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Geological storage of CO2 in deep saline aquifers is a promising measure to mitigate global warm-
ing by reducing the concentration of this greenhouse gas in the atmosphere. When CO2 is injected
in the geological formation, it dissolves partially in the interstitial brine, thus rendering it denser
than the CO2-devoid brine below, which creates a convective instability. The resulting convection
accelerates the rate of CO2’s perennial trapping by dissolution in the brine. The instability and
resulting convection have been intensively discussed by numerical and theoretical approaches at the
Darcy scale, but few experimental studies have characterized them quantitatively. By using both
refractive index matching and planar laser induced fluorescence, we measure for the first time the
onset characteristics of the convective dissolution instability in a 3-D porous medium located below a
gas compartment. Our results highlight that the dimensional growth rate of the instability remains
constant when the CO2 partial pressure in the compartment is varied, in clear discrepancy with
the theoretical predictions. Furthermore, within the CO2 partial pressure range studied, the mea-
sured growth rate is one to three orders of magnitude larger than the predicted value. The Fourier
spectrum of the front is very broad, highlighting the multi-scale nature of the flow. Depending on
the measurement method and CO2 partial pressure, the mean wavelength is 1 to 3 times smaller
than the predicted value. Using a theoretical model developed recently by Tilton (J. Fluid Mech.,
vol. 838, 2018), we demonstrate that these experimental results are consistent with a forcing of
convection by porosity fluctuations. Finally, we discuss the possible effects of this forcing by the
porous medium’s pore structure on the CO2 flux across the interface, measured in these experiments
about one order of magnitude higher than expected. These results obtained in model laboratory
experiments show that accounting for sub-Darcy scale flow heterogeneities may be necessary to
correctly predict convective dissolution during CO2 subsurface sequestration.
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I. INTRODUCTION

Over the past ten years, more than 30 gigatonnes of carbon dioxide (CO2) have been released annually into the
atmosphere due to human activities [1]. Due to this very large release rate, and as CO2 is a gas with significant capacity
for greenhouse effect and significant residence time in the atmosphere, its contribution to the global warming of the
Earth’s atmosphere amounts to two thirds of the global greenhouse effect [2]. Its accumulation in the atmosphere thus
results in a potentially disastrous global problem. One solution to mitigate this issue is to reduce the anthropogenic
emissions to the atmosphere by capturing and storing CO2 in deep saline aquifers and depleted oil reservoirs [3].
These geological formations, located between 1 and 3 km beneath the Earth’s surface, are typically porous and filled
with brine. At these depths, the CO2 becomes supercritical and, once injected, its motion through the reservoir is
controlled by fluid mechanics [4]. Being positively buoyant, it first rises to the top of the reservoir, until it encounters
an impermeable cap-rock, along which it then spreads horizontally. This leads to the formation of a supercritical CO2

layer positioned above the brine. By dissolving into the surrounding brine, CO2 then densifies it locally and creates a
negatively buoyant CO2-enriched brine layer sitting on top of pure brine. Once this new layer is sufficiently thick, it
becomes gravitationally unstable, leading to a convective instability with a typical fingering pattern. This convective
dissolution process is of paramount importance for CO2 storage, as (i) the dissolution of CO2 into brine reduces the
long-term risks of CO2 leakage to more superficial geological formations, and (ii) the convection continuously brings
CO2-devoid brine in contact with the supercritical CO2, thus contributing to enhancing the dissolution rate [4–8].

The convective instability is classically known to be controlled by the Rayleigh number Ra [4], which is defined in
detail further in the text. The convective dissolution instability has been extensively studied using a combination of
theoretical and numerical approaches at the Darcy’s (i.e., continuum) scale, with a description of flow based on Darcy’s
law [6–14]. These studies focus principally on the onset time of the instability and its main characteristics, such as
growth rate or wavelength, but also on the CO2 dissolution rate. They have recently established a comprehensive
scenario for the convective dissolution process, with several steps appearing as a function of time [6, 7, 14]. First, the
process is initiated by a diffusive regime, in which diffusion of CO2 in the brine at the top of the reservoir thickens the
CO2-enriched brine layer located above the pure brine. Once sufficiently dense fluid is accumulated in this diffusive
layer, perturbations start to grow linearly in the linear-growth regime. This typically creates CO2-rich brine fingers
going downwards and increasing the CO2 flux once they are large enough, in the flux-growth regime. Then, the fingers
start to interact with their neighbors, leading to the merging regime. This is followed by a constant-flux regime, where
the merged fingers are sufficiently spaced, allowing for a new destabilization of the diffusive boundary layer between
them. Finally, when the fingers feel the influence of the bottom of the reservoir, the convective dissolution process
progressively stops in what is termed the shut-down regime. Note that these regimes do not depend directly on the
Rayleigh number, except the last one. Indeed, the Rayleigh number only controls how many of these regimes can
occur before the influence of the bottom of the reservoir on the process starts to be significant [7]. Note also that
the predictions from Darcy scale theoretical developments are not necessarily expected to fully hold when the Darcy
number based on the vertical size of the porous medium is sufficiently large so that the most unstable wavelength
it not much larger than the typical pore size. Pore scale heterogeneities are then expected to play a significant
role [4, 12, 15, 16]. Heterogeneities at scales larger than the Darcy scale are also expected to impact the convection
significantly, but have not yet been much investigated.

These theoretical and numerical works have been complemented by experimental studies, which, however, remain
more limited [8]. Indeed, a large part of them have been performed in a Hele-Shaw cell, mimicking Darcy’s law in an
experimental setup without grains or porous structure [17–25]. These first experiments in Hele-Shaw cell have mainly
remained qualitative [17, 18, 22], and the validation of the theoretical predictions for the instability characteristics [24]
or for the convective dissolution process scenario [20] have only been reported recently. Some experimental works have
focused on CO2 flux measurements in PVT (pressure, volume and temperature) cells partly filled by a porous medium
at the bottom [18, 22, 26, 27]. However, the configuration of PVT cells do not allow for visualisation of the instability
within the considered medium [8]. A few works have visualized the instability within a porous medium confined
between two plates. However, they did not focus directly on the instability characteristics, as they remained mainly
qualitative [28] or as they investigated the scaling relation between the CO2 flux and the Rayleigh number [5, 21].
Note that the instability in a porous medium has also been observed using X-ray tomography [29], with a main focus
on the structure of the fingering pattern. Finally, it is worth mentioning the two works of MacMinn et al. [30, 31]
that report experiments and visualisation of the instability in a porous medium when the CO2 layer at the top is not
stationary but still migrates at the top of the reservoir. This configuration may be relevant for geological sequestration
sites but it does not represent the classical model system reported in the literature and studied here.

In any case, the validation of the characteristics of the instability and quantitative characterization of the convective
dissolution process, obtained in the theoretical and numerical approaches, remains to be performed in an experiment
involving a flow cell containing a porous/granular structure. If one considers a granular porous medium, the pres-
ence of the grains may render the convective dissolution process significantly more complex by introducing several
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ingredients, not considered when assuming Darcy’s law in an isotropic and homogeneous continuous medium. First,
as a natural porous medium is intrinsically random, it may contain heterogeneities, i.e. variations in porosity and
permeability. These heterogeneities may impact the velocity field and thus the concentrations, a phenomenon which
may continuously force perturbations [8, 16]. Furthermore, pore scale flow heterogeneities (i.e., below the Darcy
scale), may play a similar, but more subtle, role in the instability development. Secondly, the heterogeneity of the
solute-advecting pore scale flow (in the pores/channels between the grains) and its interaction with molecular diffusion
below the Darcy scale are known to induce hydrodynamic dispersion of the solute at the Darcy scale [32]. This process
enhances mixing and can be expected to lead to coarsening of the fingering pattern [29, 33]. Theoretical, numerical,
and experimental works have started to study the additional effects of heterogeneities [9, 13, 28, 34], porosity fluctu-
ations [6, 16] and hydrodynamic dispersion [8, 15, 29, 33, 35–38] on the convective dissolution process. In particular,
they have shown that heterogeneities can reduce the onset time of the instability. However, the question of whether
the description of the instability based on Darcy’s law is relevantwhen pore scale or structural heterogeneities and
hydrodynamic dispersion are present remains open.

In this paper, we study the onset of convective dissolution in a granular porous medium quantitatively, in order to
compare the measurements with previous theoretical and numerical predictions of the instability characteristics [9–
12]. The paper is organized as follow. In Section II, we present the experimental setup that allows us to both
measure the characteristics of the instability within the porous medium and obtain the CO2 flux across the liquid-gas
interface. We then present a brief overview of the convective dissolution process observed in the 3-D porous medium
(Section III), before discussing in detail the experimental results obtained on the instability characteristics (growth
rate and wavelength), in Section IV. The results for the growth rate show a clear discrepancy with the theoretical
predictions, but can however be explained by a forcing mechanism based on porosity fluctuations as in a model
recently introduced by Tilton [16]. Finally, in Section V, we present and discuss the experimental results obtained for
the CO2 flux across the interface, which appears much larger than expected.

