N
N

N

HAL

open science

Estimating Drill String Friction with Model-Based and
Data-Driven Methods

Jean Auriol, Roman Shor, Silviu-Iulian Niculescu, Nasser Kazemi

» To cite this version:

Jean Auriol, Roman Shor, Silviu-Iulian Niculescu, Nasser Kazemi. Estimating Drill String Friction
with Model-Based and Data-Driven Methods. 2022 American Control Conference (ACC 2022), Jun

2022, Atlanta, United States. 10.23919/acc53348.2022.9867526 . hal-03608695

HAL Id: hal-03608695
https://hal.science/hal-03608695
Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03608695
https://hal.archives-ouvertes.fr

Estimating Drill String Friction with Model-Based and Data-Driven
Methods

Jean Auriol', Roman Shor?, Silviu-Tulian Niculescu! and Nasser Kazemi

Abstract— Estimation of the behavior of long dynamic sys-
tems with limited sensing remains an open question. In this
paper, we consider the rotational motion of a deep drilling
system and compare three algorithms to estimate the friction
factors along the drillstring and thus provide an estimate of
bottomhole rotational velocity. These friction terms characterize
the interaction between the drill pipe and the wellbore walls
(Coulomb source terms) within the curving wellbore. This in-
formation is essential to design the next generation of stick-slip
mitigation controllers, to develop real-time wellbore monitoring
tools, and to enable effective toolface control for directional
drilling. We propose two model-based algorithms (an adaptive
observer and a recursive dynamics framework) and a machine
learning-based algorithm to estimate friction parameters, all of
them presenting advantages and drawbacks. The performances
of the two model-based estimators are finally compared with
the data-driven neural network.

I. INTRODUCTION

Extraction of resources at depths great than a few hundred
meters in the earth’s subsurface - oil, gas, minerals, and
thermal energy - necessitates the drilling of long slender
boreholes from the surface to the subsurface target. The
diameters of these wells range from 10 to 50 cm, and lengths
can frequently exceed 10,000 m, leading to mechanical
systems with extreme aspect ratios. The drilling system is
comprised of a drill string comprised of multiple sections
of steel drill pipe and stiffer drill collars and is actuated
by a geared AC motor at surface controlled by a variable
frequency drive (VFD). Transfer of energy (rotational and
axial) often leads to complex dynamic behaviors, which
manifest themselves as drill string vibrations that have been
extensively studied; see [6], [17].

A particular vibration pattern that is prevalent is called
stick-slip, where self-excited torsional oscillations manifest
themselves in the drill string and are caused by friction along
the wellbore between the drill pipe and the wellbore wall and
by the bit-rock interaction. These stick-slip oscillations are
generally characterized by a series of stopping — “sticking”
— and releasing — “slipping” — events of the bit.

This phenomenon has been studied extensively and has
been explained through a non-linear, or velocity-weakening -
effect of bit-rock interaction [11], through distributed friction
between the drill pipe and the wellbore wall [1] or through a
combination of both [8], [17], [23]. This is of particular im-
portance in modern wellbores, which are rarely straight and
must follow pre-planned well plans, ranging from simpler
horizontal or deviated wells to complex three-dimensional
paths, thus increasing the effect of torque and drag through a
variation in normal forces between the drillpipe and borehole
wall.
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During directional drilling operations, limited and fre-
quently latent downhole measurements are available. Typical
tools contain a combination of accelerometers, gyroscopes
and one to three-axis magnetometers. These sensors are
sampled at frequencies between 1-100 Hertz at the downhole
tool but only averaged or windowed values are transmitted
to surface [13]. Due to severe limitations in bandwidth, these
measurements are transmitted to the surface infrequently
(once per minute to once per hour) and with a significant
latency (on the order of seconds). Although this is not a prob-
lem for human-in-the-loop operations, it becomes insufficient
for many automated solutions. Such delays and sampled
measurements imply significant performance degradation
when using feedback controllers that aim to compensate
stick-slip oscillations [3]. Real-time estimation of friction
parameters [14] enable feedforward [4] control as well as
a new generation of controllers based on the backstepping
methodology [15] and thereby allow better performance.

