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Diversity is a concept relevant to numerous domains of research varying from ecology, to 
information theory, and to economics, to cite a few. It is a notion that is steadily gaining 
attention in the information retrieval, network analysis, and artificial neural networks 
communities. While the use of diversity measures in network-structured data counts a 
growing number of applications, no clear and comprehensive description is available for 
the different ways in which diversities can be measured. In this article, we develop a formal 
framework for the application of a large family of diversity measures to heterogeneous 
information networks (HINs), a flexible, widely-used network data formalism. This extends 
the application of diversity measures, from systems of classifications and apportionments, 
to more complex relations that can be better modeled by networks. In doing so, we not 
only provide an effective organization of multiple practices from different domains, but also 
unearth new observables in systems modeled by heterogeneous information networks. We 
illustrate the pertinence of our approach by developing different applications related to 
various domains concerned by both diversity and networks. In particular, we illustrate the 
usefulness of these new proposed observables in the domains of recommender systems 
and social media studies, among other fields.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Diversity is a concept of importance in several different domains of research, such as ecology [1], economy [2], public 
policy [2], information theory [3,4], social media studies [5,6], and complex systems [7,8], among many others. Across the 
full range of domains where it is used, diversity refers to some combination of three properties of systems including classi-
fications of items, identified as variety (the number of types of entities in the system), balance (the distribution of entities 
into types), and disparity (how different types of entities are between them) [9]. Diversity measures are quantitative indices 
for these properties. Prominent examples are Shannon’s entropy in information theory [10], the Gini Index in economy [11], 
and the Herfindahl-Hirschman Index [12] in competition law. Examples of the application of these indices can be found in 
the measurement of biodiversity in ecology [13], industrial concentration in economics [14,15], and online social phenom-
ena such as filter bubbles and echo chambers [5]. The notion of diversity has recently become central as well in the context 
of digital platforms and online media. The fact that digital platforms increasingly resort to algorithmic recommendations 
to drive the choices of users has led the scientific community to analyze the impact of recommendations made to users. 
Although one can argue that this recent development provides users with useful information, the phenomenon also feeds 
into fears of unpredictable outcomes over the long term, the most debated being the emergence of so-called filter bubbles 
[16–18]. In this context, while the need to measure and audit recommendation systems is commonly agreed upon [19,20], 
there is no consensus on how to properly measure the impact of recommendations on users. On the other hand, many 
studies have highlighted the need to explore diversity or serendipity (the fortunate discovery of unexpected items) in the 
way information is exposed to users [21–23].

Diversity measures can be computed over different types of data in a multitude of contexts. Access to data traces of dif-
ferent real phenomena has enabled for a tremendous extension of the reach of quantitative studies in many disciplines. One 
particular type of data over which diversity measures can be computed is network-structured data, best represented using 
graph formalisms. Recently, formalisms such as heterogeneous information networks (HINs) [24,25] have been successfully 
used to provide ontologies for unstructured data, especially in the contexts of information retrieval [25] and recommender 
systems [26], as well as in the artificial intelligence and representation learning communities [27–29].

Much of the success of these representations and their precursors – such as multi-layer graphs [30,31] – is due to the 
way in which semantic relations can be mapped to sets of paths between groups of entities. These sets of paths are called 
meta paths and can be easily exploited by algorithms. One prominent way of exploiting meta paths is by constraining 
random walks to them (i.e., constraining random walks to paths contained in a given meta path). This procedure has been 
extensively used in the computation of similarity [32–34] or for recommendation purposes [26,35,36]. While the application 
of diversity measurements to graph structures is not new [37,38], it is gaining widespread use in different communities 
[39], and in particular in the information retrieval and recommender systems communities [40]. Few studies have hinted at 
the application of entropy [10] (one prominent diversity measure) to distributions computable from meta path structures in 
heterogeneous information networks. This application of entropy has been done to provide diverse recommendations [41]. In 
similarity searches (the search for similar items in information retrieval), entropy has also been used to measure information 
gain in the selection of different meta paths [42,43]. However, no clear and comprehensive description is currently available 
for the different ways in which diversity measures can be computed from data described with network-structured data. 
2
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Several communities interested in both network representation models and diversity measures have limited – or no – 
examples of application at their disposal, let alone any theory or a framework on which to develop applications.

In this article we develop network diversity measures: a comprehensive theory of diversity and a formal framework for its 
application to network-structured data. This framework relies on modeling data with heterogeneous information networks 
using multigraphs for generality. Doing so, we collect and unify a wide range of results on quantitative diversity measures 
across different disciplines covering most practical uses. And in developing this formal framework, we also provide a unified 
reformulation of several practices existing in scientific literature. In addition, we point to new information that may be 
extracted by measuring the diversity of previously unconsidered observables in network-structured data. One of the main 
applications of network diversity measures is the extension of existing diversity measures, from relatively simple systems of 
classification and apportionment (e.g., species in ecosystems, units produced by firms) to more complex data, best modeled 
by network structures. The relevance and usefulness of these new network diversity measurements are illustrated by the 
development of practical examples in different domains of research, including recommender systems, social media and 
platforms, and ecology, among others.

The main contributions of this article are:

• a new organization of an axiomatic theory of diversity measures encompassing most uses across several disciplines;
• a formalization of concepts emerging in graph theory (especially in applications in recommender systems, information 

retrieval, and representation learning communities), in particular that of meta paths and observables computable from 
meta paths;

• the proposal of several network diversity measures, resulting from applying diversity measures to distribution probabilities 
computable in the heterogeneous information network formalism;

• the application of these network diversity measures to previously existing quantitative observables in different research 
domains and the development of new applications through examples.

In Section 2, we provide a framework to organize diversity measures found in the literature. This new framework has the 
advantage of covering a large part of existing concepts relating to diversity, and of formalizing the algebraic properties that 
they obey. Then, in Section 3, we define random walks in the context of heterogeneous information networks. In particular, 
we formalize the concept of meta path. Constrained random walks along particular meta paths will play a central role in 
the rest of the article when computing diversity in systems represented by networks. Indeed, in Section 4, we combine 
diversity measures described within the framework with different observables computed from constrained random walks in 
order to derive families of interpretable network diversity measures. Finally, in Section 5 we illustrate the relevance of these 
measures using them in applications in various fields concerned by the concept of diversity.

2. The concept of diversity

In general, diversity refers to certain properties of a system that contains items that are classified into types. These 
properties are related to the number of types used, the way in which items are classified into types, and how different types 
are from one another. This simple model of items classified into types accounts for the usage of diversity in many domains 
of research. Prominent examples are units of wealth or revenue classified as belonging to different persons (in economics), 
the number of individuals classified into different species (in ecology), or produced units of a commodity classified by firms 
(in competition law).

2.1. Items, types, and classifications

Let us consider a system made of a set I of items, a set T of types, and a membership relation τ ⊆ I × T indicating the 
way items are classified according to types: item i ∈ I is classified as being of type t ∈ T if and only if (i, t) ∈ τ . The use 
membership relations allows for an item to have more than one type. The diversity measures considered in this article are 
functions D : I × T →R+ that map any such system to a diversity value d, i.e., D : τ �→ d ∈R+ .

We do not consider the problem of identification, i.e., what should be considered as an item in a universe of possible 
elements and what types should be considered in a classification. This identification problem is an important question, 
however it deals with the meaning of the system’s elements and its semantic content, which is beyond the scope of this 
work.

We define the abundance of type t ∈ T as the number of items of that type: aτ (t) = |{i ∈ I : (i, t) ∈ τ }|, and the 
proportional abundance as pτ (t) = aτ (t)

|τ | . Using these definitions, we further narrow our consideration of diversity mea-
sures to functions that map proportional abundances resulting from a classification to non-negative real values: D(τ ) =
D(pτ (t1), . . . , pτ (tk)) with k = |T | being the number of types. Hence, a diversity measure D is an application from �∗ to 
R+ , where �∗ = ∪k≥0�

k is the union of all standard k-simplices, that is the set of probability distributions on discrete 
spaces of size k + 1:

�k =
{
(p1, . . . , pk+1) ∈Rk+1 : ∀i ≤ k, pi ∈ [0,1] and

∑
i≤k+1 pi = 1

}
.

3
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2.2. The diversity of diversity measures

As stated in the previous subsection, the term diversity is used to designate various properties of dissimilarity in a range 
of domains, such as ecology [44–46,1], life sciences [47], economics [2,12], public policy [48–50], information theory [3,4], 
internet & media studies [5,6], physics [51,52], social sciences [53], complexity sciences [54,55,7,8], and opinion dynamics 
[56]. This term refers to different properties of systems of items classified into types. Accordingly, diversity measures are 
functions assigning to each system a diversity value, intended to be a quantitative measurement of these different properties.

The properties referred to by the term diversity across the full range of sciences are some combination of three properties, 
identified as variety, balance, and disparity [9]:

• variety is the number of types into which items of a system can be classified;
• balance is a measure of the extent to which the pattern of proportional abundances resulting from a classification of 

items into types is evenly distributed (i.e., balanced);
• and disparity is the degree to which types can be differentiated according to a metric on the set of types T .

The reader is referred to [57] for an extended discussion of these properties.
We illustrate the concept of diversity through classic examples of diversity measures present in works from different 

fields. For this purpose, we consider a proportional abundance distribution p = (
p1, p2, . . . , p|T |

)
resulting from the classifi-

cation of items I into types T .
Richness [58,59] is a common diversity measure only related to the property of variety. Often used in ecology, it simply 

measures the number of types effectively used to classify items. If a bookcase contains novels, comics, and travel books, its 
richness is equal to 3, regardless of proportions.

R(p) = | {i ∈ {1,2, ..., |T |} : pi > 0} |.
Richness only counts types that are effectively used in a classification. If one considers a typology of 20 possible types 

to examine two bookcases, the first containing books of 3 different types and the second book of 4 different types, the 
second one will be more diverse under this measure. The property captured by this measure coincides with the property 
identified as variety. Richness may serve as a basis for other measures, such as, the ratio between richness and the number 
of classified items [60, Section 9].

Shannon entropy [10,61], here denoted by H and related to the variety and balance properties, is a cross-disciplinary 
diversity measure, most often used in the field of information theory. It quantifies the uncertainty in predicting the type of 
an item taken at random. If one knows the proportional abundance of types of books in a bookcase, and if one draws books 
from it at random, Shannon entropy is the average number of binary type-checks (i.e., “yes or no” questions about the book 
belonging to a given type) one would have to make per book in order to determine its type:

H(p) = −
|T |∑
i=1

pi log2 pi .

Many classical diversity measures are functions of the properties identified as variety and balance. Shannon entropy, 
introduced in the context of channel capacity in telecommunications, is clearly affected by proportional abundances, and 
thus by their balance, but also by their variety: according to Shannon entropy, a bookcase with books that are uniformly 
distributed among 5 types is more diverse than a bookcase with books that are uniformly distributed among 4 types. By 
applying normalization, one may restrain the measurement to the property of balance. The diversity measure known as
Shannon Evenness [62] in ecology, for example, consists of the ratio between measured entropy and maximal entropy for 
the same number of effective types and only accounts for the property of balance.

Shannon entropy has found renewed use by the information retrieval and artificial intelligence communities. In infor-
mation retrieval, some recommender systems exploit Shannon entropy to improve performance of algorithmic recommen-
dations [63]. In deep learning methods for artificial intelligence, Shannon entropy is often used for quantifying information 
gain [64].

The Herfindahl-Hirschman Index [12], here denoted as HHI, is mainly used in competition law or antitrust regulation 
in economy. It is intended to measure the degree of concentration of items into types. If one takes 2 books from a bookcase 
at random, Herfindahl-Hirschman Index is the probability of them belonging to the same type:

HHI(p) =
|T |∑
i=1

p2
i .

Related to the variety and balance properties, this index (also known as the Simpson Index [65]), was first introduced by 
Hirschman [66] and later by Herfindahl [67] in the study of the concentration of industrial production. Concentration and 
diversity are opposite and complementary concepts. Higher diversity means lower concentration and vice versa.
4
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A related diversity measure, the Gini-Simpson Index [11] (also called the Gibbs-Martin Index in sociology and psychol-
ogy [68] and Population Heterozygosity in genetics [69]) is another prominent example of a measure accounting for variety
and balance. Also known as the probability of interspecific encounters in ecology [70], it is the probability of the comple-
mentary event associated with the Herfindahl-Hirschman Index, i.e., the probability of randomly selecting two items with 
different types.

This is not to be confused with the Gini Coefficient [71], commonly used in economics, which is a balance-only diversity 
measure that may be interpreted as a measure of inequality where items are units of wealth distributed into types. One of 
the formulations of the Gini Coefficient is given by

Gini(p) = 1

2|T |
|T |∑
i=1

|T |∑
j=1

|pi − p j|.

Other diversity measures address only the property of balance. The Berger-Parker Index [72], here denoted as BPI, is 
another prominent example. Also common in ecology, it measures the proportional abundance of the most abundant type. 
If 90% of the books in a bookcase are comics, its Berger-Parker Index will be 0.9, regardless of how the remaining 10% of 
books are classified:

BPI(p) = max
i∈{1,2,...,|T |}

pi .

It is easy to see that only the balance property affects this diversity measure. If the books of a first bookcase are classified 
as 90-10% into two types and those in a second bookcase as 90-5-5% into three types, both bookcases still have the same 
diversity according to this measure.

Another group of existing diversity measures addresses the disparity property. In its most general form, a pure-disparity
diversity measure is a function of the pairwise distance between types of T in some disparity space [73]. One example of a 
measure of disparity is proposed in [74]:

Disparity(T ) = 1

|T | (|T | − 1)

∑
t,t′∈T

d(t, t′),

where d is a metric on the set T of types. Disparity is the underlying property in some use cases of the notion of diver-
sity. Examples may be found in fields such as paleontology [75], economics [76], and biology [77]. Furthermore, diversity 
measures accounting for disparity as well as variety and balance exist [78].

While the measurement of disparity relies on the existence of topological or metrical structures for the set of types T , 
that of variety and balance relies solely on the establishment of identification and classification in a system of items and 
types, which is the setting of many studies and applications. As indicated in the previous subsection, we focus in this article 
on diversity measures for this latter setting, thus setting aside disparity-related diversity measures.

