errors due to the approximations, i.e. [σ(x)]l = 2lσ(x) + η and for all i ∈

J1, nK, [σ(bi)]l = 2lσ(bi) + εi. Then we have

e1 = 2lσ(x) + η −
n∑
i=1

2lxiσ(bi) + xiεi = η −
n∑
i=1

xiεi

which gives e2
1 6 (1 +

∑n
i=1 |xi|)

2
/4 = (1 + ‖x‖1)2

/4. If m = 2, or equivalently σ(K) 6⊂ R, one needs
to consider the real and imaginary parts. Thus we get e ∈ Rn+2 and (η, ε1, . . . , εn) ∈ [− 1

2 ,
1
2 ]n+2 with

η = (η1, η2). Following the previous analysis we obtain e2
1 6 (1 +

∑n
i=1 |xi|)

2 × 2/4 = (1 + ‖x‖1)2
/2.

Thus we obtain the following upper bound for ‖e‖22:

‖e‖22 6
2m−1

4 (1 + ‖x‖1)2 + C2 ‖x‖22 .

Finally remark that Theorem 2.17 tells us that a LLL-reduced basis (b1, . . . , bn) of a lattice L (with
δ = 3

4 ) satisfies
∥∥b̃i∥∥2

2 >
∥∥b̃1∥∥2

2 /2
n−1 > λ1(L)/2n−1. �

Notation 3.8. Given x ∈ Z[B] and C ∈ N∗, we will write mx for the upper bound of ‖ex‖22, i.e. such

that m2
x := 2m−1(1+‖x‖1)2

4 + C2 ‖x‖22



12 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

Now if one has a lower bound for λ1(Ll) depending on the parameters, one can deduce a condition for
the correctness of the output of TestDecode. In particular it is possible to obtain a lower bound of the
precision l for which the computation is correct.

3.2. Proven precision and correctness. Let us determine for which precision Algorithm 5 outputs
the correct vector of coefficients.

Notations 3.9. Consider a number field K and B a Q-basis of K. Let us write DB for a denominator of
B, i.e. such that for all i ∈ J1, nK, DBbi ∈ Z[X] where K ∼= Q[X]/(PK(X)). Additionnaly we will denote
maxi∈J1,nK T2(bi) by m(B, T2) .

Lemma 3.10. Consider K a number field, Ll = L(B, σ, l) a basis matrix of K, and x ∈ Z[B]. For any
integral vector λ ∈ B(0, 2nmx/C) we get the following lower bound for ‖λBl‖2

(3.4) ‖λBl‖2 >
2lCn−1

n
√
n
n2n(n−1)mn−1

x m(B, T2)n−1Dn
B(1 + ‖PK‖2)2n−1 .

Proof. We will focus on the case where σ is a real embedding, the proof in the case where σ(K) 6⊂ R
being almost identical. We follow the proof of [33, Lemma A.7], where similar lattices are considered. A
given λ ∈ Zn generates the vector of Ll of the form

[−
r∑
i=1

λi(2lbσi + εbi
), Cλ1, . . . , Cλn].

If we write s(λ, l) :=
∑n
i=1 λi(2lbi + εbi

) then |s(λ, l)| > 2l|
∑n
i=1 λib

σ
i | −

∑n
i=1

|λi|
2 > 2l|λσ| − ‖λi‖1

2 , where
λ is seen as an element of K. Then we can write ‖λBl(B)‖2 > ‖λBl(B)‖1 /

√
n > 2l|λσ|/

√
n. Let us find

a lower bound for |λσ|. If µ = DBλ then from [33, Lemma A.8] we have

(3.5) |µσ| > 1
n(1 + ‖PK‖2n−1

2 )T2(µ)n−1
.

Then T2(µ) = T2(DB
∑n
i=1 λibi) 6 DB

∑n
i=1|λi|T2(bi) 6 DBm(B, T2) ‖λ‖1, so Equation (3.5) gives

|λσ| > 1
n ‖λ‖n−1

1 Dn
Bm(B, T2)n−1(1 + ‖PK‖2)2n−1

.

Finally, recalling that we consider λ ∈ B(0, 2nmx/C) and that ‖λ‖1 6
√
n ‖λ‖2 we get the following lower

bound for λ1(Ll)

λ1(Ll) >
2lCn−1

n
√
n
n2n(n−1)mn−1

x Dn
Bm(B, T2)n−1(1 + ‖PK‖2)2n−1 .

�

Theorem 3.11 (Proven precision for correctness). Consider K a number field, B a Q-basis of K and
x ∈ Z[B]. Additionally fix σ ∈ Hom(K,C), C ∈ N, and m ∈ N such that m = 1 if σ(K) ⊂ R and m = 2
otherwise. If l ∈ N with l > 1 satisfies

l > n2 + (n+ 1) log2 C + n

(
log2 ‖x‖2 + 3 log2(n)

2 + log2DB + 2
)

+ (n− 1) log2m(B, T2) + (2n− 1) log2 ‖PK‖2
(3.6)

then Algorithm 5 outputs the vector of coefficients of x in the basis B. In particular, the coefficients of x
given one of its embedding can be recovered in time polynomial with respect to the size of the entries.



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 13

Proof. Using Equations (3.2) and (3.5) we can conclude that the decoding is correct if

2nmx 6
2lCn−1

n
√
n
n2n(n−1)mn−1

g Dn
Bm(B, T2)n−1(1 + ‖PK‖2)2n−1

which is equivalent to

2l >
2nmn

xn
√
n
n2n(n−1)Dn

Bm(B, T2)n−1(1 + ‖PK‖2)2n−1

Cn−1

which is verified as soon as

l > n2 +n(log2(mx) + log2(n)/2 + log2DB) + (n− 1)(log2m(B, T2)− log2(C)) + (2n− 1) log2(1 + ‖PK‖2).

Now we can replace mx by its value. However let us first rewrite it for simplicity, using ‖x‖2 only.

Since ‖x‖1 6
√
n ‖x‖2, one can safely replace m2

x by 2m−1(1+
√
n‖x‖2)2

4 + C2 ‖x‖22 = ‖x‖22 (C2 + 2m−1

4 (n+
2
√
n/ ‖x‖2 + 1/ ‖x‖22)) 6 ‖x‖22 (C2 + 2n) Replacing m2

x by this last value we get that eg is equal to some
[ε, Cg1, . . . , Cgn] as soon as

l > n2 + n

(
log2 ‖x‖2 + 3 log2(n)

2 + log2(C) + log2DB + 2
)

+ (n− 1) log2m(B, T2) + (2n− 1) log2 ‖PK‖2 + log2 C,

which gives the claimed inequality. �

Remark 3.12. If B is an integral basis of OK then one can bound DB by nn
√
n ‖PK‖2(n−1)

2 [26]. Ad-
ditionally if B is LLL-reduced for the T2-norm, we have that m(B, T2) 6 D

O(1)
K [33] so Equation (3.6)

becomes

l > n2 + n

(
log2 ‖g‖1 + log2(n)

2 + (n+ 1/2) log2 n

)
+ (n− 1)O(1) log2DK + (n+ 1)(2n− 1) log2 ‖PK‖2 + log2 C.

In the case where B is a power basis, i.e. B = (1, α, . . . , αn−1) we have DB 6 Dn−1
α and m(B, T2) =

√
nmaxσ|ασ|n−1 so Equation (3.6) can be replaced by

l > n2 + (n+ 1) log2 C + n

(
log2 ‖x‖2 + 3 log2(n)

2 + (n− 1) log2Dα + 2
)

+ (n− 1)2 log2 max
σ
|ασ|+ (n− 1) log2 n

2 + (2n− 1) log2 ‖PK‖2 .

3.3. Heuristic precision and correctness. Let us now determine a lower bound under a conjecture
regarding lattices of the form Ll we handle. First we determine the determinant of said lattices.

Lemma 3.13 (Matrix determinant lemma [18]). Let A be a ring, M∈Mn(A) be an invertible matrix and
U, V ∈ Mn,m(A). Then the following is true:

(3.7) det(M + UV T) =
(
Idm + V TM−1U

)
det(M).

Lemma 3.14. Let K be a number field and Ll = L(B, σ, l) be a basis lattice of K. Also let m be an
integer equal to 1 if σ is real, and 2 otherwise. Then

(3.8) vol(Ll)2 = C2n det
(

Idm + 1
C2σ(B)T

l σ(B)l
)

Proof. By definition vol(Ll)2 is the determinant of the matrix B(B, σ, l)B(B, σ, l)T = C2Idn + σ(B)l ×
σ(B)T

l . Then Lemma 3.13 gives the claimed identity. �



14 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

One can deduce from Lemma 3.14 a lower bound on the volume of L(B, σ, l) which depends on the
precision l and the size of σ(B).

Notation 3.15. Consider a number field K, B a Q-basis of K, σ ∈ Hom(K,C) and l ∈ N. Let us define
the value ∆(B, σ, l). If σ(K) ⊂ R we set ∆(B, σ, l) = ‖σ(B)‖22 − ‖σ(B)‖1 /2l, and if σ(K) 6⊂ R we set
∆(B, σ, l) = ‖< (σ(B))‖22 + ‖= (σ(B))‖22 − ‖< (σ(B))‖1 /2l − ‖= (σ(B))‖1 /2l.

Proposition 3.16. Let K be a number field and Ll = L(B, σ, l) be a basis lattice of K. Also let m be an
integer equal to 1 if σ is real, and 2 otherwise. Then the following is true,

(3.9) vol(Ll)2 > C2n
(

1 + 22l

C2 ∆(B, σ, l)
)
.

Proof. From Equation 3.8 we can write for m = 1

vol(Ll)2 = C2n
(

1 + 1
C2 ‖σ(B)l‖22

)
= C2n

(
1 + 1

C2

n∑
i=1

[σ(bi)]2l

)
.

Then for each i ∈ J1, nK, there is εi ∈ [− 1
2 ,

1
2 ] such that [σ(bi)]l = 2lσ(bi) + εi. Thus we obtain

vol(Ll)2 = C2n

(
1 + 1

C2

n∑
i=1

(2lσ(bi) + εi)2

)

= C2n

(
1 + 22l

C2

n∑
i=1

(σ(bi)2 + 2σ(bi)
εi
2l + ε2i

22l )
)
.

Since for all i ∈ J1, nK, one has |εi| 6 1
2 , we obtain the inequality

vol(Ll)2 > C2n

(
1 + 22l

C2

n∑
i=1

(σ(bi)2 − 2× 1
2 ×
|σ(bi)|

2l )
)
.

If σ(K) 6⊂ R then from Equation 3.8 we have vol(Ll)2 = C2n det
(
Id2 + 1

C2σ(B)T
l σ(B)l

)
. If we write

M = Id2 + 1
C2σ(B)T

l σ(B)l, then

M =

 1 +
‖<(σ(B)l)‖22

C2
(<(σ(B)l) | =(σ(B)l))

C2

(<(σ(B)l) | =(σ(B)l))
C2 1 +

‖=(σ(B)l)‖22
C2


so we get

det(M) =1 +
‖<(σ(B)l)‖22

C2 +
‖=(σ(B)l)‖22

C2 +
‖<(σ(B)l)‖22 ‖=(σ(B)l)‖22

C4

− (<(σ(B)l) | =(σ(B)l))2

C4 .

By Cauchy-Schwarz inequality we have

‖<(σ(B)l)‖22 ‖=(σ(B)l)‖22
C4 − (<(σ(B)l) | =(σ(B)l))2

C4 > 0,

therefore

vol(Ll)2 > C2n

(
1 +
‖<(σ(B)l)‖22

C2 +
‖=(σ(B)l)‖22

C2

)
.