In the present work, we propose three strategies (two of
them being completely original) to estimate these Coulomb
friction factors. The two first algorithms are model-based
(adaptive observer and recursive dynamics framework), while
the last one is based on machine-learning. The model we
use for the two first approaches is adjusted from [1]: the bit
is off-bottom (we do not consider bit-rock interaction), and
Coulomb friction is included as a source term implemented
as an inclusion. This paper is structured as follows: it begins
with a brief derivation of the drill string model in section
II, followed by the description of three methods to estimate
friction: (i) Section III describes the adaptive observer; (ii)
Section IV presents the recursive dynamics framework, and
(iii) Section V describes the machine learning approach.
Finally, in Section VI the three approaches are compared
with data generated by the model described in Section II.
Some concluding remarks end the paper.

II. MODEL UNDER CONSIDERATION

In this section, we present the mathematical model de-
veloped in [1] to describe the torsional dynamics of the
drill string. The proposed model is relatively simple (which
makes it usable for control and estimation perspectives) and
realistic since it has been validated against field data. The
main assumptions we use are the following:

o The torsional motion of the drill string is the dominating
dynamic behavior. Uniform axial motion. We consider
that the bit is off-bottom, (no bit-rock interaction).

o The transition from static to dynamic Coulomb friction
is modeled as a jump, i.e., the Stribeck curve is assumed
negligible.

o The effects of along-string cuttings distribution on the
friction is assumed to be homogeneous.
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Fig. 1. Schematic indicating the distributed drill string of length L lying
in deviate borehole. Inset: Schematic illustrating the friction source term
S(w,x). The shaded region represents the angular velocities for which a
constant value of static torque is assumed and the red curve indicates the
dynamic torque as a function of angular velocity.

A. Torsional dynamics of the drill string

The distributed model we present here is adjusted from [1].
This kind of representation is popular in the literature [6],
[17]. We give a schematic representation of the drill string
in Fig. 1. Let us denote the angular velocity and torque as
w(t, x), 7(t,x), respectively, with (¢,2) € [0,00) x [0, L] (L
being the length of the drill string). We have

or(t,x) Ow(t,r)

o 1 70 M
Ow(t,r) Or(t,x)

Tp= 5o = Sl(t.), )

where, J is the polar moment of inertia, G the shear modulus
and p the drill string density. The source term S is given as

S(t,x) = —kipJw(t, x) — F(t, ), 3)

where the damping constant k; is the viscous shear stress and
where F is a differential inclusion that corresponds to the
Coulomb friction between the drill string and the borehole,
also known as the side force. We use the following inclusion
to implement the side force

f(tvx) = ro(x):ukFN(x)a
F(t,z) € £ro(x)pusFn(x),
F(t,x) = —ro(x)up Fn(z),

where ps is the static friction coefficient (i.e. the friction
between two or more solid objects that are not moving
relative to each other) and py, is the kinetic friction coefficient
(also known as dynamic friction or sliding friction, which
occurs when two objects are moving relative to each other
and rub together), w, is the threshold on the torsional velocity
where the Coulomb friction transits from static to dynamic.
The function Fy is the normal force acting between the
drill string and the borehole wall. The function F(w) €
+7,(x)pus Fn(z) denotes the inclusion where

F(t,z) = —% — kpJw(t, x)

€ [=ro(@)ps Fn (@), ro(x)ps Fn ()], (5)

and take the boundary values +p 4 Fy () if this relation does
not hold. The shape of the friction source term is illustrated
in Fig. 1. The method to calculate normal force, to account
for discontinuities of a multiple sectioned drill string and the
Riemann invariants may be found in [1].

w(t,:r) > We,
w(t, z)] <we, &)
w(t,z) < —we,

B. Boundary condition

We consider that the drilling device is actuated at the top-
drive by a motor torque: 7,,. To reach a given reference
velocity set-point wgp, we consider a standard PI control
law [7]:

Tm = kp(wsp — wo) + kz/ (wsp(§) —wo(§))dE,  (6)
0

where £, is a proportional gain and k; an integral gain. We
denote Jrp the top drive inertia and wy verifies the following
equation

o = Job (Tm - T(t,O)). 7
Finally, since the bit is off-bottom, we have 7(¢, L) = 0.

