
HAL Id: hal-03608580
https://hal.science/hal-03608580v1

Preprint submitted on 14 Mar 2022 (v1), last revised 4 Dec 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bayesian neural network approach to Multi-fidelity
surrogate modelling

Baptiste Kerleguer, Claire Cannamela, Josselin Garnier

To cite this version:
Baptiste Kerleguer, Claire Cannamela, Josselin Garnier. A Bayesian neural network approach to
Multi-fidelity surrogate modelling. 2022. �hal-03608580v1�

https://hal.science/hal-03608580v1
https://hal.archives-ouvertes.fr

A Bayesian neural network approach to
Multi-fidelity surrogate modelling

Baptiste Kerleguer1,2, Claire Cannamela1, and Josselin
Garnier2

1CEA, DAM, DIF, F-91297, Arpajon, France
2Centre de Mathématiques Appliquées, Ecole Polytechnique,

Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
baptiste.kerleguer@polytechnique.edu

Abstract

This paper deals with surrogate modelling of a computer code out-
put in a multi-fidelity context, i.e., when the output can be evaluated
at different levels of accuracy and computational cost. Using obser-
vations of the output at low- and high-fidelity levels, we propose a
method that combines Gaussian process (GP) regression and Bayesian
neural network (BNN), in a method called GPBNN. The low-fidelity
output is treated as a single-fidelity code using classical GP regression.
The high-fidelity output is approximated by a BNN that incorporates,
in addition to the high-fidelity observations, well-chosen realisations
of the low-fidelity output emulator. The predictive uncertainty of the
final surrogate model is then quantified by a complete characterisa-
tion of the uncertainties of the different models and their interaction.
GPBNN is compared with most of the multi-fidelity regression meth-
ods allowing to quantify the prediction uncertainty.

Keywords— Multi-fidelity, Surrogate modelling, Bayesian Neural Network,
Gaussian Process Regression

1

1 Introduction

We consider the situation in which two levels of code that simulate the same
system have different costs and accuracies. We would like to build a surrogate
model of the most accurate and most costly code level, also called high-fidelity
code. The underlying motivation is to carry out an uncertainty propagation study
or a sensitivity analysis that require many calls and therefore, the substitution of
the high-fidelity code by a surrogate model with quantified prediction uncertainty
is necessary. To build the surrogate, a small number NH of high-fidelity code
outputs and a large number NL of low-fidelity code outputs are given. In some
applications we may have NL � NH , but this article will focus on NL > NH and
the context of small data. Then, the low-fidelity surrogate model uncertainty must
be taken into account.

A well-known method to build a surrogate model with uncertainty quantifica-
tion is Gaussian process (GP) regression, GP 1F in this paper. This method has
become popular in computer experiments [26, 23] and now allows scaling up in
the number of learning points [22]. The emergence of multi-fidelity codes (codes
that can be run at different levels of accuracy and cost) has motivated the intro-
duction of new GP regression approaches. The first one was the Gaussian process
auto-regressive or AR(1) scheme proposed by [10]. The form of the AR(1) model
expresses a simple and linearity relationships between the codes and it follows
from Markov properties given [18]. This method is used in [4] for optimisation.
This approach has been improved by [12] with the decoupling of the estimation
of the hyper-parameters of the different code levels. In the following the recursive
AR(1) model is called the AR(1) model because the results do not change only
the computation time is reduced. The Deep GP method introduced in [19] makes
it possible to adapt the approach to cases in which the relationships between the
code levels are nonlinear. An improvement has been further made by adding to
the covariance function of the high-fidelity GP proposed by [19] a linear kernel
in [3]. Multi-fidelity GP regression has been used in several fields as illustrated
in [24, 21]. Polynomial chaos can also be exploited as in [17] for multi-fidelity
regression.

Recent improvements in the implementation of neural networks have moti-
vated research on multi-fidelity neural networks [13]. In [16], the authors combine
a fully connected neural network (NN) and a linear system for the interactions
between codes. The low-fidelity surrogate model is built using a fully connected
NN, see [27] for a direct application. In order to quantify the prediction devia-
tions and to evaluate the reliability of the prediction the NNs have been improved
to become Bayesian Neural Networks (BNN) [14]. The multi-fidelity model has
been improved by using BNN for high-fidelity modelling in [15]. In our article this

2

method will be called MBK. The method in [15] offers options for a single-fidelity
active learning and is more general for multi-fidelity modelling. The disadvantages
of methods using NN are the non-prediction of the model uncertainties and the
difficult optimisation of the hyper-parameters in a small data context. These disad-
vantages can be overcome by the use of BNNs. The ability of BNN for uncertainty
quantification is explained in [9].

The purpose of our paper is to present a method competing in terms of pre-
diction with the methods of multi-fidelity regression : AR(1) model, DeepGP and
MBK. Our paper also aims to improve the quantification of uncertainties in the
non-linear case for all these methods. As not all the proposed methods give Gaus-
sian processes as output, the uncertainties have to be compared differently. An
approach, involving two quantities, is proposed in our article. We will use the
Gauss-Hermite quadrature to transfer the low-fidelity a posterior law to the high-
fidelity BNN. We will compare the properties and results of our strategy with the
ones of these methods. For evaluation, we examine our surrogate model approach
with two-level multi-fidelity benchmark functions and with a simulation example.
The results demonstrate that the method presented in our paper is easier to train
and more accurate than any other multi-fidelity neural network-based method.
Moreover, the method is more flexible compared to other GP-based methods, and
it gives reliable estimations of the predictive uncertainties.

In our paper we propose to split the multi-fidelity surrogate modelling problem
into two regression problems. The first problem is the single-fidelity regression for
the low-fidelity code. The second problem is the regression for the high-fidelity
code knowing the predictions and the predictive uncertainties of the low-fidelity
surrogate model. GP regression allows prediction with quantified uncertainty for
the low-fidelity code, which is important to minimise the predictive error and to
quantify the predictive uncertainty of the surrogate model of the high-fidelity code,
as we will see below. As in [15], we want to use a BNN for the regression knowing
the low-fidelity prediction. The contribution we propose is an original strategy
to transfer the low-fidelity predictive uncertainties to the BNN. For that we take
well-chosen realisations of the predictor of the low-fidelity code by a quasi-Monte
Carlo method based on Gauss-Hermite quadrature nodes, and we give them as
inputs of the BNN in addition to the high-fidelity code inputs. A predictor is
obtained by a weighted average of the BNN outputs corresponding to the different
realisations. The predictive variance can also be assessed with the same sample.

The paper is organized as follows. Section 2 presents different methods to build
single-fidelity surrogate models. The complete multi-fidelity method is presented
in section 3. The specific interaction between GP regression and BNN is explained
in section 4. Section 5 shows numerical results. Based on these results, the interest
of the method is discussed in section 6.