II. MATERIALS AND METHODS

A. Experimental setup

The experimental setup consists of a 300 mm large, 300 mm high, 7 or 15 mm thick, closed and transparent tank
as shown in Fig. 1. Note that the tank thickness e is much smaller than its dimensions in the other directions. In
addition, as shown further in the text, the thickness is also much smaller than the typical wavelength of the instability
but remains larger than the typical grain sizes used in the experiments. This ensures that the instability remains
two-dimensional and allows us to visualise it using a refractive index matching method by looking through a relatively
thin but still 3-D porous medium. As in several studies reported in the literature [17, 18, 22–25], we have chosen to
use gaseous CO2 and water as a pair of immiscible fluids to model the instability in the experimental setup. Note
that the physics of the process is completely similar to what it would be if supercritical CO2 were used (instead of
gaseous CO2) [39], but without the necessity to reach very high pressures experimentally. This experimental system
is therefore different from analog fluid experiments performed with miscible fluids, such as MEG (methanol and
ethylene glycol) and water [5, 30, 33] or PG (propylene glycol) and water [19, 21, 28, 31]. The bottom half of the
tank is therefore filled with a porous medium and salt water while the top half contains air at atmospheric pressure
and a CO2 sensor. The salt dissolved in the water is here employed to match the refractive index of the grains. The
z-direction points downward and its origin z = 0 is set at the interface between the brine within the porous medium
and the gas. At time t = 0, part of the air in the top half of the tank is removed and replaced by CO2, leading to
a sudden increase of the fraction XCO2

of CO2 above the porous medium. In this configuration, CO2 dissolves into
the brine in the vicinity of the gas-liquid interface, leading to a density difference ∆ρ between CO2-rich brine and
pure brine proportional to the CO2 partial pressure PCO2

= XCO2
P0 with P0 = 1 bar (see Section II E). Note that

during the CO2 injection, the total pressure increases by less than 0.01 bar during less than 1 second. This adiabatic
compression creates an increase of the temperature of the gas that is smaller than 3 degrees, which leads to a transient
decrease of the density, smaller than 0.1 %. However, this density variation is too small to modify the convection due
to CO2 since its duration is several orders of magnitude shorter.

In order to visualise the instability inside the porous medium, we use the combination of two different techniques:
refractive index matching to see through the porous medium and planar laser induced fluorescence to qualitatively
detect CO2 iso-concentrations. These techniques are presented in the next two sections.
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FIG. 1. Sketch of the experimental setup. The porous medium, filled with brine, has a height H and the gas phase an height hg.
The thickness of the tank is e = 15 or 7 mm, its length is L = 300 mm, with a total height H + hg = 300 mm. The gray parts
in the image correspond to zones for which no useful data is available on the recorded images: the thin rectangle corresponds
to a lateral reinforcement of the tank which prevents imaging the porous medium, while the bottom of the tank is out of the
field of view of the camera, which is not an issue as we mainly focus on the onset of the instability. The experimental image
inserted in the sketch and its colorbar are discussed in Section II C.
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FIG. 2. (a) Histograms of grain typical dimensions. The two insets show a side-view (top) and a top-view (middle). The scale
bars both indicate 10 mm. (b) Contrast ∆I as a function of the salt water density ρ0. The three insets show examples of
images at different water densities obtained using a white backlight. The spacing between the lines is 10 mm and the error bars
are computed from the standard deviation of the set of ∆I measurements obtained for the different lines in the background.
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B. Porous medium and refractive index matching

Refractive index matching allows for optical access to the bulk of dense suspensions and porous media [40], by
matching the optical indices of the fluid and solid phases and thus canceling any light refraction at solid-liquid
interfaces within the flow cell. For the refractive indices of these two phases to be identical, they have to be chosen
carefully. Most of the previous works have used highly viscous fluids [40–42], with a dynamic viscosity µ several orders
of magnitude higher than that of water. In order to reach high Rayleigh numbers in our experiments (see Section II E)
and to stay rather simple with respect to the CO2 dissolution chemistry, we use FEP (fluorinated ethylene propylene)
transparent particles, with a refractive index n = 1.344 close to water so that it can be matched with salt water. The
FEP particles look like droplets solidified while resting on a surface, as seen in Fig. 2(a). Indeed, they all have a flat
side (located at the bottom of the grains in the top inset in Fig. 2(a)) and, at the opposite, a more rounded side. The
height of the grains, defined as the distance between these two sides, is on average equal to 1.43 mm. Viewed from the
top, they exhibit a clear circular cross section, with a mean diameter of 3.08 mm. The distributions of diameter and
height are represented in Fig. 2(a) and show that their dimensions are relatively uniform over the particle population,
despite a non-classical shape whose only symmetry is cylindrical. With such grain dimensions, the tank contains
therefore between 100 and 200 grains in its width, 50− 100 grains in its height, and 5 to 10 particles in its thickness.
This is sufficient to consider the assembly of grains as a three-dimensional (3-D) porous medium. Moreover, as the
thickness of the tank is about 5 to 10 particles, the flow is fully 3-D in the bulk of the porous medium. The packing
of FEP particles has a porosity φ = 0.39± 0.02 and a permeability K = (9.3± 0.8)× 10−10 m2 (see Appendix A for
details on the permeability measurements). Note that water does not wet FEP significantly. As a consequence, air
bubbles are easily trapped in the porous medium when the grains are put together in water. To remove this issue,
before the start of the experiments, we use a vacuum pump to decrease the air pressure in the gas compartment. It
dilates the air bubbles trapped in the medium so that they detach more easily and rise to the surface.

Refractive index matching is performed by adding NaCl salt to the water, in order to reach the FEP’s refractive
index and make the porous medium as transparent as possible. Note that the presence of salt in the water has
a stabilizing influence on the instability [25, 43]. However, adding salt is necessary to match the refractive index,
and the concentrations considered remain limited to 1.5 mol/l. In addition, the added salt has been chosen as pure
as possible, to limit the presence of other chemical species in the water that may affect the global pH when CO2

dissolves. The optimal salt concentration, or salt water density ρ0, has been found by examining the contrast on a
pattern composed of vertical dark lines placed behind the tank and under a back-light exposure. The three insets in
Fig. 2(b) show typical images obtained in this configuration: on the top, the lines are clearly visible as there are no
grains and only salt water. On the bottom, the lines may be distinguished or not, depending on the density of the salt
water. The contrast ∆I, defined as the difference between the intensity in the regions without lines in background and
the intensity along the lines in the background, is shown as a function of the salt water density in Fig. 2(b). It clearly
exhibits an optimal value for the density, in the range ρ0 ≈ 1.050 − 1.060 g/cm3, corresponding to the inset where
the lines are the most distinguishable. This calibration has been performed using a white backlight, but we assume
that the optimal salt density is the same at the wavelength of the laser (in the visible range, see Section II C) used in
our experimental setup. Note that the porous medium is not completely transparent here, as the grains are not fully
transparent and contribute to light attenuation. Such a combination of FEP grains and salt water may therefore not
be sufficient for refractive index matching in a 3-D porous medium with large dimensions in all directions, but remains
perfectly adapted to the setup described here, where the tank is much thinner in one direction. In the experiments,
the salt water has been prepared with a density equal to ρ0 = 1.056± 0.002 g/cm3.

C. Planar laser induced fluorescence

The presence of dissolved CO2 is visualised using planar laser induced fluorescence. The interstitial fluid, i.e. salt
water, contains fluorescein at a uniform concentration of Cf = 10−5 mol/l. When CO2 dissolves in the interstitial
fluid, it decreases the pH locally, which decreases the re-emitted intensity, as fluorescein light emission and absorption
are pH-dependent [44–48] (see details in Appendix B). This property of fluorescein has been used to assess pH
variations in a wide range of systems, such as acid turbulent jets [49], CO2 bubble rising in a quiescent fluid [50],
CO2 gas dissolution in turbulent water [51], or convective dissolution of CO2 in a Hele-Shaw cell [24].

The tank is illuminated from the top, using a 500 mW laser with a wavelength λe = 473 nm (Laser Quantum,
gem 473). From this laser, a laser sheet is obtained with a Powell lens to ensure a homogeneous intensity within
the sheet. The intensity of the laser is set to 220 mW and this quantity is kept stable during all the duration of
the experiments (typically a few hours) by proper cooling of the laser. No photo-bleaching effect has been noticed
during a long exposure of the fluorescein solution to such conditions. The tank is filmed from its largest side using
a 16-bit color camera (Nikon D200) equipped with a green light filter centered around the fluorescein’s emission
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wavelength, λf = 515 nm. As the development of the instability is relatively slow, the frame rate is set to 1 image
per minute, while the experiments typically last several hours.