C. Estimation problem

As detailed in the introduction, the design of the next
generation of stick-slip mitigation controllers requires reli-
able estimations of the friction parameters. In the rest of the
paper, we present three methods to estimate all (or part) of
the friction parameters. We emphasize their advantages and
their drawbacks. Data measurements correspond to the top-
drive torque and velocity.

III. FIRST APPROACH: ADAPTIVE OBSERVER

The first approach we propose is adjusted from the adap-
tive state-observer proposed in [2] (which can be adjusted to
handle the case of a multi-sectional drill string [22]). This
observer combines measurements from physical sensors (in
particular top-drive angular velocity wy) with the proposed
model of the system dynamics. It provides reliable estimates
of the torque and RPM states and of the side forces friction
parameters when the bit is off bottom [2]. We recall here
the main ideas of this observer. Let us denote with the *
superscript the estimated states and e = @y — wp the
measured estimation error of the top-drive angular velocity.
The observer equations are given in [2] in terms of Riemann
invariant (v, 3;) (the index ¢ corresponds to the considered
section of the drill-string). The Riemann invariants are the
states corresponding to a transformation of the system which
has a diagonalized transport matrix. We define them as
a; = w;+ ﬁn and §3; = w; — %mﬁ The observer
equations read as follows

Wo = ag (Bp(t70) - @0) + Tm — Po€, ¥
04! 04!
a—f(t,x) + (Ct)i@
2 12) — ()

1
Irp
(t,z) = S'(t,x) — ph(x)e, (9

(t,z) = S'(t,z) — py(z)e,  (10)

The source term in each section is computed from the
estimated states and friction factors:
1

—_Fi(t,z), (11
i (t,z), (11)

Si(t,l‘) = kt(é‘i(ta J)) + ﬂAZ(t,JZ)) + Ji

where F has an expression identical to (4), the different
variables being replaced by their estimates. The different
boundary conditions now express as

a(t,0) = 2w (t) — B(t,0) — Poe,
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and the estimates of the friction factor are updated according

to
. —lse, |min, @(t,2)| < we,
s(t) = . ~ 12
fis 2) {0, imin, &(t,2)| > we, 02
. 0, |min; &t 2)| < we,
t) = L 13
() {lke, |min, &t )| > we, (13)

Finally, we use a saturation to improve the robustness of
the approach: [i; = max(fis, fix). The different constants
and observer gains ag, pl,, ps, o, p1, Po, Pr, s, Ik can be
found in [2]. The estimation procedure is summarized by
Algorithm 1. The observer equations (8)-(13) correspond to
a copy of the original dynamics expressed in the Riemann
coordinates to which are added output correction terms. The
convergence of the estimated states towards the real states is
proved in [2] in the absence of friction terms. Note that the
observer can be adjusted to handle the cutting action [8].

Algorithm 1 Adaptive observer
Require: 7,,,wq, W,
1: Simulate the observer with the adaptive laws (12)-(13)
Output
fir, + limoo fig (¢)

fis + limgo fis(t).

IV. SECOND APPROACH: RECURSIVE DYNAMICS
FRAMEWORK

The second approach we propose corresponds to a recur-
sive dynamics interconnection framework. Such a framework
is particularly suited for sensing and estimation since it
allows structuring the model on some simpler and more
realistic interconnected dynamical subsystems (blocks) and
better exploiting the interconnection structure. Let us men-
tion that if all the points of the drill string reach the kinematic
mode, then the function F(t,z), defined by (4), does not
(directly) depend on time anymore. Adjusting the method
developed in [9] (computations are omitted due to space
constraints), we have