3

2 Background: Regression with uncertainty

quantification

In this section classical surrogate modelling methods with uncertainty quantifica-
tion are presented. The GP regression method is presented in section 2.1. The
BNN method is presented in section 2.2. Here we want to predict the scalar out-
put y = f(x), with y ∈ IR, of a computer code with input x ∈ IRd from data set
(xi, yi)

N
i=1 with yi = f(xi).

2.1 Gaussian process regression

GP regression can be used to emulate a computer code with uncertainty quantifi-
cation [26]. The output model as a function of the input x is a Gaussian process
Y (x) with mean µ(x) and stationary covariance function C(x,x′). Consequently,
the posterior distribution of the output Y (x) given Y (x1) = y1, . . . , Y (xN) = yN
is Gaussian with mean:

µ?(x) = µ(x) + r(x)TC−1(y − µ), (1)

and covariance :
C?(x,x

′) = C(x,x′)− r(x)TC−1r(x′), (2)

with the vector r(x) = (C(x,x1), . . . , C(x,xN))T , the matrix C defined by Ci,j =
C(xi,xj), the vector µ = (µ(x1), . . . , µ(xN))T and the vector y = (y1, . . . , yN)T .
The covariance function is chosen within a parametric family of kernels, whose
parameters are fitted by maximizing the log marginal likelihood of the data, see [26,
Chapter 2.2]. For practical applications the implementation of [26, Algorithm 2.1]
can be used.

2.2 Bayesian neural network

Neural networks have been used to emulate unknown functions based on data [2],
and in particular computer codes [25]. Our goal, however, is also to quantify the
uncertainty of the emulation. BNN makes it possible to quantify predictive uncer-
tainties. Below we present the BNN structure and the priors for the parameters.

We present a BNN with one hidden layer. Let Nl be the number of neurons in
the hidden layer. The output of the first layer is

y1 = Φ (w1x + b1) , (3)

with x ∈ IRd the input vector of the BNN, b1 ∈ IRNl the bias vector, w1 ∈ IRNl×d
the weight matrix and y1 ∈ IRNl the output of the hidden layer. The function

4

Φ : IRNl → IRNl is of the form Φ(b) = (φ(bj))
Nl
j=1, where the activation function

φ can be hyperbolic tangent or ReLU for instance. The second (and last) layer is
fully linear:

BNN (x) = wT
2 y1 + b2, (4)

with w2 ∈ IRNn the weight matrix, b2 ∈ IR the bias vector and BNN (x) ∈ IR the
scalar output of the BNN at point x.

We use a Bayesian framework similar to the one presented in [8]. Let θ denote
the parameter vector of the BNN, which is here θ = (wi,bi)i=1,2. The probability
distribution function (pdf) of the output given x and θ is

p(y|x,θ, σ) =
1√
2πσ

exp
(
− (y − BNN θ(x))2

2σ2

)
, (5)

where σ2 is the variance of the random noise added to account for the fact that
the neural network is an approximation. BNN θ(x) is the output of the neural
network with parameter θ at point x.

Here we choose a prior distribution for (θ, σ) that is classic in the field of BNN
[8, Part 5]. The prior laws of the parameters (wi,bi)i=1,2 are:

wi ∼ N
(
0, σ2wiI

)
, bi ∼ N

(
0, σ2biI

)
, i = 1, 2, (6)

with σw,b1,2 the prior standard deviations. The prior for σ is the standard Gaussian
N (0, 1) (assuming the function f has been normalized to be of order one). All
parameters are assumed to be independent.

Applying Bayes’ theorem, the posterior pdf of (θ, σ) given the data D =
(xi, yi)

N
i=1 is

p(θ, σ|D) =

N∏
i=1

p(yi|xi,θ, σ)p(θ, σ) (7)

up to a multiplicative constant, where p(θ, σ) is the prior distribution of θ, σ
described above. The posterior distribution of the output at x has pdf

p(y|x,D) =

∫∫
p(y|x,θ, σ)p(θ, σ|D)dθdσ, (8)

and the two first moments are:

Epost [Y] =

∫∫
BNN θ(x)p(θ, σ|D)dθdσ, (9)

Epost

[
Y 2
]

=

∫∫ (
BNN θ(x)2 + σ2

)
p(θ, σ|D)dθdσ. (10)

5

Contrarily to GP regression, the prediction of a BNN cannot be expressed an-
alytically as shown by (8) but there exist efficient sampling methods. To sample
the posterior distribution of the BNN output, we need to sample the posterior
distribution of (θ, σ). In this paper the No-U-Turn Sampler (NUTS), which is a
Hamiltonian Monte-Carlo (HMC) method, is used to sample the posterior distri-
bution of (θ, σ) [7]. By eqs. (9) and (10), the estimated mean f̃ and variance Ṽ of
the output at point x are:

f̃(x) =
1

Nv

Nv∑
i=1

BNN θi(x), (11)

Ṽ (x) =
1

Nv

Nv∑
i=1

[
BNN θi(x)− f̃(x)

]2
+

1

Nv

Nv∑
i=1

σ2i , (12)

where the (θi, σi)
Nv
i=1 is the HMC sample of (θ, σ) with its posterior distribution.

3 Combining GP regression and BNN

From now on we consider a multi-fidelity framework with two levels of code, high
fH and low fL fidelity, as in [10]. The input is x ∈ IRd and the outputs of both
computer code levels fL(x) and fH(x) are scalar. We have access to NL low-fidelity
points and NH high-fidelity points, with NH < NL. In our article we focus on the
small data framework where the low-fidelity code is not perfectly known. Under
such circumstances it remains uncertainty in the low-fidelity surrogate model. If
NH � NL the situation would be different and we could assume that the low-
fidelity emulator is perfect.

We therefore have two surrogate modelling tools: GP regression and BNN. To
do multi-fidelity with non-linear interactions the standard methods use combina-
tions of regression methods. With our two methods we can make four combina-
tions: GP-GP also called DeepGP in [19, 3], GP-BNN the method proposed in
our paper, BNN-GP and BNN-BNN. The Deep GP model will be compared to
the proposed method in all examples of our paper. The BNN-BNN method would
be extremely expensive and very close to the full NN methods by adding the pre-
dictive uncertainty. The logic behind our choice of GP-BNN over BNN-GP is as
follows: if we assume that the low-fidelity code is simpler than the high-fidelity
code, then it must be approximated by a simpler model. GP regression is a surro-
gate model easier to obtain and it gives a Gaussian output distribution that can
be sampled easily. Whereas BNN is more complex to construct and allows more
varied output distributions to be emulated.

6

x
...