We describe here qualitatively the fluorescence intensity recorded by the camera and resulting from light emission
by the fluorescein occupying the pore space of the medium. First, the intensity incoming from the laser is attenuated
by the porous medium containing the solution. The intensity received at a point M(x, z) of the medium at time t is
given by

Ir(x, z, t) = I0 exp

(
−
∫ z

0

ε(x, z′, t)dz′
)
, (1)

where I0 is the intensity of the laser before entering in the porous medium, and ε is the absorption coefficient of the
porous medium. Note that this coefficient depends on several factors. Indeed, the grains are not perfectly transparent
and therefore attenuate laser intensity, the fluorescein in the pores has its own absorption coefficient (see Appendix B)
that has to be multiplied by the fluorescein concentration Cf , and, in addition, the refractive index matching between
the grains and the fluid is not perfect and may contribute to decreasing the transmitted intensity at the fluid-solid
interface. Due to the pH-dependency of the fluorescein’s fluorescence, this absorption coefficient depends also on
pH, and therefore on time and space coordinates as the CO2 concentration is inhomogeneous in the tank during an
experiment. However, the variation of

∫ z
0
ε(x, z′, t)dz′ between the beginning of the experiment and the end of the

experiment is small since ε does not change by more than 10 % between the value measured without CO2 and the
one measured with the saturated concentration in CO2. The difference between Ir(x, z, t) and Ir(x, z, t = 0) is thus
smaller than 10 % close to the surface (i.e. for z ≤ 30 mm). We have thus neglected this effect and considered that
Ir(x, z, t) = Ir(x, z, t = 0).

The re-emitted intensity, collected by the camera, is therefore given by [49]

If (x, z, t) = f(pH(x, z, t)) Ir(x, z, t = 0), (2)

where the fluorescence f(pH) is a function that has been calibrated (see Appendix B). The pH dependency on the
CO2 concentration in water, C, can be approximated as

pH =
1

2
[pKa − log10(C)], (3)

with pKa = 6.37. CO2 concentrations in the medium may therefore be obtained using the ratio [49]

If (x, z, t)

If (x, z, t = 0)
=

f(pH(x, z, t))

f(pH(x, z, t = 0))
≡ f0(pH(x, z, t)). (4)

Although the global features of the function f(pH) can be fairly well explained theoretically (see Appendix B), the
multiplicative pre-factor f(pH(x, z, t = 0)) may vary weakly due to experimental conditions (fluorescein concentration,
temperature, salt impurities, etc.). As a consequence, we were not able to reach a quantitative determination of the
CO2 concentration since a variation of only 5 % of the function f0(pH) leads to a change in C of one order of
magnitude. Indeed, C is extremely sensitive to the pH (since C ∼ 10−2pH) and the pH strongly depends on the
fluorescence function (since 1/f ′0(pH) ≈ 11 within the range pH = 4 to 6, i.e. the pH region corresponding to the
saturated concentrations for the CO2 partial pressures considered in this study).

However, this method can be used to detect pH iso-curves [23] and therefore iso-concentration lines of CO2. An
example showing the ratio If (x, z, t)/If (x, z, t = 0) is given in Fig. 1 where the iso-concentrations are clearly visible.
The iso-concentration zF (x, t) corresponding to If (t)/If (0) = 0.65 is shown with a solid black line. Iso-C fronts are
extracted at each time and then smoothed using a spline function in order to remove the small scale fluctuations due
to the texture of the grains. The choice of the iso-concentration was varied between 0.65 and 0.85, which slightly
modifies the value of the growth rates and wavelength. These uncertainties are taken into account in the error bars
of the figures presented further in the text.

D. Direct measurement of CO2 dissolution flux

To measure the fraction of CO2 in air, XCO2
, during the experiments, the mixture of air and CO2 above the porous

medium is extracted from the cell by a small diaphragm pump (Boxer, 22K series), brought in a CO2 sensor (GSS,
ExplorIR-W-F-100) and then re-injected in the cell. The positions of the hoses for this extraction/injection process
are indicated in Fig. 1. The sensor measures the fraction of CO2 in the gas twice every second and the pump has a
flow rate of 1.4 l/min, allowing a response time of the sensor smaller than 5 s, according to the manufacturer. The
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pump-flow rate is sufficiently large for the full gas volume to be circulated through the sensor within a maximum
of 30 s, which is small enough with respect to the typical scale of time variations of the CO2 fraction in air during
the experiment. This setup permits to accurately measure the CO2 partial pressure throughout the experiment.

Since the partial pressure decreases by about 10 to 60 % during the experiments, it is possible to deduce the flux of
CO2 absorbed into the fluid. However, it should be noted that some CO2 is lost due to the non gas-proof junctions
of the tubing and the cell. This loss has been measured by replacing the water and the porous medium with a solid
plate. It causes an exponential decay, e−t/τ , of the CO2 partial pressure with a decaying time τ ≈ 15.6 h. When
the water and porous medium are present, the partial pressure decreases about twice faster due to absorption by the
fluid. We can thus calculate the flux of dissolved CO2 using the formula

F = − hg
RT

(
dPCO2

dt
+
PCO2

τ

)
, (5)

where hg is the height of the gas volume above the porous medium (see Fig. 1), R = 8.314 J K−1 mol−1 the ideal gas
constant, and T ≈ 293 K the temperature of the gas. In order to limit the effect of noise, the partial pressure PCO2

is first interpolated as a function of time with a spline function before its time derivative is computed.
As the flux measurements are purely based on the decay of the CO2 partial pressure in the gas compartment,

it is fully possible to use other granular materials than FEP, as was done in several studies in PVT cells reported
in the literature [18, 22, 26, 27]. We have therefore performed a few additional experiments with other grains,
which have been chosen spherical and with a typical dimension (here the diameter d) smaller than that of the FEP
grains. Their characteristics are given in Table I, for comparison with the FEP grains. As these grains are made of
different materials, they are not adapted at all to the refractive index matching technique with salt water, and the
quantitative visualisation of the instability shown in Fig. 1 is not possible. However, these grains allow us to explore
smaller permeabilities (also measured using the method described in Appendix A) compared to the FEP grains and
to observe the dependence of the CO2 flux on this parameter. The effect of the salt on the flux has also been checked
with an experiment performed with fresh water and FEP grains. These additional results are discussed in Section V.

TABLE I. Table with the characteristics of the different grains used in this study.

material shape d [mm] φ K [m2] number of exp. measured quantities
FEP half-sphere 1.5 0.37− 0.41 9.30± 0.80× 10−10 21 growth rate, wavelength, flux
PMMA sphere 1 0.39 2.69± 0.02× 10−10 1 flux only
silica sphere 0.35 0.43− 0.45 0.94± 0.07× 10−10 2 flux only

E. Governing equations and non-dimensional parameters

Within the porous medium, the classical approach assumes that the flow is governed by three equations [7–12, 15,
16, 36]:

fluid incompressibility: ∇ · v = 0, (6)

Darcy’s law: µv = −K(∇P −∆ρ c g), (7)

advection-diffusion equation: φ
∂c

∂t
+ (v ·∇)c = ∇ · (φD ·∇c). (8)

The vectors are noted in bold, with v the Darcy velocity vector having u and w as x and z-components, and with
g the gravity acceleration vector pointing in the positive z-direction. These equations depend on both the fluid’s and
porous medium’s properties. P is the pressure corrected for the hydrostatic pressure ρ0gz, and µ ≈ 1.15× 10−3 Pa s
is the dynamic viscosity of the salt water considered in this study and at 20 ◦C [43, 52]. c is the concentration of
dissolved CO2 in the fluid normalized by the saturation concentration at the surface given by C0

sat = kHP
0
CO2

, where

kH = 2.92 × 10−4 mol m−3 Pa−1 is the Henry’s constant at the salt concentration and at 20◦C [43], and P 0
CO2

is
the initial CO2 partial pressure above the porous medium. The density difference caused by the CO2 dissolution
is given by ∆ρ = ρ0αkHP

0
CO2, where α is the solutal expansion coefficient such as αkH = 2.38 × 10−9 Pa−1 at

20◦C [43, 53]. Finally, D is an anisotropic diffusion tensor accounting for hydrodynamic dispersion. It is classically
expressed as [8, 35, 36]

Dij =

[
(D0 + αT

‖v‖
φ

)δij + (αL − αT)
vivj
φ‖v‖

]
(9)
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where D0 = 1.24 × 10−9 m2/s is the CO2 diffusion coefficient in the salt water solution [54], δij is the Kronecker
symbol, and the notation ‖v‖ is the Euclidean norm of vector v. In the literature, the two length scales αL and αT

are estimated to be about αL ∼ d and αT ∼ d/10 [32, 33], where d is the typical grain size.
This convective dissolution problem is characterised by the Rayleigh and Darcy numbers [9–12, 24]

Ra =
∆ρgKH

µφD0
, (10)

Da =
K

H2
. (11)

By varying the different experimental parameters (see Table II), and mainly the initial CO2 partial pressure, the
Rayleigh number varies from about 30 to 750. It therefore corresponds to unstable configurations since the critical
Rayleigh number Rac above which the instability starts has been found theoretically to be about 32 [8]. With the
parameters given above and in Table II, the Darcy number belongs to a limited range between Da = 0.2× 10−7 and
0.5 × 10−7. These values are sufficiently small to prevent any Brinkman effects which were shown to occur when

RaDa1/2 becomes of order one [24]. Here, this parameter remains much smaller than 1. As it will be shown later,
this value is sufficiently small to get a correct separation of scale by about at least one order of magnitude between
the wavelength of the instability and the typical grain size.