Following the same reasoning that we did for the real case, we can conclude that

‖<(σ(B)l)‖22
C2 >

22l

C2

(
‖<(σ(B))‖22 −

‖<(σ(B))‖1
2l

)



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 15

and
‖=(σ(B)l)‖22

C2 >
22l

C2

(
‖=(σ(B))‖22 −

‖=(σ(B))‖1
2l

)
,

which gives the desired result. �

It is now possible to certify the correctness of the decoding. The Gaussian heuristic provides an
estimation of λ1(Ll), which can be used to obtain a heuristic condition for the correctness of the algorithm,
as in Theorem 3.17.

Theorem 3.17 (Correctness of decoding). Consider K a number field, B a Q-basis of K and x ∈ Z[B].
Additionally fix σ ∈ Hom(K,C), C ∈ N, and m ∈ N such that m = 1 if σ(K) ⊂ R and m = 2 otherwise.
If l ∈ N with l > 1 satisfies

(3.10) l > n2 + n log2 ‖x‖2 + n

2 log2(2πe( 1
n

+ 2)) + log2(C)− log2 ∆(B, σ, l)
2

then Algorithm 5 outputs the vector of coefficients of x in the basis B, if L(B, σ, l) satisfies the Gaussian
heuristic (eq. 2.2).

Proof. Let us fix l ∈ N. The Gaussian heuristic states λ1(L) ∼
√

n
2πe detL1/n. Then one can combine

Equation (3.3) to obtain a conditional inequality. In order to simplify the expression, we will replace m2
x

by ‖x‖22 (C2 + 2n) as explained in the proof of Theorem 3.11. This leads to the following inequality:

‖x‖22 (C2 + 2n) 6 1
22n

(
n

2πeC
2 n

√(
1 + 22l

C2 (∆(B, σ, l))
))

.

We can obtain the condition

(3.11) ‖x‖22 (C2 + 2n) 6 n

2πeC
2 n

√(
22l

C2 (∆(B, σ, 1))
)
.

Under the logarithmic map, the left side of Equation (3.11) gives 2 log2 ‖x‖2 + 2 log2(C) + log2(1 + 2n
C2 )

while the right side becomes log2( n
2πe )−2n+ 1

n×(2(n− 1) log2(C) + 2l + log2 (∆(B, σ, l))) , and combining
them allows us to retrieve the claimed condition. �

On can remark that Theorem 3.17 gives a better condition than the theoretical one given by Theo-
rem 3.11.

Remark 3.18. As a matter of fact, correctness of decoding is ensured by Equation (3.10) as long as Ll
satisfies λ1(Ll) > λ1(Ll)gauss.

In order to estimate the correctness of the value given by Theorem 3.17, we verified if the Gaussian
heuristic holds for lattices Ll. We computed the average value of the quotient λ1(Ll)/λ1(Ll)gauss for
increasing values of l, over random number fields K with fixed degrees. Here “random” means defined by
integral polynomials whose coefficients are drawn uniformly in J−2s, 2sK for randomly chosen 1 6 s 6 10.
The results can be found in Figure 1. One can see that λ1(Ll) is larger than the value predicted by the
Gaussian heuristic. This tends to show that asymptotically, one can safely consider that Theorem 3.17
provides a correct value certifying the correctness of the output of TestDecode. Note that running
this kind of experiment for large dimensions (say larger than 120) would be intractable. Indeed, even
approximating λ1(L) is a hard problem.

Heuristic 2 (Gaussian heuristic for bases lattices). Consider K a number field, B a Q-basis of K,
σ ∈ Hom(K,C) and l ∈ N. Then λ1(L(B, σ, l)) > λ1(Ll)gauss.



16 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

(a) σ(K) ⊂ R (b) σ(K) 6⊂ R

Figure 1. Average value of λ1(Ll)/λ1(Ll)gauss plotted against the precision l, for several
n = [K : Q].

3.4. Computing polynomial roots. We described which lattice we use, and the decoding method.
Obviously the reduced matrix L(B, σ, l) is computed once and used to retrieve all roots. Therefore we
have the following main steps:

(1) fix an embedding σ : K ↪→ C;
(2) compute a precision l ∈ N ensuring that the decoding is correct;
(3) compute a LLL-reduced basis Ll of the lattice generated by the basis of K;
(4) using σ, compute approximations of the roots of f(T ) up to a precision l;
(5) use Ll to retrieve the roots of f(T ) using TestDecode.

We will call PrecisionEvaluation the function returning the needed precision for input f(T ) ∈ K[T ].
Following Theorem 3.17, it depends on the Euclidean norms of the roots of f(T ). In order to evaluate
an upper bound of these norms, we can follow [3]. We will denote by FloatPolynomialRoots the procedure
computing the real (resp. complex roots) of a real (resp. complex) polynomial. We obtain Algorithm 6
describing the method we implemented to compute ZK(f).

Following the results from the previous section, one can state the following theorem.

Theorem 3.19. Consider a number field K, B a Q-basis of K and f(T ) ∈ K[T ] such that ZK(f) ⊂ Z[B].
Then for input (K,B, f(T )), Algorithm 6 outputs ZK(f) in polynomial time.

Finally we give a broad estimate of the algebraic complexity in function of the precision required
to ensure correctness. We will only count the complexity linked to lattices operations, as other steps
are negligeable. Note as well that we express these complexities in terms of the precision at which
computations are made instead of the size of the roots since the latter is unknown. Additionnaly this
allows us to take into account different choices for PrecisionEvaluation.

Proposition 3.20. Consider a number field K, B a Q-basis of K and f(T ) ∈ K[T ] such that ZK(f) ⊂
Z[B]. Then for input (K,B, f(T )), the algebraic complexity of lattice operations of Algorithm 6 (reduction
of a basis lattice Ll, GSO computation and decoding) are respectively in O(n4l+n3l2), O(n3) and O(dn2),
where n is the dimension [K : Q].

Proof. Recall by Theorem 2.18 the algebraic complexity of LLL is in O(n4M + n3M2), where M is an
upper-bound on the bit size of basis elements. A broad estimate of M for B(B, σ, l) is l. For the GSO



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 17

Algorithm 6 AbsoluteRoots
Require: A number field K, f(T ) ∈ K[T ], B a Q-basis of K such that ZK(f) ∈ Z[B].
Ensure: The set ZK(f)

1: σ ← ChooseEmbedding(K)
2: l← PrecisionEvaluation(f(T ))
3: Ll ← LLL(B(B, σ, l))
4: Z ← FloatPolynomialRoots(fσ, l)
5: S ← ∅
6: for z ∈ Z do
7: y ← TestDecode(Ll, z)
8: if f(y) = 0 then
9: S ← S ∪ {y}

10: end if
11: end for
12: return S

computation, we can follow a QR decomposition as described in [29] for example which gives a complexity
of O(n3). Finally Algorithm 6 makes d = deg f(T ) calls to Algorithm 4, adding up to O(dn2) . �

4. Relative method

Let us now describe a method to recover the roots of a polynomial in an extension of number fields
L/K, which is one of our main contribution.

4.1. Decoding in a subfield. First let us describe how one can reduce knowledge of embeddings related
to the extension L/K to decodings in K. Fix Ω an algebraic closure of L/K. We will use the relative
Minkowski embedding σL/K : x ∈ L 7→ (σ(x))σ∈HomK(L,Ω). It defines a K-linear embedding of L ∼= Kn

into Ωn where n is the degree of L/K. More precisely, let us fix E = (e1, . . . , en) a K-basis of L and let
x = x1e1 + · · · + xren ∈ L. We assume that the action of each σ ∈ HomK(L,Ω) on E is known. Then
σL/K sends Kn into Ωn,

σL/K : Kn −→ Ωn

(xi)i∈J1,nK 7−→ (
∑n
i=1 xiσ(ei))σ∈HomK(L,Ω).

Thus given knowledge of σL/K(x) one can apply σ−1
L/K and obtain recover (xi)i. For computational

purposes, we need to consider embeddings into Cn. In order to do so, one needs to fix τ an embedding
of K into C then consider σL/K as the collection of complex embeddings of L extending τ . This leads to
Algorithm 7 which retrieves coefficients of x knowing its Minkowski embedding relative to L/K.

Lemma 4.1. Algorithm 7 runs in polynomial time and outputs the correct vector of coefficients provided
l is large enough.

Proof. The polynomial running time is clear. For any σ : L ↪→ C extending τ , its action on x ∈ L can be
seen as

∑n
i=1 τ(xi)σ(ei). This way, K is identified with a subfield of C and L is identified with τ(K)n.

The action of σL/K can be expressed as an action from τ(K)n into Cn as a matrix in Mn(C), that is
ΣL/K . In particular we have ΣL/K [i] = σL/K(ei), thus XM = XΣ−1

L/K = (xτ1 , . . . , xτ[K:Q]). Thus knowing
approximations of σL/K(x) and ΣL/K up to l + s, it is possible to find the approximations of (τ(xi))i



18 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

Algorithm 7 Mink2coeff
Require: An extension L/K, given by B a basis of K and E a K-basis of L, M = Σ−1

L/K the matrix of
σ−1
L/K expressed with respect to τ(E) up to a precision l + s, the matrix Ll from a reduced basis of
L(B, τ, l) for some τ ∈ Hom(K,C) and X = [σL/K(x)]l+s for some x ∈ L/K.

Ensure: A candidate y = (y1, . . . , yN ) for the vector of coefficients of x expressed in B ⊗ E .
1: Y ← XM

2: y = [ ]
3: for i = 1 to n do
4: y ← [y | TestDecode(Ll, Yi)] . Concatenation of row vectors
5: end for
6: return y

up to l. Then by the results of Sections 3.2 and 3.3 we know that TestDecode(Ll, [xi]l) is the vector of
coefficients of xi with respect to B provided that l is large enough. �

4.2. An algorithm for polynomial roots. We can apply the previous strategy to compute polynomial
roots by decoding in the subfield K. Again, we fix some objects. The extension of number fields L/K
is given by a Q-basis B and E a K-basis of L. Then consider a polynomial f(T ) ∈ L[X] such that
ZL(f) ⊂ Z[E ⊗B]. From what we described previously, in order to retrieve the coefficients of x ∈ ZL(f),
one can compute σL/K and use Mink2coeff with the following main steps:

(1) compute a precision l certifying the correctness of the computation;
(2) compute Ll a LLL reduced basis of L(B, τ, l);
(3) compute M = Σ−1

L/K up to precision l + s for some s;
(4) compute Z =

∏
σ∈HomK(L,C) ZC(fσ) up to precision l + s;

(5) For each x ∈ Z, use Mink2coeff to obtain a root candidate.
This leads to Algorithm 8.

Remark 4.2. The set Z is the cartesian product of the sets Z(fσ) with σ in HomK(L,C). Each of
such set Z(fσ) has at most d = deg f elements. Therefore, Z is a set of at most dn complex numbers.
Moreover one cannot tell a priori if an element z ∈ Z(fσ) is of the form [σ(x)]l+s for some x ∈ ZL(f),
or even if a vector (z1, . . . , zn) ∈ Z corresponds to a root x of f(T ). Thus one has to call Mink2coeff dn

times in the worst case. Even if f(T ) splits in L, this leads to a search of d vectors in a set of size dn.
In order to improve slightly this search, a simple observation can be made. Let us write Z =

∏
σ ZC(fσ)

where σ ranges over HomK(L,C). Then one has

(4.1) ∀x ∈ ZK(f),∀σ ∈ HomK(L,C),∃!z ∈ ZC(fσ) | z = [σ(x)]l,

which implies that once we found a correct vector in Z we can remove from the search tree all the nodes
where any of its coordinates appears. A more precise study of the average cost of the search (number of
vectors of Z tested) can be found in Appendix A.

Notation 4.3. We denote by UpdateTree the procedure updating the search space as described.

The absolute method AbsoluteRoots requires at most d = deg f(T ) decodings, while RelativeRoots naive
requires enumerating through dn vectors, corresponding to n decodings each. The mere enumeration of
dn elements shows that RelativeRoots naive has an exponential cost when n increases. In addition, several
operations on vectors and matrices are done for each of the dn possibilities. Thus it is quickly impractical.