...
µ̃H(x)

C̃H(x)
GP

BNN

High-fidelity

Low-fidelity ∑
S

pS,1

pS,Sf̃L(x)∼GP

f̃L,1(x)

f̃L,S(x)

Figure 1: Schematic of the multi-fidelity model. The input is a point x. The
output consists of a predictive mean µ̃H(x) and a predictive variance C̃H(x)

The code output to estimate is fH with the help of low- and high-fidelity points.
As the low-fidelity code fL is not completely known a regression method with
uncertainty quantification, GP regression, is used, to emulate it, as in section 2.1.
The output of the low-fidelity GP is then integrated into the input to a BNN,
described in section 2.2, to predict fH .

The low-fidelity surrogate model is a GP built from NL low-fidelity data points
(xL,i, fL(xL,i)) ∈ IRd× IR. The optimisation of the hyper-parameters of the GP is
carried out in the construction of the surrogate model. The GP is characterized
by a predictive mean µL(x) and a predictive covariance CL(x,x′).

To connect the GP with the BNN the simplest way is to concatenate x and
µL(x) (the best low-fidelity predictor) as input to the BNN. However, this does
not take into account the predictive uncertainty. Consequently, we may want to
add CL(x,x) or

√
CL(x,x) to the input vector of the BNN. The idea is that the

BNN could learn from the low-fidelity GP more than from its predictive mean
only, in order to give reliable predictions of the high-fidelity code with quantified
uncertainties.

We have investigated four methods to quantify uncertainty and to combine the
two surrogate models.

It is possible to extend this method for more than two levels of codes. This
is done by considering the output of the BNN as an input to the higher fidelity
model. Two different models can therefore be considered. One uses the output of
the BNN directly and by sampling gives it as input to the higher fidelity BNN.
We can also generate realisations of our surrogate model and consider them as
realisations of the low fidelity code and thus apply the GPBNN method.

7

4 Sampling methods

The two original learning sets are DL = {(xLi , fL(xLi)), i = 1, . . . , NL} and DH =
{(xHi , fH(xHi)), i = 1, . . . , NH} with typically NH < NL and we do not assume
that the sets {xLi , i = 1, . . . , NL} and {xHi , i = 1, . . . , NH} are nested.

The low-fidelity model is emulated using GP regression, as a consequence the
result is formulated as a posterior distribution given DL that has the form of a
Gaussian law.

Proposition 1. The posterior distribution of YL(x) knowing DL is the Gaussian
distribution with mean µL(x) and variance σ2L(x) of the form (1-2). We denote
its pdf by p(yL|DL,x).

Proof. The proof is given in [26, chapter 2.2] (prediction with noise free observa-
tions).

The posterior distribution of the high-fidelity code given the low-fidelity learn-
ing set DL and the high-fidelity learning set DH may have different forms depend-
ing on the input of the BNN.

4.1 Mean-Standard deviation method

In the Mean-Standard deviation method, called Mean-Std method, we give as input
to the BNN the point x and the information usually available at the output of a
GP regression, i.e. the predictive mean and standard deviation of the low-fidelity
emulator at the point x.

In this method, the input of the BNN whose output gives the prediction of the
high-fidelity code at x is (x, µL, σL). The idea is that the BNN input consists of
the input x of the code and of the mean and standard deviation of the posterior
distribution of the low-fidelity emulator at x. We use the learning set DHMS ={(

xHi , µL(xHi), σL(xHi), fH(xHi)
)
, i = 1, . . . , NH} to train the BNN. Note that DHMS

can be deduced from DL and DH .

Proposition 2. The posterior distribution of YH(x) knowing DL and DHMS has
pdf

p
(
yH |x,DHMS ,DL

)
=

∫∫
1√
2πσ

exp
(
−(yH − BNN θ(x, µL(x), σL(x)))2

2σ2

)
p(θ, σ|DHMS)dσdθ,

(13)
with p(θ, σ|DHMS) the posterior pdf of the hyper-parameters of the BNN.

8

Corollary 3. The mean and variance of the posterior distribution of YH(x) know-
ing DHMS and DL is:

µH(x) =

∫∫
BNN θ(x, µL(x), σL(x))p(θ, σ|DH)dσdθ, (14)

and

CH(x) =

∫∫ (
BNN θ(x, µL(x), σL(x))2 + σ2

)
p(θ, σ|DH)dσdθ, (15)

Proposition 4. With DHMS, the estimators µ̃H(x):

f̃H(x) =
1

Nv

Nv∑
i=1

BNNθi(x, µ̃L(x), σ̃L(x)), (16)

and

C̃H(x) =
1

Nv

Nv∑
i=1

(
BNNθi(x, µ̃L(x), σ̃L(x))2 + σ2i

)
− µ̃H(x)2. (17)

The low fidelity data and model are described in proposition 2.

The estimators needed samples of the posterior distribution of θ and σ to
predict mean and variance. By the HMC method (NUTS), we get the posterior
law of (θj , σj) the hyperparameters of the high-fidelity model.

4.2 Quantiles method

The Quantiles method consists of giving the mean and two quantiles of the low-
fidelity GP emulator as input to the BNN. Assuming we want to have the high-
fidelity output uncertainty at level α% we take the α/2% and the (1−α/2)% quan-
tiles. The expression of the BNN input vector is xBNN = (xHi , µL(xLi), QL,α(xHi), QL,(1−α)(x

H
i))

then the high-fidelity learning set isDHQ :
{(

(xHi , µL(xLi), QL,α(xHi), QL,(1−α)(x
H
i)), fH(xHi)

)
, i = 1, · · · , NL

}
.

Proposition 5. The posterior distribution of YH(x) knowing DL and DHQ has pdf

p
(
yH |x,DHQ ,DL

)
=

∫∫
1√
2πσ

exp
(
−

(yH − BNN θ(x, µL(x), QL,α(xHi), QL,(1−α)(x
H
i)))2

2σ2

)
p(θ, σ|DHQ)dσdθ,

(18)
with p(θ, σ|DHMS) the posterior pdf of the hyper-parameters of the BNN.

9

Corollary 6. The mean and variance of the posterior distribution of YH(x) know-
ing DHMS and DL is:

µH(x) =

∫∫
BNN θ(x, µL(x), Q̃L,α(xHi), Q̃L,(1−α)(x

H
i))p(θ, σ|DHQ)dσdθ, (19)

and

CH(x) =

∫∫ (
BNN θ(x, µL(x), Q̃L,α(xHi), Q̃L,(1−α)(x

H
i))2 + σ2

)
p(θ, σ|DHQ)dσdθ,(20)

Proposition 7. The estimators µ̃H(x), C̃H(x) are estimators of the mean and
variance expression in corollary 6 with DHQ the α quantiles of the GP posterior
law. The mean and variance are:

µ̃H(x) =
1

Nv

Nv∑
i=1

BNNθi(x, µ̃L(x), Q̃L,α(x), Q̃L,(1−α)(x)), (21)

C̃H(x) =
1

Nv

Nv∑
i=1

(
BNNθi(x, µ̃L(x), Q̃L,α(x), Q̃L,(1−α)(x))2 + σ2i

)
− µ̃H(x)2. (22)

This method is very similar to the Mean-Std method and only the BNN entries
change. This is why the estimators have the same form. It can be noted that
the dimension of the BNN inputs is larger than for the Mean-Std method. The
estimators needed samples of the posterior distribution of θ and σ to predict mean
and variance. By the HMC method (NUTS), we get the posterior law of (θj , σj)
the hyperparameters of the high-fidelity model.