TABLE II. Different parameters and dimensionless numbers varied in the experiments with FEP grains.

height thickness CO2 partial pressure Rayleigh number Darcy number other number

H [mm] e [mm] P 0
CO2

[bar] Ra Da ×107 RaDa1/2

138− 220 7 or 15 0.05− 1 30− 750 0.2− 0.5 0.006− 0.12

III. OVERVIEW OF THE CONVECTIVE DISSOLUTION

Figure 3 presents the temporal evolution of the convective dissolution process for an intermediate Rayleigh number
(Ra = 513), in the top region of the porous medium (z = 0− 60 mm). The visualisation initially exhibits a thin layer
with warm colors at the free surface, corresponding to CO2-rich brine where the pH is reduced, thus lowering the
emitted intensity. This layer becomes thicker as time evolves and fingers start to develop (Figs. 4(a), (b) and (c)),
grow with time (Figs. 4(d), (e) and (f)) and merge (Figs. 4(f), (g) and (h)). At first glance, these visualisations are
very similar to the ones obtained in Hele-Shaw cells without grains [24]. However, the fingers seem to be smoother
and broader, as the separation between the fingers is not as clear as in Hele-Shaw experiments. This is likely to be
due to hydrodynamic dispersion, which enhances the mixing between CO2-rich brine and pure brine as compared to
pure molecular diffusion [29, 33].

Although the relation between the intensity and the CO2 concentration is not completely quantitative [23], these
visualisations can be used to determine the depth of the front at a given intensity. For example the front zF (x, t) is
plotted at a given time t in Fig. 3(f). From this front, it is easy to define at each time t the depth of the fingertips zi(t)
corresponding to local maxima of the function zF (x, t). These fingertips are marked by dots in Fig. 3(f). They will
be used in the following to estimate qualitatively the wavelength of the instability and to characterize quantitatively
the velocity of the fingers.

At each time t, the front zF (x, t) is also used to measure the front corrugation amplitude A(t), which is defined as
the standard deviation of the front zF (x, t) along x [24]:

A(t) = 〈z2
F (x, t)− 〈zF 〉2(t)〉1/2, (12)

where 〈〉 denotes the average over x. The mean front depth 〈zF 〉 and the front corrugation amplitude A are plotted in
Figs. 4(a) and (b) as a function of time, with a classical log-lin scale for the front corrugation amplitude. As expected,
the mean front depth 〈zF 〉 increases as a function of time, showing that the CO2-rich brine penetrates into the porous
medium. The time behavior of the mean front depth 〈zF 〉 is compatible with a global diffusive process in

√
t (shown

by the dashed dotted line in Fig. 4(a)), despite the fact that convection clearly happens at short time scales according
to Fig. 3. Indeed, the thickness of the diffusive layer given by 2

√
D0t is not in agreement when using the CO2 diffusion

coefficient D0, as shown by the dashed line in Fig. 4(a): the dashed dotted line that matches the mean front depth
is represented for an effective diffusion coefficient Deff = 18D0. This value is an order of magnitude larger than the
one obtained numerically by Slim [7] in a homogeneous medium. In Fig. 4(b), the front corrugation amplitude A
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FIG. 3. Sequence of images illustrating the instability process. The corresponding times are indicated on top of each image.
Panel (f) shows an example of front (solid line) and finger tip (black dots) detection. The initial partial pressure is P 0

CO2 =
0.6 bar and the thickness of the tank is 7 mm. Note that the bottom of each image does not correspond to the bottom of the
tank. A complete video corresponding to this image sequence is available online [55].

exhibits as a function of time a small initial decay followed by an important growth after 10 minutes. This is classical
of the linear instability obtained in Hele-Shaw cells without grains [24] or in numerical simulations at the Darcy
scale [7, 12, 20]. However, it is hard to define a clear exponential growth of the amplitude in these experiments since
the curve departs quickly from the straight line (after about 40 minutes) but keeps increasing slowly until at least
300 minutes. A detailed quantitative characterization of this corrugation growth will be given in section IV.

The depth of the different fingertips is shown in Fig. 4(c) as a function of time. At the beginning of the experiment,
the fingertips plunge with a constant velocity, as suggested by the dashed line. Some of these fingertips disappear
due to the merging of the plumes. This is also characteristic of the flux-growth and constant-flux regimes of the
instability [7], that occur after the diffusive regime. However, it seems that the merging events are less frequent here
than in classical Hele-Shaw experiments or numerical simulations [7, 20, 24]. This is also visible in Fig. 4(d), which
exhibits horizontal intensity profiles at z = 15 mm as a function of time. As in Fig. 3, the fingers appear much broader
and seem to occupy a larger portion of the width than in previous experimental studies without grains. These features
therefore arise from the presence of the grains, and are likely due to hydrodynamic dispersion [29, 33].

Figure 4(e) shows the CO2 flux as a function of time, measured from the decay of the CO2 partial pressure. The
flux is large at the beginning and globally decreases as a function of time. This typical behavior is also classical, as
it has been observed in several experiments in PVT cells [18, 22, 26, 27]. The flux is expected to be diffusive at early
stages, before being enhanced by the start of the convection as observed in numerical simulations obtained at the
Darcy scale [7, 12, 16] or experiments in a Hele-Shaw cell [20]. However, for the experiment presented in Fig. 4, no
enhancement of the flux is visible. In addition, the flux obtained here is about one order of magnitude larger than
the diffusive flux given by [7, 14, 20]

Fdiff = φkHP
0
CO2

√
D0

πt
(13)

where the dispersion tensor is reduced to molecular diffusion in the absence of flow. Eq. (13) is plotted as a dashed
line in Fig. 4(e). Again, the time behavior seems compatible with a diffusive phenomenon, as shown by the dashed
dotted line in Fig. 4(e), but with an effective diffusion coefficient Deff = 290D0. Note that this effective value of the
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FIG. 4. Global measures of the instability. (a) Mean front depth 〈zF 〉 as a function of time. The dashed line represents
the expected diffusive front depth 2

√
D0t while the dashed dotted line highlights a diffusive behavior with a higher diffusion

coefficient Deff = 18D0. (b) Corrugation front amplitude A defined in Eq. (12) as a function of time t in a log-lin scale.
(c) Fingertip depth (see Fig. 3(f) for an example of fingertip detection) as a function of time. Different colors are used to guide
the eyes and easily follow the different fingertips. The dashed line shows a constant velocity of about 4 × 10−3 mm/s for the
fingertips at the beginning of the experiment. (d) Intensity profile at z = 15 mm as a function of time. White-blue regions
correspond to low CO2 concentrations and red/dark regions to high CO2 concentration. (e) Temporal evolution of the CO2

flux measured at the interface (solid line). The theoretical diffusive flux defined by Eq. (13) is plotted as a dashed line while
the diffusive flux with a higher diffusion coefficient Deff = 290D0 is shown by a dashed dotted line. The initial CO2 partial
pressure is P 0

CO2 = 0.6 bar and the thickness of the tank is 7 mm.

diffusion coefficient is not incompatible with the one given for the mean front depth 〈zF 〉 in Fig. 4(a), as the flux also
depends on the fingering pattern and not only on the mean front depth. The dynamics of the flux as a function of
the initial CO2 partial pressure will be described in more detail in section V.

IV. INSTABILITY CHARACTERISTICS

A. Measured and predicted growth rate

The growth rate of the linear instability is classically measured by plotting the front corrugation amplitude A as a
function of time in a log-lin plot [7, 24], as in Fig. 4(b) or in Fig. 5(a). The growth rate is then determined by fitting
the curve with a line, as shown in Fig. 5(a). By performing this fitting operation on all the experiments performed
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with the FEP grains, we can therefore extract the growth rate σ. The fitting time range (approximately [10-40] min)
corresponds to the interval where the front amplitude has started to grow while the fingers are not clearly formed (see
Figs. 3(b), (c) and (d)) [20, 24]. Fig. 5(b) shows the plot of the growth rate as a function of the initial CO2 partial
pressure, the experimental parameter that can be the most easily varied, for the two tank thicknesses considered here.
First, the results are independent of the tank thickness. This tends to indicate that the flow at the Darcy scale is 2-D
(i.e. independent of y). However, more surprisingly, the growth rate seems to also be independent of the initial CO2

partial pressure. Indeed, it remains close to a mean value equal to σ ≈ 0.9 × 10−3 s−1, represented by the dashed
dotted line in Fig. 5(b). The error bars have been obtained by varying the intensity threshold for the front detection,
thus slightly changing the value obtained by the exponential fit of the front corrugation amplitude A.