2.3. A theory of diversity measures

In Section 2.1, we first limited the scope of diversity measures to that of functions mapping systems with given items, 
types, and classification, to non-negative real numbers. Then we further limited the scope to only functions mapping prob-
ability distributions to non-negative real numbers. In this section, we further reduce the scope of diversity measures by 
prescribing axioms reflecting the desired properties such measures should have.

In the domain of information theory, there are several possible axiomatic theories that give rise to entropies and diversity 
measures (cf. [79–82]). Drawing from these existing axiomatizations, we propose an organization of axioms suited for the 
purposes of this article.

We first introduce four axioms that encode properties which are necessary for a diversity measure, i.e., symmetry, expan-
sibility, transferability, and normalization. Then, we present a family of functions that satisfy these properties. By imposing an 
additional property known as replicability in the form of an axiom, the resulting measures of the theory correspond to the 
family of functions known as true diversities. One member of this family, closely related to Shannon entropy, has additional 
properties of interest for the measurement of diversity in networks.

2.3.1. Properties of diversity measures
Let us consider a diversity measure D : �k−1 →R+ , a probability distribution p = (p1, ..., pk) ∈ �k−1, and some proper-

ties of interest in the form of axioms for a theory of diversity.
A first property, called symmetry (or anonymity), is said to be satisfied by a diversity measure if it is invariable to 

permutation of types. For instance, a bookcase with 25% comics and 75% novels has the same diversity as a bookcase with 
75% comics and 25% novels using a symmetric diversity measure. This means that symmetric diversity measures are blind 
to the nature of types.
5
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Axiom 1 (Symmetry). For any permutation σ on the set {1, 2, ..., k}, a diversity measure D is symmetric if and only if

D(p1, p2, ..., pk) = D(pσ (1), pσ (2), ..., pσ (k)).

We also require that diversity measures be expansible, or invariant to non-effective types, that is, invariant to the addition 
of types with no items. Adding a type with no items does not impact diversity: considering the type “dictionaries” which 
does not contain any books does not change the diversity of a bookcase.

Axiom 2 (Expansibility). A diversity measure D is expansible if and only if

D(p1, p2, ..., pk︸ ︷︷ ︸
k entries

) = D(p1, p2, ..., pk,0︸ ︷︷ ︸
k+1 entries

).

For a diversity measure to be a measure of balance it needs to satisfy the transfer principle, also called the Pigou-Dalton 
principle [83]: if a bookcase has more novels than comics, replacing some novels with new comics should increase its 
diversity (if the new number of comics does not surpass the new number of novels).

Axiom 3 (Transfer principle). A diversity measure D satisfies the transfer principle if and only if, for all i, j in {1, ..., k}, if 
pi > p j , then

∀ε ≤ pi − p j

2
, D(. . . , pi − ε, . . . , p j + ε, . . .︸ ︷︷ ︸

k entries

) ≥ D(. . . , pi, . . . , p j, . . .︸ ︷︷ ︸
k entries

).

It is easy to verify that Axioms 1, 2, and 3 imply the following merging property.

Theorem 1 (Merging). A diversity measure D that satisfies Axioms 1, 2 & 3 is such that

D(. . . , pi, pi+1, . . .︸ ︷︷ ︸
k entries

) ≥ D(. . . , pi + pi+1, . . .︸ ︷︷ ︸
k−1 entries

).

Proof. By the application of Axiom 2 and Axiom 1, the claim of the theorem is equivalent to

D(. . . , pi, pi+1, . . .︸ ︷︷ ︸
k entries

) ≥ D(. . . , pi + pi+1,0, . . .︸ ︷︷ ︸
k entries

).

Without loss of generality, let us suppose that pi ≥ pi+1, and let us apply the transfer principle of Axiom 3 to this dis-
tribution (. . . , pi + pi+1, 0, . . .) of k entries. The first condition for its application is always satisfied, i.e., pi + pi+1 > 0
(if pi + pi+1 = 0 the theorem is trivially assured by Axioms 2 & 1). Choosing ε = pi+1 satisfies the second condition of 
application, because pi+1 ≤ (pi + pi+1 − 0)/2 if pi ≥ pi+1. Finally, the application of Axiom 3 gives the desired result. �

These first three axioms also imply that diversity measures of the theory are bounded.

Theorem 2 (Bounds for diversities measures). A diversity measure D that satisfies Axioms 1, 2 & 3 is such that

D(1/k,1/k, . . . ,1/k︸ ︷︷ ︸
k entries

) ≥ D(p1, p2, . . . , pk) ≥ D(1,0, . . .︸ ︷︷ ︸
k entries

).

Proof. The second inequality is warranted by Theorem 1. If distribution p = (p1, . . . , pk) ∈ �k−1 is the uniform distribution, 
that we shall denote by u, the first inequality is trivially satisfied. If, on the other hand, p is any distribution that is not 
uniform, we will show that Axiom 3 assures the construction of a sequence of m distributions p1, . . . , pm in �k−1, such 
that p0 = p, pm is the uniform distribution, and D(p1) ≤ D(p2) ≤ . . . ≤ D(pm), thus assuring that D(u) ≥ D(p). We do this 
by adapting the proof of [14, Thm. 1] developed for measures of concentration. Because of Axiom 1, we can set, without 
loss of generality, p1 as the distribution that results from ordering the entries of p in decreasing order, still resulting in 
D(p1) = D(p). Given a non-uniform distribution pl of the sequence, and assuming that its entries are arranged in decreasing 
order, we will show how to compute the next distribution of the sequence, pl+1, so that D 

(
pl+1

) ≥ D 
(

pl
)
, using Axiom 3. 

Let δl be a vector in Rk resulting from subtracting pl and u element-wise: δl
i = pl

i − ui = pl
i − 1/k. Now let i− be the 

first negative entry of δl: i− = min
{

1 ≤ i ≤ k : δl
i < 0

}
. Because entries of pl cannot all be less than 1/k, we know that 

i− is never the first entry (i− > 1), and because entries cannot all be greater than 1/k, we know that i− can always be 
6
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determined (1 < i− ≤ k), as long as pl is non-uniform. Because pl is not uniform, we know that pl
1 > 1/k, and so we 

transfer the quantity min(δl
1, −δl

i− ) from entry pl
1 to entry p− to compute a distribution pl+1. The components of pl+1 are 

computed as: pl+1
1 = pl

1 − min(δl
1, −δl

i− ), pl+1
i− = pl

i− + min(δl
1, −δl

i− ), and pl+1
i = pl

i for i /∈ {1, i−}. Next, we compute pl+1

as the distribution resulting from arranging the elements of pl+1 in decreasing order. Because either entry i = 1 or entry 
i = i− was set to 1/k, a new entry is now 1/k (as entries in u). And because, at each step in the sequence, a new entry is 
set to 1/k, we know that this sequence is finite. �

In order for diversity measures to have a scale for measurement, we need to impose values of minimal and maximal 
diversity [15]. We establish this as a property, called the normalization principle. Normalization means that if all types of 
books are equally abundant in a bookcase, its diversity is equal to the number of effective types.

Axiom 4 (Normalization). A diversity measure D satisfies the normalization principle if and only if

D(1/k, ...,1/k︸ ︷︷ ︸
k entries

) = k.

It is easy to see that values of diversity measures of the theory are bounded as a consequence of the normalization 
axiom.

Theorem 3 (Bounds for diversity values). A diversity measure D that satisfies Axioms 1, 2, 3 & 4 is such that, for all p ∈ �k−1 , we have 
k ≥ D(p) ≥ 1.

2.3.2. Self-weighted quasilinear means
One of the advantages of restricting the scope of diversity measures to functions of distributions p ∈ �∗ , is that they 

may then be used in conjunction with probability computations, as will be shown in Section 4. The measures considered 
thus far also belong to the more general class of aggregation functions. The most general form of aggregation functions that 
is compatible with the axioms of probability [84] is the family of quasilinear means (developed by Kolmogorov [85] and 
Nagumo [86]). Quasilinear means of a probability distribution are central to the quantification of information in information 
theory [3], and are of the form

φ−1

(
k∑

i=1

wiφ(pi)

)
,

with weights wi such that ∀i ∈ {1, . . . , k}, (0 ≤ wi ≤ 1) with 
k∑

i=1
wi = 1, and for φ a strictly monotonic increasing continuous 

function.
A sub-family of quasilinear means, the so-called self-weighted quasilinear means [87], has additional properties that will 

be of interest in what follows.

Definition 1 (Self-weighted quasilinear means [87]). A function S : �∗ →R+ is a self-weighted quasilinear mean if it is of the 
form

S(p) = φ−1

(
k∑

i=1

piφ(pi)

)
,

with φ a strictly monotonic increasing continuous function.

Further restrictions of the considered diversity measures, described by the following theorem, result in a family of func-
tions that simultaneously satisfy the above properties described by the axioms.

Theorem 4 (Reciprocal self-weighted quasilinear means are diversity measures of the theory). A reciprocal self-weighted quasilinear 
mean D = 1/S such that h(t) = t φ(t) is concave (with function φ from Definition 1), satisfies Axioms 1, 2, 3 & 4.

Proof. Let us consider a diversity measure D in the form of the reciprocal of a self-weighted quasilinear mean: D(p) = 1
S(p)

, 
with S of the form given in Definition 1, with φ continuous strictly increasing such that h(t) = tφ(t) is concave. It is easy 
to check that D satisfies Axiom 1 (symmetry) because of the commutativity of the sum. Because the summands are self-
weighted, adding new zero-valued entries results in zero-valued summands, which assures that Axiom 2 (expansibility) is 
7
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satisfied. By construction, uniform distributions of k entries have diversity 1
φ−1(k·(1/k)·φ(1/k))

= k, assuring that D satisfies 
Axiom 4 (normalization).

Finally, given p = (. . . , pi, . . . , p j, . . .) with pi > p j and ε ≤ (pi − p j)/2, let us consider p̃ = (. . . , pi − ε, . . . , p j + ε, . . .). If 
S(p̃) ≤ S(p), then D(p̃) ≥ D(p) and D would satisfy Axiom 3 (transfer principle). Because φ is monotonic strictly increasing, 
φ−1 also is, and S(p̃) ≤ S(p) if 

∑k
l=1 h(pl) ≥ ∑k

l=1 h(p̃l). Because p and p̃ share all but the i-th and j-th entries, this last 
inequality is assured by

h(pi) − h(pi − ε) + h(p j) − h(p j + ε) ≥ 0.

To see that this inequality holds, let us note that we can always compute θ = (pi − p j − ε)/(pi − p j − 2ε), with θ ∈ (0, 1), 
so that pi = θ(pi − ε) + (1 − θ)(p j + ε) and p j = (1 − θ)(pi − ε) + θ(p j + ε). This step is adapted from the proof of [14, 
Thm. 3]. θ is always positive by the restrictions on ε required by Axiom 3. By concavity of h we can write inequalities for 
h(pi) and h(p j):

h(pi) = h
(
θ(pi − ε) + (1 − θ)(p j + ε)

) ≥ θh(pi − ε) + (1 − θ)h(p j + ε),

h(p j) = h
(
(1 − θ)(pi − ε) + θ(p j + ε)

) ≥ (1 − θ)h(pi − ε) + θh(p j + ε).

Additioning these two inequalities we obtain h(pi) − h(pi − ε) + h(p j) − h(p j + ε) ≥ 0. �

Theorem 4 provides us with an explicit expression for functions that satisfy Axioms 1, 2, 3 & 4. The use of self-weighted 
quasilinear means yields, however, a subset of the functions defined by these axioms. Indeed, there are diversity measures 
that satisfy these axioms but cannot be expressed as self-weighted quasilinear means (e.g., Hall-Tideman Index [88]).

2.3.3. True diversities
An additional property, the replication principle, captures a characteristic of some diversity measures according to which, 

if types are replicated m times, diversity is multiplied by m [15]. Let us suppose, for example, that a bookcase contains 25% 
comics and 75% novels. Let us also suppose that we add new items from a different bookcase, in which 25% of books are 
dictionaries and 75% of books are photo albums. The diversity of the new –replicated– bookcase with four types of books is 
double that of the original bookcase.

Axiom 5 (Replication). A diversity measure D satisfies the replication principle if it is such that

D

⎛
⎜⎜⎜⎝ p1

m
,

p2

m
, ...,

pk

m︸ ︷︷ ︸
1st copy

,
p1

m
,

p2

m
, ...,

pk

m︸ ︷︷ ︸
2nd copy

, ...,
p1

m
,

p2

m
, ...,

pk

m︸ ︷︷ ︸
mth copy

⎞
⎟⎟⎟⎠ = m D(p1, ..., pk).

The addition of the replication principle to the theory of diversity uniquely defines a sub-family within that of reciprocal 
self-weighted quasilinear means, called true diversities.

Definition 2 (True diversity of order α). The α-order true diversity, denoted Dα , is the application Dα : �∗ → R+ , such that, 
given p = (p1, . . . , pk) ∈ �∗ and α ∈R+ ,

Dα(p) =
(

k∑
i=1

pα
i

) 1
1−α

if α �= 1, and D1(p) =
(

k∏
i=1

ppi
i

)−1

, with pi
pi := 1 if pi = 0.

True diversities were first introduced as the Hill Number [13] and named true diversity in [89]. Variants of true diversities 
exist in different domains. The Hannah-Kay concentration index of order α [90] is the reciprocal of Dα . In information 
theory, Rényi Entropy [4] of order α, denoted by Hα , is the natural logarithm of Dα : Hα(p) = lnDα(p).

Theorem 5 (Diversity measures that satisfy the replication principle are true diversities [15]). Suppose that a diversity measure D can 
be represented as a reciprocal self-weighted quasilinear mean as in Theorem 4, then D is a true diversity for some order α if and only 
if D satisfies the replication principle of Axiom 5.

The reader is referred to [15, Theorem 3.1] for the proof.
The replication principle may be needed to avoid otherwise paradoxical results in many applications. Let us con-

sider for example a library with 3 bookcases, each containing items of 3 different types: 9 types of items organized 
in 3 bookcases, with no types dispersed in multiple bookcases. Let us also suppose that on each one of the 3 book-
cases, the distribution of items into the 3 types is the same: 10-20-70%, i.e., p = (0.1, 0.2, 0.7) for each bookcase and 
8
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Table 1
Summary of true diversities of order 0, 1, 2, and ∞, and their relation to classic diversity measures.