4.3 Random Samples method

The Random sample method method is based on Monte Carlo method. We gener-
ate S realisations of the posterior distribution of the low-fidelity surrogate model.
To get the BNN output mean and variance we compute the empirical mean and
variance with respect to the S realisations.

The GP posterior distribution is one-dimensional and Gaussian for each value
of x. Therefore, we can sample the low-fidelity posterior law of the GP. The
samples are called f̃L,j(x

H
i) for j = 1, · · · , S. In order to get samples from µL(x)

and σL(x) the formula is:

f̃L,j(x
H
i) = µL(xHi) + σL(xHi)εj , (23)

where εj for j = 1, · · · , S are reduced centred Gaussian iid samples. The input vec-
tor of the BNN is xBNN = (xHi , f̃L,j(x

H
i)). The high-fidelity learning set becomes

DHRS :
{(

(xHi , f̃L,j(x
H
i)), fH(xHi)

)
, i = 1, · · · , NL, j = 1, · · · , S

}
.

10

Proposition 8. The posterior distribution of YH(x) knowing DHRS and N
(
µL(x), σ2L(x)

)
is

p
(
yH |x,DHRS ,DL

)
=

∫∫∫
1√
2πσ

exp

(
− 1

2σ2
(yH − BNN θ(x, yL))2

)
p(θ, σ|DHRS)p(yL|x,DL)dσdθdyL,

(24)
with p(θ, σ|DH) the posterior distribution of the hyper-parameters of the BNN and
xBNN the input vector of the BNN.

Corollary 9. The posterior mean of YH(x) is:

µH(x) =

∫∫∫
BNN θ(x, yL)p(θ, σ|DHRS)p(yL|x,DL)dσdθdyL. (25)

The posterior variance of YH(x) is:

CH(x) =

∫∫∫ (
BNN 2

θ(x, yL) + σ2
)
p(θ, σ|DHRS)p(yL|x,DL)dσdθdyL − µ2H(x).(26)

Corollary 10. The estimators µ̃H(x), C̃H(x) of µH(x), CH(x) are defined by:

µ̃H(x) =
1

NvS

Nv∑
i=1

S∑
j=1

BNNθi(x, f̃L,j(x)), (27)

C̃H(x) =
1

NvS

Nv∑
i=1

S∑
j=1

BNNθi(x, f̃L,j(x))2 +
1

Nv

Nv∑
i=1

σ2i − µ̃H(x)2, (28)

where f̃j,L(x) for j = 1, · · · , S are iid with the distribution given in proposition 1
and θi for i = 1, · · · , Nv are samples of the posterior pdf p(θ, σ|DHRS) obtained by
using MCMC algorithm.

The estimators needed samples of the posterior distribution of θ and σ to
predict mean and variance. By the HMC method (NUTS), we get the posterior
law of (θj , σj) the hyperparameters of the high-fidelity model.

Proof. We have samples f̃L,j(x))2 of the low-fidelity distribution. Using Monte-
Carlo method we have:∫

BNN θ(xBNN)p(yL(x)|DL)dyL ≈
1

S

S∑
j=1

BNN θ(xBNN) (29)

11

The sampling θi on the parameters θ gives us that:

∫∫
BNN θ(xBNN)p(θ|DH)p(yL(x)|DL)dθdyL ≈

1

NvS

Nv∑
i=1

S∑
j=1

BNNθi(x, f̃L,j(x))(30)

For the variance we have the same term but with square. The estimation is then:

C̃H(x) =
1

Nv

Nv∑
i=1

S∑
j=1

(
1

S
BNNθi(x, f̃L,j(x))2 +

1

S
σ2i

)
− µ̃H(x)2, (31)

with
∑S

j=1
1
S = 1 we have an estimator of the variance.

4.4 Gauss-Hermite quadrature

The Gauss-Hermite method is based on a quasi Monte Carlo method and is pre-
sented in fig. 1. For a given point x, the point x and several well chosen realisations
(f̃L,i(x))i=1,...,S of the GP at this point are given as input to the BNN. We then
obtain realisations of the BNN which we combine to obtain the output distribution
of the prediction of the high-fidelity code.

The GP posterior distribution is one-dimensional and Gaussian for each value
of x. Therefore, a deterministic method for sampling is preferable in order to
limit the number of calls to the BNN. In the following this method is called
GPBNN. We propose to sample the Gaussian distribution by a quasi Monte Carlo
method using S Gauss-Hermite quadrature nodes [5, Chapter 3]. This method
has been chosen because it gives the best interpolation of a Gaussian distribution.
The samples f̃L,i(x), with i = 1, . . . , S, of the GP posterior distribution are con-
structed using the roots zS,i of the physicists’ version of the Hermite polynomials

HS(x) = (−1)Sex
2
∂Sx e

−x2
, S ∈ N. For each input x the GP posterior law has mean

µL(x) and variance CL(x,x). Therefore, the ith realisation in the Gauss-Hermite
quadrature formula is:

f̃L,i(x) = µL(x) + zS,i
√

2
√
CL(x,x), (32)

and the associated weight is pS,i = 2S−1S!
S2H2

S−1(zS,i)
, for i = 1, . . . , S. The BNN has as

a learning set of DHGH :
{

(xHi , f̃L,j(x
H
i), i = 1, · · · , NL, j = 1, · · · , S

}
. Its output

is called BNN θ(x, f̃L,i(x)). In order to obtain the posterior distribution of f̃H
knowing the input x, (θ, σ) is sampled by the HMC method (NUTS). We get Nv

samples (θj , σj) with j = 1, . . . , Nv.

12

Proposition 11. The posterior distribution of YH(x) knowing DHGH and N
(
µL(x), σ2L(x)

)
is

p
(
yH |x,DHGH ,DL

)
=

∫∫∫
1√
2πσ

exp

(
− 1

2σ2
(yH − BNN θ(x, yL))2

)
p(θ, σ|DHRS)p(yL|x,DL)dσdθdyL,

(33)
with p(θ, σ|DHGH) the posterior distribution of the hyper-parameters of the BNN
and xBNN the input vector of the BNN.