At the Darcy scale, the three governing equations (6)-(8) can be made dimensionless using the following character-
istic quantities [7, 8, 12, 14, 20]:

U ≡ K∆ρg

µ
for fluid velocities, (14)

L ≡ φD0

U
=

µφD0

K∆ρg
for length scales, (15)

T ≡ φL
U

=
(µφ)2D0

(K∆ρg)2
for time scales. (16)

In that case, the dimensionless equations become independent of the Rayleigh and Darcy numbers. Indeed, the
Rayleigh number simply imposes the boundary condition at the bottom of the reservoir [12], which has no influence
on the onset of the instability as it takes place close to the surface. As a consequence, the growth rate is independent
of the Rayleigh and Darcy number in this formulation and was found to be equal to σ? = 3× 10−3 numerically [12],
and further confirmed experimentally in a Hele-Shaw cell [24]. Note, however, that this growth rate has been obtained
without accounting for hydrodynamic dispersion, i.e. by simply assuming D = D0I in Eq. (9), with I the identity
tensor. Going back to dimensional units, the theoretical prediction of the growth rate is therefore simply given by

σ =
σ?

T
= 3× 10−3

(Kρ0αkHP
0
CO2

g)2

(µΦ)2D0
. (17)

This theoretical prediction is plotted as a solid line in Fig. 5(b). It is clear that the theory underestimates the
growth rate by about one to three orders of magnitude, depending on the CO2 partial pressure. This is actually a
consequence of the scaling of the theoretical growth rate as (P 0

CO2
)2 in Eq. (17) whereas the experimental growth

rate does not seem to depend on P 0
CO2

. This discrepancy clearly indicates that the growth of the front corrugation
amplitude in our experiments is due to a different mechanism, that may be related to the pore scale flow heterogeneity
induced by the presence of the grains. By looking for a relationship between the measured growth rate and the grains,
one can remark that the value of the measured growth rate σ is of the order of D0/d

2, with d = 1.5 mm taken as the
mean dimension of the grains.

B. Forcing by porosity fluctuations

To explain our experimental observations, we here propose a model based on a forcing of the instability by porosity
fluctuations. Such a mechanism has already been discussed theoretically in a recent paper by Tilton [16]. In this
work, he has considered sinusoidal porosity fluctuations and shown that they trigger the instability earlier. Note that
this work has been done without considering hydrodynamic dispersion, as it drastically makes the calculation more
complex. Here, we reproduce his calculations using dimensional quantities. We now consider porosity fluctuations
such that

φ = φ̄[1 + εφ̃(x, z)]. (18)

Here, φ̄ is the spatially averaged porosity while φ̃ stands for porosity fluctuations and ε is assumed to be small. By
definition, the porosity fluctuations have a zero spatial average. It is important to note that the porosity variations are
considered over length scales larger than the typical grain size d, as Eqs. (6), (7) and (8) are defined by averaging pore-
scale continuity, flow and transport equations [16]. Following Tilton [16], we then perform an asymptotic expansion
of Eqs. (6), (7) and (8) by seeking a solution of the form

c(x, z, t) ≈ cb(z, t) + εc1(x, z, t) + ..., (19)
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FIG. 5. Analysis of the front corrugation amplitude growth. (a) Front corrugation amplitude A as a function of time t in a
log-lin scale for two different experiments, at low (blue) and high (red) CO2 partial pressures. The thick dashed lines correspond
to the fits by an exponential function to determine the growth rate. (b) Growth rate σ as a function of initial CO2 partial
pressure in log-log scales. The solid line represents the theoretical prediction [12] while the dashed line shows the trend obtained
in the experiments. (c) Front corrugation amplitude A as a function of time t in a lin-lin scale for the same two experiments
shown in panel (a). The thick dashed lines correspond to the fits by a linear function to determine the interstitial forcing
velocity W/φ (see Eq. (26)). (d) Interstitial forcing velocity W/φ (see Section IV B) as a function of initial CO2 partial pressure
in log-log scales. The dashed line represents the trend observed in the experiments, while the solid one corresponds to the
typical interstitial velocity U/φ. The experiments exhibited in panels (a) and (c) are marked with corresponding colors in
panels (b) and (d).

with similar expansions for the horizontal and vertical velocities u and w. At zero-order (ε0), there is no perturbation
and the zero-order solution describes the CO2 diffusion at the top of the porous medium

vb = 0 and cb(z, t) = 1− erf

(
z

2
√
D0t

)
≡ 2√

π

∫ +∞

z/(2
√
D0t)

exp(−τ2)dτ. (20)

As a consequence, the order ε1 represents the typical velocities created by the instability. It is governed by the
following equations [16]:

∂u1

∂x
+
∂w1

∂z
= 0, ∇2w1 =

K∆ρg

µ

∂2c1
∂x2

, φ̄
∂c1
∂t

+ w1
∂cb
∂z
− φ̄D0∇2c1 = F1, (21)

where F1 is a forcing term that can be reduced to

F1 = φ̄D0
∂φ̃

∂z

∂cb
∂z

. (22)

It therefore appears that the order ε1 of the asymptotic expansion is forced by the vertical variation of porosity
multiplied by the vertical gradient of the diffusion concentration field cb. This term is expected to trigger the
instability due to horizontal variations in the diffusion term in the right-hand side of Eq. (8), brought by local variations

in φ̃ [16]. Note that this term is strictly null when one does not consider porosity fluctuations, as in classical numerical
simulations using Darcy’s law with a uniform porosity [7, 12] or Hele-Shaw experiments mimicking experimentally a
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2-D porous medium of uniform porosity and permeability [20, 24]. However, in our case, we investigate a 3-D granular
porous medium, which is by nature random below the representative elementary volume (REV) characteristic of the
Darcy scale [56]. One can therefore expect to have porosity fluctuations that may force some initial velocities. Note
however that this implies to some extent that the spatial averaging from pore to Darcy scale is done over a scale that
is not quite sufficiently large to be a REV; in such a way pore scale fluctuations are accounted for in the Darcy scale
description as fluctuations in the porosity field, though the porous medium would probably be homogeneous at the
Darcy scale if the latter were defined by averaging over a REV.

At the diffusive front, the vertical concentration gradient is initially very large since it scales as 1/
√
D0t (as given

by the z-derivative of the second equation of (20)). At early stages, the two dominant terms in the last equation
of (21) are thus w1(∂cb/∂z) and F1. Equating these two terms leads to the approximation:

w1 ≈ φ̄D0
∂φ̃

∂z
. (23)

As a consequence, the vertical velocity at order ε1 is directly forced by the vertical variations of porosity fluctuations.
This leads to a forcing velocity of amplitude

W = |εw1| =
∣∣∣∣D0

∂φ

∂z

∣∣∣∣ , (24)

which is expressed as a Darcy velocity, as it is derived from Eqs. (6)-(8). Following Tilton [16], porosity variations
can be decomposed in a sum of porosity perturbations varying sinusoidally in the x-direction. These variations in the
horizontal direction trigger the instability by locally making the diffusion of the CO2-rich brine through the porous
medium slightly easier or harder, alternatively. Therefore, despite the fact that (∂φ/∂z) can be of both signs, this
term should be considered in Eq. (24) to represent the amplitude of these porosity variations along the horizontal
direction, at the scale of the instability.

One can now estimate the evolution of the front corrugation amplitude A. Indeed, the front zF is advected by
the interstitial (i.e. mean pore scale) vertical forcing velocity W/φ, such that the front corrugation amplitude A is
expected to increase linearly in time in the early stage. This is actually what is observed in the experiments. Indeed,
plotting the front corrugation amplitude in linear scale (as done in Fig. 5(c)) indicates that A increases linearly during
about 100 minutes. This linear fitting is more efficient than the exponential fitting previously done to extract the
growth rate (which seemed to be reasonable only for 40 minutes). The slope of the linear growth of A, i.e. the
interstitial forcing velocity W/φ, has been measured for all the experiments performed with the FEP grains, and
error bars have been obtained by varying the intensity threshold for the front detection. The interstitial forcing
velocity W/φ is plotted as a function of the initial CO2 partial pressure in Fig. 5(d), and appears independent of this
parameter as shown by the dashed line, with a mean value W/φ ≈ 10−3 mm/s. This value is fully compatible with
the value 4× 10−3 mm/s obtained by following the finger tip depth as a function of time, in Fig. 4(c). Note that the
dispersion of the value found for W/φ is larger than the one found for σ. Indeed, the linear fit is more sensitive to
the value of the iso-concentration than the exponential fit. However, Fig. 5(d) shows the relative dispersion of data,
which remains limited. For comparison, the typical interstitial velocity U/φ, proportional to P 0

CO2
, is plotted with a

solid line in Fig. 5(d). Both velocities remain on the same order of magnitude, but the scaling with P 0
CO2

is clearly
different. The experimental results on the forcing velocity W/φ are therefore compatible with the value D0(∂φ/∂z)/φ,
which is independent of P 0

CO2
. Moreover, if one assumes that (∂φ/∂z) ∼ φ/d, one can recover quantitatively the mean

value of W/φ measured in the experiments. This suggests a strong connection between porosity fluctuations and the
typical grain size d, as expected since these fluctuations are the Darcy scale signature of pore scale heterogeneity. In
the granular porous medium, porosity fluctuations are large at scales close to the typical grain size, and go to zero
monotonically as the scale considered for local averaging is increased towards the Darcy scale, which is the scale of
the REV. The use of Tilton’s model here then implies that the homogenization scale is chosen small enough (i.e. it
is somewhat smaller than the REV) for pore scale heterogeneity to translate into spatial fluctuations of the porosity
field.