Order (α) Name True diversity Expression Relation to other diversity measures

0 Richness diversity D0(p) |{i ∈ {1, . . . ,k} : pi > 0 ∈}| Same as richness [58,59].

1 Shannon diversity D1(p)

⎛
⎜⎝ k∏

i=1
pi �=0

ppi
i

⎞
⎟⎠

−1

Exponential of Shannon entropy 
[10,61]: H(p) = log2 (D1(p)), with H
in base 2.

2 Herfindahl diversity D2(p)

(
k∑

i=1
p2

i

)−1

Reciprocal of the 
Herfindahl-Hirschman Index [12]: 
HHI(p) = 1/D2(p).

∞ Berger diversity D∞(p)

(
max

i∈{1,...,k}
{pi}

)−1

Reciprocal of the Berger-Parker Index 
[72]: BPI(p) = 1/D∞(p).

p =
(

0.1
3 , 0.2

3 , 0.7
3 , 0.1

3 , 0.2
3 , 0.7

3 , 0.1
3 , 0.2

3 , 0.7
3

)
for the library of 3 bookcases. Finally, let us now suppose that, due to mainte-

nance costs, 2 of our 3 bookcases will have to be discarded, and that we are interested in measuring the diversity that will 
be lost, and the diversity we will manage to preserve. If we consider the Gini-Simpson Index (cf. Section 2.2), we measure 
the initial diversity of our 3 bookcases at 0.82, the diversity of the saved bookcase at 0.46, and the diversity of the 2 lost 
bookcases at 0.73. Paradoxically, because the Gini-Simpson Index does not satisfy the replication principle, we have saved 
about 56.1% ( 0.46

0.82 ) of the initial diversity, but we have lost about 89% ( 0.73
0.82 ) of it. Had we taken the true diversity of order 

1 for measurements, the initial diversity would have been of 6.69, while that of the saved bookcase would have been 2.23, 
and that of the 2 lost bookcases would have been 4.46. Because true diversities satisfy the replication principle, this would 
have yielded no paradox: we would have measured a lost of 2/3 of the diversity while measuring 1/3 of the initial diversity 
saved. The replication principle allows for interesting algebraic properties of diversity measures: when gathering or disas-
sembling multiple distributions, this principle ensures that sum of diversities is preserved. For further examples, and for a 
discussion of the implications of the replication principle in ecology, the reader is referred to [91,92].

True diversities are related to several of the diversities used in different domains and identified in Section 2.2. Richness of 
a distribution p can be computed as the limit of Dα(p) when α → 0+ , observing that pα

i → 1 if pi > 0, thus resulting in the 
count of effective types. We thus identify richness with 0-order true diversity, calling it Richness diversity. D1(p), 1-order 
true diversity (or Shannon diversity), also called perplexity [93], is related to Shannon entropy H(p) of p by exponentiation: 
D1(p) = 2H(p) when entropy is computed in base 2. D2(p), 2-order true diversity (or Herfindahl diversity), is the reciprocal 
of the Herfindahl-Hirschman Index: D2(p) = 1/HHI(p). The Berger-Parker Index is also identified with the result of a limit 
process. By observing that Dα

α→∞−−−→ 1/max{p1, . . . , pk} (Section 5.4 of [3]) we can define

D∞(p) := 1

max{p1, . . . , pk} ,

and thus conclude that D∞(p) = 1/BPI(p) (here called Berger diversity). These relations are summarized in Table 1. In pre-
vious relations, the fact that the Herfindahl-Hirschman Index and the Berger-Parker Index are reciprocal to true diversities 
underlines that they are intended to measure concentration.

Let us illustrate some of these properties in Fig. 1. By virtue of the axioms of the theory, all true diversities have equal 
values for uniform distributions with the same number of effective (non-empty) types. In this case, diversity is the number 
of effective types (horizontal lines in Fig. 1). However, when the distribution into types is not uniform, these measures 
behave differently (decreasing curves in Fig. 1). In this case, parameter α expresses the way non-uniformity, or balance, 
is taken into account. If α is low, inequalities in a distribution will only have a weak impact on diversity values, and in 
the extreme case where α = 0 (i.e., for richness), inequalities in proportional abundances are not at all taken into account. 
Conversely, if α is high, inequalities in a distribution will have a strong impact on diversity values, and in the extreme case 
where α → ∞ (i.e., for Berger diversity), only the highest abundance is taken into account. Red and blue curves in Fig. 1
illustrate how parameter α can modulate the relative importance given to variety and balance (cf. Section 2.2): a distribution 
with 6 types could be evaluated less diverse than one with 4 types if it is sufficiently unbalanced for a given value of α. 
True diversities hence allow us to have a continuum of measures which give a different weight to the variety and balance
of distributions: α → 0 means that diversity takes only variety into account, while α → ∞ means that diversity takes only 
balance into account.

2.4. Relative true diversities

As with Rényi entropy, true diversities can be generalized to form a family of divergence measures. Relative true diversities
generalize the family of true diversities by allowing them to take any baseline other than the uniform distribution (that 
is, the distribution with maximal diversity). In different applications, it might be interesting to measure diversity with 
respect to another reference distribution. In Bayesian inference, for example, divergence of the posterior, relative to the 
9
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Fig. 1. Values of different true diversities, depending on order α, for different distributions. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

prior probability distribution, is a measure of gained information. Relative true diversities generalize this notion using true 
diversity.

This generalization is analogous to the well-known generalization of the family of Rényi entropies to the family of 
Rényi divergences [4,94]. Among these generalizations, a well-known special case is the generalization of Shannon entropy
to Kullback-Leibler divergence (also known as relative entropy) [95,96].

Abusing notation, we also denote Dα the α-order relative true diversity between two distributions p, q ∈ �k−1, as de-
scribed below.

Definition 3 (Relative true diversity). The relative true diversity of order α is the application Dα : �∗ × �∗ → R+ such that, 
given p = (p1, . . . , pk) ∈ �k−1, q = (q1, . . . , qk) ∈ �k−1, with pi = 0 whenever qi = 0, and α ∈R+ ,

Dα(p ‖ q) =

⎛
⎜⎜⎝

k∑
i=1

qi �=0

pα
i q1−α

i

⎞
⎟⎟⎠

1
α−1

if α �= 1.

As with true diversities, extreme values are defined as the result of limit processes (cf. Theorems 4, 5, & 6 of [94]):

D0(p ‖ q) := |{i ∈ {1, . . . ,k} : pi �= 0 and qi �= 0}| ,

D1(p ‖ q) :=

⎛
⎜⎜⎝

k∏
i=1

qi �=0

(
pi

qi

)pi

⎞
⎟⎟⎠

−1

with pi
pi := 1 if pi = 0, and D∞(p ‖ q) :=

⎛
⎝max

i≤k
qi �=0

pi

qi

⎞
⎠−1

.

This definition is analogous to that of true diversities with respect to Rényi entropy: Dα(p ‖ q) = eHα(p ‖ q) . Thus, relative 
true diversities satisfy analogous properties. If u = (1/k, . . . , 1/k) is the uniform distribution, then, for p ∈ �k−1 we have 
10
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Dα(p ‖ u) = k/Dα(p), and thus Dα(p ‖ u) ∈ [1, k] (1 when p is also uniform and k when Dα(p) is minimal, i.e., equal to 1). 
For a fixed k and a fixed p ∈ �k−1, a relative true diversity is only minimal when distributions are equal. For all p, q ∈ �k−1

Dα(p ‖ q) ≥ Dα(p ‖ p),

and its minimal value is Dα(p ‖ p) = 1.

2.5. Joint distributions, additivity, and Shannon entropy

Other relevant properties of diversity measures are related to situations in which we have concurrent classifications. 
Following the notation from Section 2.1, let us consider a system in which items are classified according to two criteria, 
giving rise to two relations: τ1 ⊆ I × T1 and τ2 ⊆ I × T2. For instance, books in a bookcase may be classified according to 
their genre (e.g., comics, novels) but also according to their author.

Let us define the joint membership relation τ1×τ2 ⊆ I × (T1 × T2) such that (i, (t1, t2)) ∈ τ1×τ2 ⇔ (i, t1) ∈ τ1 ∧ (i, t2) ∈ τ2. 
Let us also define the conditional membership relation (τ2 | t1) ⊆ I × T2 such that (i, t2) ∈ (τ2 | t1) ⇔ (i, (t1, t2)) ∈ τ1×τ2.

As in Section 2.1, let us consider the following distributions: pτ1 (t) = aτ1(t)/|τ1| and pτ2 (t) = aτ2 (t)/|τ2|, resulting in 
pτ1 ∈ �|T1|−1 and pτ2 ∈ �|T2|−1. Similarly, we define joint and conditional distributions. We define the joint distribution over 
T1 and T2 as

pτ1×τ2(t) = aτ1×τ2(t)

|τ1 × τ2| , with pτ1×τ2 ∈ �(|T1|−1)(|T2|−1),

and the conditional distribution over T2 given t1 ∈ T1 as

p(τ2 | t1)(t) = a(τ2 | t1)(t)

|(τ2 | t1)| , for t1 ∈ T1, with p(τ2 | t1) ∈ �|T2|−1.

The first of two additivity principles considered in this article is the weak additivity principle.

Definition 4 (Weak additivity). A diversity measure D is weakly additive if and only if, for all τ1 and τ2 such that 
pτ1×τ2 (t1, t2) = pτ1 (t1)pτ2 (t2), we have D 

(
pτ1×τ2

) = D 
(

pτ1

)
D 

(
pτ2

)
.

In other words, if two classifications are independent, then the diversity of the joint classification is equal to the product 
of the diversities of each separate one.

Theorem 6 (True diversities satisfy the principle of weak additivity [80]). True diversities Dα satisfy the principle of weak additivity.

Theorem 6 is equivalent to the expression of joint Rényi entropy for independent variables.
A stronger property, called strong additivity principle, and not restricted to independence between τ1 and τ2, is verified 

for the particular case of 1-order true diversity, that is Shannon diversity.

Definition 5 (Strong additivity). A diversity measure D is strongly additive if and only if, for all τ1 and τ2, we have 
D 

(
pτ1×τ2

) = D 
(

pτ1

)
D 

(
pτ2 | τ1

)
where D 

(
pτ2 | τ1

) = ∏
t1∈T1

D
(

pτ2 | t1

)pτ1 (t1) .

In other words, the diversity of the joint classification is equal to the diversity of the first classification multiplied by 
the diversity of the second classification conditioned by the knowledge of the first one. Conditional diversity is the weighted 
geometric mean of the diversities of conditional distributions.

Theorem 7 (1-order true diversity is strongly additive [80]). 1-order true diversity D1 satisfies the principle of strong additivity.

The principle of strong additivity is analogous to the well-known chain rule between conditional entropy and joint entropy
in information theory (cf. Section 2.5 in [96]): H(X, Y ) = H(X) + H(Y |X) for random variables X and Y .

Theorem 7 will justify the use of 1-order diversities in some results regarding the relations of different network diversity 
measures in the next sections. Fig. 2 summarizes and illustrates the relations between the different families of diversity 
measures from this section, along with their most important properties.

3. Random walks in heterogeneous information networks

In the previous section, we presented a broad definition of diversity, which we then narrowed to a particular family 
of measures that share relevant properties captured by axioms. The functions of the theory determined by these axioms 
resulted in true diversities, which are connected to many of the diversity measures used in different domains of research.
11
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Fig. 2. Relations between the different families of diversity measures, and their most important properties.

When considering complex systems and network-structured data, different distribution functions can be computed. One 
example is probability distributions over vertices resulting from a random walk. Different diversity measures may be com-
puted over these distributions. In this article, we develop a single framework for both operations, effectively covering and 
summarizing the measurement of diversity in networks in several domains. In order to do so, we develop in this section a 
formalism for the treatment of networks that are relevant for fields concerned by the concept of diversity.

Developed within graph theory, heterogeneous information networks [24,25] (equivalent to directed graphs with colored 
vertices and edges) have recently been used to provide ontologies to represent complex unstructured data in a wide gamut 
of applications (knowledge graphs are prominent examples of their flexibility [97–99]). In this work, we will consider an 
extended model of heterogeneous information network, using multigraphs (graphs for which multiple edges might exist 
between any given couple of vertices), for the development of a framework for measuring diversity in networks. As we shall 
see in more detail in Section 5, many situations encountered in practice can be represented using heterogeneous information 
networks. For example, when modeling the consumption of news on a website, the situation may be represented as users 
selecting articles, and articles having specific categories (business, culture, sports, etc.). This translates to a heterogeneous 
information network with three vertex types (users, articles, categories) and two edge types (users select articles, articles 
belong to categories).

3.1. Preliminary notations

We consider a multigraph composed of a set of nodes V , linked by a set of directed edges E . We propose the following 
system of capitalization and typefaces to reference different objects:

• vertices and edges are designated by lowercase letters, v and e;
• a set of types of vertex is designated by A;
• a set of types of edge is designated by R;
• types in A are notated with uppercase letters A, types in R are denoted with uppercase letters R;
• vertex sets and edge sets are notated by uppercase letters V and E;
• sets of vertex types and edge types labels are notated by calligraphic letters V and E ;
• random variables with support on sets of vertices are notated by the capital letter X .

3.2. Heterogeneous information networks

In contrast to traditional formalizations of heterogeneous information networks [24,25], we propose the use of multi-
graphs for generality. A multigraph G is a couple (V , E) where V = {v1, . . . , vn} is a set of vertices and E = {e1, . . . , em} is 
a set of directed edges that is a multisubset of V × V . Given an edge e ∈ E , we denote vsrc(e) its source vertex and vdst(e)
its destination vertex such that (vsrc(e), vdst(e)) ∈ V × V .

We also denote ε : V × V →N the multiplicity function of edges, that is the function counting the number of edges in 
E that link any two vertices: ε(v1, v2) = |{e ∈ E : vsrc(e) = v1 ∧ vdst(e) = v2}|. We also define:
12
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• ε(v1, −) :=
∑

v2∈V

ε(v1, v2) the out-degree of vertex v1;

• ε(−, v2) :=
∑

v1∈V

ε(v1, v2) the in-degree of vertex v2;

• ε(−, −) :=
∑

(v1,v2)∈V ×V

ε(v1, v2) the total number of edges.