Corollary 12. The posterior mean of YH(x) is:

µH(x) =

∫∫∫
BNN θ(x, yL)p(θ, σ|DHGH)p(yL|x,DL)dσdθdyL. (34)

The posterior variance of YH(x) is:

CH(x) =

∫∫∫ (
BNN 2

θ(x, yL) + σ2
)
p(θ, σ|DHGH)p(yL|x,DL)dσdθdyL − µ2H(x).(35)

Corollary 13. We use the Gauss-Hermite quadrature of the low-fidelity GP, the
high-fidelity learning set is DHGH , with f̃L,i(x) given at eq. (32). The estimator of
the high-fidelity mean of the output of the high-fidelity model is:

µ̃H(x) =
1

Nv

Nv∑
i=1

S∑
j=1

pS,jBNN θi(x, f̃L,j(x)), (36)

and by corollary 12 the estimator of the variance is:

C̃H(x) =
1

Nv

Nv∑
i=1

 S∑
j=1

pS,jBNN θi(x, f̃L,j(x))

2

+
1

Nv

Nv∑
i=1

σ2i − µ̃2H(x). (37)

When S → +∞,
∑Nv

j=1

∑S
i=1 pS,iBNN θj (x, f̃L,i(x)) tends to the output of the

BNN knowing the posterior law of the GP with parameters θj . Then when Nv →
+∞, f̃H(x) tends to the posterior of the BNN. f̃H(x), given in eq. (36) tends to
the mean of the posterior law of the high-fidelity when Nv and S tend to +∞.

Note that this sampling method is different from the Quantiles method (even
for S = 3 and α ≈ 0.110). Indeed, the Quantiles method gives us complete
information on the law whereas the Gauss-Hermite method is a sampling method.
The weights are different between the random samples and the Gauss-Hermite
method.

The choice of S is a trade-off between a large value that is computationally
costly and a small value that does not propagate the uncertainty appropriately.

13

S = 2 is the smallest admissible value regarding the information that should be
transferred. At first glance, a large value of S could be expected to be the best
choice in the point of view of the predictive accuracy. However, a too large value
of S degrades the accuracy of the predictive mean estimation. This is due to
large variations of f̃L,i(x) for large values of S. Interesting values turn out to
be between 3 and 10 depending on the quality of the low-fidelity emulator, as
discussed in section 5.

For Nv we try to take the highest possible value. However, the calculation
time imposes a limit. We try to have the smallest value which in our case always
converges.

We could expect the computational cost of the GPBNN method to be ex-
pensive. This is due to the fact that we combine Monte-Carlo methods. The
number of operations needed to compute an iteration of the HMC optimisation is
proportional to S×Nv×NH . Because S and NH are small in our context the com-
putational cost of one realisation of the BNN is actually low. Thus optimisation
of the hyperparameters seems feasible for NH . 100.

5 Experiments

In this section we present two analytic examples and a simulated one. The first
one is a 1D function, and we consider that the low-fidelity data may be unknown
in a certain subdomain. The second one is a 2D function with noise. Finally, we
test the strategy on a pendulum system. All the numerical experiments are carried
out on a laptop (of 2017, dell precision with intel core i7) using only CPU and the
running time never exceeds 2 hours.

5.1 1D function approximation

The low- and high-fidelity functions are:

fL(x) = sin 8πx, fH(x) =
(
x−
√

2
)
f2L(x), (38)

with x ∈ [0, 1], where fH is the high-fidelity function (code) and fL the low-
fidelity function (code). These functions have been introduced in [19] and are well
estimated with a DeepGP and a quadratic form of the covariance. In this example
we assume that we have access to a lot of low-fidelity data, NL = 100, while the
high-fidelity data is small, NH = 20. We also consider situations in which there is
a segment Ī ⊂ [0, 1] where we do not have access to fL(x). The learning set for the
high-fidelity code is obtained by partitioning [0, 1] into NH segments with equal
lengths and then by choosing independently one point randomly on each segment

14

with uniform distribution. The learning set for the low-fidelity code is obtained
by partitioning [0, 1]\Ī into NL segments with equal length and then by choosing
independently one point randomly on each segment with uniform distribution. The
test set is composed of NT = 1000 independent points following a random uniform
law on [0, 1].

We denote by
(
x
(i)
T , fH(x

(i)
T)
)
i=1,...,NT

the test set. The error is evaluated by:

Q2
T = 1−

∑NT
i=1

[
µ̃H(x

(i)
T)− fH(x

(i)
T)
]2

NTVT (fH)
, (39)

with VT(fH) = 1
NT

∑NT
i=1

[
fH(x

(i)
T) − 1

NT

∑NT
j=1 fH(x

(j)
T)
]2

. A highly predictive

model gives a Q2
T close to 1 while a less predictive model has a smaller Q2

T. The
coverage probability CPα is defined as the probability for the actual value of the
function to be within the prediction interval with confidence level α of the surrogate
model.

CPα =
1

NT

NT∑
i=1

1
fH(x

(i)
T)∈Iα(x(i)

T)
, (40)

with 1 the indicator function. The mean predictive interval width MPIWα is the
average width of the prediction intervals:

MPIWα =
1

NT

NT∑
i=1

∣∣Iα(x
(i)
T)
∣∣, (41)

with Iα(x) the prediction interval at point x with confidence level α and |Iα(x)|
the length of this interval. For the GPBNN method we obtain the interval Iα(x)
by sampling Nv realisations of the noisy BNN: yj = BNN θj (x) + σjεj where

(θj , σj)
Nv
j=1 is the HMC sample of the posterior distribution of (θ, σ) and the εj ’s

are iid Gaussian random variables with mean zero and variance 1. The interval
Iα(x) is the smallest interval that contains the fraction α of the realisations (yj)

Nv
j=1.

For the GP 1F model and the AR(1) model the prediction interval is centered
at the predictive mean and its half-length is q1−α

2
times the predictive standard

deviation, where q1−α
2

is the 1− α
2 -quantile of the standard Gaussian law, because

the posterior distributions are Gaussian. For the Deep GP model the prediction
interval is obtained by Monte-Carlo sampling of the posterior distribution (with
1000 samples). For a fixed α, we want the CPα to be as close to α as possible and
MPIWα to be as small as possible to have a good uncertainty quantification.

We use GP regression with zero mean function and tensorized Matérn 5/2
covariance function for the low-fidelity GP regression. The implementation we

15

Table 1: Error Q2
T , coverage probability CPα and mean predictive interval

width MPIWα for α = 80% and for different methods of sampling. Here
Ī = ∅.

Q2
T CPα MPIWα

Gauss-Hermite S = 5 0.99 0.88 0.083
Mean-Std 0.99 0.97 0.095
Quantiles 0.99 0.90 0.105

Random Samples S = 5 0.99 0.98 0.92
Random Samples S = 15 0.99 0.96 0.090

use is from [6]. The optimisation for GP regression gives a correlation length of
0.108. For this example we choose Nn = 30 neurons, we use the ReLU function
as activation function, and we use the BNN implementation proposed in [1]. The
sample size of the posterior distribution of the BNN parameter (θ, σ) is Nv = 500.