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 19

Algorithm 8 RelativeRoots naive
Require: An extension L/K, given by B a basis of K and E a K-basis of L, and f(T ) ∈ L[T ] such that

ZL(f) ∈ Z[E ⊗ B]
Ensure: ZL(f)

1: l← PrecisionEvaluation(f(T ))
2: Ll ← LLL(B(B, τ, l))
3: M ← Σ−1

L/K . Up to precision l + s

4: Z ←
∏
σ∈HomK(L,C) FloatPolynomialRoots(fσ, l + s)

5: S ← ∅
6: for z ∈ Z do
7: y ← Mink2coeff(z,M,Ll) . Compute the inverse and decode
8: if f(y) = 0 then
9: S ← S ∪ {y}

10: UpdateTree(Z, z)
11: end if
12: end for
13: return S

However, for small n, Algorithm 8 can considerably speed-up the computation of ZK(f). Indeed one
has to remember that an important part of the computation time is dedicated to the reduction of the
lattice used to decode, as is also the case for the algebraic method. Algorithm 6 requires the reduction of
a lattice of rank [L : Q], while the rank of the lattice reduced in Algorithm 8 is [L : Q]/n. In addition, the
precision needed to certify the computation shown in Theorem 3.17 involves the dimension. Therefore,
dividing the dimension allows us to do computations at a smaller precision, which also leads to smaller
coefficients in the matrix Bl which is reduced.

Theorem 4.4. Consider an extension L/K, B a Q-basis of K, E a K-basis of L and f(T ) ∈ L[T ] such
that ZL(f) ⊂ Z[E ⊗B]. Then for input (L/K, E ,B, f(T )), Algorithm 8 outputs ZL(f) in polynomial time,
except eventually for the enumeration due to the for loop.

Proof. Since the required precision to ensure correctness of decoding has been proved to be polynomial
with respect to entry sizes, the polynomial time complexity of each intermediate operations is clear.
For the correctness, remark that for any x ∈ ZL(f) and any σ ∈ HomQ(L,C), σ(x) is a root of fσ.
Thus, σL/K(x) ∈

∏
σ∈HomK(L,C) ZC(fσ), so for each x ∈ ZL(f) there is one vector of Z in Algorithm 8

which is of the form ([σ(x)]l+s)σ = [σL/K(x)]l+s. This ensures that S is the correct set at the end
of Algorithm 8. �

Proposition 4.5. Consider an extension L/K, B a Q-basis of K, E a K-basis of L and f(T ) ∈ L[T ] such
that ZL(f) ⊂ Z[E ⊗ B]. Then for input (L/K, E ,B, f(T )), the algebraic complexity of lattice operations
of Algorithm 8 (reduction of a basis lattice Ll, GSO computation and decoding) are respectively in O(n4

K l+
n3
K l

2), O(n3
K) and nL/KdnL/KO(n2

K), where l is the required precision.

Proof. The proof is similar to the one of Proposition 3.20, noting that the lattice used to decode is linked
to K, that there are dnL/K elements in Z and that Mink2coeff makes nL/K calls to TestDecode for each
of these elements. �



20 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

4.3. Trade-off. Now let us express some broad trade-off between our absolute and relative methods,
considering only computations linked to lattice reduction and decoding. We forget about the GSO
computation since it is done only once and is negligeable with respect to the lattice reduction. Consider
L/K a number field extension and write nL, nK and nL/K for the degrees [L : Q], [K : Q] and [L : K]
respectively. Following Propositions 3.20 and 4.5 we can conclude that the complexity of Algorithm 6
due to lattice reduction and decoding is O(n4

Ll + n3
Ll + dn2

L) while these operations amount to O(n4
K l +

n3
K l + nL/Kd

nL/Kn2
K) for Algorithm 8. Thus, we obtain a condition for a trade-off :

n2
K(n2

K l + nK l + nL/Kd
nL/K ) = n2

L(n2
Ll + nLl + d)

⇐⇒ nL/Kd(dnL/K−1 − nL/K) = nK l(n3
L/K(nL + 1)− (nK + 1)).

(4.2)

Using Equation (5.6) allows us to obtain a broad indication on which algorithm to run. For example,
fixing [L : K] = nL/K = 2 we obtain 2d(d− 2) 6 nK l(15nK + 7), therefore our relative algorithm would

be advantageous for d up to (at least)
√

nK l(15nK+7)
2 . Note that following both theoretical and heuristic

bounds from Theorems 3.11 and 3.17, l is larger than n2
L+nL log2 ‖x‖2 so

√
nK l(15nK+7)

2 can be replaced
by √

nK(2nK(2nK + log2 ‖x‖2))(15nK + 7)
2 = nK

√
(2nK + log2 ‖x‖2)(15nK + 7).

5. Improvements and heuristic observations

In order to improve the naive algorithms presented in Sections 3 and 4, several directions can be
explored. The main bottleneck of our absolute method (Alg. 6) is the reduction of a basis lattice L(B, σ, l).
It can be hasten by improving the reduction process itself or by evaluating the required precision l more
accurately. Our relative method potentially requires many decodings, i.e. calls to a BDD solver such as
NearestPlane (Algorithm 4). Therefore, improving this step can speed-up considerably the running time
of Algorithm 8.

5.1. Basis reduction in the case of power-bases. The first heuristic improvement that we develop
concern the reduction of B(B, σ, l), in the case where B is a power-basis, i.e there is α ∈ K such that
B = (1, α, . . . , αn−1). The idea behind the improvement comes from the following observation. First,
denote by B(i) the top left i × (i + 1) submatrix of B, then assume that B is reduced up to the i-th
vector, i.e. we found U (i) such that L(i) = U (i)B(i) is reduced. Then we found u(i) ∈ Zi such that
u(i)B(i) = L(i)[i]. Consider now the (i+ 1)-th vector of the matrix. Then

[0, u(i)]B(i+1) ≈ αu(i)B(i) = αL(i)[i]. Thus applying the transformation operated to reduce the i-th
vector should pre-reduce the (i+1)-th vector. This leads to Algorithm 9, which computes a LLL-reduced
basis Ll. Note that pre-reduction strategies have already been mentioned or used in the literature [39,
21]. To the best of our knowledge these apply to general knapsack-like matrices, while our observation
tries to take advantage of the regularity of the basis vectors, and can be compared to [34].

We compared SpecLLL with LLL for available implementations of Magma [11], Pari/Gp [31] and
Fplll [40]. The results can be found in Figure 2 for the real case and Figure 3 for the complex one.

The first observation is that SpecLLL is asymptotically faster than LLL, regardless of the software
used. Then one can remark that the ratio is decreasing when both the precision or the dimension is
increasing.

SpecLLL is always more efficient than LLL when used in Pari/Gp or Magma, with a asymptotic gain
of 25% and 35% respectively. For Fplll, using Algorithm 9 results in larger running times for small



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 21

Algorithm 9 SpecLLL
Require: B, a basis of a lattice L of rank n.
Ensure: B′, a LLL reduced basis of L.

1: B′ ← {b1}
2: for i = 2 to n do
3: b′i ← bi +

∥∥b′i−1
∥∥2

2 ei+1 . M is a large constant to ensure reduction
4: b′i ← b′i − [0, u(i−1)]B(i) . Pre-reduction using the previous vector
5: B′ ← B′ ∪ {b′i}
6: B′ ← LLL(B′) . Size-reduction
7: b′i ← b′i + (C − ‖b′i−1‖

2
2)ei+1

8: end for
9: B′ ← LLL(B′)

10: return B′

(a) Pari/Gp (b) Magma (c) Fplll

Figure 2. Ratios of running times of SpecLLL to LLL plotted against the precsion l,
for σ(K) ⊂ R and several dimensions n

(a) Pari/Gp (b) Magma (c) Fplll

Figure 3. Ratios of running times of SpecLLL to LLL plotted against the precsion l,
for σ(K) 6⊂ R and several dimensions n

precision. However, it becomes more efficient as precision increases and offers speed-ups between 25 and
50% for l = 20000, depending on the dimension.

Moreover, as expected the speed-up given by SpecLLL is larger when σ(K) ⊂ R, however one still gains
up to 20% when σ(K) 6⊂ R.

Note that the gain really depends on the version of LLL used. However, a better gain does not imply
that the corresponding software should be used. Indeed, one should also take into account the initial



22 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

running time of LLL. For example, Fplll is more efficient than the two other implementation. We refer
the reader to the timings plots presented in Appendix B.1, where are shown the corresponding timings.

Finally we verified that our modified algorithm really takes advantage of the special shape of the initial
matrix. To do so, we launched SpecLLL over matrices of the shape

β1 C 0 . . . 0

β2 0 C
. . .

...
...

...
. . . . . . 0

βn 0 . . . 0 C

 ,
where βi are random integers with the same size as the entries of B(B, σ, l), and computed the same
timings ratios. Results can be found in Table 6, and one can remark that it is always close to 1,
sometimes larger.

5.2. Heuristic precision evaluation. The second observation concern the precision needed to retrieve
the roots. First we study which precision is required to retrieve an element depending on its norm, then
we present an improvement concerning the evaluation of the norm of the roots.

5.2.1. Precision from the norm. The precision given by Equation (3.10) allows us to certify the correctness
and the polynomial complexity of the method we described. However, it is possible to find a smaller value
which is experimentally sufficient to retrieve an element.

Fix K a number field given by an irreducible polynomial PK(X) ∈ Z[X]. Given B = (b1, . . . , bn)
a Q-basis of K, we generated random elements x ∈ Z[B] such that for all i ∈ J1, nK, xi ∈ J−2s, 2sK
for s ∈ {1, 25, 50, 75, 100}. Then we computed the quotient qt of the precision required to retrieve the
coefficients of x by lt = [K : Q] log2 ‖x‖2.

We chose to test the experimental precision against lt for several reasons. First, when K and B are
fixed, it is the term of Equation 3.10 which is asymptotically relevant. Moreover the algebraic method
of [3] requires the norm NK/Q(pk) to be greater than a value which is essentially lt, so that the decoding
is certified. Finally, this value was also suggested by experiments when we first used this method to
compute cube roots in multicubic fields [25]. When comparing this value to Equation (3.10), we can
remark that we gain essentially n(n− log2(n)).

Experimentally, the quotient qt seems to be influenced by the size of the elements to decode and the
dimension. More precisely, the maximum of the retrieved quotients in our experiments approaches 1 from
above when the precision is increasing. Moreover, it seems to increase with the dimension. With these
requirements in mind, we observed that it is always smaller than 1 + ln(n) ln ln(n)/(s ln(2) + ln(n)/2) –
see Figure 16 in appendix. Remark that the quotient in the previous value is the norm of an element
with all coefficients equal to 2s.

If Prec is the precision required to retrieve the coefficients of an element x, it seems reasonable that

(5.1) Prec(x) 6
(

1 + ln(n) ln ln(n)
s+ ln(n)/2

)
n ln ‖x‖2 6 n ln ‖x‖2 + n ln(n) ln ln(n).

5.2.2. Norm of the roots. Fix the factorisation of f(T ) over K as f(T ) = g(T )h(T ) such ZK(g) = ZK(f),
ZK(h) = ∅. We can follow [17, 3] to bound ‖x‖22 for x ∈ ZK(f) given f(T ):

(1) find Bf,T2 such
∥∥σK/Q(x)

∥∥2
2 6 Bf,T2 for all x ∈ ZK(f);

(2) compute Bσ−1
K

the matrix norm of σ−1
K , expressed relatively to the canonical basis of σK/Q(K)

and B;



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 23

(3) the value Bf = Bf,T2B
2
σ−1

K

satisfies the desired property.