Tl(ta$i+1) = gl(wl('a xi)a Tz('axi)) + h}rv

where f? and g’ are two functions that only depend on the
physical parameters of the drilling device (except p) and
past and future values of w'(-,z;) and 7%(-,z;), the largest
time-shift being fixed by the parameters of the system. The
functions h!, and h! are constant functions that linearly
depend on pj. Using equations (14) and (15), we can express
7(t, L) as a function of top-drive angular velocity and torque
measurements. Since the bit is off-bottom, we know that
7(t,L) = 0. Thus, it becomes possible to use classical
regression techniques (such as Recursive Least Squares) to
estimate the kinematic coefficient uy. Indeed, if we have M

(14)
5)

measurement points, this coefficient is estimated by minimiz-
ing the cost function {fix:,} = argmin Zf\il(%(ti, L))?,
Kk
where 7(t;, L) is the estimated version of the torque obtained
using equations (14) and (15). Obviously, the proposed
estimation of the torque-on-bit only holds if we have w > w,
all over the drill string (otherwise, non-linear terms appear,
which makes the estimation extremely difficult). Thus, we
need to apply equations (14) and (15) to all points of the drill
string (in practice, to a sufficiently large number of points)
to verify that it is the case. Among all the estimations of
the drill-bit source signature, only the ones for which this
condition is fulfilled can be used to estimate the kinematic
friction term.

To verify that the condition w > w, is satisfied, we need
the knowledge of w.. However, knowing a decent upper-
bound could be sufficient. More precisely, let us denote w,
such an upper-bound. Applying the previous procedure for
w > @, all over the drill string, we can estimate /i), assuming
that enough data points verify these conditions (to apply
the least-squares algorithm). Note that we can modify the
reference set-point in the PI control law to guarantee this last
condition. Then, since uj is now known, we can reiterate
the estimation procedure while decreasing the bound w,.
Once the quadratic error Zﬁl(%(ti,L))z becomes larger
than a chosen threshold ¢, it means that we have reached w,
since the non-linear static friction terms are now modifying
our estimation of the torque on the bit. This procedure is
described by Algorithm 2. The values of w. are updated
using a dichotomy approach (tolerance 7). The threshold e
should be large enough to encompass measurement noise.

Algorithm 2 Recursive dynamics framework.

Require: 7(¢,0), w(t,0), @, w,, € 7
1. Compute 7;(t, L) with equations (14) and (15) for all
the data points that verify &(t,x) > @., for all t.
2:  Recursive Least Squares algorithm: {fipint =

argmin Zf\il (7(t;, L))2.

Mk
k. WotWe
Update w;: ==

4:  Compute S = Zf\il (7(t;, L))? for all the data points
that verify &(t, z) > wk.

If S >e w, + wh. EBlse, @, + wk.

If . —w, > n go to Step 3.
Output
fk < fik,

(98]

ISR

Qe < wh.

V. THIRD APPROACH: MACHINE LEARNING ESTIMATION

The third approach we present in this paper is based
on Machine Learning ([18]) where we show that a model
trained on a range of depths and drillstring dimensions,
can predict friction parameters for a new well. Hence, it
does not require any specific knowledge of the system or
an accurate model. Note that adaptive neural networks have
already been applied in [16] or [26] for control purposes.
The main idea behind this approach is that the measured
top-drive torque and angular velocity (or in closed-loop
the output of the PI control law) depend on the geometry
and the physical parameters of the drilling device (and in
particular of the friction factors). Thus, the spectrum of these
signals should contain sufficient information to estimate the



static and kinematic friction terms. Let us denote y(t) =
Tm/(t) the measured motor torque (that is related to wy due
to (6)). Due to the top-drive sensors sampling rate, this
signal is not updated continuously. We then compute the
discrete Fourier transform of the time-series y to obtain
the spectrum of the signal y. We recall that the discrete
Fourier transform is a complex function that is defined by