We now define heterogeneous information networks using multigraphs. Classical heterogeneous information networks 
can be easily accounted for by constraining the multiplicity of edges.

Definition 6 (Heterogeneous information network). A heterogeneous information network G = (V , E, A, R, ϕ, ψ) is a multigraph 
(V , E), with a vertex labeling function ϕ : V →A and an edge labeling function ψ : E →R, such that edges with the same 
type in R have their source vertices mapped to the same type in A and their destination vertices mapped to the same type 
in A:

∀ e, e′ ∈ E,
(

ψ(e) = ψ(e′) ⇒ (
ϕ(vsrc(e)) = ϕ(vsrc(e′)) ∧ ϕ(vdst(e)) = ϕ(vdst(e′))

) )
.

Label functions ϕ and ψ , that map vertices to vertex types and edges to edge types, induce a partition in the set 
of vertices and a partition in the set of edges. If A = {A1, . . . , AN} and R = {R1, . . . , R M}, ϕ and ψ induce partitions 
V = {V 1, . . . , V N} on V and E = {E1, . . . , E M} on E . These partitions are such that ∀v ∈ V , (ϕ(v) = Ai ⇔ v ∈ V i) and 
∀e ∈ V , (ϕ(e) = R j ⇔ e ∈ E j). Thus, abusing notation, we make indistinct use of types in A and sets in V , and of types in 
R and sets in E when this is not ambiguous.

Given an edge type E ∈ E , we denote V src(E) ∈ V its source-vertex type and V dst(E) ∈ V its destination-vertex type. We 
also denote εE : V src(E) × V dst(E) → N the specialization of ε on E , that is, the function counting the number of edges in 
E going from a given vertex in V src(E) to a given vertex in V dst(E):

εE(v1, v2) = |{e ∈ E : vsrc(e) = v1 ∧ vdst(e) = v2}|.
As before, we also define:

• εE (v1, −) :=
∑

v2∈V dst(E)

εE(v1, v2) is the out-degree of v1 among edges in E;

• εE (−, v2) :=
∑

v1∈V src(E)

εE (v1, v2) is the in-degree of v2 among edges in E;

• εE (−, −) :=
∑

(v1,v2)∈V src(E)×V dst(E)

εE (v1, v2) is the number of edges in E .

Following the example of existing definitions for heterogeneous information networks [24,25,100], we define the network 
schema. Consistency in the direction of edges belonging to the same edge type allows for the definition of schemas as proper 
directed graphs. Fig. 3 illustrates a heterogeneous information network and its network schema.

Definition 7 (Network schema). The network schema of a heterogeneous information network G = (V , E, A, R, ϕ, ψ) is the 
directed graph S = (E, V) that has vertex types V for vertices and edge types E for edges.

Knowledge graphs (e.g., Google’s Knowledge Graph [101]) are knowledge-based systems closely related to heterogeneous 
information networks. They are used to store complex structured and unstructured data in the form of a network, based on 
the Resource Description Framework (RDF) [102], which models data as entries of the form 〈Subject, Property, Object〉. If edges 
of a same type always link source vertices of the same type with target vertices of the same type (cf. Definition 6), it is 
easy to see that identifying a Property in the RDF data model with an edge type allows for the identification of a knowledge 
graph with a heterogeneous information network [100]. Early pairings of the two concepts were proposed to leverage the 
heterogeneous information network formalism in data mining tasks in knowledge graphs [103]. While some works have 
equated these two closely similar concepts [104], most insist in differentiating heterogeneous information networks as a 
mathematical formalism suitable for the treatment of data mining problems using knowledge graph data [105,106].

Let us now define the probability of transitioning between vertices randomly following the available directed edges from 
an edge type.

Definition 8 (Probability of transitioning between vertices in an edge type). Given an edge type E ∈ E , assuming that each vertex 
in V src(E) is connected to at least one vertex in V dst(E), i.e., ∀v1 ∈ V src(E) (εE (v1,−) > 0), we denote by pE : V src(E) ×
V dst(E) → [0, 1] the transition probability of the random walk following edges in E , for all (v1, v2) ∈ V src(E) × V dst(E), as
13
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Fig. 3. A heterogeneous information network (left), its network schema (center), and a meta path � on the network schema (right).

pE(v2 | v1) := εE(v1, v2)

εE(v1,−)
.

Definition 9 (Random transition between vertices in an edge type). For an edge type E ∈ E going from vertex type V src(E) to 
vertex type V dst(E) in V , we denote the transition from a random vertex Xsrc ∈ V src(E) to a random vertex Xdst ∈ V dst(E), 
following probability distribution pE , as Xsrc

E−→ Xdst .

As a consequence of Definition 8, ∀v1 ∈ V src(E), pE ( · | v1) : V dst(E) →R+ is a probability distribution on V dst(E). For all 
v2 ∈ V dst(E), we have pE (v2 | v1) ∈ [0, 1] and 

∑
v2∈V dst(E) pE (v2 | v1) = 1.

In the case where vertex v1 ∈ V src(E) is not connected to any vertex in V dst(E) (i.e., when εE(v1, −) = 0), pE (v2 | v1)

cannot be defined as above. This situation can be remedied by adding a sink vertex to each vertex type. For every E ∈ E , an 
edge es

E is added such that vsrc(es
E) is the sink vertex in V src(E) and such that vdst(es

E) is the sink vertex in V dst(E). Then, 
vertices in V src(E) connected to no vertex in V dst(E) can be connected to the sink vertex. In the rest of this article we will 
assume that this procedure has been applied if needed and that for every E ∈ E there are no vertices in V src(E) that are 
not connected to at least one vertex in V dst(E).

3.3. Meta paths and constrained random walks

Random walks in heterogeneous information networks can be constrained [33,107] to follow a specific sequence of edge 
types, called meta path [100,108]. This enables for the computation of the probability distribution of the ending vertex of a 
random walker constrained to a specific meta path. The variety and combinatorics of meta paths will be the origin of the 
network diversity measures that we propose in the next section.

For the definition of meta paths, we will first consider sequences on the set R of edge types. We denote by sequence of 
length k for M (M = |R|) a k-tuple r = (r1, . . . , rk) such that for all i ∈ {1, . . . , k} we have ri ∈ {1, . . . , M}.

Definition 10 (Meta path). Given a heterogeneous information network G = (V , E, A, R, ϕ, ψ) and a sequence r of length 
k ∈N for M = |R|, a meta path of length k is the k-tuple � = (Er1 , . . . , Erk ) ∈ Ek of k edge types (with possible repetitions) 
such that the source vertex type of an edge type is the destination vertex type of the previous one in the k-tuple �: i.e., 
∀1 ≤ i ≤ k, V src(Eri ) = V dst(Eri−1 ).

We denote by V src(�) = V src(Er1 ) the source vertex type of path type �, and by V dst(�) = V dst(Erk ) its destination 
vertex type. Fig. 3 provides an illustration of a heterogeneous information network and a meta path on its network schema.

Using the notion of meta path, we define a random walk restricted to it.

Definition 11 (Random walk constrained to a meta path). Given a meta path � = (Er1 , . . . , Erk ) of length k and a random 
variable X0 ∈ V src(�) representing the starting position of a random walk in vertex type V src(�), the associated random 
walk restricted to � is a sequence of k + 1 random variables (X0, X1, . . . , Xk) resulting from the sequential random transition 
between vertices in the edge types (cf. Definition 8) of �:

X0
Er1−−→ X1

Er2−−→ X2
Er3−−→ · · · Erk−−→ Xk,

where, for all i, Xi ∈ V dst(Eri ).

This is known as a path-constrained random walk in the information retrieval community [33,107]. It follows from Defini-
tions 8 and 11 that a random walk restricted to a meta path � of length k is a Markov chain with transition probabilities 
defined as
14
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Pr(Xi = vi | Xi−1 = vi−1) = P Eri
(vi | vi−1),

for vi−1 ∈ V src(Eri ) and vi ∈ V dst(Eri ).
For the next two definitions, we consider a meta path � = (Er1 , . . . , Erk ) of length k and its associated random walk 

restricted to �, i.e., the sequence (X0, X1, . . . , Xk) of random variables. The probability distribution in V dst(�) of the random 
walk’s ending vertex plays a central role in the network diversity measures that will be proposed in the next section. Let us 
define the conditional and the unconditional probability distributions.

Definition 12 (Conditional probability distribution for random walks). The conditional probability distribution of Xk ∈ V dst(�), 
that is, the destination vertex of the random walk constrained to �, given that it started in v0 ∈ V src(�) (i.e., X0 = v0), is 
denoted by p�(vk | v0) for vk ∈ V dst(�) and can be recursively computed as follows:

p�(vk | v0) = Pr(Xk = vk | X0 = v0)

=
∑

v1∈V dst(Er1 )

p(Er2 ,...,Erk )(vk | v1) pEr1
(v1|v0).

We will also designate by p�|v0 (vk) the distribution p�(vk|v0) over the vertices of V dst(�).

Using conditional probability distribution, the unconditional probability can be computed.

Definition 13 (Unconditional probability distribution for random walks). The unconditional probability distribution of Xk ∈
V dst(�), that is, the destination vertex of the random walk restrained to �, is denoted by p�(vk) for vk ∈ V dst(�) and 
can be computed applying the law of total probability to conditional distribution p� | v0 as follows:

p�(vk) = Pr(Xk = vk)

=
∑

v0∈V src(�)

p� | v0(vk) Pr(X0 = v0).

In Definition 13, the dependence of p� on Pr(X0 = v0) (the probability distribution for the starting vertex) is explicit.
We now consider the edges resulting from the projection of all edge types in a meta path �. This operation, related 

to the counting of paths in meta paths, is used in the literature in related measures, such as the construction of similarity 
metrics for vertex searches [32] or for recommender systems [26].

Definition 14 (Projection of a meta path). Given a meta path � = (Er1 , . . . , Erk ), we denote by E� the set of edges going 
from vertices in V src(�) to vertices in V dst(�), and resulting from the projection of all paths in meta path �. We denote 
ε�(v0, vk) the number of paths starting at v0 ∈ V src(�) and ending at vk ∈ V dst(�) that are part of meta path �. It is 
recursively computed as follows:

εE�(v0, vk) =
∑

v1∈V dst(Er1 )

εEr1
(v0, v1) ε(Er1 ,...,Erk )(v2, vk),

with ε(Erk ,Erk ) = εErk
.

The projection is such that there is an edge in E� for each path in �. This allows for the definition of a –one step– 
random walk from V src(�) to V dst(�). Its probability distribution is denoted pE�

and computed following Definition 8. 

If random walk X0
Er1−−→ X1

Er2−−→ · · · Erk−−→ Xk involves choosing a random edge at each vertex type V src(Eri ), random walk 

X0
E�−→ Xk involves randomly choosing one path among all possible paths in �.

4. Network diversity measures

In the previous section, we established a formal framework for heterogeneous information networks within which we 
defined meta paths and random walks constrained to them. This allowed us to consider different probability distributions 
related to these random walks. In this section, we apply true diversity measures to these distributions, completing the 
framework for the measurement of diversity in heterogeneous information networks.

Depending on the chosen meta paths, one can compute several diversities in a network. These diversities will correspond 
to different concepts related to the structure of vertices and edges in the meta paths: individual, collective, relative, projected, 
and backward diversity. All of these will be defined in this section. These concepts will in turn have different semantical 
content depending on what is being modeled by the heterogeneous information network. The way in which diversities 
15
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Fig. 4. Computation of the collective V 1 diversity of V 0 along a simple meta path made of only one edge type. Diversity along a path type depends on the 
starting probability distribution Pr(X0) and on transition probabilities.

associated with meta paths may correspond to different concepts will be made clear in this section, and illustrated through 
different applications in the next section.

All definitions and results refer to a heterogeneous information network G = (V , E, A, R, ϕ, ψ), and a meta path � =
(Er1 , . . . , Erk ) of length k going from vertex type V src(�) to vertex type V dst(�). In the scope of this section, let us define 
V start = V src(�) and V end = V dst(�) for ease of notation. For diversities defined here, we will talk about the diversity of 
a given vertex type with respect to another one in a heterogeneous information network and along a given meta path. In 
other words, given G , we define network diversities for a given � that are of the form: V end diversity of V start along �.

4.1. Collective and individual diversities

The collective V end diversity of vertices V start along meta path � is the diversity of the probability distribution on 
vertices of V end resulting from a random walk starting at a random vertex in V start and restricted to meta path �. Using 
previous definitions, we formally define this quantity.

Definition 15 (Collective diversity). Given the probability distribution Pr(X0) of starting at a random vertex X0 ∈ V start, we 
define the collective V end diversity of V start along � as the true diversity of the probability distribution of the ending vertex of 
the constrained random walk. We denote it as Dα

(
X0

�−→ Xk

)
and compute it as follows:

Dα

(
X0

�−→ Xk

)
= Dα(p�).

Note that this measure depends on the starting probability distribution Pr(X0 = v0) and on transition probabilities 
pEri

(vi | vi−1) for each Eri ∈ �. Fig. 4 provides an example of the measurement of collective diversity for a simple het-
erogeneous information network containing 5 vertices (represented as circles) and 6 edges (represented as arrows between 
circles), and using two different starting probability distributions Pr(X0). In Fig. 4, vertices are organized into two vertex 
types V 0 = {v1

0, v
2
0} and V 1 = {v1

1, v
2
1, v

3
1} (represented as two horizontal layers) and edges are organized into a unique edge 

type E1, going from V 0 to V 1. Two examples of measurements are illustrated in blue for two different starting distributions 
(numbers within circles give the probabilities of the random walker’s position during the different steps of the walk).

The choice of X0 ∼ Uniform(V start) has a central role in many applications. By giving each node in V start an equal chance 
of being the random walk’s starting point, the resulting collective diversity will be that of the collective –equal– contribution 
of all nodes in V start . Similarly, considering subset V ′

start ⊂ V start and choosing X0 ∼ Uniform(V ′
start) allows us to define the 

collective diversity of the group of nodes V ′
start .