Low-fidelity surrogate models of different accuracies are considered to under-
stand how our strategy behaves under low-fidelity uncertainty. This is done by
considering that low-fidelity data points are only accessible in [0, 1]\Ī. We have
thus chosen to study three cases, a very good low-fidelity emulator with Ī = ∅
(for which the Q2

l→l of the low-fidelity emulator is 0.99), a good emulator with
Ī = [13 ,

2
3] (Q2

l→l = 0.98) and a poor emulator with Ī = [34 , 1] (Q2
l→l = 0.84).

Table 1 compars for these examples the different sampling techniques, proposed
in section 3, for Ī = ∅. All methods have the same efficiency in terms of Q2

T. The
uncertainties of the predictions are overestimated for all methods. However, the
Gauss-Hermite method has the best CPα and the best uncertainty interval (i.e.,
the smallest mean predictive interval width MPIWα). The quantiles method and
the Mean-Std method also have reasonable CPα, but their uncertainty intervals
are larger. This leads us to use the Gauss-Hermite method. However, we note
that all methods over-estimated the prediction interval. We believe this is due to
the high regularity of the function to be predicted.

In fig. 2 we report the performances of the GPBNN method as functions of S
between 1 and 12 for different Ī. For S = 1 the uncertainty is underestimated and
the accuracy of the prediction is not optimal, which shows that it is important to
exploit the uncertainty predicted by the low-fidelity model. For 2 ≤ S ≤ 5 the
prediction is good, the error is constant and the Q2

T is maximal as seen in fig. 2(a).
Figure 2(b) shows that the coverage probability is acceptable for 2 ≤ S ≤ 7.

16

2 4 6 8 10 12
S

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Q
2 I =

I = [1
3 , 2

3]
I = [3

4 , 1]
2 4 6 8 10 12

S

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CP
80

%

I =
I = [1

3 , 2
3]

I = [3
4 , 1]

2 4 6 8 10 12
S

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
PI

W
80

%

I =
I = [1

3 , 2
3]

I = [3
4 , 1]

(a) Q2
T (b) CP80% (c) MPIW80%

Figure 2: Error Q2
T, coverage probability at 80% and MPIW80% as functions

of S.

0 100 200 300 400 500
Nv

0.0

0.2

0.4

0.6

0.8

1.0

Q2

0 100 200 300 400 500
Nv

0.0

0.2

0.4

0.6

0.8

CP80%

0 100 200 300 400 500
Nv

0.00

0.02

0.04

0.06

0.08

MPIW80%

(a) Q2
T (b) CP80% (c) MPIW80%

Figure 3: Error Q2
T, coverage probability at 80% and MPIW80% as functions

of Nv.

Finally, the MPIW80% on fig. 2(c) is minimal for 3 ≤ S ≤ 7. The best value of S
is in [2, 5] depending on the accuracy of the low-fidelity emulator.

We have carried out a study on the best value of Nv. We thought that the best
value would be the largest possible. Therefore, we tested for values of Nv ranging
from 1 to 1000 for Ī = ∅. For values of Nv greater than 200 the performance
is identical as a function of Nv. For values below 200 a greater variability was
found. We chose to use Nv = 500 to have a sufficient margin. In Figure 3 we have
averaged the estimators for 5 independent training sets.

We now want to compare our GPBNN method with other ones. The single-
fidelity GP method used to emulate the high-fidelity code from the NH high-fidelity
points is called GP 1F. We use the implementation in [6]. The multi-fidelity GP
regression with autoregressive form introduced by [10] and improved by [12] is
called autoregressive model AR(1). The method proposed in both [3, 19] is called
DeepGP, we use the implementation from [19] and the covariance given in [3]
equation (11). The method from [15] is called MBK method. The MBK method
is the combination of a fully connected NN for low-fidelity regression and BNN for

17

0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0 Low-Fidelity
Exact
MBK method
GP-BNN method

0.0 0.2 0.4 0.6 0.8 1.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

Low-Fidelity
Exact
MBK method
GP-BNN method

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

0.5

1.0

Low-Fidelity
Exact
MBK method
GP-BNN method

(a) Ī = ∅ (b) Ī = [1
3
, 2
3
] (c) Ī = [3

4
, 1]

Figure 4: Comparison between the MBK method (in blue) and the GPBNN
method with S = 5 (in green) for the estimation of the function fH eq. (38)
(in red). The high-fidelity data points are in red. The light colored lines
(blue and green) plot the predictive intervals. The uncertainty interval is
given by the I80%(x)

high-fidelity. We implemented it using [1]. The methods that require the minimal
assumptions on the function fL and fH are the GPBNN and MBK methods. This
is the reason why they are the two methods that are compared in fig. 4.

First, the output laws for the MBK method and for the GPBNN presented
in fig. 4 are different. For the MBK method the posterior law is associated to
the high-fidelity BNN knowing both the high-fidelity data and the low-fidelity
model. Unlike the MBK method, the GBBNN method’s output law represents
the posterior law knowing high-fidelity points and the posterior distribution of the
low-fidelity model built from the NL low-fidelity points. In fig. 4 S = 5 because, as
discussed above, this value seems to be the best value when the low-fidelity code
is not so accurate.

The presented techniques for multi-fidelity regression are compared in tables 2
and 3. The GP 1F model and the multi-fidelity AR(1) model do not have good
predictive properties. For the GP 1F model it is due to the lack of high-fidelity
data and for the AR(1) model it is due to the strongly nonlinear relationship
between the code levels. The three other methods perform almost perfectly when
Ī = ∅. The DeepGP is outstanding when Ī = ∅ but the interaction between
the codes (a quadratic form) is given exactly in the covariance structure which is
a strong assumption in DeepGP that is hard to verify in practical applications.
When Ī is non-empty the MBK method gives less accurate predictions because
the method assumes strong knowledge of the low-fidelity code level. However,
its uncertainty interval seems realistic for this example although too large. The
DeepGP has reasonable errors but Table 3 shows that the predictive uncertainty
of the DeepGP method does not fit the actual uncertainty of the prediction (it has
poor coverage probability, either too large or too small). The GPBNN method has

18

the smallest error (best Q2
T) and it is predicting its accuracy precisely (it has good

and nominal coverage probability; here S = 5) and the predictive variance and
prediction interval width are small compared to the other methods: The GP 1F
and AR(1) models have reasonable coverage probabilities but large mean predictive
interval widths. For this simple Illustrative example the GPBNN method seems
to be the most suitable method.

Table 2: Q2
T for different methods and segments Ī of missing low-fidelity

values. Here S = 5.