At late times, the concentration gradient ∂cb/∂z eventually becomes small enough such that the forcing term may
become negligible. In that case, the equations become the classical equations in a homogeneous porous medium. The
front corrugation amplitude A is thus expected to grow exponentially with a growth rate σ given by Eq. (17). A
hybrid equation for A can be given as

dA

dt
= σA+

D0

φ

∂φ

∂z
, (25)

where the first term is the growth of the instability as given by the theoretical predictions [12] and the second term
is the forcing term acting on the velocity field, so on the time derivative of the front corrugation amplitude A. The
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solution of Eq. (25) is given by

A(t) =
D0

φ

∂φ

∂z

(
exp(σt)− 1

σ

)
≈ D0

φ

∂φ

∂z
t for σt� 1. (26)

In our experiments, the initial growth of the front amplitude occurs generally during about 100 min, while the growth
rate is expected to vary between 10−7 and 10−4 s−1 in the pressure range investigated (see Fig 5(b)). Therefore, in
this work, we are always in the limit where σt is smaller than, or of order, 1. This means that the linear fit for the
front amplitude is always applicable here. For higher CO2 partial pressure, one can expect to have σt� 1, so a clear
exponential (and not a linear) growth. However, the tank used here does not allow us to go higher than P 0

CO2
= 1 bar.

C. Wavelength

After the growth rate, we now focus on the wavelength of the instability that has also been significantly discussed
in the literature. Indeed, as the grains seems to have a strong influence on the growth rate with the forcing by
porosity fluctuations, it is worth investigating the effect of the grains on this other important parameter of the
convective dissolution instability. Note that the typical convective length scale L (see Eq. (15)) belongs to the
range [0.1 − 1.9] mm, which means that the grains are typically larger than, or about the same size as, this typical
scale. However, as stated further in this section, the front wavelength λ is theoretically expected to be about two
orders of magnitude larger than the typical convective length scale L [10, 11], so much larger than the typical grain
size. This is further confirmed by the experimental results, meaning that there is a clear scale separation in the
experiments.

Depending on the initial CO2 partial pressure, the experiments qualitatively exhibit different length scales for the
fingers. This is illustrated in Figs. 6(a) and (d), where panel (a) corresponds to a high CO2 partial pressure and
panel (d) to a low CO2 partial pressure. In Fig. 6(a), one can clearly see about 12 fingertips within the full width
of the tank, while in Fig. 6(c), one mainly observes a large fingertip on the left of the tank in addition to smaller
fingertips disturbing this large scale feature locally (particularly to the right of the tank). This illustrates well that
the front exhibits a multi-scale nature.

In order to experimentally obtain a typical wavelength for each experiment, different methods have been described
in the literature, two of which have been used on the experimental data. The first method estimates the wavelength
from the maximum of the Fourier spectrum of the front zF (x, t) at a given time t [24]. Figures 6(b) and (e) exhibit
examples of the spectra obtained from the fronts detected in Fig. 6(a) and (d). The maximum of each spectrum is
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FIG. 6. Analysis of the front’s dominant wavelength. (a) Snapshot at t = 100 min for an experiment at high CO2 partial
pressure (P 0

CO2
= 0.83 bar), shown in red in Fig. 5. (b) Spectrum S of the front for the image shown in panel (a). The

maximum of the spectrum is indicated by a black dot. (c) Wavelength λ as a function of time determined using two different
methods: the Fourier transform of the front (black dots) [24] and Eq. (27) (blue line) [7]. The vertical dashed line indicates the
time of the snapshot shown in panel (a). (d), (e) and (f): Same panels as (a), (b) and (c) but for an experiment at low CO2

partial pressure (P 0
CO2

= 0.085 bar), shown in blue in Fig. 5.
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marked with a black dot but the spectrum at high CO2 partial pressure clearly exhibits additional peaks. This also
highlights the multi-scale nature of the front. The second method defines the typical finger width as π/q and therefore
the wavelength as λ = 2π/q where the horizontal wavenumber q is given by [7]

q =

√
〈(∂c′/∂x)2〉
〈c′2〉

, (27)

with c′ = c − 〈c〉 is the concentration fluctuations and 〈〉 represents the average in the horizontal direction x. Note
that this relation is exact when c′ is a sinusoidal function of the variable qx. In our case, the concentration c has been
replaced by the normalised intensity If (x, z, t)/If (x, z, t = 0) obtained using the planar laser induced fluorescence
technique (see Section II C) and taken at z = 〈zF 〉(t).

These two different methods can be applied for each image, in order to follow the evolution of the estimated
wavelength with time. This evolution is shown in Figs. 6(c) and (f) for both methods described previously. At high
CO2 partial pressure (see Fig. 6(c)), despite experimental noise and once the instability has started, both methods give
the same value of the wavelength within about 50 % (a few centimetres), in qualitative agreement with the snapshot
of the instability in Fig. 6(a). This wavelength slightly increases with time. This is expected as the different fingers
initially produced by the instability merge with time, thus increasing the typical wavelength with time. This merging
process is visible in Fig. 3. However, for low CO2 partial pressures, the two methods result in different wavelengths
in Fig. 6(f). Indeed, the second method based on the finger width gives a wavelength on the order of about 70 mm
while the first one shows a typical wavelength of about 300 mm corresponding to the tank width until t = 150 min.
As stated before, one large finger can be identified on the left side of the front in Fig. 6(d). The wavelength given
by the spectrum finally converges toward a value close to the one obtained by the second method at the end of the
experiment, when the small fingers on the right side of the front have grown sufficiently. The difference between the
two methods can be understood since the second method corresponds in fact to the second moment of the spectrum∫
q2S(q)dq /

∫
S(q)dq, which gives more weight to large wavenumbers than the first method.

In the literature, the typical time at which the wavelength is measured corresponds to the non-linear time
scale tσ [24], i.e. when the front amplitude deviates from the exponential fit. However, in our case, as we have
shown previously that a linear fit would be better for the growth of the front amplitude, it is possible to consider
another time scale, which is the one where the front amplitude deviates from its initial linear growth, noted tW . This
time depends on the different experiments but remains of order 100− 150 minutes, as shown by the two examples in
Fig. 5(c). We have chosen to measure the wavelength by averaging the values obtained at 5 different times linearly
chosen between tσ and tW . This time range corresponds to the end of the linear growth, as the non-linear time
scale tσ is about 40 to 100 minutes in the different experiments. The error bars obtained for the wavelength measured
using the second method correspond to the standard deviation of the 5 values obtained. For the first method, we
have chosen to set the error bars at 20 % of the wavelength value, as the estimation of the wavelength by this method
remains limited by the multi-scale nature of the front. The results obtained with both methods are respectively shown
in Fig. 7(a) and (b) for the different experiments, i.e. as a function of the initial CO2 partial pressure.
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FIG. 7. Front wavelength λ as a function of the initial CO2 partial pressure obtained using two different methods, based on (a)
the spectrum of the front zF (x, t) and (b) the typical finger width (see Eq. (27)). The solid and dashed dotted lines respectively
indicate the theoretical predictions from Riaz et al. [10] and Hassanzadeh et al. [11]. The experiments exhibited in Fig. 6 are
marked with blue and red dots.
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First, similarly to the growth rate, the results are independent of the thickness of the tank, which is in agreement
with a 2-D instability at the Darcy scale. In addition, the measured wavelength is not too far from the value predicted
by earlier numerical simulations and theoretical derivations at the Darcy scale. Indeed, the dimensionless wavelength
(i.e. dimensionalized by L = (µφD0)/(K∆ρg)) was found to be equal to 2π/0.07 ≈ 90 [10] or to 40π ≈ 126 [11].
In Fig. 7(a), this prediction is in good agreement with the experimental results for high CO2 partial pressures but
it slightly overestimates the wavelength by a factor smaller than 2 at low CO2 partial pressures. In Fig. 7(b), this
prediction still overestimates the results at low CO2 partial pressures, but with a larger factor (3 to 4), while the
agreement is still fair at high CO2 partial pressures. In fact the wavelength obtained with the second method appears
rather independent of the CO2 partial pressure and may correspond to the smallest detectable wavelength in the front.
However, the overall value of the wavelength determined by both methods is here on the same order of magnitude
as the predictions, while this is clearly not the case for the growth rate. These two results may therefore appear in
contradiction.