Conditioned probabilities of random walks along a path � are also of interest, as they convey information about the 
structure of the network reachable from some vertices in V start . In particular, given a starting vertex v0 ∈ V start, we define 
the individual V end diversity of v0 along � as the true diversity of the probability distribution of Xk ∈ V end at the end of 
the constrained random walk, knowing that it started at a given vertex v0 ∈ V start (i.e., X0 = v0). Fig. 5 illustrates the 
measurement of individual diversity for two different vertices in V start in the case of a simple heterogeneous information 
network.

Definition 16 (Individual diversity). Given a starting vertex v0 ∈ V start, we define the individual V end diversity of v0 along �
as the true diversity of the probability distribution of the ending vertex of the constrained random walk. We denote it as 
Dα

(
X0

�−→ Xk | X0 = v0

)
and compute it as follows:

Dα

(
X0

�−→ Xk | X0 = v0

)
= Dα(p�|v0).
16
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Fig. 5. Examples of a heterogeneous information network (top left), the individual diversities of two vertices (top center and top right), and the mean 
individual diversities for two different starting probability distributions (bottom).

Fig. 6. Different heterogeneous information networks with two vertex types, illustrating different relative ordering for collective and mean individual 
diversities.

An aggregation of individual diversities may be computed to represent the mean diversity of all (or many) of the vertices 
in the starting vertex type V start. Following the definition of conditional entropy in information theory (cf. Section 2.2 in 
[96]), we define the mean V end individual diversity of V start along � as the weighted geometric mean of individual diversities.

Definition 17 (Mean individual diversity). Given a starting vertex type V start, we define the mean individual V end diversity of 
V start along � as the weighted geometric mean of individual diversities. We denote it by Dα

(
X0

�−→ Xk | X0

)
and compute 

it as follows:

Dα

(
X0

�−→ Xk | X0

)
=

∏
v0∈V start

Dα(p�|v0)
Pr(X0=v0)

This mean is weighted by –and so depends on– the starting probability distribution Pr(X0) over V 0, and it is minimal 
(i.e., equal to 1) when each individual diversity is minimal. Mean individual diversity is a weighted geometric mean in the 
general case (i.e., for any distribution for X0), and a –unweighted– geometric mean when all vertices in V start have the same 
probability of being the starting point of the random walk (i.e., when X0 ∼ Uniform(V start)). As with collective diversity, the 
mean individual diversity of a vertex group V ′

start ⊂ V start can be considered choosing X0 ∼ Uniform(V ′
start). Fig. 5 illustrates 

the computation of individual and mean individual diversities in a simple heterogeneous information network.
Individual and collective diversities are two complementary measures describing different properties of the system, as 

illustrated in Fig. 6. It is possible for a system to have a low mean individual diversity while having a high collective diversity 
(top-right in Fig. 6), or a high mean individual diversity while having a low collective diversity (bottom-left in Fig. 6).
17
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4.2. Backward diversity

Backward diversity is related to random walks following directions and edges opposite to those of a given meta path. In 
order to treat them formally, we first present the following definitions.

Definition 18 (Transpose edge type). Let E ∈ E be an edge type. We denote by Eᵀ the set of edges resulting from inverting 
those of E:

Eᵀ = {(vdst(e), vsrc(e)) ∈ V × V : e ∈ E} .

Definition 19 (Transpose meta path). For a meta path � = (Er1 , . . . , Erk ), we define its transpose meta path �ᵀ as

�ᵀ = (Eᵀ
rk

, . . . , Eᵀ
r1).

Using random walks along a meta path �, we can also compute the probability distribution of the random walk’s 
starting vertex X0 ∈ V start when its ending vertex vk ∈ V end is known. True diversity of this distribution, called backward 
V start diversity of vk ∈ V end along �, provides a value for the diversity of starting points that can reach vk following �.

Definition 20 (Backward diversity). Given an ending vertex vk ∈ V end, we define the individual backward V start diversity of vk

along � as the true diversity of the distribution of starting vertex X0 ∈ V start. We denote it by Dα

(
X0 | X0

�−→ Xk = vk

)
and 

compute it as follows:

Dα

(
X0 | X0

�−→ Xk = vk

)
= Dα

(
p�ᵀ|vk

)
.

We denote by Dα

(
X0 | X0

�−→ Xk

)
the mean backward diversity and compute it as follows:

Dα

(
X0 | X0

�−→ Xk

)
=

∏
vk∈V end

Dα

(
p�ᵀ|vk

)Pr(Xk=vk) .

4.3. Relative diversity

Once the notions of collective and individual diversities have been identified, it is natural to consider the diversity of an 
individual vertex relative to collective diversity.

Definition 21 (Relative individual diversity). We define the relative individual V end diversity of v0 ∈ V start with respect to V start

along � as the relative true diversity between the distribution resulting from a random walk starting at v0 ∈ V start (giving 
its individual diversity), and the distribution resulting from the unconditional random walk starting at random in V start

(giving the collective diversity). We denote it by Dα

(
X0

�−→ Xk | X0 = v0 ‖ X0
�−→ Xk

)
and compute it as follows:

Dα

(
X0

�−→ Xk | X0 = v0 ‖ X0
�−→ Xk

)
= Dα

(
p�|v0 ‖ p�

)
.

Using relative true diversities from Section 2.4, other relative network diversities can be computed. Let us consider for 
example two different meta paths �1 and �2, such that V start = V src(�1) = V src(�2), and V end = V dst(�1) = V dst(�2). 
One diversity measure of interest when comparing diversities is the relative true diversity between distributions on V end

resulting from following different meta paths:

Dα

(
X0

�1−→ Xk ‖ X0
�2−→ Xk

)
= Dα

(
p�1 ‖ p�2

)
.

Relative diversities (to be illustrated in Section 5) are useful whenever we want to compare the diversity related to some 
meta path with a baseline resulting with another one. Similarly, though not developed in this article, these computations 
could be extended to the relative mean individual diversity, and backward diversity.

4.4. Projected diversity

Using projected edges E� of a meta path � (cf. Definition 14 in Section 3.3), we can also define the diversity of the 
distribution on V end of a constrained random walk starting at v0 ∈ V start and following the edges in E� .
18
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Fig. 7. Individual Shannon diversities of a meta path on two heterogeneous information networks, compared with the resulting projected diversities. We 
illustrate two situations: one in which projected diversity is greater than individual diversity (top), and one where individual diversity is greater than 
projected diversity (bottom).

Definition 22 (Projected diversity). Let E� be the set of projected edges of meta path �. We define the projected V end diversity 
of v0 ∈ V start along � as the true diversity of the distribution of the ending vertices in V end of a random walk starting at 

v0 ∈ V start and following the edges in E� . We denote it by Dα

(
X0

E�−→ Xk | X0 = v0

)
and compute it as follows:

Dα

(
X0

E�−→ Xk | X0 = v0

)
= Dα

(
pE�|v0

)
.

Note that in the previous definition, pE�|v0 is the probability distribution from Definition 12 when the meta path is 
made only of projected edges in E� . Fig. 7 illustrates the comparison between individual and projected diversities for two 
cases using Shannon diversity. One of these cases results in a projected diversity that is lower than individual diversity, 
while the other results in a projected diversity that is higher than individual diversity.

4.5. The relation between network diversity measures

The network diversity measures presented here are not independent. In this section we show a relation involving collec-
tive, backward, and mean individual diversities. In order to do so, we first need to consider parts of meta paths.

Definition 23 (Parts of meta paths). Given a meta path � = (Er1 , . . . , Erk ) of length k, we denote by �(i, j) , for 1 ≤ i ≤ j ≤ k, 
its restriction

�(i, j) = (
Eri , Eri+1 , . . . Er j−1 , Er j

)
.

Theorem 8 (Bound for collective Shannon diversity). The following inequality holds for Shannon diversity, that is 1-order true diversity,

D1(X0
�−→ Xk) ≤ D1(X0

�(1,i)−−−→ Xi) D1(Xi
�(i+1,k)−−−−→ Xk | X0

�(1,i)−−−→ Xi),

with equality if and only if D1(X0
�(1,i)−−−→ Xi | Xi

�(i+1,k)−−−−→ Xk) = 1.

In other words, collective diversity along a meta path is bounded by two factors: (1) collective diversity at any step of the 
meta path, multiplied by (2) mean individual diversity along the remaining part of the meta path. This bound is achieved if 
an only if all individual backward diversities along this remaining part are minimal.

Before proving Theorem 8, let us first prove the following result linking collective and individual 1-order true diversities 
for a single edge type.
19
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Lemma 1 (The relation between collective, backward, and mean individual diversities). Let us consider an edge type E, with V src(E) =
V 0 and V dst(E) = V 1 , and the constrained random walk X0

E−→ X1 , with X0 ∈ V 0 and X1 ∈ V 1 . The following identity relation between 
collective, backward, and mean individual 1-order true diversities holds:

D1

(
X0

E−→ X1

)
︸ ︷︷ ︸

collective div.

D1

(
X0 | X0

E−→ X1

)
︸ ︷︷ ︸

mean backward div.

= D1 (Pr(X0))︸ ︷︷ ︸
initial div.

D1

(
X0

E−→ X1 | X0

)
︸ ︷︷ ︸

mean individual div.

,

where D1 (Pr(X0)), the initial diversity, is the 1-order true diversity of the distribution for the starting vertex of the random walk.

Proof. Let us consider the 1-order true diversity of the joint probability Pr(X0, X1) of the starting vertex in V 0 and the 
ending vertex in V 1. Despite X0 and X1 being dependent, by the principle of strong additivity of 1-order true diversity (cf. 
Theorem 7), we have

D1 (Pr(X0, X1))
Thm. 7= D1 (Pr(X0))

∏
v0∈V 0

D1 (Pr(X1 | X0 = v0))
Pr(X0=v0)

Def. 17= D1 (Pr(X0)) D1

(
X0

E−→ X1 | X0

)
.

Also by the principle of strong additivity of 1-order true diversity we have

D1 (Pr(X0, X1))
Thm. 7= D1 (Pr(X1))

∏
v1∈V 1

D1 (Pr(X0 | X1 = v1))
Pr(X1=v1)

Def. 20= D1

(
X0

E−→ X1

)
D1

(
X0 | X0

E−→ X1

)
. �

Since true diversities are greater or equal to 1 (cf. Theorem 3), it is clear that

D1

(
X0

E−→ X1

)
︸ ︷︷ ︸

collective

≤ D1 (Pr(X0))︸ ︷︷ ︸
initial

D1

(
X0

E−→ X1 | X0

)
︸ ︷︷ ︸

mean individual

,

with equality when mean backward diversity is minimal, D1

(
X0 | X0

E−→ X1

)
= 1. This can only happen when each ending 

vertex in V 1 is reachable from only one starting vertex in V 0.
Using the same procedure as in Lemma 1, we may now prove Theorem 8.

Proof of Theorem 8. Given a meta path � = (
Er1 , . . . , Erk

)
and a constrained random walk X0

�−→ Xk along it, let us split it 
in two parts, dividing our walk in two parts:

�(1,i) = (
Er1 , . . . , Eri

)
, for random walk X0

�(1,i)−−−→ Xi, and

�(i+1,k) = (
Eri+1 , . . . , Erk

)
, for random walk Xi

�(i+1,k)−−−−→ Xk.

Following the same argument as in the proof of Lemma 1, we compute the 1-order diversity of distribution Pr (Xi, Xk), 
using the strong additivity principle to obtain two different expressions.

A first application of the strong additivity principle yields

D1 (Pr(Xi, Xk)) = D1

(
X0

�(1,i)−−−→ Xi

)
D1

(
Xi

�(i+1,k)−−−−→ Xk | X0
�(1,i)−−−→ Xi

)
,

where D1

(
Xi

�(i+1,k)−−−−→ Xk | X0
�(1,i)−−−→ Xi

)
is the mean individual diversity along meta path �(i+1,k) using probabilities result-

ing from random walk X0
�(1,i)−−−→ Xk for the weighted geometric mean.

A second application of the strong additivity principle yields

D1 (Pr(Xi, Xk)) = D1

(
Xi

�(i+1,k)−−−−→ Xk

)
D1

(
Xi | Xi

�(i+1,k)−−−−→ Xk

)
.

Since starting probabilities Pr(Xi) in collective diversity D1

(
Xi

�(i+1,k)−−−−→ Xk

)
are those resulting from random walk 

X0
�(1,i)−−−→ Xi , we also have D1

(
Xi

�(i+1,k)−−−−→ Xk

)
= D1

(
X0

�−→ Xk

)
.
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Table 2
Summary of defined diversities along a meta path �, with X0 ∈ V src(�) and Xk ∈ V dst(�).

Diversity Notation Expression

Collective Dα

(
X0

�−→ Xk

)
Dα(p�)

Individual Dα

(
X0

�−→ Xk | X0 = v0

)
Dα(p�|v0 )

Mean individual Dα

(
X0

�−→ Xk | X0

) ∏
v0∈V 0

Dα

(
p�|v0

)Pr(X0=v0)

Relative individual Dα

(
X0

�−→ Xk | X0 = v0 ‖ X0
�−→ Xk

)
Dα

(
p�|v0 ‖ p�

)
Backward individual Dα

(
X0 | X0

�−→ Xk = vk

)
Dα

(
p�ᵀ |vk

)
Projected individual Dα

(
X0

E�−→ Xk | X0 = v0

)
Dα

(
pE� |v0

)

This gives the desired result

D1

(
X0

�−→ Xk

)
D1

(
Xi | Xi

�(i+1,k)−−−−→ Xk

)
= D1

(
X0

�(1,i)−−−→ Xi

)
D1

(
Xi

�(i+1,k)−−−−→ Xk | X0
�(1,i)−−−→ Xi

)
,

from which it follows that

D1

(
X0

�−→ Xk

)
≤ D1

(
X0

�(1,i)−−−→ Xi

)
D1

(
Xi

�(i+1,k)−−−−→ Xk | X0
�(1,i)−−−→ Xi

)
if mean backward diversity is not equal to 1. �

4.6. Summary of network diversity measures

In this Section 4, we have used the definitions developed within the proposed formalism for heterogeneous information 
networks, in particular that of meta path constrained random walk, to propose different network diversity measures. These 
include collective, individual, backward, relative, and projected diversities along a meta path. For each one, we have proposed 
a notation and we have defined a computation using the definitions established in Section 3. Table 2 summarizes the 
notations and computations of each of the proposed network diversity measures.