Ī GP 1F AR(1) DeepGP MBK GPBNN

∅ 0.12 −0.29 0.99 0.99 0.99[
1
3 ,

2
3

]
0.13 −0.34 0.98 0.90 0.98[

3
4 , 1
]

0.12 −0.29 0.90 0.51 0.93

5.2 2D function approximation

The CURRIN function is a two-dimensional function, with x ∈ [0, 1]2. This func-
tion is commonly used to simulate computer experiments [3]. The high- and low-
fidelity functions are:

fH(x) =
[
1− exp

(
− 1

2x2

)]
2300x3

1+1900x2
1+2092x1+60

100x3
1+500x2

1+4x1+20
, (42)

fL(x) = 1
4 [fH(x1 + δ, x2 + δ) + fH(x1 + δ,max (0, x2 − δ))]

+1
4 [fH(x1 − δ, x2 + δ) + fH(x1 − δ,max (0, x2 − δ))] , (43)

Table 3: Coverage probability CPα and mean predictive interval width
MPIWα (between square brackets) for α = 80% and for different methods
and segments Ī of missing low-fidelity values. Here S = 5.

Ī GP 1F AR(1) DeepGP MBK GPBNN

∅ 0.82[0.44] 0.82[0.55] 0.99[0.002] 0.76[0.037] 0.88[0.083][
1
3
, 2
3

]
0.78[0.42] 0.79[0.45] 0.60[0.010] 0.84[0.36] 0.83[0.082][

3
4
, 1
]

0.78[0.44] 0.82[0.45] 0.62[0.097] 0.86[0.31] 0.78[0.084]

19

with x = [x1, x2] and δ the filter parameter. In [3] we have δ = 0.05 and this
gives very small differences between the two functions and the prediction of the
high-fidelity function by the low-fidelity one has Q2

l→h = 0.98. In the following we
set δ = 0.1, and then Q2

l→h = 0.87. An additive Gaussian noise is added to the
low-fidelity code. The noise has a zero mean and a variance equal to the empirical
variance of the signal 0.08.

In this example we also consider that the low-fidelity code is costly and we
only have a small number of low-fidelity points: NL = 25 and NH = 15. The high-
and low-fidelity points are chosen by maximin Latin Hypercube Sampling (LHS).
The test set is composed of 1000 independent points following a random uniform
law on [0, 1]2.

The kernel used for GP regression low-fidelity is a Matérn 5/2 covariance
function. The predictive error for the GP regressor of the low-fidelity model is
Q2 = 0.91 using a nugget effect in the Gaussian process regression. The BNN is
defined with Nl = 40 neurons and the mean and variance are evaluated by eq. (36)
and corollary 13 with Nv = 500. Nl could be chosen arbitrarily but the fact that
we are in a small data context leads us to choose a small value. It is possible to use
cross-validation to choose Nl, but the computer cost would be here prohibitive.
The previous example discussed in section 5.1 suggests choosing S between 3 and
5 for the low-fidelity surrogate model sampling. In this example, due to the large
low-fidelity error the model needs a large value of S to account appropriately for
the uncertainty and we choose S = 5.

All methods have been compared in table 4. The GPBNN model in this ex-
ample seems to be accurate in terms of Q2

T and in uncertainty quantification. It
is much better than the GP 1F model (single-fidelity GP model built with the
high-fidelity data). We presume that it is due to the lack of high-fidelity data.
AR(1) model gives better but not satisfying results. This is expected due to the
non-linearity between codes. The results of the DeepGP method and the MBK
method are worse than the one of the GP 1F in error and in uncertainty. For the
DeepGP this can be understood by the fact that the covariance is not well adapted,
see [3]. And for the MBK the lack of point leads to a very poor optimisation of
the hyper-paremeters.

5.3 Double pendulum

The system can be seen as a dual-oscillator cluster, see Figure 5. The system
is presented in [20]. The inputs and there variations are presented in [11]. The
inputs of the system are of dimension 5, including (k,M, θ, θ̇, y0). The output is of
dimension 1, it is the maximum in the axis y of the mass m in the first 10 seconds.
We have two codes: the high-fidelity code numerically solves Newton’s equation.

20

Table 4: Comparison of the multi-fidelity methods on the CURRIN function
via Q2

T, CP80% and MPIW80%.

GP 1F AR(1) DeepGP MBK GPBNN

Q2
T 0.73 0.80 0.29 0.27 0.88

CP80% 0.68 0.80 0.62 0.57 0.80
MPIW80% 0.5 1.0 0.13 1.9 0.51

Figure 5: Illustration of the double pendulum.

The low-fidelity code simplifies the equation, by linearisation for small angles of
the pendulum motion, and solves the system. Our goal is to build a surrogate
model of the high-fidelity code using NL = 100 and NH = 20, with maximin LHS
sampling. The input parameters are the mass M ∈ [10, 12], the spring stiffness
k ∈ [1, 1.4], the initial angle of the pendulum θ0 ∈ [π4 ,

π
3], the initial derivative

θ̇0 ∈ [0, 1
10] and the initial position of the mass y0 ∈ [0, 0.2]. The fixed parameters

are ẏ0 = 0, the gravitational acceleration g = 9.81, the length of the pendulum
l = 2 and its mass m = 0.5. The output is the maximum in time of the amplitude
of the mass m. The error is computed on a test set, different for each learning set,
of 64 samples uniformly distributed on the input space. To evaluate each model
we use 5 independent learning and test sets.

The Q2 for the low-fidelity surrogate model with a Martérn 5/2 as kernel for
the GP is 0.98. The BNN is defined with Nl = 30 and Nv = 500, and we use
the GPBNN strategy with S = 5. The results are presented in Table 5. The
prediction of the MBK method is not accurate compared to all the other methods.
We think that this is due to the small data set regarding the dimension of the
BNN’s input. However, the uncertainty of prediction is still accurate even if the
uncertainty interval is large compared to the other methods. This result is very
surprising for us in regard with the poor quality of the low-fidelity model, that has

21

Table 5: Comparison of the multi-fidelity methods on the pendulum example
via Q2

T, CP80% and MPIW80%.

GP 1F AR(1) DeepGP MBK GPBNN

Q2
T 0.93 0.94 0.95 0.54 0.95

CP80% 0.81 0.78 0.62 0.88 0.80
MPIW80% 0.154 0.146 0.069 0.859 0.101

a Q2
l→l of 0.7. The DeepGP model shares the best predictive error with GPBNN.

The single fidelity and the AR(1) models display slightly larger errors. The CP80%

values are in the target area for GP1F and AR(1) but they are associated with
large prediction intervals. The DeepGP clearly underestimates the uncertainty of
its predictions. CP80% value is acceptable for the GPBNN and close to the target
value. Moreover, the uncertainty interval is the smallest of all methods. On this
real life example our strategy is competitive compared to other state-of-the-art
methods.