g(k) = Zn:l y(n)e 2w —wr — =47 The spectrum of the
signal y is characterized by several attrzbutes. the number of
peaks, the dominant peak (highest value of the modulus of ¢),
the dominant peak after a given cut-off frequency, the corre-
sponding frequencies. The values of some of these attributes
are related to the physical parameters of the systems. Thus,
for a set of known physical parameters that characterize
the well (including its geometry), we can run thousands
of simulations, only modifying the parameters we want to
estimate (namely py and ps) between each simulation. This
gives us a set of data (known as training set) for which
the correct values of the friction parameters are known. Our
algorithm will learn from this data set and find the suitable
correlations between the previously defined attributes and the
unknown parameters. Once adequately trained, the algorithm
can be applied to make accurate predictions for new data sets.
We choose to develop a neural network regressor using a
sigmoid activation function [18], [21]. We use an optimizer
in the family of quasi-Newton methods (Adam algorithm
with 150 layers). The learning rate is constant. The network
is trained by simulating thousands of test points for which
we know the correct values of the friction parameters.
From these simulations, we generate the spectrum of the
corresponding output signals and compute several relevant
features. While training our neural network, it appeared that
the relevant attributes for learning are the two dominant
gains (and their corresponding frequencies). We then design
our neural network (i.e., we choose the number of neurons,
layers, weights) and train it using cross-validation. The
algorithm is now ready to be tested on a new dataset. The
details of the algorithm are summarized in Algorithm 3.

Algorithm 3 ML algorithm

Require: 7,,(t), training dataset (7, (¢), u¥, u*)

Training of the network

1. Compute the Fourier transform of Tk (t)

2:  Compute the two dominant gains and the correspond-
ing frequencies

3:  Using cross-validation, design a neural network
Estimation

. Compute the Fourier transform of T, (t)

5. Compute the two dominant gains and the correspond-
ing frequencies

6:  Run the neural network with this new point
Output

fbs <= fbs,

fig < fig

The generalizability of the proposed neural network de-
pends on the number of learnable free parameters and the
depth of the neural network [10], [27]. In most applica-
tions, the comprehensive dataset is not available and the
learned network cannot properly model the complexities
of the system. To remedy this shortcoming, one needs to
take advantage of active learning, model-based learning,
and transfer learning to make the learned mapping function

TABLE I

ADVANTAGES AND DRAWBACKS OF THE DIFFERENT ALGORITHMS

Algo. Advantages Drawbacks
-Correct estimations s, g, | -Requires the knowledge of
when testing in simulations | we.
and against field data [2].
Algo. 1 | -Convergence guaranteed in | -No proof of convergence
the absence of friction terms | for the adaptive part.
[15].
-Real-time estimation robust | -Persistent excitation for the
to uncertainties and delays. adaptive part.
-Reliable estimation of 1. -Near-real time algorithm.
Algo. 2 | -Procedure to estimate wc. -ls is not estimated
-Good robustness proper- | -Computationally expensive
ties. [9] @".
-Reliable, and easy to imple- | -Requires thousands  of
ment. training points.
Algo.3 -Estimation of py and ps. -Lacks generalizability.
-Fast algorithm (once prop- | -Depends on the initial con-
erly trained). dition of the system.

general enough so that the learned operator gives proper
parameter estimation when applied on a new dataset [12],
[25], [19].

VI. SIMULATION RESULTS

We now test our three estimation algorithms against the
simulation model given in [6] using the wellbore survey from
[1], where the well is vertical for 300m, builds to 40 degrees
inclination and holds until to a measure depth of 1250m and
then builds and holds at 45 degrees for the remainder of the
well.

A. Comparison of the three algorithms on two test cases

We aim to compare the performance of our three different
algorithms on test case studies. We have given in Table I
the theoretical advantages and drawbacks of the different
procedures. The drilling device is simulated using system (1)-
(7). This model has been tested against field data in [5] and
has been shown to qualitatively (with high accuracy) capture
the dynamics apparent in the field data. Unfortunately, we do
not currently have any field data for which the friction factors
are available. We compare the three estimation algorithms
on two test case studies. All the numerical values for the
different parameters can be found in [6]. We consider a
reference set-point for the top drive angular velocity of 60
RPM. In the first case study, the side forces static friction
term is chosen to be equal to 0.42, while the kinematic
friction term is equal to 0.29. In the second one, we have
s = 0.45 and pr = 0.28. In both cases, we have w. = 14
RPM. These parameters are chosen so that there are stick-
slip oscillations [5]. We assume that the measured signals
are subject to a white Gaussian noise that is characterized
by its signal-to-noise ratio (SNR). Seventy-five simulations
and estimations have been performed for each algorithm. The
SNR for all the signals is equal to 10. We give in Table II and
Table III the mean and standard deviation for the estimations
given by each algorithm.