In the next section, we present different domains of application for which modeling using heterogeneous information 
networks is useful. We show that some quantitative measures traditionally computed in different domains are closely related 
to the network diversity measures we defined, and that their use allows for the consideration of other useful quantitative 
observables in modeled systems.

5. Applications

The network diversity measures we proposed find numerous applications in many domains where diversity provides 
relevant information. Information retrieval, and in particular algorithmic recommendation, is one of the areas with the most 
direct applications that best illustrates applicability in general. We first illustrate the use of network diversity measures by 
means of a simple example from recommender systems in Section 5.1. Recommender systems, closely related to informa-
tion retrieval, intersects with many research topics in artificial intelligence, machine learning, and data mining, and will 
help us provide illustrative examples for these domains. The first example introduces notations used in this section, and the 
approach chosen to illustrate the application of these measures. This approach consists of considering a particular heteroge-
neous information network providing an ontology for data in each domain of application, and showing its network schema 
(cf. Definition 7). Then, for each application case in each domain, we list several concepts of interest for research questions 
that are traditionally relevant in the literature, together with the explicit expression of the corresponding network diversity 
measures. These concepts will be referred to previous work where they find pertinence. We highlight how these proposed 
measures can address existing research questions and current practices in different research areas, and how they allow for 
positing new ones.

After having introduced a simple first example, we provide a numerical example of application of the network diversity 
measures to real datasets in Section 5.2. In a third example (Section 5.3), we provide a detailed application case in a 
recommender system setting, explaining the relation between network diversity measures and several existing practices and 
concepts while also highlighting possible new uses. We then illustrate the use of network diversity measures for the analysis 
of social networks and media in Section 5.4. Finally, we provide other examples of applications in ecology in Section 5.5, 
antitrust regulation in Section 5.6, and scientometrics in Section 5.7.

5.1. A simple example

Let us consider an example heterogeneous information network with three vertex types: users, items, and types of items. 
Similar to the notation established in Section 3.1, for the sake of readability, let us denote these vertex types respectively 
21



JID:TCS AID:12800 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.22 (1-36)

P. Ramaciotti Morales, R. Lamarche-Perrin, R. Fournier-S’niehotta et al. Theoretical Computer Science ••• (••••) •••–•••
V users V items V types

Erecommended

Echosen

Etypes

Fig. 8. Network schema of a simple heterogeneous information network, where users in V users have chosen and have been recommended items in V items, 
which are classified into types in V types.

by V users, V items, and V types. An example of entities represented by items is a set of films, and an example of types is then 
a set of film genres (e.g., comedy, thriller).

Let us now consider three edge types, indicating items chosen by users, items recommended to users, and classification of 
items into types. We respectively denote these edge types as Echosen, Erecommended, and Etypes. Fig. 8 illustrates the network 
schema of the described heterogeneous information network.

In order to consider random walks constrained to meta paths in this network, let us denote by the capital letter X
random vertices in vertex types. Thus, for example, Xusers is a random vertex in V users, i.e., a random user. This allows for 
the consideration of random walks such as

Xusers
Echosen−−−−→ Xitems

Etypes−−−→ Xtypes,

for some starting probability distribution Pr(Xusers), and constrained to the meta path � = (Echosen, Etypes). Throughout this 
section, we denote a random walk by explicitly writing the vertex types and edge types, as in Definition 11, rather than by 
its shorter notation Xusers

�−→ Xtypes.
Using this notation, we identify some concepts of interest related to diversity, and their corresponding network diversity 

measures. Indeed, we might take interest in the collective type diversity of items recommended to users (cf. Definition 15),

Dα

(
Xusers

Erecommended−−−−−−−→ Xitems
Etypes−−−→ Xtypes

)
,

that quantifies the type diversity of items that are recommended to the users. We might also take interest in the mean 
individual type diversity of items recommended to users (cf. Definition 17)

Dα

(
Xusers

Erecommended−−−−−−−→ Xitems
Etypes−−−→ Xtypes | Xusers

)
,

which quantifies the mean of the type diversity of items recommended to each user. Network diversity measures allow for 
the evaluation, for example, of the collective type diversity of items that are recommended to users with respect to items 
that are chosen by users using relative diversity (cf. Definition 21):

Dα

(
Xusers

Erecommended−−−−−−−→ Xitems
Etypes−−−→ Xtypes ‖ Xusers

Echosen−−−−→ Xitems
Etypes−−−→ Xtypes

)
.

Such a measure would reveal how diverse recommendations are (according to item’s types) while taking the general land-
scape of users’ consumption as a baseline to measure this diversity. In other words, such a measure would reveal how 
recommendations may increase or decrease the diversity of what is consumed.

The use of transpose edge types (cf. Definition 18) allows for the referencing and computing of more complex concepts, 
such as

Dα

(
Xusers

Erecommended−−−−−−−→ Xitems
Eᵀ

chosen−−−−→ X ′
users

Echosen−−−−→ X ′
items

Etypes−−−→ Xtypes | Xusers = u

)
,

which would otherwise be referred to as the individual type diversity of items chosen by users that chose items recommended to 
user u ∈ V users . Some random variables are marked with an apostrophe (e.g., X ′

users) to indicate that, while they have the 
same support as the unmarked ones (supp(X ′

users) = supp(Xusers) = V users), they are not the same variable. This is needed 
in meta paths that include the same vertex type two or more times.

The following examples of application use this approach: to identify, referentiate, and provide computable expressions 
for concepts from different domains of research interested in both diversity measures and network representations.

5.2. A numerical example

We turn now to an empirical example that will show how our network diversity measures can be used and interpreted 
in order to analyze a specific dataset. The following study deals with the behavior of users on online musical platforms. In 
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Fig. 9. Histograms showing the distributions of the 1-order true diversities of the tag audience (D1(p�audience |t ) for all tags in V tags) for the ms (left) and the
amazon (right) datasets.

such platforms, users listen to songs and songs are usually tagged by musical categories. This situation can be modeled by 
a heterogeneous information network with three vertex types (users V users, songs V songs, and tags V tags) and two types of 
edges (Econsumed connecting V users to songs V songs, and Etagged connecting V songs to tags V tags). We use network diversity 
measures to investigate two different questions. First we analyze the diversity of the distribution of users that listen to 
songs tagged with a given tag t ∈ V tags: the diversity of the tag audience. Second, we analyze, for a given user u ∈ V users, the 
diversity of the distribution of tags associated with the songs she listens to: the diversity of a user’s attention. Translated into 
our framework, we consider the meta-paths �audience = (Eᵀ

tagged, Eᵀ
consumed) and �attention = (Econsumed, Etagged) to analyze 

the following diversities:

• ∀t ∈ V tags, Dα(p�audience|t): the individual diversities of audiences of tags in V tags (see Section 5.2.2);
• ∀u ∈ V users, Dα(p�attention|u): the individual diversities of tags of users in V users (see Section 5.2.3).

It is worth noting that while the numerical analyses presented in this section are new, a complete study dedicated to 
this context and dataset has been published in [109], which can provide a useful complement to the reader.

5.2.1. Datasets used
In this numerical example we use the same above-described network schema (cf. Definition 7) for V users, V songs, and 

V tags to analyze data from two different datasets that can be modeled by this heterogeneous information network.
For the first dataset, we use data from the Million Song Dataset project [110]. In particular, we use the user-taste-profile

data,1 that contains 48 million events of users listening to songs, to determine V users, V songs, and Econsumed parts of a 
heterogeneous information network model. For the V tags and Etagged parts, we use data from the last.fm dataset2 that 
provides a list of tags for each song. Using these two sources of data resulted in a dataset with 1,019,190 users in vertex 
type V users, 234,379 songs in vertex type V songs, and 1,000 tags in vertex type V tags. We refer to this dataset as the ms data.

For the second dataset, we consider a collection of reviews made on Amazon [111,112], and that contain musical items 
(e.g., CDs, vinyls, and digital music). From these data, we only retain the link between a user and a product (a song or an 
album here). Amazon provides a hierarchy of categories for each product, which allows us to extract musical tags for each 
song. This resulted in a dataset with 465,248 users in vertex type V users, 445,514 songs in vertex type V songs, and 250 tags 
in vertex type V tags. We will refer to this second dataset as amazon.

Using the specified heterogeneous information network schema to model the data from these two datasets, we may use 
our network diversity measures to compute diversities in the data. For ease of analysis, we restrain our analysis in this 
Section 5.2 to the 1-order true diversity, i.e., the Shannon diversity (cf. Table 1). The reader is referred to [109] for a study 
of these datasets using different diversity measures.

5.2.2. 1-order true diversity of the tag audience
First we focus on the diversity of the audiences of tags: the individual user-diversities of the tags. Fig. 9 presents the 

distribution of the 1-order true diversities D1(p�audience|t) of all tags t ∈ V tags. We compute and present these values using 
the ms (Fig. 9a) and the amazon (Fig. 9b) datasets.

Both plots show strongly heterogeneous distributions of individual diversities: if most of the tags have a rather narrow 
audience, one can identify some tags with a particularly high diversity. This is the case for the tags Rock and Pop in both 

1 Available at https://labrosa .ee .columbia .edu /millionsong /tasteprofile.
2 Available at https://labrosa .ee .columbia .edu /millionsong /lastfm.
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Fig. 10. Ordered 1-order true diversities of the tag audience D1(p�audience |t ) for 25 selected tags for the ms (left) and the amazon (right) datasets.

datasets (see Fig. 10). But even for those tags, their diversity value (around 105 in ms and 104 in amazon) is still one order 
of magnitude lower than the maximal theoretical values: 1,019,190 for ms and 465,249 for amazon (cf. Axiom 4). One can, 
however, nuance this observation by noticing that small diversity values are more homogeneously distributed. This is visible 
in the insets of Fig. 9, which focus on the distribution of diversity values that are lower than 10,000 (74% of the nodes 
in ms, Fig. 9a) and lower than 1,000 (56% of the nodes in amazon, Fig. 9b). One can see in particular that the values are 
well distributed around the mean value of the dataset (respectively 24,850 for ms and 2,905 for amazon). This indicates 
that while one may spot some extremely diverse musical contents (Rock and Pop, for instance), most of them are narrowed 
towards a smaller and less diverse set of users (such as Country and Punkrock in ms or New-Age in amazon).

In order to further investigate how such diversity measures can be used to analyze specific categories, we show in 
Fig. 10 a selection of 25 tags for the two datasets. It is worth mentioning here that for the ms dataset, the tags are actually 
provided by the users themselves that can decide to use any word to tag any song (this is known as a folksonomy [113]). 
While most tags coincide with common music genres (like Rock, Pop, Folk, Metal, ...), others are obviously meant to give 
an appreciation of the songs (like Favorites, Love, Best, ...) or even to depict a moment at which a song is listened to (like 
BeforeSleep or InShower). The wide range of usage of the tags is an opportunity for us to assess how our network diversity 
measures respond to those different behaviors. For instance, one can expect tags like Favorites to be related to a broader 
and more diverse audience than Metal since the songs tagged by the former do not belong to a dedicated musical category. 
This is indeed confirmed by Fig. 10a which shows that popular tags like Favorites and Love have a diversity higher than any 
other tags of the dataset.

In contrast with the case of the ms dataset, the classification imposed by Amazon provides only tags that describe musical 
genres. This allows for a direct comparison of the musical categories presented in Fig. 10b, which provides interesting 
insights on the way users commit to the different categories. For instance, if we compare Adult-Alternative and World-Music
with R&B and Dance-Pop,3 it is remarkable that the two former ones have a diversity twice higher although the four tags 
have songs reviewed by the same number of users (approximately 300,000 users). This is a clear indication that users 
posting reviews on Adult-Alternative and World-Music songs are much more committed (the reviews are more uniformly 
distributed among the users) than the ones of R&B and Dance-Pop.

5.2.3. 1-order true diversity of users’ attention
We now turn to the diversity of users’ attention, the diversity of tags listened by users. Fig. 11 presents the distribution 

of the 1-order true diversities D1(p�audience|t) for all users u ∈ V users. We compute and present these values using the ms

(Fig. 11a) and amazon (Fig. 11b) datasets. In contrast with the distributions presented in Fig. 9, the diversity of users’ atten-
tion is clearly homogeneous and centered around small values (compared to the maximal theoretical ones). This indicates 
that even if some users have a particularly high diversity, the vast majority of them have a relatively narrow consumption 
of the musical products. It is worth noting that, compared to the study of tags, that often had a meaningful name, we have 
no information regarding the profile of a user who is just an anonymized value in the dataset. Thus we cannot focus on 
specific users to provide an interpretation of the diversity values like we did in the previous section.

3 We discard in the comparison Rock and Pop that have a particularly large number of users posting reviews to their songs, at least ten times higher than 
the number of users for any other tag in the dataset.
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Fig. 11. Histograms showing the distributions of the 1-order true diversities of the attention of users (D1(p�attention |u)) for users u ∈ V users for the ms (left) 
and amazon (right) datasets.

Fig. 12. Evolution of the 1-order true diversity of users’ attention as a function of its volume for the Million Song Dataset (left) and Amazon Dataset (right).

However, it is possible to study how the diversity of the users depends on their activity on the platform. More precisely, 
let us define the volume of a user u ∈ V users as the sum of the number of tags for all songs listened to (in the case of the
ms dataset) or reviewed (in the case of the amazon dataset) by u, multiplied by their play count (the number of songs 
consumed by user u). Then we can investigate whether there is a correlation between volume and diversity. Intuitively, the 
highest the volume, the highest the diversity: as its volume increases, a user has indeed more opportunities to explores 
new musical categories, thus diversifying its activity on the platform.

To see this more clearly, Fig. 12 presents the mean value of the 1-order true diversity of a user as a function of its 
volume, along with the 5th-, 30th-, 70th- and 95th-percentile. For both dataset, we can observe that the diversity increases 
along with the volume. However, we can also notice that the influence of the volume is clearly lower after a given threshold, 
highlighting a saturation process in the diversity of users’ attention: while the growth of the diversity is initially sharp as the 
volume increases, after a given threshold (around 250 in ms and 25 in amazon), the users listen repeatedly to, or review 
similar contents proposed by the platform. This is particularly obvious in amazon (Fig. 12b) but one can also spot this 
phenomenon on ms (Fig. 12a).