This bound can be quite large compared to M(f) := sup{‖x‖22 | x ∈ ZK(f)}. Without extra-
information this is the best one can do. However, one can use heuristic evaluations for ‖x‖22, giving
smaller results than Bf . Consider σ ∈ Hom(K,C) and x ∈ K. Then one has

|σ(x)|2 =

∣∣∣∣∣
n∑
i=1

xiσ(bi)

∣∣∣∣∣
2

6

(
n∑
i=1
|xiσ(bi)|

)2

6 ‖x‖22 ‖σ(B)‖22 .

Therefore for any x ∈ K and any σ ∈ Hom(K,C), ‖x‖22 >
|σ(x)|2
‖σ(B)‖2

2
. We define the function HeuristicNorm

as the maximum of such quotients, as follows. For any σ ∈ Hom(K,C), let Bf,σ be such that

(5.2) ∀x ∈ ZK(f), |σ(x)|2 6 Bf,σ.

Then we fix

(5.3) HeuristicNorm(f) := max
{

Bf,σ

‖σ(B)‖22
| σ ∈ Hom(K,C)

}
.

Even if HeuristicNorm gives a value which is a lower bound on ‖x‖22 instead of an upper bound, it allows
a first precision to be obtained. This evaluation is usually smaller than Bf and gives a good starting
point, i.e. we do not need to increase much the precision to retrieve at least some roots.

We evaluated the generic difference between the proper maximal norm of x ∈ ZK(f) and the value
given by HeuristicNorm, and plotted the results in Figure 4. These expiremental values tend to show

(5.4) lnM(f) 6 HeuristicNorm(f) + ln(n)/2.

(a) s(PK) = 1 (b) s(PK) = 5

Figure 4. Logarithms of maximum ratios of M(f) by HeuristicNorm(f) plotted against
n = [K;Q] for several s, and s(PK) ∈ {1, 5}

Heuristic precision. Finally, given K and f(T ) ∈ K[T ] as above, one can compute a conjectured precision
HeuristicPrecision(f) combining Equations (5.1) and (5.4) as

(5.5) HeuristicPrecision := [K : Q] log2 HeuristicNorm(f) + n ln(n)/2 + n ln(n) ln ln(n).



24 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

Algorithm 10 Babäı’s Nearest Plane Algorithm with early abort– EarlyAbortNP
Require: t ∈ Rn, B = (b1, . . . , br) a basis of a lattice L, B̃ the GSO of B
Ensure: v ∈ L a vector close to t and b a boolean expressing whether t has been rejected or accepted.

1: w ← t

2: for i = r down to 1 do
3: λ = (w | b̃i)/

∥∥b̃i∥∥2
2

4: if |{λ}| > 1/4 then
5: return w, false
6: else
7: w ← w − bλe bi
8: end if
9: end for

10: return w, true

5.3. Solution testing through finite fields. An important step – especially when using heuristic
observations – is to verify that a candidate is indeed a solution (steps 8 of both Algorithm 6 and Algo-
rithm 8). When manupilating large elements, evaluating the polynomial expression f(x) can be costly.
Thus we chose to use a probabilistic method, which is summed up as follows:

• choose prime integers p1, . . . , pr

• check whether f(x) = 0 mod pi for all i ∈ J1, rK

If the pi are uniformly drawn as 32-bits integers and f(x) is uniformly distributed in Fpi
, then the

probability x of obtaining a false positive is 1/232r, which is rapidly small. This choice is particularly
useful for our relative method, since it potentially requires to test a huge amount of elements.

5.4. Early abort in decoding. The final observation that we use to speed-up computations consists in
improving the decoding step, especially when the tested complex number y does not correspond to any
solution. Here is the rationale behind our technique. If the vector Y given to NearestPlane correspond
to a solution, then it is expected to be close to a vector of the lattice Ll. However, if the vector is not
a solution vector, then it should be “far” from a lattice vector. It can even be expected to be uniformly
distributed modulo Ll. Given a vector t and B a basis, if we denote |(t | b̃i)/

∥∥b̃i∥∥2
2| by λi, then the

distance between v and NearestPlane(t,B) is
∑r
i=1|{λi}| ·

∥∥b̃i∥∥2. The quantity {λi} ∈ [−1/2, 1/2], thus
we distinguish between two cases : if |{λi}| 6 1/4 we deem λi to be acceptable and we continue the
algorithm, while if |{λi}| > 1/4 we deem t to be rejected. This gives Algorithm 10.

Additionally to this strategy, we will reject a vector of complex numbers during the search of Algo-
rithm 8 as soon as one of the decoding fails.

We checked the experimental maximum number of steps done in Algorithm 10 over bad vectors t of the
form [z, 0 . . . , 0], when z ∈ ZC(f) in the run of Section 5.5, for several root sizes sZ = maxx∈ZK(f) s(x),
field dimesion [K : Q] and coefficient sizes of the defining polynomial s(PK). For fields dimension between
25 and 125 and various root sizes, the maximum that we find is 7. Over all parameters this maximum
does not seem to vary much and is mainly in J4, 7K, see Table 1 for example.



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 25

Algorithm 11 AbsoluteRootsHeur
Require: A number field K, f(T ) ∈ K[T ], B a Q-basis of K such that ZK(f) ∈ Z[B].
Ensure: The set ZK(f)

1: σ ← ChooseEmbedding(K)
2: l← HeuristicPrecision(f(T )) . Heuristic norm evaluation and precision formula
3: Ll ← LLL(B(B, σ, l)) . Use of SpecLLL when B is a power-basis
4: Z ← FloatPolynomialRoots(fσ, l)
5: S ← ∅
6: for z ∈ Z do
7: y, b← TestDecodeHeur(Ll, z) . Early abort nearest plane
8: if b and f(y) = 0 then . Verification through finite fields
9: S ← S ∪ {y}

10: end if
11: end for
12: return S

Dimension 25 50 75 100 125

sZ = 1
min 1 1 1 1 1
max 6 7 5 6 6

average 2.7 2.4 2.5 2.2 2.8

sZ = 50
min 1 2 1 1 1
max 4 7 5 4 6

average 2.5 2.8 2.7 2.3 2.8

Table 1. Number of steps before early aborts, for random targets in random number
fields with s(PK) = 10.

One can remark that the average value is always smaller than 3.

5.5. Heuristic algorithms. All the observations and strategies mentioned above lead to heuristic ver-
sions of the algorithms computing polynomial roots. First is the heuristic version of the decoding method
TestDecode using EarlyAbortNP. We will design it by TestDecodeHeur. Using this version of the decoding
method, together with the heuristic precision evaluation given by Equation (5.5) leads to a heuristic
version of Algorithm 6 described in Algorithm 11.

Finally, regarding the relative method, we get a heuristic variant of Algorithm 7 and Algorithm 8.
Remark that in Algorithm 12 (thus in Algorithm 13 as well) the use of early abort for the decoding of
each coordinate respectively to L/K (step 8 of Algorithm 12) leads generally to decode only one of them
when the vector of complex numbers X is not of the form σL/K(x) (as a matter of fact, the decoding will
typically abort only after a few steps).

5.5.1. Trade-off. Now let us express some broad trade-off between our heuristic absolute and relative
methods, again considering only computations linked to lattice reduction and decoding. Compared
to the previous analysis, we need to take into account the influence of early abort. This still gives
O(n4

Ll+n3
Ll+ dn2

L) in the worst-case for Algorithm 11 while these operations amount to O(n4
K l+n3

K l+



26 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

Algorithm 12 EarlyAbortMink2Coeff
Require: An extension L/K, given by B a basis of K and E a K-basis of L, an integer l, the matrix Ll

from a reduced basis of L(B, τ, l), M = Σ−1
L/K up to a precision l+ s, and X = [σL/K(x)]l+s for some

x ∈ L/K
Ensure: A candidate y = (y1, . . . , yN ) for the vector of coefficients of x expressed in B ⊗ E

1: Y ← XM

2: y = [ ] . void vector
3: for i = 1 to n do
4: v, b← TestDecodeHeur(Ll, Yi)
5: if b = false then
6: return X, b

7: end if
8: y ← [y | v]
9: end for

10: return y, b

Algorithm 13 RelativeRootsHeur
Require: An extension L/K, given by B a basis of K and E a K-basis of L, and f(T ) ∈ L[X] such that

ZL(f) ∈ Z[E ⊗ B]
Ensure: ZL(f)

1: l← HeuristicPrecision(f(T ))
2: Ll ← LLL(B(B, τ, l)) . Use of SpecLLL when B is a power-basis
3: M ← Σ−1

L/K . Up to precision l + s

4: Z ←
∏
σ∈HomK(L,C) FloatPolynomialRoots(fσ, l + s)

5: S ← ∅
6: for z ∈ Z do
7: y, b← EarlyAbortMink2coeff(z,M,Ll) . Early abort
8: if b and f(y) = 0 then . Verification through finite fields
9: S ← S ∪ {y}

10: UpdateTree(Z, z)
11: end if
12: end for
13: return S

(nL/Kd+ dnL/K − d)n2
K) for Algorithm 13. This gives us the following condition for a trade-off :

(5.6) dnL/K + dnL/Kn
2
K − dn2

L − d = n3
K l(n3

L/K(nL + 1)− (nK + 1)).

When nL/K = 2 for example, this becomes d2 − 2dn2
K − d = n3

K l(15nK + 7). Thus following the analysis
for the naive versions of our algorithm we obtain that the relative version with early abort is advantageous
compared to the absolute one for d up to

√
2n2

K

√
(nK + 2 log2 ‖x‖2)(15nK + 7)

which is better than the naive trade-off by a factor of O(nK).



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 27

6. Experimental results

We compare in these section the practical performances of the methods described previously with the
generic algebraic methods implemented in Pari/Gp [31], which is the function nfroots. Our implemen-
tation is (mainly) in Gp, and is publicly available.2

Recall that we assume that ZK(f) ⊂ Z[B], with B = (b1, . . . , bn) being some Q-basis of K. Given
x ∈ K we will keep denoting by x1, . . . , xn its coefficients relative to B. In almost all our experiments,
we chose B to be Z[θ] with θ = X mod PK(X), where PK(X) is a fixed polynomial defining the field K.

Number fields are drawn randomly through the choice of their defining polynomial following a given
distribution. When we consider general number fields, meaning not from a special family such as cy-
clotomic number fields, PK(X) will be drawn with random coefficients in a given interval of the form
J−2s, 2sK with s ∈ N. This somewhat arbitrary choice has been used in the literature [4] and allows us to
study the average behaviour of our algorithms, for a well defined notion of “average”. Finally, we consider
two specific classes of number fields, namely cyclotomic fields in Section 6.3.3 and real Kummer fields
in Section 6.3.4, because they showcase nicely the good and bad behaviours of our algorithms (especially
our relative method) and Pari/Gp nfroots.

Remark 6.1. We checked the number of roots retrieved by our algorithms, and all roots were retrieved
by both methods (absolute and relative).

6.1. Instability of nfroots. We observed experimentally that over generic number fields, nfroots is not
stable, and that fields could be divided into two groups. We call bad fields those number fields for which
nfroots behave poorly, and good fields the rest of them. In order to obtain better observations, we split
them by minimising the sum of their medians, that we denote by m1 and m2 respectively. To showcase
this unstable behaviour we give some statistical data regarding the running time of nfroots, AbsoluteRoots
and AbsoluteRoots in Table 2.

2https://github.com/AndLesav/nf_polynomial_roots

https://github.com/AndLesav/nf_polynomial_roots


28 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

Table 2. Statistical data regarding the running time of nfroots, AbsoluteRoots and
AbsoluteRoots over random number fields such that s(PK) = 5.