Nevertheless, the forcing mechanism due to porosity fluctuations is assumed to force with a broad spectrum in
the horizontal direction. It is thus possible that the instability still selects the most unstable wavelength although
the growth of the fingers is much faster than in the absence of heterogeneities. For example, taking the model (26)
developed for the front corrugation amplitude A with a heuristic growth rate of the instability

σ(q) = σth
q(2qth − q)

q2
th

(28)

leads to a growth of the front corrugation amplitude A depending on the wavenumber q. Here, the function σ(q) has
been chosen as simple as possible, with the condition that it reaches its maximum value σth for q = qth, where qth

is the expected wavenumber from the theory developed by Hassanzadeh et al. [11] and σth is the theoretical growth
rate (see Eq. (17)) obtained by Elenius & Johannsen [12]. Note that Eq. (28) also imposes that σ(q = 0) = 0,
as in the classical Rayleigh-Taylor instability [57]. The dependency of the heuristic growth rate (28) with respect
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FIG. 8. Heuristic model for the growth of the front corrugation amplitude A as a function of time and wavenumber. The top
line corresponds to an experiment at high CO2 partial pressure (P 0

CO2
= 0.83 bar) while the bottom one is for an experiment

at low CO2 partial pressure (P 0
CO2

= 0.085 bar). These experiments are the same as the ones addressed in Figs. 5 and 6. The
left column illustrates the dependence of the growth rate σ as a function of the wavenumber q using the heuristic model (28).
The central and right columns show the evolution of the front corrugation amplitude A (given by Eq. (26) with σ(q) set by
Eq. (28)) as a function of the horizontal wavenumber and time respectively. The colors of the vertical dashed lines marking
different wavenumbers in the left and central columns correspond to the ones used in the right column. The experimental data,
also shown in Fig. 5(c), are represented in panels (c) (red squares) and (f) (blue dots) as a reference.
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to the horizontal wavenumber q is shown in Figs. 8(a) and (d), for experiments respectively at high and low CO2

partial pressures, already discussed in Figs. 5 and 6. The growth rate is null for q = 0, then becomes positive for
small q before reaching its maximum at q = qth and finally decreasing to become negative at large q. Note that
the wavenumber range where this function is shown correspond to the typical range in the experiments, i.e. from
qL = 0.021 mm−1 corresponding to the length of the tank L = 300 mm to qd = 4.6 mm−1 corresponding to the
typical grain size d = 1.5 mm. The spectrum of the front corrugation amplitude A, shown in Figs. 8(b) and (e), is
very broad during the initial forcing by the porosity fluctuations because this forcing has been assumed independent
of the wavenumber q. However, at later times, the instability still selects the most unstable wavenumber qth predicted
by the theory, i.e. the one corresponding to the maximum of the growth rate. The time dependency of the front
corrugation amplitude A is shown for different wavenumbers in Figs. 8(c) and (f). It is visible that the amplitude
of the mode with the wavenumber qth expected from the theory is slightly larger than the others, but remains on
the same order of magnitude for a large range of wavenumbers, at least between the blue and red vertical dashed
dotted lines. This may explain the multi-scale nature of the front observed in the experiments within the different
scales expected at this CO2 partial pressure range. For higher wavenumbers with negative growth rate, the initial
linear growth is clearly visible but rapidly saturates. This saturated value is not completely negligible, as the front
corrugation amplitude A tends to −D0/(dσ) > 0 when t→∞ and σ < 0 (see Eq. (26)), but remains much below the
curves obtained for the wavenumbers with positive growth rate. The comparison with the experimental data for these
two experiments plotted in Figs. 8(c) and (f) shows relatively good agreement. This heuristic model could therefore
explain the global selection of the wavelength by the instability, even in the presence of a broad forcing due to porosity
fluctuations.

V. CO2 FLUX

A. Experimental results

This section deals with the CO2 dissolution flux F in the experiments, measured using the temporal decay of
the CO2 partial pressure in the gas compartment above the porous medium (see Section II D). The behavior of
the flux F as a function of time has already been briefly shown and discussed in Fig. 4(e). We here discuss more
quantitatively the measured CO2 flux as a function of time for different initial CO2 partial pressures and different
permeabilities, first shown in Fig. 9(a) using dimensional quantities. The solid lines correspond to the flux obtained
with the FEP grains while the dashed and dashed dotted lines correspond to the flux obtained with the silica and
PMMA grains respectively. The dotted line indicates the data for the single experiment performed with fresh water
and FEP grains. The colors indicate the initial CO2 partial pressure for the different experiments. All fluxes follow
a global decay with time, compatible with a diffusive scaling 1/

√
t shown by the dashed line. A small kink may be

visible at t ≈ 25 min for the lowest pressures where the flux grows by about 10 to 30% before decaying again. This
is a typical characteristic of the flux-growth regime, where the flux is expected to follow the decaying diffusive flux
before increasing due to the convection. However, note that the experiments presented here investigate the onset of
the instability and remain limited in terms of duration, with a maximum dimensionless time t/T ≈ 300 for the longest
experiments. In the previous works using Darcy’s law [7, 14–16, 20], the flux reaches a maximum in the flux-growth
regime at about t/T ≈ 2 × 103, so much later than our temporal observation window. Due to the forcing of the
instability in our experiments, this flux increase may occur earlier. In addition, the increase may be much smaller
because the initial flux is very large as will be shown later. Note that the fluctuations of the flux are also sensitive
to the spline interpolation, since the CO2 partial pressure decay is first interpolated to reduce noise before using the
time derivative in Eq. (5) which could also explain these small kinks.

Figure 9(a) clearly proves that the dimensional CO2 flux is larger when the initial CO2 partial pressure is larger,
while the variation of the permeability does not seem to influence the flux as it stays on the same order of magnitude
for a given CO2 partial pressure. Note that removing salt slightly increases the flux (see red dotted line in Fig. 9(a))
as the Henry’s constant and the diffusion coefficient weakly depend on the salt concentration in water [25, 43]. The
dependence of the flux with the initial CO2 partial pressure can be understood by the classical theory, where the
dissolution flux is usually dimensionalized by [7, 14]

F ≡ UC0
sat =

K∆ρgkHP
0
CO2

µ
. (29)

This characteristic flux is proportional to (P 0
CO2

)2, since the density difference ∆ρ also depends on this pressure (see
Section II E). Figure 9(b) shows the CO2 flux F normalized by the quantity F as a function of the dimensionless
time t/T = U2t/(φ2D0). It exhibits a relatively good collapse of the different curves obtained at different initial CO2
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FIG. 9. CO2 flux F as a function of time t for different initial CO2 partial pressures P 0
CO2

and different permeabilities. The
experiments with FEP grains are represented with solid lines, while the ones with silica and PMMA grains are plotted with
dashed and dashed dotted lines respectively. The data from the single experiment performed with fresh water and FEP grains
is plotted as a red dotted line. The dimensional flux is shown in panel (a), while it has been made dimensionless in panels (b)
and (c), using respectively F = UC0

sat and F ′ = WC0
sat. The time t has also been made dimensionless, using T = φ2D0/U2

and T ′ = φ2D0/W
2. The colors detailed in the legend in panel (a) are the same for all panels. In panel (b), the horizontal

solid line indicates F/F = 1.7×10−2, the expected dimensionless flux value for constant flux regime once the convection is well
established [6, 7, 14, 20]. In panels (b) and (c), the dashed lines represent the expected dimensionless diffusive flux (see Eq. (32))
while the dashed dotted lines highlight a dimensionless diffusive flux with an effective diffusion coefficient Deff = 290D0.

partial pressures and different permeabilities (including the curve of the experiment performed with fresh water).
However, following the results discussed previously, we can suggest another typical dissolution flux, as the CO2

saturated concentration C0
sat is moved downwards at a constant forcing velocity W . This term can therefore be

written as

F ′ ≡WC0
sat = WkHP

0
CO2

. (30)

In contrast to F , this typical CO2 forced flux F ′ is proportional to P 0
CO2

, as W appears independent of the initial
CO2 partial pressure (see Fig. 5(d)). Note that W has not been measured for the silica and PMMA grains, as the
refractive index matching technique with salt water is not suited to these grains. It has therefore been assumed that
W ≈ φD0/d for these two types of grains. By plotting the normalized CO2 flux F/F ′ as a function of the dimensionless
time W 2t/(φ2D0) in Fig. 9(c), we show that all flux curves also collapse well. It thus seems that both scalings are
consistent with the experiments. The fact that both these normalization schemes lead to a satisfying collapse of the
curves is in fact ‘natural’ because the collapse is independent of the choice of the characteristic velocity Uchar. Indeed,
if the flux scales as 1/

√
t, F/Fchar scales as

√
Tchar/t with Fchar = UcharC

0
sat and Tchar = φ2D0/U2

char. This leads to

F

UcharC0
sat

∝ φ

Uchar

√
D0

t
, (31)

and the characteristic velocity Uchar disappears from both sides of Eq. (31). However, when using W as a characteristic
velocity, the dimensionless time W 2t/(φ2D) is independent of the CO2 partial pressure, contrary to the one classically
used (t/T = U2t/(φ2D)), because W is independent of the initial CO2 partial pressure while U is linear with this
partial pressure. As a consequence, the slight flux growths observed at t ≈ 25 min in the experiments with the FEP
grains stay synchronized using t/T ′ in Fig. 9(c), while they are spread horizontally when using t/T in Fig. 9(b).
This therefore shows that the typical CO2 forced flux F ′ may be more relevant to describe the flux obtained in the
experiments, in agreement with the forcing of the instability demonstrated previously. Nevertheless, note that the
flux curves for the other grains appear shifted as the grain diameter d is smaller, and W is therefore assumed to be
larger. The forcing velocity value for the other grains has however to be checked carefully before being used with
trust.