Our three algorithms allow satisfying estimations of the
friction parameters. The two first algorithms are model-based
and require a reliable model of the drill string dynamics
(which is not the case of the machine learning algorithm).
The Recursive dynamics framework-based appears (theo-
retically and in simulations) to provide the most accurate
estimation of the kinematic friction factor. Moreover, it
gives an estimation of the threshold w.. This is because



TABLE II
MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OF THE FRICTION
FACTORS ESTIMATION USING THE THREE PROPOSED ALGORITHMS FOR
THE FIRST TEST CASE (pts = 0.34 AND p, = 0.187).

Algorithm [is [k
Adaptive observer 0.358 (0.02) 0.192 (0.01)
Recursive dynamics framework N.A 0.1892 (0.03)
Machine learning algorithm 0.332 (0.023) 0.19 (0.01)

TABLE III
MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OF THE FRICTION
FACTORS ESTIMATION USING THE THREE PROPOSED ALGORITHMS FOR
THE SECOND TEST CASE (p1s = 0.45 AND py, = 0.28).

Algorithm [is [k
Adaptive observer 0.50 (0.015) | 0.289 (0.01)
Recursive dynamics framework N.A 0.287 (0.03)
Machine Iearning algorithm 0.463 (0.03) | 0.285 (0.02)

the disturbance terms can theoretically directly be expressed
in terms of the available measurements (the mismatch in
the simulations being the consequences of the presence of
noise and uncertainties). However, it fails (in its current
form) to provide an estimation of the static friction term
(which explains the N.A. in Table II and Table III). In
the case of a one-sectional drilling device, this could be
overcome by considering a lumped approximation of the
system [2]. Finally, even if the Machine Learning algorithm
shows satisfactory performance, it requires sizeable training
datasets, which can be time-consuming to both generate and
then subsequently train. Note that since the proposed model
has been tested against field data in [5], we believe that our
machine learning algorithm can be efficiently trained using
these simulated datasets.

B. Consequences in terms of control design

It is essential to mention that the PI controller that has been
considered here (in equation (7)) may not be able to suppress
stick-slip oscillations [4] (we chose it for its simplicity as the
objective of the paper was to estimate friction parameters and
not to compare different control strategies). More involved
control strategies may require estimations of the distributed
states, and at some point of the friction factors (which is one
of the stakes of the present contribution), [4]. However, it is
possible to envision a switching mode strategy to reduce the
performance limitations related to a wrong estimation of the
friction terms. We would impose a large enough control input
to guarantee the BHA release from the stick phase in the first
mode (using an improved PI controller as Z-torque [20]).
Once we have left this mode (i.e., once we have broken the
static torque and w > w, all over the drill string), we switch
to the second mode, for which the disturbance term induced
by the Coulomb side forces is now constant and only depends
on the kinematic friction term (that is usually known more
accurately).

C. Machine Learning Results

To extend the usefulness of the data-driven model, we
considered expanding the training dataset to include a range
of bit depths, leading to a range in static and kinematic
torques. Using two training data sets, we evaluate the per-
formance of the neural network on a test data set generated
for the considered well. Training data set 1 (DS1) contains
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Fig. 2. Comparing real friction versus predicted friction for NN1, where
the training data set has a limited range in depths. Poor performance is
observed as the neural network fails to properly predict friction for depths
outside of the training data set range.
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Fig. 3. Comparing real friction versus predicted friction for NN2, where
the training data set includes the range of depths included in the test data set.
Performance is significantly improved, particularly for kinematic friction.