(a) nfroots

Dimension [K : Q] 25 50 75 100
# bad fields (%) 49 13 10 12

m1 (s) 2.37 20.41 55.51 125.92
m2 (s) 3.10 174.00 2189.93 16081.07

average (s) 2.76 40.08 269.67 1989.31
(b) AbsoluteRoots

Dimension [K : Q] 25 50 75 100
# bad fields (%) 65 77 68 67

m1 (s) 1.59 39.53 318.24 1637.11
m2 (s) 2.69 66.44 539.42 2646.72

average (s) 2.31 60.44 467.41 2285.76
(c) AbsoluteRootsHeur

Dimension [K : Q] 25 50 75 100
# bad fields (%) 57 71 72 61

m1 (s) 0.42 3.86 15.95 54.84
m2 (s) 0.61 5.31 21.72 67.19

average (s) 0.53 4.88 19.98 62.33

In Table 2 one can see that there are about 10% of fields for which the running time of nfroots explodes.
The corresponding median m2 is up to 127 times larger than the median m1 corresponding to the rest
of the fields. Algorithm 6 and Algorithm 13 are more stable. For these algorithms m2 never exceeds
2m1. The instability of nfroots has the following consequence. For a majority of number fields, nfroots
clearly outperforms AbsoluteRoots (it is more than 10 times faster for [K : Q] = 100) and this difference is
growing with the dimension. However, in average, the timings obtained for both algorithms are similar.

Potential explanation. The determining parameter seems to be the possibility of retrieving an inert prime.
Following the search for good primes implemented in Pari/Gp, we evaluated the proportion of fields for
which an inert prime will be found, see Table 3.

Dimension [K : Q] 23 51 75 83
# bad fields (%) 5 7 17 10

Table 3. Proportion of fields for which no inert prime has been found

These proportions tend to follow the ones found previously, such has presented in Table 2. Addition-
nally we recorded the running times over the two kind of fields, as showcased in Table 3.



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 29

Table 4. Running time of nfroots, AbsoluteRoots and AbsoluteRoots over random num-
ber fields for which inert primes can be found or not.

(a) nfroots

Dimension [K : Q] 25 50 75
Good fields (s) 3.1 17.8 55.5
Bad fields (s) 4.9 164.1 2177.9

(b) AbsoluteRoots

Dimension [K : Q] 25 50 75
Good fields (s) 2.3 52.5 437.1
Bad fields (s) 2.3 52.2 403.1

(c) AbsoluteRootsHeur

Dimension [K : Q] 25 50 75
Good fields (s) 0.5 4.7 21.7
Bad fields (s) 0.5 4.7 20.7

The results presented in Tables 2 and 3 are very similar, which confirms the fact that the determining
parameter regarding the instability of nfroots is the use of inert primes.

Remark 6.2. In the following, for nfroots, we will systematically present the average value of the
execution times over all fields, over “good” fields and over “bad” fields, in order to have a more complete
picture of its behaviour. We will write m1 and m2 the two last quantities.

6.2. Absolute method. We study the impact of the different parameters of the problems which are the
size of the polynomial PK(X), the number of roots |ZK(f)|, and the size of the roots log2 ‖x‖2. We also
differentiated between number fields K such that r1 > 0 or such that r1 = 0, since the matrices used to
decode do not have exactly the same sizes. However, since the results are very similar we only present
here the data for r1 > 0. Data when σ(K) ⊂ C \ R can be found Appendix B.3.

6.2.1. Choice of PK(X). We study the impact of two parameters linked to PK(X), namely degPK(X)
which is the dimension of K, and the size of its coefficients. In our experiments, we fixed the parameters
of the problem linked to f(T ) ∈ K[T ]. More precisely we considered f(T ) such that:

• deg f(T ) = 50;
• f(T ) splits in K, i.e. |ZK(f)| = deg f(T );
• ∀x ∈ ZK(f), log2 ‖x‖∞ 6 10.

Then we considered PK(X) = p0 + p1X + · · · + pn−1X
n−1 + Xn ∈ Z[X] for increasing degrees n, and

several coefficient sizes s(PK) = log2 ‖PK‖∞. More precisely for sizes s(PK) ∈ {1, 10}, we picked poly-
nomials PK(X) such that ∀i ∈ J0, n − 1K, pi ∈ J−2s(PK), 2s(PK)K, and this for n increasing. The data
obtained are shown in Figures 5 and 18.

One can remark that the time efficiency of all three methods are widely influenced by the dimension
[K : Q]. It is easily explained by the fact that all three methods require the computation of a LLL-reduced
basis of a lattice with rank equal to [K : Q]. Moreover the volume of said lattice depends also on the



30 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

(a) s(PK) = 1 (b) s(PK) = 10

Figure 5. Average timings (s) of nfroots, AbsoluteRoots and AbsoluteRootsHeur plotted
against degPK(X) for randomly generated PK(X) such that r1 > 0, with s(PK) ∈
{1, 10}

dimension. Remark that as observed in Table 2, the difference between m1 and m2 widens when [K : Q]
increases.

The parameter s(PK), i.e. the coefficient size of the defining polynomial of K, also influences the
performances of all three algorithms. Our heuristic method seems to be slightly less impacted by this
parameter.

One can see from Figure 5 and Figure 18 that AbsoluteRoots is less efficient than nfroots, at least for
the fixed shape of f(T ). The heuristic method AbsoluteRootsHeur – using heuristic norm evaluation and
formula to compute the precision – is way more efficient than the certified version. It is also more efficient
than nfroots on average, and compete with its best running times in a number of cases. Our method
seems to be more influenced by the dimension of K than the algorithm of Pari/Gp, at least when the
latter runs at its best.

6.2.2. Size of the roots. We now study how the size of the elements of ZK(f) impacts the performance
of the different algorithms. To this end we fixed the parameters linked to PK(X) and f(T ):

• deg f(T ) = 50;
• f(T ) splits in K, i.e. |ZK(f)| = deg f(T );
• s(PK) = 1;
• degPK(X) ∈ {25, 50}.

We did experiments for increasing size of roots. Let us denote by sZ this size, i.e. ∀x ∈ ZK(f), log2|xi| ∈
J0, sZK. The results can be found in Figure 19.

One can see that our algorithm is more influenced by sZ than nfroot. This is certainly due to the fact
that the lattices reduced for decoding during the algorithm described in [3] are ideals, and more precisely
prime powers ideals. These are usually easier to reduce, especially if one can use a pre-reduction such as
mentioned by Belabas, or the documentation of Pari/Gp [31]. Remark that the difference of running
time for nfroots between bad and good fields seems constant here.

6.2.3. Partial conclusion. From the different situations explored and the data gathered, we can conclude
that the certified version of our method AbsoluteRoots is in general less efficient than the algebraic method
implemented in Pari/Gp. However, their running time are similar in average in some situations (see



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 31

(a) [K : Q] = 25 (b) [K : Q] = 50

Figure 6. Average timings (s) of nfroots, AbsoluteRoots and AbsoluteRootsHeur plotted
against sZ for randomly generated PK(X) such that [K : Q] = 25 and [K : Q] = 50,
with r1 > 0

for instance Figure 5). The heuristic version AbsoluteRootsHeur (Alg. 11) offers a clear advantage and is
more efficient than nfroot, still in average. When restricted to the “good” fields for nfroot, our heuristic
version is still competitive for relatively small roots (crossing point at sZ ∼ 75 for [K : Q] = 50).

Regarding the impact of the different parameters, our method behaves less nicely with respect to the
dimension and the size of the roots. This is certainly due to the nature of the lattices to be reduced in the
two different methods. The algebraic method takes fully advantage of the nature of the lattice, which is a
power of a prime ideal, thus mitigating the influence of the size of the vectors and the dimension. In the
best cases, it uses a pre-reduction algorithm which hasten considerably the subsequent LLL reduction [3].

6.3. Relative extensions. Let us now consider relative extensions L/K, and study the efficiency of
Algorithm 13. First we look into the impact of our heuristic strategies. Then we compare this method
to Algorithm 11. Finally, we study both algorithms together with nfroots over cyclotomic fields and
Kummer extensions.

Let us fix the notations. We will consider L/K together with PK(X) ∈ Q[X] and PL(Y ) ∈ K[Y ] such
that K ∼= Q[X]

(PK(X)) and L ∼= K[Y ]
(PL(Y )) .

6.3.1. Impact of the heuristic strategies. We considered several versions of the relative method : the
certified one as Algorithm 8, the heuristic one as Algorithm 13, and two intermediate versions, where
either the precision or the search is heuristic. We studied the impact of (a) the degree of the equation f(T ),
and (b) the size sZ of the roots. We considered extensions L/K such that [K : Q] = 30, [L : K] = 3,
s(PK), s(PL) 6 1, and f(T ) splits in K. Additionnally, we fixed sZ = 10 when studying deg f(T )
and deg f(T ) = 25 when studying the other parameter. We focused on small parameters for these
experiments, as we wished to illustrate the impact of the heuristic modifications that we described. The
timings obtained can be found in Figure 7.

One can remark that both heuristic observations speed-up the computations, especially when the
degree of f is increasing, as shown in Figure 7a. This leads to a speed-ub up to a factor 100 for the
full heuristic implementation compared to the “naive” one. Moreover from both experiments, one can



32 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

(a) deg f varying (b) sZ varying

Figure 7. Timings (s) of certified and heuristic versions of RelativeRoots plotted against
deg f(T ) (resp. sZ) for randomly generated PK(X), PL(Y )

conclude that the impact of the heuristic search (using Algorithm 12) is more important than the one of
the heurictic precision – at least for the small range of parameters considered.

6.3.2. Generic number fields. In this section, we study the performances of our most efficient procedures,
i.e. the heuristic algorithms AbsoluteRootsHeur and RelativeRoots, over “generic” number fields. Here, the
term “generic” refers to fields whose defining polynomials have coefficients uniformly drawn in segments
of the form J−2s, 2sK. For practicability reasons, our experiments mainly deal with s = 1.

Number of roots. We first study the influence of the number of roots, as it impacts the running time of
RelativeRootsHeur. We considered extensions L/K such that [L : Q] = 90 and [L : K] ∈ {2, 3} with:

• s(PK), s(PL) 6 1;
• deg f(T ) = 50;
• ∀x ∈ ZK(f), s(x) 6 10.

(a) [L : K] = 2 (b) [L : K] = 3

Figure 8. Average timings (s) of AbsoluteRoots and RelativeRoots plotted against qf for
randomly generated PK(X), PL(X) and f(T ), such that [L : Q] = 90 and deg f(T ) = 50.



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 33

The influence of the number of roots can be seen in Figure 8. The timings of the method AbsoluteRoots
increase with the number of roots, while the ones for the relative algorithm RelativeRoots globally decrease,
which is expected, see Appendix A. Indeed, with qf increasing, roots are retrieved earlier and the search
space is updated more quickly. One can remark on these first comparisons, that Algorithm 13 can be
between 5 and 30 times faster than Algorithm 11. Moreover, as expected, Algorithm 13 is slower when
[L : K] is increasing. All these observations will be verified in other experiments.

Degree of the extension. Let us now consider the influence of the degree [L : K] of the extension consid-
ered. We already know that the running time of RelativeRoots depends exponentially on this parameter.
We illustrate its impact on practical computations.

(a) [K : Q] = 15 (b) [K : Q] = 25

Figure 9. Average timings (s) of AbsoluteRoots and RelativeRoots plotted against [L :
K] for randomly generated PK(X), PL(Y ) and f(T ), such that [K : Q] ∈ {15, 25} and
deg f(T ) = 50.

As expected, the running time of Algorithm 13 is deeply impacted by an increase in the relative degree
[L : K]. However, when compared to Algorithm 11, one can observe that this drawback is mitigated
when considering increasing degrees [K : Q]. This shows that for a constant [L : K] using our relative
method should asymptotically outperform the absolute methods AbsoluteRootsHeur.

6.3.3. Cyclotomic fields. In this section we study the performances of AbsoluteRootsHeur, RelativeRoot-
sHeur and nfroots over cyclotomic fields. We will write Km the cyclotomic field Q(ζm) with conductor
m. We study these fields because they are widely used in applied mathematics such as cryptography¿
Moreover, since their generic defining polynomials have small norms, nfroots is particularly efficient.