6 Conclusion

Our main focus in this paper is to give the Gaussian Process regression poste-
rior distribution of a low-fidelity model as input to a Bayesian neural network for
multi-fidelity regression. Deterministic and stochastic methods are proposed and
studied to transfer the uncertain predictions of the low-fidelity emulator to the
high-fidelity one, which is crucial to obtain minimal predictive errors and accurate
predictive uncertainty quantification. The Gauss-Hermite quadrature method is
shown to significantly improve the predictive properties of the BNN. The con-
ducted experiments show that the GPBNN method is able to process noisy and
real life problems. Moreover, the comparison with some stat-of-the-art methods
for multi-fidelity surrogate model highlight the precision in prediction and in un-
certainty quantification.

The interest of combining regression method for multi-fidelity surrogate mod-
elling is not to be proved, but this paper adds the heterogeneity of models for
multi-fidelity modelling. To be able to combine heterogeneous models into one
model and to consider the uncertainty between them is one of the keys to adapt
the multi-fidelity surrogate model to a real-life regression problem.

The number of elements in the learning set is not a problem any more thanks

22

to [22]. We have been able to use many points in the learning set. This approach
could be used for the GP part of the GPBNN. With more time in the training the
BNN part will be able to deal with many points, even if this ability is less critical
because NL � NH . Consequently, the GPBNN can be extended in order to tackle
larger data sets.

Existing autoregressive models and Deep GP can only be used for low-dimensional
outputs. We wish to extend the method to high-dimensional outputs. Dimension
reduction techniques have already been used as principal component analysis or
autoencoder, as well as tensorized covariance methods [20] that remain to be ex-
tended to the multi-fidelity context. However, neural networks are known to adapt
to high-dimensional outputs. We should further investigate how to build multi-
fidelity surrogate models with functional input/output in the context of small data.
The ability to construct models that are tractable in high dimensions input and
output is key for further research.

References

[1] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Kar-
aletsos, R. Singh, P. A. Szerlip, P. Horsfall, and N. D. Goodman. Pyro:
Deep universal probabilistic programming. The Journal of Machine Learning
Research, 20(1):973–978, 2019.

[2] H. K. Cigizoglu and M. Alp. Generalized regression neural network in mod-
elling river sediment yield. Advances in Engineering Software, 37(2):63–68,
2006.

[3] K. Cutajar, M. Pullin, A. Damianou, N. Lawrence, and J. González.
Deep gaussian processes for multi-fidelity modeling. arXiv preprint
arXiv:1903.07320v1, 2019.

[4] A. I. Forrester, A. Sóbester, and A. J. Keane. Multi-fidelity optimization
via surrogate modelling. Proceedings of the royal society a: mathematical,
physical and engineering sciences, 463(2088):3251–3269, 2007.

[5] W. Gautschi. Numerical differentiation and integration. In Numerical Anal-
ysis, pages 159–251. Springer, 2012.

[6] GPy. GPy: A Gaussian process framework in python. http://github.com/
SheffieldML/GPy, 2012.

23

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

[7] M. D. Hoffman and A. Gelman. The no-u-turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–
1623, 2014.

[8] L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, and M. Bennamoun. Hands-
on Bayesian neural networks–a tutorial for deep learning users. arXiv preprint
arXiv:2007.06823, 2020.

[9] H. M. D. Kabir, A. Khosravi, M. A. Hosen, and S. Nahavandi. Neural network-
based uncertainty quantification: A survey of methodologies and applications.
IEEE Access, 6:36218–36234, 2018.

[10] M. Kennedy and A. O’Hagan. Predicting the output from a complex computer
code when fast approximations are available. Biometrika, 87(1):1–13, 03 2000.

[11] B. Kerleguer. Multi-fidelity surrogate modeling for time-series outputs. arXiv
preprint arXiv:2109.11374, 2021.

[12] L. Le Gratiet and J. Garnier. Recursive co-kriging model for design of com-
puter experiments with multiple levels of fidelity. International Journal for
Uncertainty Quantification, 4(5):364–386, 2014.

[13] S. Li, W. Xing, R. Kirby, and S. Zhe. Multi-fidelity Bayesian optimization via
deep neural networks. In Advances in Neural Information Processing Systems,
volume 33, pages 8521–8531. Curran Associates, Inc., 2020.

[14] D. J. MacKay. A practical Bayesian framework for backpropagation networks.
Neural computation, 4(3):448–472, 1992.

[15] X. Meng, H. Babaee, and G. E. Karniadakis. Multi-fidelity Bayesian Neural
Network: Algorithms and applications. arXiv preprint arXiv:2012.13294,
2020.

[16] X. Meng and G. E. Karniadakis. A composite neural network that learns
from multi-fidelity data: Application to function approximation and inverse
pde problems. Journal of Computational Physics, 401:109020, 2020.

[17] L. W.-T. Ng and M. Eldred. Multifidelity uncertainty quantification us-
ing non-intrusive polynomial chaos and stochastic collocation. In 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Ma-
terials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference
14th AIAA, page 1852, 2012.

24

[18] A. O’Hagan. A markov property for covariance structures. Statistics Research
Report, 98(13):510, 1998.

[19] P. Perdikaris, M. Raissi, A. Damianou, N. D. Lawrence, and G. E. Kar-
niadakis. Nonlinear information fusion algorithms for data-efficient multi-
fidelity modelling. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 473(2198):20160751, 2017.

[20] G. Perrin. Adaptive calibration of a computer code with time-series output.
Reliability Engineering and System Safety, 196:106728, 2020.

[21] G. Pilania, J. E. Gubernatis, and T. Lookman. Multi-fidelity machine learning
models for accurate bandgap predictions of solids. Computational Materials
Science, 129:156–163, 2017.

[22] D. Rullière, N. Durrande, F. Bachoc, and C. Chevalier. Nested kriging pre-
dictions for datasets with a large number of observations. Statistics and Com-
puting, 28(4):849–867, 2018.

[23] T. J. Santner, B. J. Williams, W. Notz, and B. J. Williams. The design and
analysis of computer experiments. Springer, New York, NY, 2003.

[24] J. Song, Y. Chen, and Y. Yue. A general framework for multi-fidelity bayesian
optimization with gaussian processes. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 3158–3167. PMLR, 2019.

[25] R. K. Tripathy and I. Bilionis. Deep uq: Learning deep neural network sur-
rogate models for high dimensional uncertainty quantification. Journal of
Computational Physics, 375:565–588, 2018.

[26] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learn-
ing. MIT press Cambridge, MA, 2006.

[27] X. Zhang, F. Xie, T. Ji, Z. Zhu, and Y. Zheng. Multi-fidelity deep neu-
ral network surrogate model for aerodynamic shape optimization. Computer
Methods in Applied Mechanics and Engineering, 373:113485, 2021.

25

	Introduction
	Background: Regression with uncertainty quantification
	Gaussian process regression
	Bayesian neural network

	Combining GP regression and BNN
	Sampling methods
	Mean-Standard deviation method
	Quantiles method
	Random Samples method
	Gauss-Hermite quadrature

	Experiments
	1D function approximation
	2D function approximation
	Double pendulum

	Conclusion