1000 data points with parameters ranges of s € [0.2,0.83],
frat €[0.2,0.65] (where f,q¢ is such that p; = fraepts) and
for well depths ranging from 2,500 m to 2,770 m. Training
data set 2 (DS2) contains 1000 data points with the same
ranges for ps and f,,¢, however, well depth ranges from
1,700 m to 2,870 m. The test data set (TS) contains 125
data points with ug € [0.21,0.76], frox € [0.23,0.6] and
measure depths ranging from 1,760 m to 2,752 m. Using
the algorithm described in Algorithm 3, a neural network is
trained on DS1 (NN1) and on DS2 (NN2) and then applied
to TS. As the test data set contains depths outside of the
range of DS1, the performance of NNI1 is poor, as expected.
Bit depth and the weighted average of the inclination of the
drill pipe are used as additional input parameters. However,
the neural network cannot generalize the predictions as no
implicit knowledge of drill string dynamics is embedded in
the neural network. Figure 2 shows the actual vs predicted
friction values for the training data set, with static friction
shown in blue and kinematic friction shown in red. NN2
performs well when applied to the data in TS as the TS2
spans the input parameter range, for us, p and bit depth.
It is noted that estimates of static friction are worse than
the estimated of kinematic friction, as is expected. Figure
3 shows the actual vs predicted values of friction for the
training data set. This shows that the machine learning model



is generalizable so long as the training data set spans a
sufficient parameter space. Future work in embedding some
of the basic physical properties of the drill string system into
the neural network may improve performance outside of the
training parameter space. Some preliminary work has been in
this space for seismic data processing, and inversion shows
promise for application to problems governed by the wave
equation [24].

D. Towards a combined methodology

Due to the couplings between the static and kinematic fric-
tion terms, the machine learning algorithm cannot correctly
always handle the simultaneous estimation of py and us (see
the results of Section VI-C). A possible solution to overcome
this problem is to combine the machine learning procedure
with one of the two other estimation techniques (e.g., the
adaptive observer). For instance, the static friction parameter
can only be estimated when the drill string comes to a com-
plete stop, which explains why it is harder to estimate using
the adaptive observer. This occurs at the beginning of the
rotation and then only during severe stick-slip. Using the esti-
mated value of py, (provided by the adaptive algorithm) as an
input for our machine learning algorithm, we could improve
the global estimation. Moreover, by fixing one parameter in
the machine learning algorithm and training for the other
one, we could explore the coupling issue and sensitivity
of the machine learning operator to our Fourier features.
Finally, when generating synthetic data with an approximated
forward modeling operator for training purposes, one must
be aware of the physics-operator mismatch. It is necessary
to reduce the data bias in the training process to improve the
generalizability of the operator. Generalizability is the main
factor when applying the machine-learned operator to field
data, which will be the purpose of our future works.

VII. CONCLUDING REMARKS

In this paper, we have designed three algorithms that
provide real-time or near real-time estimations of the friction
factors corresponding to the side-forces acting on a drilling
device. Estimating these parameters is a well-known chal-
lenge in the drilling industry and, if understood, presents
the opportunity to improve drilling operations through feed-
forward or model predictive control. It is a crucial step to
develop stick-slip mitigation strategies. The three proposed
procedures correspond to an adaptive observer (originally
introduced in [2]), to an algorithm based on recursive dy-
namics framework, and to a machine learning algorithm. All
of them only require surface measurements, making them
realistically implementable on drilling devices. Their specific
advantages and drawbacks have been emphasized. These
algorithms have then been implemented on a previously
validated torsional drill string model, with specific attention
paid to the machine learning procedure. This algorithm is
easy to implement and fast to run once properly trained
but may not be robust to changes in the system parameters
(as a new long training phase would be necessary). The
three algorithms provide satisfying estimations of the friction
parameters. Future works should include testing against field
data and an analysis of the computational effort for each
procedure. The expected outcome is a hybrid strategy to
estimate friction parameters in drilling.
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