Additionally our relative method always apply be used over these fields. Indeed, Km always has a
totally real subfield K+

m such that [Km : K+
m] = 2. Moreover, since K+

m = Kτ
m where τ is the complex

conjugation, the search space has deg f elements. We use this structure only in our first experiments.
Results are gathered in Figure 10.

If we compare the timings obtained to previous data such as presented in Figure 5 or Figure 18, both
AbsoluteRootsHeur and nfroots seem more efficient than over randomly generated number fields. It is
particularly the case of the latter.

The Pari/Gp nfroots is more efficient than our absolute method AbsoluteRootsHeur over all fields. Our
relative method seems to compete with the implementation of Pari/Gp [31] with the set of parameters



34 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

(a) Good fields (b) Bad field

Figure 10. Average timings (s) of AbsoluteRootsHeur, RelativeRoots and nfroots plotted
against [Km : Q] for cyclotomic fields of conductor m such that 10 6 m 6 500 and
[Km : Q] < 150, for sZ = 50.

fixed in the experiments over “bad” fields, see Figure 10b. It is again more influenced by the dimension
than nfroots (in its best behaviour). Additionally since we know from Section 6.2 that the methods using
complex embeddings have a worse behaviour with respect to the size of the roots, it seems that using
only K+

m is not enough to beat the implementation of Pari/Gp over cyclotomic fields.
Note however that most of these fields do have other subfields, which can be themselves cyclotomic

fields. For example, if m = pr with p a prime integer, then writing m′ = pr
′ such that r′ < r we have

that Km′ is a subfield of Km such that [Km : Km′ ] = pr−r
′ . Using the extension Km/Km′ would lead to

a search space with dp
r−r′ elements. We ran some experiments over such extensions for p ∈ {2, 3}, data

are gathered in Table 5. Again we chose sZ = 50 and deg f(T ) = 50 (resp. deg f(T ) = 55) for p = 2
(resp. p = 3). We retrieve similar timings and asymptotically, the choices p = 2, r = 2 and p = 3, r = 1
should outperform nfroots. Remark that as expected AbsoluteRoots is the least efficient algorithm.

6.3.4. Kummer extensions. Let us now focus on real Kummer extensions, meaning such that L =
Q( p
√
m1, . . . , p

√
mr), where p > 2 is a prime integer and (m1, . . . ,mr) ∈ Qr such that [K : Q] = pr.

Fix K = Q( p
√
m1, . . . , p

√
mr−1). Then L/K is an extension over which one can take full advantage of

RelativeRoots. Indeed K can be embedded in R, so that HomK(L,C) has one real embedding and p− 1
complex ones. This gives a search space with deg f(T )(p−1)/2 elements. We will compare AbsoluteRoots,
RelativeRoots and nfroots of Pari/Gp [31]. We study these fields because real Kummer extensions are all
“bad” fields for the p-adic method. Recall that is mentioned by [3] that ideal lattices are usually easy to
reduce – especially when one can use a pre-reduction algorithm – which occurs when the inertial degree
of said ideal is large. Moreover we saw in Section 6.1 that nfroots behaved badly when the search for an
inert prime was unfruitful. It turns out that over real Kummer fields of the form Q( p

√
m1, . . . , p

√
mr), the

inertial degree cannot be larger than the exponent p (see for instance [24]).
The first situation that we will explore will be the same as before, i.e. f(T ) is split. It will show how

computations can be accelerated in good situations, and the difference between good and bad fields for
nfroots. Then we will study the special case where f(T ) has degree p. It is the direct generalisation of
f(T ) = T p−αp with α ∈ L, which is the type of equation that are to be solved in several tasks involving



POLYNOMIAL ROOTS IN NUMBER FIELDS THROUGH COMPLEX EMBEDDINGS 35

Table 5. Running time of nfroots, AbsoluteRoots and AbsoluteRoots over cyclotomic
fields of conductor m = pr with p a prime integer.

(a) p = 2

r 5 6 7 8
nfroots 0.4 2.4 11.6 30.3

AbsoluteRoots 0.7 1.4 13.0 436.8
RelativeRoots, [L : K] = 2 1.4 2.0 3.8 27.9
RelativeRoots, [L : K] = 4 19.6 22.4 29.2 38.0

(b) p = 3

r 3 4 5
nfroots 0.5 2.8 29.7

AbsoluteRoots 0.9 6.8 1334.0
RelativeRoots, [L : K] = 3 3.9 7.1 33.1

(S-)units or class group [8, 17, 35]. In particular, this task arose in several practical works these past few
years [2, 25, 9, 7, 10].

Split equation. We considered split polynomials f(T ) of degree 50 for increasing size of roots sZ , over
Kummer fields of the form L = Q( p

√
m1, . . . , p

√
mr) with p ∈ {2, 5}. Moreover [L : Q] = 128 if p = 2,

[L : Q] = 125 if p = 5, and each mi is a prime number smaller than 40. The results are shown in Figure 11.

(a) p = 2 and [L : Q] = 128 (b) p = 5 and [L : Q] = 125

Figure 11. Average timings (s) of AbsoluteRootsHeur, RelativeRoots and nfroots plotted
against sZ for Kummer fields of exponent p ∈ {2, 5}.

One can observe that both Algorithm 11 and Algorithm 13 outperform nfroots. Our relative method
is particularly efficient, and is up to 100 times faster. This contrasts with cyclotomic fields. Indeed,
compare timings reported in Figure 10 and Figure 11a for which the degree of the relative extension is 2.

Small degree equations. As mentioned we consider here polynomials f(T ) with small degrees, namely
deg f(T ) = p over real Kummer fields Q( p

√
m1, . . . , p

√
mr) of exponent p. For such degrees, the search



36 A. LESAVOUREY, T. PLANTARD, AND W. SUSILO

space of Algorithm 13 is small enough to take full advantage of this method. Indeed, since the complex
embeddings in HomK(L,C) are all conjugates (except one real embedding), the cardinality of the search
space is p

p+1
2 .

Remark 6.3 (nfroots). In this configuration, nfroots does not follow the method described before. Indeed,
when 3 deg f(T ) < [L : Q], the implementation of Pari/Gp uses Trager’s method [42, 3] for factorising
polynomials. We will therefore refer to it as Trager, to differentiate it from the p-adic method.

We considered Kummer fields of exponent p in {2, 3, 5, 11} and the different objects are drawn such
that:

• each mi is a prime number smaller than 40;
• deg f(T ) = p and |ZK(f)| = 1.

The data gathered can be found in Figure 12.

(a) p = 2 and [L : Q] = 128 (b) p = 5 and [L : Q] = 125

(c) p = 3 and [L : Q] = 243 (d) p = 11 and [L : Q] = 121

Figure 12. Average timings (s) of AbsoluteRoots and RelativeRoots and Trager plotted
against sZ for randomly generated Kummer fields L/K with exponent p ∈ {2, 3, 5, 11}
and deg f(T ) = p.

In most cases our relative method is way more efficient than the two others. It can go up to 500 times
faster for p = 3 for example. The method Trager implemented in Pari/Gp is always worse than both
our algorithms when the roots are small, but it is stable when the size is increasing and it outperforms



REFERENCES 37

Algorithm 11 for large roots and p ∈ {2, 3, 5}. Note however that a basis lattice Ll can be reduced once
and used to solve different equations. Thus, a batch strategy is possible with AbsoluteRootsHeur, which
is not the case with Trager.

If one compares the data gathered in Figures 12a and 12b for p = 2 and p = 5 respectively – for
which the degrees [L : Q] and the size of the search space are similar – one can see that the timings for
RelativeRootsHeur are around 10 times lower for p = 5. This is due to the fact that the dimension of the
subfield K over which decodings are made is smaller in this case. These observations are confirmed with
the timings gathered in Figure 12c.

Finally, one can remark in Figure 12d that the size of the search space is important, as the difference
between RelativeRootsHeur and AbsoluteRootsHeur is less important for p = 11. However in this case as
for the others, it seems that the size of the roots is less of a problem for the relative method than for
AbsoluteRootsHeur.

6.3.5. Small dimensions, small degree and large roots. We consider a final situation to showcase the
performances of the algorithms studied here, namely when f(T ) has large roots and deg f(T ) is small as
well as [K : Q]. This situation is encountered in its extreme in the Number Field Sieve with deg f(T ) = 2
and [K : Q] usually smaller than 10. In our experiments, we considered deg f(T ) = 10 and [K : Q] ∈
{12, 30}. Data are gathered in Figure 13.

As already observed, Pari/Gp nfroots is asymtotically more efficient than the absolute method Ab-
soluteRoots. However RelativeRoots offers again a certain advantage compared to nfroots, especially for
larger dimensions, here [L : Q] = 30. Note that Magma function Roots becomes quickly the least efficent
method by a large factor.

References

[1] L. Babai. “On Lovasz lattice reduction and the nearest lattice point problem”. In: Combinatorica
6 (Mar. 1986), pp. 1–13. doi: 10.1007/BF02579403.

[2] J. Bauch et al. “Short Generators Without Quantum Computers: The Case of Multiquadratics”.
In: Advances in Cryptology – EUROCRYPT 2017. Ed. by J.-S. Coron and J. B. Nielsen. Cham:
Springer International Publishing, 2017, pp. 27–59. isbn: 978-3-319-56620-7.

[3] K. Belabas. “A relative van Hoeij algorithm over number fields”. In: J. Symb. Comput. 37 (May
2004), pp. 641–668. doi: 10.1016/j.jsc.2003.09.003.

[4] K. Belabas. “Topics in computational algebraic number theory”. en. In: Journal de théorie des
nombres de Bordeaux 16.1 (2004), pp. 19–63. doi: 10.5802/jtnb.433.

[5] K. Belabas et al. “Factoring polynomials over global fields”. en. In: Journal de Théorie des Nombres
de Bordeaux 21.1 (2009), pp. 15–39. doi: 10.5802/jtnb.655.

[6] O. Bernard and A. Roux-Langlois. “Twisted-PHS: Using the Product Formula to Solve Approx-
SVP in Ideal Lattices”. In: Advances in Cryptology – ASIACRYPT 2020. Ed. by S. Moriai and H.
Wang. Cham: Springer International Publishing, 2020, pp. 349–380. isbn: 978-3-030-64834-3.

[7] O. Bernard et al. Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-
SVP. Cryptology ePrint Archive, Report 2021/1384. https://ia.cr/2021/1384. 2021.

[8] J.-F. Biasse and C. Fieker. “Improved techniques for computing the ideal class group and a system
of fundamental units in number fields.” In: Algorithmic Number Theory, 10th International Sym-
posium, ANTS-IX, San Diego CA, USA, July 9-13, 2012. Proceedings. Vol. 1. Open Book Series.
Mathematical Science Publishers, 2012, pp. 113–133.

https://doi.org/10.1007/BF02579403
https://doi.org/10.1016/j.jsc.2003.09.003
https://doi.org/10.5802/jtnb.433
https://doi.org/10.5802/jtnb.655
https://ia.cr/2021/1384


38 REFERENCES

(a) [L : K] = 2 and [K : Q] = 6 (b) [L : K] = 2 and [K : Q] = 15

(c) [L : K] = 3 and [K : Q] = 4 (d) [L : K] = 3 and [K : Q] = 10

Figure 13. Average timings (s) of AbsoluteRoots and RelativeRoots, nfroots and Magma
Roots plotted against sZ for randomly extensions L/K with [L : Q] ∈ {12, 30} and
deg f(T ) = 10.

[9] J.-F. Biasse and C. Vredendaal. “Fast multiquadratic S-unit computation and application to the
calculation of class groups”. In: The Open Book Series 2 (Jan. 2019), pp. 103–118. doi: 10.2140/
obs.2019.2.103.

[10] J.-F. Biasse et al. “Norm relations and computational problems in number fields”. In: Journal of
the London Mathematical Society 105.4 (2022), pp. 2373–2414. doi: https://doi.org/10.1112/
jlms.12563.