After having presented a simple example of application of the network diversity measures in Section 5.1 and a numerical 
example with real datasets in this Section 5.2, we present, in the rest of Section 5 application examples for different research 
domains

5.3. Recommender systems

Diversity and diversification of algorithmic recommendations has become one of the leading topics of the recommender 
systems research community [114,115]. Through a variety of means, users have access today to large numbers of items (e.g., 
products and services in e-commerce, messages and posts in social media, or news articles in aggregators). While users 
enjoy an ever-growing offer, it can also become unmanageable for them to consider enough items, or to effectively explore 
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all that is offered. Recommender systems, developed as early as in the 1980s [116], help solve this problem by filtering 
all possible items down to a recommended set tailored for each user or group. One recent advance in this field is the 
recognition of the importance of diversity and its introduction in recommendations [117,118].

In recommender systems, diversity can help improve users’ appreciation of the quality of recommendations [119,120]. 
It also has other applications, such as detecting changes in consumption behavior for context-aware recommenders [121]. 
As a property of recommendations, diversity has been traditionally captured by a set of related indicators proposed on 
intuitive bases, called serendipity, discovery, novelty, dissimilarity (see Section 8.3 of [122], or [119,120] for a discussion of 
terminology and definitions). These indicators are often computed using past collective choices of items made by users [115], 
or classifications of items into types [20]. To this date, no general framework exists to account for all proposed diversity 
indices in recommender systems, nor alternatives for exploiting richer meta-data structures such as those encodable by 
heterogeneous information networks. This is where our proposed network diversity measures find valuable applications. 
They accommodate some of the existing concepts from the literature, extend the measurement of diversity to more complex 
data structures that can include meta-data on users and items, and give formal explicit expressions to computable quantities 
related to new and existing research questions in this field.

For illustrative purposes, let us consider a heterogeneous information network giving an ontology to complex data related 
to a situation in which we have recommended different types of items to users. Fig. 13 shows the network schema of the 
heterogeneous information network to be considered in this example. Let us consider the following vertex types for the 
example:

• A vertex type of users V U ;
• Two vertex types for items: V I1 (e.g., films) and V I2 (e.g., series);
• Two vertex types for item classification: V T1 (e.g. channels/distributors) and V T2 (e.g. genre);
• Two vertex types of user groups: V G1 (e.g., demographic group) and V G2 (e.g., location).

V U V I1

V I2

V T1

V T2

V G1

V G2

E like

Eseen

Erec,1

Erate Erec,2

Eτ11

Eτ12

Eτ22

EG1

EG2

EU

Fig. 13. Network schema of a heterogeneous information network in a setting from recommender systems, where users in V U , belonging to groups V G1

and V G2 interact and are recommended two different sets of items V I1 and V I2 , which are classified using types in V T1 and V T2 .

In order to consider random walks constrained to meta paths, and following the example in Section 5.1, we denote with 
capital letter X the random variables supported by a vertex type. For example, XU is a random vertex in V U and XI1 is a 
random vertex in V I1 .

In the heterogeneous information network illustrated in Fig. 13, we also consider different edge types:

• An edge type between users EU (e.g., users following or friending each other on a social network);
• Edge types from groups to users: EG1 (e.g., associating users with demographic groups) and EG2 (e.g., associating users 

with locations);
• Edge types indicating classification of items into types: Eτ11 and Eτ12 for V I1 , and Eτ22 for V I2 ;
• Edge types representing when users have liked (E like), seen (Eseen), or rated (Erate) an item, or representing when users 

have been recommended items (Erec,1 and Erec,2).

All elements in the proposed example are useful for representing common practices in recommender systems. Settings 
for recommendation where there are two –or more– types of items (V I1 and V I2 in our example) are common in cross-
domain recommendation [123], and more generally in heterogeneous information network recommendation [26]. Relations 
between users and items can be of different kinds in recommendation settings: edges can be used to indicate that a user 
has rated an item in explicit feedback –or scoring, or noting– systems (Erate in the example), or to indicate that a user has 
liked an item in implicit feedback systems (E like in the example). Some recommender systems and diversity measures can 
26
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take into account whether a user has previously seen an item [124] (Eseen in the example). Also, settings where meta-data 
are associated with users are very common in demographic or location filtering [125], and are represented in the example 
by using vertex types V G1 and V G2 . Finally, edges between users signaling relations such as friendship of a user following
another one on social networks (EU in the example) may also be exploited for recommendations [126,127], and certainly in 
diversity computations. As stated before, Fig. 13 represents the network schema (cf. Definition 7) of our example.

Most diversity computations in recommender systems consist in providing a measure of the diversity of items recom-
mended to a user, or an aggregation of this quantity for all users. Diversity between items can be computed, for example, 
with respect to a classification of items [20] (e.g., genres for films). In the proposed framework, this concept would be 
captured by the individual diversity. Let us imagine that V U are users, that V I2 are films, and that V T2 are film genres (e.g., 
comedy, thriller, etc.). The individual genre (V T2 ) diversity of films (V I2 ) recommended to a user u ∈ V U is

Dα

(
XU

Erec,2−−−→ XI2

Eτ12−−→ XT1 | XU = u

)
.

Similarly, the mean genre (V T2 ) diversity of films (V I2 ) recommended to all users V U is the mean individual diversity

Dα

(
XU

Erec,2−−−→ XI2

Eτ12−−→ XT1 | XU

)
,

which can be computed as a geometric mean by choosing XU ∼ Uniform(V U ) for the starting point of the meta path 
constrained random walk.

In another classic setting, the diversity of an item is computed according to the number of users that have previously 
chosen or liked it (sometimes called novelty [128]). In the proposed framework, an aggregation of this quantity for items 
proposed to all users corresponds to the following network diversity measure:

Dα

(
XU

Erec,1−−−→ XI1

Eᵀ
like−−→ X ′

U | XU

)
.

More interestingly, other relevant quantities expressible as network diversity measures have no explicit expression in 
other frameworks of the literature. The clearest example is the comparison between the mean individual and collective 

recommended diversities: for example, Dα

(
XU

Erec,1−−−→ XI1

Eτ11−−→ XT1 | XU

)
versus Dα

(
XU

Erec,1−−−→ XI1

Eτ11−−→ XT1

)
. Distinguish-

ing between these two concepts (cf. Fig. 6) is important when taking interest in diversity beyond its use as a quality of 
recommendations; for example, when studying phenomena such as filter bubbles, which could manifest at some level of 
aggregation of users, while still having a high collective diversity. Some concepts at the core of Recommender Systems could 
also be expressed in our network diversity framework, such as the so-called User-Based Collaborative Filtering (see Section 
4.2 of [122]):

Dα

(
XU

Erec,1−−−→ V I1

Eᵀ
like−−→ X ′

U
E like−−→ V ′

I1

Eτ11−−→ V T1

)
,

which corresponds to the collective type diversity of items chosen by users that chose items recommended to users.
Let us present in a schematic fashion, in Table 3, different examples of concepts related to diversity that are of interest 

for research questions in the domain of recommender systems, along with the respective quantities that can be identified, 
expressed, and computed as network diversity measures. The reader is referred to [129] for an example of the application 
of the network diversity measures in conjunction with recommendation tasks. In the cited article, after presenting different 
experimental protocols and datasets known to the Recommender Systems community, the authors examine the performance 
of recommendations using the networks diversity measures, whose theoretical development and properties are the object 
of this article.

5.4. Social media studies, echo chambers, and filter bubbles

The study of social media has been developed into a large and ever growing wealth of results. The importance of studies 
about the creation, transmission, and consumption of information on social networks has become crucial. Heterogeneous 
information networks provide a natural formalism for the treatment of these objects, as they can accommodate a variety of 
entities (e.g., posts, accounts, media outlets, tags, keywords) interacting through many different relations (e.g., users publish-
ing posts, mentioning or following other users, using tags in publication). More complex and abstract data is often analyzed 
in these studies, such as the political affiliations of users and media outlets [130,131]. The analysis of phenomena such 
as echo chambers and filter bubbles through the measurement of diversity of information consumption is an established 
practice [21,22,132,133,23]. The settings of different social media studies vary. Concrete examples are the study of the Leave
and Remain Brexit campaigns on Twitter [134] and the exchange of information between US Democrats and Republicans on 
Facebook [135].
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Table 3
Schematic representation of examples of concepts related to diversity in recommender systems and the network diversity measures that can be used to 
address them in quantitative studies.

Examples of concepts expressible in research questions Corresponding network diversity measures

Mean individual diversity of recommendation of items V I1 according to 
types V T1 relative to the corresponding collective diversity

Dα

(
XU

Erec,1−−−→ XI1

Eτ11−−→ XT1 ‖ XU
Erec,1−−−→ XI1

Eτ11−−→ XT1 | XU

)

Collective diversity of recommended items V I1 according types V T1 relative 
to the distribution of types of liked times

Dα

(
XU

Erec,1−−−→ XI1

Eτ11−−→ XT1 ‖ XU
E like−−→ XI1

Eτ11−−→ XT1

)

Collective diversity of recommendations of items in V I1 (e.g., films) according 
to types V T2 (e.g., genres) relative to the one of V I2 (e.g., series)

Dα

(
XU

Erec,1−−−→ XI1

Eτ12−−→ XT2 ‖ XU
Erec,2−−−→ XI2

Eτ22−−→ XT2

)

Diversity of items V I1 recommended to friends of u ∈ V U according to types 
V T1

Dα

(
XU

EU−→ X ′
U

Erec,1−−−→ XI1

Eτ12−−→ XT1 | XU = u

)

Diversity of items V I1 liked by group g ∈ V G1 according to types V T1 Dα

(
XG1

Eᵀ
G1−−→ XU

E like−−→ XI1

Eτ12−−→ XT1 | XG1 = g

)

Diversity of users V U that liked items V I1 of type t ∈ V T2 Dα

(
XU | XU

E like−−→ XI1

Eτ12−−→ XT2 = t

)

Diversity of types V T2 chosen by user u ∈ V U through their choices of items 
in V I1

Dα

⎛
⎝XU

E(
Elike ,Eτ12

)
−−−−−−−→ XT2 | XU = u

⎞
⎠

V users

V posts

V affiliations

V medias

V topics

V articles

V tags

Epost

Efollow

Eshare

Emention
E identify

E link

EbelongEaffiliate

E include

Etreat

Euse

Erefer

Fig. 14. Network schema of a heterogeneous information network in a setting from social networks and media studies, suited for the study of echo chambers 
and filter bubbles.

In this section, we illustrate the use of network diversity measures for the study of information exchange on social 
networks. We consider, as before, a heterogeneous information network created from activity traces of social networks and 
media. Fig. 14 shows its network schema, with which we may illustrate the use of network diversity measures in this 
context. In this example, we consider: users that post or share posts (or tweets, or blog entries, or comments in forums), 
users that can follow (or befriend) other users, posts that may mention users, include tags (e.g., hashtags), include topics 
(detectable, for example, by matching strings or using topic discovery methods), and even link to articles through a URL 
address. In many contexts, articles may be associated with media outlets, which may in turn be identified with groups or 
affiliations (e.g., political parties).

The considered heterogeneous information network can accommodate different aspects considered in social media stud-
ies. For example, Gaumont et al. [130] consider relations of political affiliation of users and interactions between them, and 
analyze the notion of diversity of Twitter posts according to the political communities they have reached. Other studies also 
consider the use of entropy measures over distributions representing the proportion of users that browse given information 
sources [5]. Some studies, for example [136], explicitly consider networks of information items (e.g., blog posts) and the 
concepts that they use.
28



JID:TCS AID:12800 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.297] P.29 (1-36)

P. Ramaciotti Morales, R. Lamarche-Perrin, R. Fournier-S’niehotta et al. Theoretical Computer Science ••• (••••) •••–•••
Table 4
Schematic representation of diversity-related concepts in social networks and media studies, and the corresponding network diversity measures that can 
be used to address them in quantitative studies.

Examples of concepts expressible in research questions Corresponding network diversity measures

Collective diversity of affiliations of users Dα

(
Xusers

E identify−−−−→ Xaffiliations

)
Collective affiliation diversity of users through the contents 
they share

Dα

(
Xusers

Eshare−−−→ Xposts
E link−−→ Xarticles

Ebelong−−−−→ Xmedias
Eaffiliate−−−−→ Xaffiliations

)

Individual topic diversity of user u ∈ V users through posting Dα

(
Xusers

Epost−−→ Xposts
E include−−−−→ Xtopics | Xusers = u

)

Individual topic diversity of user u ∈ V users through posting 
of followers

Dα

(
Xusers

Eᵀ
follow−−−→ X ′

users
Epost−−→ Xposts

E include−−−−→ Xtopics | Xusers = u

)

Individual affiliation diversity of users mentioned by user u ∈
V users

Dα

(
Xusers

Epost−−→ Xposts
Emention−−−−→ X ′

users
E identify−−−−→ Xaffiliations | Xusers = u

)

Diversity of affiliation groups that treat topic t ∈ V topics in ar-
ticles

Dα

(
Xaffiliations | Xaffiliations

Eᵀ
affiliate−−−−→ Xmedias

Eᵀ
belong−−−−→ Xarticles

Etreat−−−→ V topics = t

)

Affiliation diversity of users according to who they mention 
in their posts relative to their own identified political affilia-
tion

Dα

(
Xusers

Epost−−→ Xposts
Emention−−−−→ X ′

users
E identify−−−−→ Xaffiliations ‖ Xusers

E identify−−−−→ Xaffiliations

)

As with the example of a generic recommender systems, we present in a schematic fashion (in Table 4) different 
diversity-related concepts of interest for research questions in the field of social networks and media studies, along with 
quantities that can be computed as network diversity measures.

5.5. Ecology

Diversity is useful in ecology, as identified and commented in Section 2.2. Many advances in diversity measures come 
from this community (e.g., [13]). One prominent concept in this domain is the diversity of species in a habitat. For the 
computation of quantitative indices of this diversity, individuals from different species are counted or their number is 
estimated. From their apportionment into the species present in a habitat, diversity is then computed and reported.