[11] W. Bosma, J. Cannon, and C. Playoust. “The Magma algebra system. I. The user language”. In:
J. Symbolic Comput. 24.3-4 (1997). Computational algebra and number theory (London, 1993),
pp. 235–265. issn: 0747-7171. doi: 10.1006/jsco.1996.0125.

[12] H. Cohen. Advanced Topics in Computational Number Theory. Graduate Texts in Mathematics.
Springer New York, 2012. isbn: 9781441984890.

[13] H. Cohen. A Course in Computational Algebraic Number Theory. Berlin, Heidelberg: Springer-
Verlag, 1993. isbn: 0-387-55640-0.

[14] J. Conway and N. Sloane. Sphere Packings, Lattices and Groups. Vol. 290. Jan. 1988. isbn: 978-1-
4757-2018-1. doi: 10.1007/978-1-4757-2016-7.

https://doi.org/10.2140/obs.2019.2.103
https://doi.org/10.2140/obs.2019.2.103
https://doi.org/https://doi.org/10.1112/jlms.12563
https://doi.org/https://doi.org/10.1112/jlms.12563
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1007/978-1-4757-2016-7


REFERENCES 39

[15] R. Cramer, L. Ducas, and B. Wesolowski. “Short Stickelberger Class Relations and Application to
Ideal-SVP”. In: EUROCRYPT. 2017.

[16] R. Cramer et al. “Recovering Short Generators of Principal Ideals in Cyclotomic Rings”. In: Ad-
vances in Cryptology – EUROCRYPT 2016. Ed. by M. Fischlin and J.-S. Coron. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 559–585. isbn: 978-3-662-49896-5.

[17] C. Fieker and C. Friedrichs. “On Reconstruction of Algebraic Numbers”. In: Algorithmic Number
Theory. Ed. by W. Bosma. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 285–296. isbn:
978-3-540-44994-2.

[18] J. N. Franklin. Matrix theory. Courier Corporation, 2012.
[19] C. Hermite. “Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie

des nombres.” In: Journal für die reine und angewandte Mathematik (Crelles Journal) 1850 (),
pp. 261–278.

[20] N. L. Johnson, A. W. Kemp, and S. Kotz. Univariate discrete distributions. Vol. 444. John Wiley
& Sons, 2005.

[21] P. Kirchner, T. Espitau, and P.-A. Fouque. “Towards Faster Polynomial-Time Lattice Reduction”.
In: Advances in Cryptology – CRYPTO 2021. Ed. by T. Malkin and C. Peikert. Cham: Springer
International Publishing, 2021, pp. 760–790. isbn: 978-3-030-84245-1.

[22] A. K. Lenstra et al. “The number field sieve”. In: The development of the number field sieve. Ed. by
A. K. Lenstra and H. W. Lenstra. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 11–42.
isbn: 978-3-540-47892-8.

[23] A. Lenstra, H. Lenstra, and L. Lovász. “Factoring Polynomials with Rational Coefficients”. In:
Mathematische Annalen 261 (Dec. 1982). doi: 10.1007/BF01457454.

[24] A. Lesavourey. “A note on the discriminant and prime ramification of some real Kummer exten-
sions”. working paper or preprint. Nov. 2021.

[25] A. Lesavourey, T. Plantard, and W. Susilo. “Short Principal Ideal Problem in multicubic fields”.
In: Journal of Mathematical Cryptology 14.1 (2020), pp. 359–392. doi: https://doi.org/10.
1515/jmc-2019-0028.

[26] K. Mahler. “An inequality for the discriminant of a polynomial.” In: Michigan Mathematical Journal
11.3 (1964), pp. 257–262.

[27] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems. USA: Kluwer Academic Publish-
ers, 2002. isbn: 0792376889.

[28] J. Neukirch. “Algebraic Number Theory”. In: 1999.
[29] P. Q. Nguên and D. Stehlé. “Floating-Point LLL Revisited”. In: Advances in Cryptology – EURO-

CRYPT 2005. Ed. by R. Cramer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 215–233.
isbn: 978-3-540-32055-5.

[30] P. Q. Nguyen and D. Stehlé. “An LLL Algorithm with Quadratic Complexity”. In: SIAM J. Comput.
39 (2009), pp. 874–903.

[31] PARI/GP version 2.11.2. available from http://pari.math.u-bordeaux.fr/. Univ. Bordeaux:
The PARI Group, 2019.

[32] A. Pellet-Mary, G. Hanrot, and D. Stehlé. “Approx-SVP in Ideal Lattices with Pre-processing”.
In: Advances in Cryptology – EUROCRYPT 2019. Ed. by Y. Ishai and V. Rijmen. Cham: Springer
International Publishing, 2019, pp. 685–716. isbn: 978-3-030-17656-3.

https://doi.org/10.1007/BF01457454
https://doi.org/https://doi.org/10.1515/jmc-2019-0028
https://doi.org/https://doi.org/10.1515/jmc-2019-0028
http://pari.math.u-bordeaux.fr/


40 REFERENCES

[33] A. Pellet-Mary and D. Stehlé. “On the Hardness of the NTRU Problem”. In: Advances in Cryptology
– ASIACRYPT 2021. Ed. by M. Tibouchi and H. Wang. Cham: Springer International Publishing,
2021, pp. 3–35. isbn: 978-3-030-92062-3.

[34] T. Plantard, W. Susilo, and Z. Zhang. “LLL for ideal lattices: re-evaluation of the security of
Gentry–Halevi’s FHE scheme”. In: Designs, Codes and Cryptography 76 (Mar. 2014). doi: 10.
1007/s10623-014-9957-1.

[35] M. Pohst and H. Zassenhaus. Algorithmic Algebraic Number Theory. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1989. doi: 10.1017/CBO9780511661952.

[36] M. E. Pohst. “Factoring polynomials over global fields I”. In: Journal of Symbolic Computation 39.6
(2005), pp. 617–630. issn: 0747-7171. doi: https://doi.org/10.1016/j.jsc.2004.09.006.

[37] X.-F. Roblot. “Polynomial factorization algorithms over number fields”. In: Journal of Symbolic
Computation 38.5 (2004), pp. 1429–1443. issn: 0747-7171. doi: https://doi.org/10.1016/j.
jsc.2004.05.002.

[38] P. Samuel. Algebraic theory of numbers. Hermann, 1970.
[39] D. Stehlé. “Floating-Point LLL: Theoretical and Practical Aspects”. In: The LLL Algorithm: Survey

and Applications. Ed. by P. Q. Nguyen and B. Vallée. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 179–213. isbn: 978-3-642-02295-1. doi: 10.1007/978-3-642-02295-1_5.

[40] The FPLLL development team. “Fplll, a lattice reduction library, Version: 5.4.1”. Available at
https://github.com/fplll/fplll. 2021.

[41] E. Thomé. “Square Root Algorithms for the Number Field Sieve”. In: WAIFI. 2012.
[42] B. M. Trager. “Algebraic Factoring and Rational Function Integration”. In: Proceedings of the Third

ACM Symposium on Symbolic and Algebraic Computation. SYMSAC ’76. Yorktown Heights, New
York, USA: Association for Computing Machinery, 1976, pp. 219–226. isbn: 9781450377904. doi:
10.1145/800205.806338.

Appendix A. Average cost of the search

Let us study the average cost of the search phase of Algorithm 8 or Algorithm 13. In particular we
will determine the average number of decodings that will occur before finding all roots. If one denotes
by σ1, . . . , σn the elements of HomK(L,C), then the two algorithms can be described as a search without
replacement in the set Z = Z1 × · · · × Zn where Zi = Zσi .

Remark A.1. A cartesian product S = S1×· · ·×Sn will be ordered using the lexicographic order. This
means that for all (x, y) ∈ S2, if i(x, y) = min{i ∈ J1, nK | xi 6= yi}, then we have x < y ⇐⇒ xi(x,y) <

yi(x,y).

From now on, let us consider the sets Zi as ordered sets of elements zi,j with zi,j < zi,j′ ⇐⇒ j < j′.
Moreover we consider that we run through Z following the lexicographic order. Assume that the state of
the computation is at the state with index j = (j1, . . . , jn) ∈ J1,deg f(X)Kn, and that we found a root
x. We can write x = (z1,j1 , . . . , zn,jn). Then the action of UpdateTree on Z is as follows. We mentioned
that it removes zi,ji

from Z for all i ∈ J1, nK. This amounts to removing zi,ji
from Z for all i ∈ J2, nK and

updating the index by doing j1 ← j1 + 1 and for all i > 1, ji ← 1.

Definition A.2. Let N,M,m be integers satisfying m 6 M 6 N . A random variable X taking non-
negative values follows a negative hypergeometric distribution with parameters (N, M, m) if it satisfies

https://doi.org/10.1007/s10623-014-9957-1
https://doi.org/10.1007/s10623-014-9957-1
https://doi.org/10.1017/CBO9780511661952
https://doi.org/https://doi.org/10.1016/j.jsc.2004.09.006
https://doi.org/https://doi.org/10.1016/j.jsc.2004.05.002
https://doi.org/https://doi.org/10.1016/j.jsc.2004.05.002
https://doi.org/10.1007/978-3-642-02295-1_5
https://github.com/fplll/fplll
https://doi.org/10.1145/800205.806338


REFERENCES 41

the following formula:

P(X = k) =
(
k+m−1

k

)(
N−m−k
M−m

)(
N
m

) .

We will write X ∼ NHG(N,M,m).

The negative hypergeometric distribution describes exactly what we want to study. Indeed, it arises
as follows. Consider a set of N elements, containing M “success elements” and N −m “fail elements”.
Then if one draws uniformly in the set without replacement until m successes are found, then the number
of failures drawn follows a negative hypergeometric distribution.

Proposition A.3 ([20]). Let N,M,m be integers, and X be a random variable such that X ∼ NHG(N,M,m).
Then one has:

E[X] = m
N −M
M + 1 and Var[X] = m

(N −M)(N + 1)
(M + 1)(M + 2)

(
1− m

M + 1

)
.

We are essentially interested in the average cost, so we focus on the expectation.

Proposition A.4. Let L/K be an extension of number fields such that [L : K] = n. Consider f(X) ∈
L[X] such that |ZK(f)| = s and write d = deg f(X). Then, assuming the search is näıve, the average
number of “failed” decodings done in Algorithm 8 before finding one root is dn+1

s+1 . The average number
of “failed” decodings before finding all the roots is sd

n+1
s+1 .

Proof. Let X1 be the random variable representing the number of failures before finding the first root,
and Xs be the random variable of the number of failures before finding all the roots. Clearly one has
X1 ∼ NGH(dn, s, 1) and Xs ∼ NGH(dn, s, 1), and can apply directly the formula of the expectation
from Proposition A.3 to find E[X1] and E[Xs]. �

The study is slightly more complex when using UpdateTree. One can remark that the number of
elements removed from the search space Z by UpdateTree depends on the index of the state. We will
therefore consider the random variables corresponding to the number of failures between two found
solutions.

Notation A.5. Let L/K be an extension of number fields such that [L : K] = n. Consider f(X) ∈ L[X]
such that |ZK(f)| = s. We will denote by x(1) < · · · < x(s) the elements of ZK(f) ordered in Z. For each
k ∈ J1, sK we will consider several random variables.

(1) X(k) is the random variable corresponding to the number of failures between the (k − 1)-th
solution and the k-th solution.

(2) X
(k)
1 is the random variable corresponding to the number of failures in the first coordinate between

the (k − 1)-th solution and the k-th solution.
(3) X

(k)
2 is the random variable corresponding to the number of failures occurred between the (k−1)-

th solution and the k-th solution such that j1 = x
(k)
1 .

(4) Y (k) is the random variable corresponding to the number of failures which occured before the
k-th solution is found.