Interactions among organisms are also of interest in ecology. These can be treated using graph representations and 
models. One of such interactions, also related to diversity, is represented by so-called food webs [137]: network models that 
describe species that feed on other species. In the past, there have been efforts to use graph formalisms to treat food webs 
[138,139]. Similarly, other relations between species have been described using graphs, such as parasitation [140]. Another 
subject of interest in ecology is the description of habitats and their interconnectedness; there have been several approaches 
using graph theory to describe these connections [141,142].

We suggest that all these elements present in ecology can be treated using heterogeneous information networks. Using 
network diversity measures, different concepts related to diversity can be computed. Let us consider for example a hetero-
geneous information network with vertex types for habitats (V habitats), for individuals (V individuals), for species (V species), for 
genera (V genera), for families (V families), and so on as needed.

Let us also consider for our example several edge types. Edge type Econnect is that of edges between habitats, indicating 
whether an individual can access a given habitat from another one. Edge type E inhabit is used to represent which individuals 
inhabit which habitats. Edge types Eeat and Eparasite are used to represent relations between species; which species eat 
which species, and similarly for parasitation. Edge type Ebelong,1 is used to represent which individual belongs to which 
species. Finally, edge types Ebelong,2 and Ebelong,3 contain edges indicating which specie belongs to which genus, and which 
genus belongs to which family (species, genera, and families are three of the eight major taxonomic ranks in biological 
classification).

This setting can accommodate the common practices of measurement of –bio– diversity of a habitat h ∈ V habitats, which 
in network diversity measures finds the expression

Dα

(
Xhabitats

Eᵀ
inhabit−−−−→ Xindividuals

Ebelong,1−−−−→ Xspecies | Xhabitats = h

)
,

with α = 0 giving the richness biodiversity, and α = ∞ the Berger-Parker biodiversity of the habitat. Fig. 15 illustrates the 
network schema of the described heterogeneous information network, along with a table of diversity-related concepts and 
their expressions as network diversity measures.

5.6. Antitrust and competition law

Many developments and applications of concentration measures are found in the economics community, antitrust reg-
ulation, and competition law. As shown in Section 2.2, concentration is a concept for which indices are the reciprocal of 
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V habitats V individuals V species V genera V families · · ·E inhabit Ebelong,1 Ebelong,2 Ebelong,3 Ebelong,4

Eeat

Eparasite

Econnect

Examples of concepts expressible in research questions Corresponding network diversity measures

Species diversity in habitat h ∈ V habitats Dα

(
Xspecies | Xspecies

Eᵀ
belong,1−−−−→ Xindividuals

E inhabit−−−−→ Xhabitats = h

)

Genera diversity in habitat h ∈ V habitats Dα

(
Xgenera | Xgenera

Eᵀ
belong,2−−−−→ Xspecies

Eᵀ
belong,1−−−−→ Xindividuals

E inhabit−−−−→ Xhabitats = h

)

Species diversity of habitats adjacent to those where a species s ∈
V species is present

Dα

(
Xspecies

Eᵀ
belong,1−−−−→ Xindividuals

E inhabit−−−−→ Xhabitats
Econnect−−−−→ X ′

habitats

Eᵀ
inhabit−−−−→ X ′

individuals

Ebelong,1−−−−→ X ′
species | Xspecies = s

)

Species diversity of the predators of species that parasite a species 
s ∈ V species

Dα

(
Xspecies | Xspecies

Eeat−−→ X ′
species

Eparasite−−−−→ X ′′
species = s

)

Diversity in habitat h1 ∈ V habitats relative to another habitat h2 ∈
V habitats

Dα

(
Xhabitats

Eᵀ
inhabit−−−−→ Xindividuals

Ebelong,1−−−−→ Xspecies | Xhabitats = h1 ‖

X ′
habitats

Eᵀ
inhabit−−−−→ X ′

individuals

Ebelong,1−−−−→ X ′
species | X ′

habitats = h2

)

Fig. 15. Network schema of an example from ecology, and table with examples of diversity-related concepts and their expression as network diversity 
measures.

those used for the concept of diversity. Concentration or diversity indices are used to measure the degree to which some 
firms concentrate the production of units (or the provision of services) in an industry. Let us consider, for example, the 
classification and apportionment of tons of steel produced –in a given period of time in a given country– by the firms that 
produced them. From this apportionment or distribution, concentration of the steel industry can be quantitatively measured 
with diversity measures. This is the subject of the doctoral thesis of O. C. Herfindahl, for which he developed what is now 
known as the Herfindahl-Hirschman Index [67]. The quantitative measurement of concentration of an industry allows for 
important comparisons to be made by industry regulators, such as, for example, the degree of concentration of an industry 
should a given merger or acquisition be allowed.

This exercise in measurement of industrial concentration, and the detection and limitation of monopolistic behavior, 
is made significantly more difficult by the existence of cross-ownership, or cross-control relation between firms. Cross-
ownership refers to situations in which firms from an industry are mutually owned in complex, network-like relations (in a 
simple example between two firms A and B, firm A owns a part of firm B, and firm B owns a part of firm A). Cross-control 
refers, similarly, to situations where firms can name board members of other firms in the same industry producing complex 
relations of control in a network-like fashion.

Specialized economics literature accounts for many case studies that challenge the application of the aforementioned 
procedure to regulation [143,144], and that address the complex structure of co-ownership networks and their importance 
in regulation [145,146]. This makes graph-theoretical approaches good candidates for making advances in the measure-
ment of concentration in industries [147]. In particular, the proposed network diversity measures provide tools that allow 
the measurement of many concepts of interest in antitrust regulation and competition law when dealing with network 
structures.

To illustrate this, let us consider a heterogeneous information network with three vertex types: that of vertices represent-
ing produced units of services V units (e.g., tons of steel, barrels of oil, or clients of portable phone services), that of vertices 
representing firms V firms that produce those units or provide those services, and that of persons V persons that own the firms. 
To model the relations between these entities represented by vertex types, let us consider five edge types: Eproduced, linking 
each unit to the firm that produced them, Eown, linking firms to the persons that own them, Ecross-own, linking firms with 
each other according to cross-ownership, and similarly, Econtrol and Ecross-control linking firms with each other according to 
control and cross-control (for example, having the right to choose a member of the board of a given firm). For edge types 
Eown, Ecross-own, Econtrol, and Ecross-control, the multiplicity of edges can account for the units by which property or control 
30
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V units V firms V persons
Eproduced

Econtrol

Eown

Ecross-own

Ecross-control

Examples of concepts expressible in research questions Corresponding network diversity measures

Industry diversity with cross-ownership relations Dα

(
Xunits

Eproduced−−−−−→ Xfirms
Ecross-own−−−−−→ X ′

firms

)

Industry diversity according to persons with cross-ownership relations Dα

(
Xunits

Eproduced−−−−−→ Xfirms
Ecross-own−−−−−→ X ′

firms
Eown−−−→ Xpersons

)

Diversity of cross-ownership of a firm f ∈ V firms Dα

(
Xfirms

Ecross-own−−−−−→ X ′
firms | Xfirms = f

)

Diversity of ownership of firms relative to their diversity of control Dα

(
Xfirms

Eown−−−→ Xpersons ‖ X ′
firms

Econtrol−−−−→ X ′
persons

)

Fig. 16. Network schema of a cross-ownership and cross-control heterogeneous information network in a setting from antitrust regulation or competition 
law, where products are apportioned in the firms that produced them, which can be cross-owned or cross-controlled by each other.

is represented, such as, for example, shares or members of the boards of the firms. For example, if ownership of a firm is 
represented by 10 shares, it will have 10 edges, that can belong to edge types Eown or Ecross-own.

In this setting the common measurement of industry diversity is expressed as

Dα

(
Xunits

Eproduced−−−−−→ Xfirms

)
,

which becomes the Herfindahl-Hirschman Diversity (reciprocal of the Herfindahl-Hirschman Index) by choosing α = 2. 
Fig. 16 illustrates the heterogeneous information network described in this example, along with a table of concepts re-
lated to diversity and expressible using the proposed network diversity measures.

5.7. Scientometrics

Scientometrics, within the field of bibliometrics, studies the measurement and analysis of scientific literature. Overlapping 
with information systems, scientometrics study, for example, the importance of publications in networks of citations using 
metrics such as the Impact Factor or the Science Citation Index. In networks including other entities such as authors, other 
measurements include the h-index, an index for the productivity and citation impact of scholars. Recent studies have used 
heterogeneous information networks to represent data including other entities, such as journals and conferences, in order 
to extract extended measurements [148].

The study of networks modeling and representing scientific production is of interest for other reasons too. Diversity of 
topics explored by scientific communities is a concept of interest, for example, in public policy [149], and in general for 
the understanding and description of the structure of scientific communities [150,151]. Another practical application of the 
measurement of diversity in citation networks is the maintenance of classification systems [152].

Below, we illustrate the way proposed network diversity measures can address some of the concepts relevant to these 
areas of research by means of an example. Let us consider a heterogeneous information network consisting of the following 
vertex types: authors V authors, laboratories V lab. (or affiliation institutions), journals V journals , scientific articles V papers, key-
words used by these articles V keywords, and domains of research V domains (e.g., ecology, economics). We also consider edge 
types for representing relations between these entities (see Fig. 17): affiliation Eaff. of authors to institutions, edition (or 
peer-review) Eedit of journals by authors, writing Ewrite of articles by authors, use of keywords Euse in articles, association 
of keywords Ebelong with domains, publication Epublish of articles by journals, and declared treatment Etreat of research do-
mains by journals. Fig. 17 illustrates the corresponding heterogeneous information network, along with a table of concepts 
related to diversity and expressible using the proposed network diversity measures.

6. Conclusions

This article presents a formal framework for the measurement of diversity in heterogeneous information networks. This 
allows for the extension of the application of diversity measures from classification modeled by apportioning into distribu-
tions, to data represented in network structures.
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V papers V authors

V journals

V keywords V lab.

V domains

Eaff.Ewrite

Eedit

Ecite

Euse

Ebelong

Etreat

Epublish

Examples of concepts expressible in research questions Corresponding network diversity measures

Diversity of keywords used by author a ∈ V authors Dα

(
Xauthors

Ewrite−−−→ Xpapers
Euse−−→ Xkeywords | Xauthors = a

)

Diversity of domains addressed in publications by author 
a ∈ V authors relative to domains he or she addresses in 
editing (or peer-reviewing)

Dα

(
Xauthors

Ewrite−−−→ Xpapers
Euse−−→ Xkeywords

Ebelong−−−−→ Xdomains | Xauthors = a ‖

X ′
authors

Eedit−−→ Xjournals
Etreat−−−→ X ′

domains | X ′
authors = a

)

Diversity of domains addressed by citations by authors 
of laboratory l ∈ V lab.

Dα

(
Xlab.

Eᵀ
aff.−−→ Xauthors

Ewrite−−−→ Xpapers
Ecite−−→ X ′

papers
Euse−−→ Xkeywords

Ebelong−−−−→ Xdomains | Xlab. = l

)

Fig. 17. Network schema of a heterogeneous information network in an example for scientometrics, and table of examples of concepts related to diversity 
and expressible using the proposed network diversity measures.

By presenting a concise theory resulting from the imposition of desirable properties of axioms, we organize diversity 
measures across a wide spectrum of domains into a family of functions defined by a single parameter α: the true diversities. 
Providing a formalism for heterogeneous information networks and constrained random walks on it, we consider different 
probability distributions on which diversity measures are computed. These diversity measures are related to the structure 
of the heterogeneous information network, and thus to the phenomena or objects it represents. Diversity measures are also 
related to the different ways in which distributions are computed, which allows us to distinguish several types of diversities: 
collective, individual, mean individual, backward, relative, and projected diversities. Some of these network diversities relate 
to existing measures in the literature, that we framed into a comprehensive framework. But they also allow for the treatment 
of new concepts related to diversity in networks. We provide examples of applications in several domains.

The main contributions of this article are:

• The proposition of an axiomatic theory of diversity measures that allows us to present most of their uses across several 
domains with a single-parameter family of functions.

• The formalization of concepts and tools to describe and process heterogeneous information networks, that have been 
gaining attention in representation learning and information retrieval communities (in particular in recommender sys-
tems).

• The definition of several network diversity measures, resulting from the application of true diversities to probability distri-
butions that are computable with the heterogeneous information network formalism. These network diversity measures 
allow for the referentiation, expression, and computation of concepts relevant to diversity in networks, extending the 
use of diversity from systems of classification and apportionment to systems best described by network-structured data.

• The mapping of some of the network diversity measures to pre-existing quantitative measurements that are widespread 
in different fields, and the development of new applications through examples in recommender systems, social media 
studies, ecology, competition law, and scientometrics.

In addition to providing means of referencing, expression, and computation on diversity-related concepts in complex data 
modeled by heterogeneous information networks, the network diversity measures could be leveraged in different downstream 
tasks performed in data mining. Expanding on those mentioned in the introduction (Section 1), we can now hint at more 
precise examples of applications in such tasks. In Recommender Systems, for example, previous works have used diversities 
associated with meta paths to avoid over-fitting in the training stage on data modeled with heterogeneous information 
networks [153]. Network diversity measures could allow, in this case, to target different collective and individual diversities 
in the function to be optimized. Other applications use meta paths to consider node similarities in strategies for node 
classification [154], and could leverage network diversity measures to consider parametrization of the weight given to 
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balance and variety in diversity when used. Research in representation learning could embed different quantities computable 
with network diversity measures in learning strategies where diversity would be leveraged for optimizing different objective 
function through training [155]. Finally, we hint to other applications that would need to be explored in greater detail than 
it is possible here, in domains related to heterogeneous information networks and diversity, such as community detection 
[156–158], clustering in networks [159,160], and the analysis of time-series resulting from temporal networks [161].

Many relevant advances in computer sciences hinge on the improvement of performance metrics through the develop-
ment of novel algorithms and methodologies. This article seeks to contribute in the proposal of the metrics with which 
advancements are to be compared with the state of art. It is for this purpose what we propose a detailed discussion of the 
properties and implications of the proposed network diversity measures. We hope that this framework for the application 
of diversity measures to network structures will enrich research on diversity in the domains identified in Section 5 and 
beyond. Future developments in this line of research might consider the identification of algebraic structures for network 
diversity measures, and their application to case studies.
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