Lemma A.6. Let L/K be an extension of number fields such that [L : K] = n. Consider f(X) ∈ L[X]
such that |ZK(f)| = s. Then one has the following:

∀k ∈ J1, sK, Y (k) =
k∑
j=1

(
X

(j)
1 (d− j + 1)n−1 +X

(j)
2

)
.



42 REFERENCES

Proof. Let us fix k ∈ J1, sK. Clearly one has Y (k) =
∑(k)
j=1X

(j). Now let us denote by Ck the integer
|Z2 × · · · × Zn| after the (k − 1)-th root and before the k-th root are found. Recall that after each
new solution is found, UpdateTree removes one element of each Zi, i > 1. Therefore, one obtains
Ck = (d− k + 1)n−1. Because the search is done following the lexicographic order, it is easy to see that
for each fixed j1 ∈ Jx(k−1)

1 + 1, x(k)
1 K there are two possibilities. If j1 < x

(k)
1 then the search will run

through all {z1,j1} × Z2 × · · · × Zn, which contains no solution. This leads to Ck failures. If j1 = x
(k)
1

then the search will run through {z1,j1} × Z2 × · · · × Zn until finding the solution. It amounts to X(k)
2

failures. Finally the number of j1 that are passed such that j1 < x
(k)
1 is X(k)

1 . �

Proposition A.7. Let L/K be an extension of number fields such that [L : K] = n. Consider f(X) ∈
L[X] such that |ZK(f)| = s. Write d = deg f(X). Then, for k ∈ J1, sK, the average number of “failed”
decodings done in Algorithm 8 before finding k roots is

(A.1) 2d− s+ 1
2(s+ 1)

k−1∑
j=0

(d− j)n−1 − k

2 .

Proof. Using Lemma A.6 and by linearity of the expectation, one has:

∀k ∈ J1, sK,E[Y (k)] =
k∑
j=1

(
E[X(j)

1 ](d− j + 1)n−1 + E[X(j)
2 ]
)
.

Let fix j ∈ J1, kK. Recall that X(j)
2 is the number of failures found during the search through the

set {x(j)
1 } × Z2 × · · · × Zn. We know there is exactly one solution in this set. Therefore we have

X
(j)
2 ∼ NHG((d− j + 1)n−1, 1, 1) and

E[X(j)
2 ] = (d− j + 1)n−1 − 1

2 .

Now let us determine X(j)
1 . It is the number of wrong first coordinates visited until finding x(j)

1 , and after
finding x(j−1)

1 . The search is done over the set Z1 minus the elements visited before x(j−1)
1 included. It

is a set with cardinal number

|Z1| −
(j−1)∑
i=1

X
(i)
1 − (j − 1) = d− j + 1−

(j−1)∑
i=1

X
(i)
1

which contains s − (j − 1) success elements. Therefore we have E[X(j)
1 |

∑(j−1)
i=1 X

(i)
1 = a] ∼ NHG(d −

j + 1− a, s− (j − 1), 1), for all possible a. Using the law of total expectation E[X] = E[E[X|Y ]] between
two variables X and Y , it is easy to see that we have

E[X(j)
1 ] =

(d− j + 1)−
∑(j−1)
i=1 E[X(i)

1 ]− (s− j + 1)
s− j + 2 =

(d− s)−
∑(j−1)
i=1 E[X(i)

1 ]
s− j + 2 .

It is possible to use this recurrence relation to obtain an expression of E[X(j)
1 ] in closed-form. As a matter

of fact, we will prove that E[X(j+1)
1 ] = E[X(j)

1 ]. Indeed one has

E[X(j+1)
1 ] =

(d− s)−
∑(j)
i=1 E[X(i)

1 ]
s− j + 1 =

d− s− E[X(i)
1 ]−

∑(j−1)
i=1 E[X(i)

1 ]
s− j + 1 ,

and since

(s− j + 2)E[X(j)
1 ] = (d− s)−

(j−1)∑
i=1

E[X(i)
1 ]



REFERENCES 43

we obtain

E[X(j+1)
1 ] = d− s− E[X(i)

1 ] + (s− j + 2)E[X(j)
1 ]− (d− s)

s− j + 1 = E[X(j)
1 ].

Then remark that X(1)
1 ∼ NHG(d, s, 1), which gives the desired result. �

Remark A.8. One can see that the gain of using UpdateTree increases with s. Indeed if f(X) has only
one root, then the expected number of decodings is the same for both methods. However, if s = deg f(X)
then the expected number of decodings with the naive search is dd(dn−1−1)

d+1 , whereas it is
∑d−1
i=0

(d−i)n−1−1
2

when using UpdateTree.

Let us analyse more precisely the difference between the two procedures.

Notation A.9. Let L/K be an extension of number fields such that [L : K] = n. Consider f(X) ∈ L[X]
such that |ZK(f)| = s. For each k ∈ J1, sK we will consider several random variables, all related to a
näıve search.

(1) X
(k)
naive is the random variable corresponding to the number of failures between the (k − 1)-th

solution and the k-th solution.
(2) Y

(k)
naive is the random variable corresponding to the number of failures which occured before the
k-th solution is found.

Finally we will denote by S(k)
X the difference X(k)

naive −X(k) and by S(k)
Y the difference Y (k)

naive − Y (k).

Proposition A.10. Let L/K be an extension of number fields such that [L : K] = n. Consider f(X) ∈
L[X] such that |ZK(f)| = s. Write d = deg f(X). Then, for k ∈ J1, sK we have E[X(k)

naive] > E[X(k)],
E[Y (k)

naive] > E[Y (k)] and the following is true:

(A.2) S
(k)
Y = k

(s− 1)(dn−1 − 1)
2(s+ 1) + 2d− s+ 1

s+ 1

k−1∑
i=0

(dn−1 − (d− i)n−1).

Proof. First, for all k ∈ J1, sK we will denote by ck the integer d − k + 1. Then, from the proofs of
Lemma A.6 and Proposition A.7 we get

E[X(k)] = d− s
s+ 1 c

n−1
k +

cn−1
k − 1

2 =
2dcn−1

k − (s− 1)cn−1
k − s− 1

2(s+ 1) .

Moreover E[X(k)
naive] = dn−s

s+1 . Therefore we obtain

S
(k)
X =

2dn − 2s− 2dcn−1
k + (s− 1)cn−1

k + s+ 1
2(s+ 1)

=
2d(dn−1 − cn−1

k ) + (s− 1)(cn−1
k − 1)

2(s+ 1) ,

which is positive. Now let us determine how this difference evolves with k. Clearly ck decreases when
k increases, therefore so does E[X(k)]. Since E[X(k)

naive] is constant, we can conclude that S(k)
X increases

with k. Let us express S(k)
Y . Given any sequence (un)n let us denote un+1−un by ∆(u, n). Remark that

S
(k)
Y =

∑k
i=1 S

(i)
X and S

(k)
X = S

(1)
X +

∑k−1
i=1 S

(i+1)
X − S(i)

X = S
(1)
X +

∑k−1
i=1 ∆(SX , i). Moreover one has

∆(SX , i) = E[X(i+1)]− E[X(i)] =
(2d− s+ 1)(−cn−1

i+1 + cn−1
i )

2(s+ 1)



44 REFERENCES

which leads to

S
(k)
X = S

(1)
X + 2d− s+ 1

s+ 1

k−1∑
i=1

∆((−cn−1
k )k, i)

= (s− 1)(dn−1 − 1)
2(s+ 1) + 2d− s+ 1

s+ 1 (dn−1 − cn−1
k ).

Finally we can write

S
(k)
Y =

k∑
i=1

(s− 1)(dn−1 − 1)
2(s+ 1) + 2d− s+ 1

s+ 1 (dn−1 − cn−1
i )

= k
(s− 1)(dn−1 − 1)

2(s+ 1) + 2d− s+ 1
s+ 1

k−1∑
i=0

(dn−1 − (d− i)n−1).

�

Appendix B. Extra data

B.1. Different versions of LLL. In this section we present the timings obtained when comparing the
efficiency of LLL with our method SpecLLL (Alg. 9), which correspond to the ratio presented in Figures 2
and 3. One can find said timings in Figures 14 and 15.

(a) Pari/Gp (b) Magma (c) Fplll

Figure 14. Timings (s) for σ(K) ⊂ R plotted against the precision

As mentioned previously, Fplll is faster than Magma or Pari/Gp. One can remark that the latter
is around 5 times slower than Fplll asymptotically. This gives an idea of the timings that could be
obtained for all our experiments by switching from the implementation of Pari/Gp to Fplll.

Precision 1000 2000 4000 6000 10000 20000

n = 50
LLL 2.5 5.1 10.7 16.8 29.8 69.4

SpecLLL 2.6 5.2 10.8 16.8 29.8 69.3

n = 150
LLL 74.5 166.0 371.2 639.3 1132.0 2843.6

SpecLLL 76.1 167.6 367.7 634.9 1118.1 2841.0

Table 6. Timings (s) over random knapsack-like matrices



REFERENCES 45

(a) Pari/Gp (b) Magma (c) Fplll

Figure 15. Timings (s) for σ(K) 6⊂ R plotted against the precision

B.2. Precision evaluation. In Figure 16 , we plotted the ratio of max qt by 1 + ln(n) ln ln(n)/(s ln(2) +
ln(n)/2).

(a) s(P ) = 1 (b) s(P ) = 5

Figure 16. Maximum ratios of qt by 1 + lnn ln ln(n)/(s ln 2 + ln(n)/2) plotted against
n = [K : Q], for several s.

Note that we did similar experiments using an integral basis of OK instead of the equation basis
(1, X, . . . ,Xn−1) and obtained similar results, which can be found in Figure 17. We were to smaller
degrees because of the cost of computing such basis.



46 REFERENCES

Figure 17. Maximum ratios of qt by 1 + lnn ln ln(n)/(s ln 2 + ln(n)/2) plotted against
n = [K : Q] for several s, where B is an integral basis of OK

One can see that ratio of qt by 1 + lnn ln ln(n)/(s ln 2 + ln(n)/2) is larger than 1 only for very small
dimensions, which also happens for the equation basis. In practice, the additional precision that is
required does not impact significatively the running times the algorithms.

B.3. Absolute method. In this section we give data corresponding to experiments presented in Sec-
tion 6.2, in the case where r1 = 0, and consequently σ(K) ⊂ C \ R.

(a) s(PK) = 1 (b) s(PK) = 10

Figure 18. Average timings (s) of nfroots, AbsoluteRoots and AbsoluteRootsHeur plotted
against degPK(X) for randomly generated PK(X) such that r1 = 0, with s(PK) ∈
{1, 10}



REFERENCES 47

(a) [K : Q] = 24 (b) [K : Q] = 50

Figure 19. Average timings (s) of nfroots, AbsoluteRoots and AbsoluteRootsHeur plotted
against sZ for randomly generated PK(X) such that [K : Q] = 24 and [K : Q] = 50,
with r1 = 0


	1. Introduction
	Our work
	Future work
	Outline

	2. Recalls on number fields and lattices
	2.1. Number fields
	2.2. Euclidean lattices 
	Definition and first properties
	Algorithms for lattices

	3. Absolute method
	3.1. Recovering elements from complex embeddings
	3.2. Proven precision and correctness
	3.3. Heuristic precision and correctness
	3.4. Computing polynomial roots

	4. Relative method
	4.1. Decoding in a subfield
	4.2. An algorithm for polynomial roots
	4.3. Trade-off

	5. Improvements and heuristic observations
	5.1. Basis reduction in the case of power-bases
	5.2. Heuristic precision evaluation
	5.3. Solution testing through finite fields
	5.4. Early abort in decoding
	5.5. Heuristic algorithms

	6. Experimental results
	6.1. Instability of nfroots
	6.2. Absolute method
	6.3. Relative extensions

	References
	Appendix A. Average cost of the search
	Appendix B. Extra data
	B.1. Different versions of LLL
	B.2. Precision evaluation
	B.3. Absolute method