Using both dimensionless fluxes and time scales defined above, the theoretical diffusive flux (see Eq. (13)) is given
by the same formula

Fdiff
F

=
1√
πt/T

or
Fdiff
F ′

=
1√
πt/T ′

. (32)

It is represented by the dashed lines in Figs. 9(b) and (c). However, it appears that the typical fluxes obtained in the
experiments are about one order of magnitude higher than the expected diffusive flux. This is in clear contradiction
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with the quantitative fluxes already reported in the literature without grains, which follow the expected diffusive flux
well before increasing due to convection [7, 12, 14–16, 20].

B. Physical discussion

This one-order of magnitude discrepancy is difficult to explain quantitatively, but may be attributed to flow het-
erogeneity induced by the granular structure below or close to the Darcy scale, and which cannot be accounted for by
the Darcy law as used in many previous works [7, 12, 14, 20], despite recent attempts to account for heterogeneities
within the porous medium [6, 13, 16]. Indeed, using a recent model based on porosity fluctuations [16], we have shown
in Section IV that the grains may directly force the instability and induce an initial flow velocity W = D0(∂φ/∂z).
According to this model, the average flux is of second order (ε2) in the asymptotic expansion started in Section IV B.
Indeed, the concentration c1 at first order is supposed to be sinusoidal and the integral over the width of the tank
removes its direct contribution to the average flux. The second order ε2 is governed by the following equations [16]:

∂u2

∂x
+
∂w2

∂z
= 0, ∇2w2 =

K∆ρg

µ

∂2c2
∂x2

, φ̄
∂c2
∂t

+ w2
∂cb
∂z
− φ̄D0∇2c2 = F2, (33)

where F2 is a forcing term equal to

F2 = −φ̄φ̃ ∂c1
∂t
− v1 ·∇c1 + φ̄D0∇

(
φ̃∇c1

)
. (34)

The equations (33) are similar to the equations (21) for the order ε1, but the forcing term F2 is more complex, as it
contains more terms and depends on terms of order ε1 of the concentration and velocity. Using equations (21), it can
be rewritten as

F2 =

(
φ̄D0

∂φ̃

∂z
− w1

)(
∂c1
∂z
− φ̃ ∂cb

∂z

)
+

(
φ̄D0

∂φ̃

∂x
− u1

)
∂c1
∂x

. (35)

Nevertheless, our simple model at order ε1 only gives us an estimation of the vertical velocity w1 at early stages, but
not the complete solution of equations (21). It is therefore difficult to go further analytically using these calculations
and a numerical approach as the one provided by Tilton [16] would be necessary. However, it seems that this model
cannot explain the large flux measured at early times since c remains small in the linear regime.

Another mechanism can be thought of to explain the large flux observed in the experiments. Just beneath the
surface, the horizontal velocity of the convection cells may induce hydrodynamic transverse dispersion due to the
presence of the grains [8, 10, 15, 32, 33, 35–38], leading to enhanced vertical diffusion. However, the typical estimation
of the hydrodynamic dispersion effects leads to an extra diffusion coefficient DT = αT〈U〉 ∼ d〈U〉/10 in the transverse
direction [32, 33], where 〈U〉 is the typical mean interstitial velocity just beneath the free surface. Taking 〈U〉 = W/φ ≈
D0/d leads to DT ∼ D0/10, which represents an increase of the diffusion coefficient D0 by only 10%. This increase
is clearly not sufficient to explain the order of magnitude difference on the flux, i.e. at least two orders of magnitude
difference on the diffusion coefficient. Note that hydrodynamic dispersion has been neglected when performing the
asymptotic expansion to obtain the forcing terms in Eqs. (21) and (33). Indeed, hydrodynamic dispersion is described
by an anisotropic tensor (see Eq. (9)), and brings a large number of terms at both orders ε1 and ε2, that are not easily
interpretable. For the sake of clarity, we have therefore derived the model without these terms. However, despite the
fact that the transverse dispersion coefficient DT is expected to remain much smaller than D0, a similar calculation
for the longitudinal dispersion coefficient shows that DL = αLW/φ ∼ D0, i.e. that this effect is on the same order
of magnitude as the diffusion coefficient. Hydrodynamic dispersion is therefore not negligible and understanding its
effects on the convective dissolution process, with or without a forcing by porosity fluctuations, remains of paramount
importance to correctly model geological sequestration sites [8, 10, 35, 38]. As examples, based on numerical values
of structural parameters from Bickle et al. [58, 59] and Boait et al. [60], one can estimate the typical pore scale Péclet

number Pe = Ua/D0 ≈ Uβ
√
K/D0 in the famous Sleipner and Salt Creek sites to a value between 2 ·10−2 to 5 ·10−2,

since the prefactor β relating the typical pore size a to
√
K amounts to 20 − 50 (U being the Darcy velocity). So

the typical hydrodynamic longitudinal dispersion normalized by D0, DL/D0 ' Pe(αL/a)/φ (with αL/a typically of
about 2 or 3 and φ ' 0.3), amounts to ∼ 10 Pe = 0.2 to 0.5. In our experiments, this quantity is about 1, so slightly
larger, since the Péclet number is Pe = Wa/D0 ≈ 0.1 when considering a ' 0.3d and W ∼ φD0/d.

We hypothesize that the CO2 flux measured about one order of magnitude larger than expected may come from the
forcing at different scales. Indeed, one can expect the instability to be triggered within each pore close to the surface,
leading to a large number of pore-scale plumes not detectable with our measurement techniques. These pore-scale
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plumes will then merge at larger scales, until the global instability is triggered and measured. The addition of the
pore-scale plumes may increase significantly the CO2 flux, but it is necessary to validate quantitatively this mechanism
using pore-scale simulations or extra measurements within the pores close to the surface.

To conclude, it is not clear why the flux is so large at early stages. However, it is in agreement with several works
using an opaque cell which have measured a fast decay of the CO2 pressure in a gas compartment above a porous
medium [22, 26, 27]. The authors have attributed this to convection and have extracted an effective diffusivity about
1 to 2 orders of magnitude larger than the molecular diffusivity, in good agreement with our observations. However,
as the experimental cells used were opaque, they were not able to investigate the characteristics of the instability and
to connect them with the flux behavior. Note that in the absence of grains, the numerical and theoretical studies have
shown that the flux becomes steady at late times (i.e. in the nonlinear regime) and equal to 1.7×10−2F [6, 7, 14, 20].
This prediction is plotted as a solid line in Fig. 9(b). It is possible that this regime may be reached at later times
and/or at higher CO2 partial pressures in the presence of grains. The steady flux should be dependent on the
permeability K, as F ∝ K. This is in agreement with the experimental results of Kneafsey and Pruess [18] in a PVT
cell. However, these effects have not been observed here as we focus on the onset of the convective dissolution and at
relatively low CO2 partial pressure compared to this reference.

VI. CONCLUSIONS

In this work, we have demonstrated that the combination of refractive index matching and planar laser induced
fluorescence can successfully allow characterizing the onset of the convective dissolution process in a granular, 3-D,
porous medium. These quantitative measurements have been completed by flux measurements, using CO2 partial
pressure decay in the gas phase above the porous medium. The experimental results obtained have been compared to
the predictions mainly obtained using numerical or theoretical approaches assuming Darcy’s law in a homogeneous
and isotropic porous medium.

The dimensional growth rate σ of the instability has been shown to be constant when the initial CO2 partial pressure
increases by a factor 20. This is in clear discrepancy with the theoretical predictions but can be explained by a model
based on porosity fluctuations. Indeed, the experimental results for the growth of the front corrugation amplitude are
fully compatible with a forcing of the convection by the porosity fluctuations, with a forcing velocity W = D0∂φ/∂z
found to be on the order of φD0/d, i.e. the diffusion coefficient multiplied by the porosity and divided by the typical
grain size d in the experiments. As a consequence, the convection is triggered much faster than expected at low CO2

partial pressures. However, the typical wavelength measured in the experiments remains compatible with the orders
of magnitude proposed by the theoretical and numerical approaches without porosity fluctuations, despite a clear
multi-scale pattern of the front. This has ben explained by a simple heuristic model showing that the forcing acts at
a large range of wavenumbers, and more preferably at large ones, but the wavenumbers growing the fastest are still
the ones corresponding to the maximum of the expected growth rate of the instability.

The CO2 flux across the interface has been measured to be at least one order of magnitude higher than expected,
compared to the diffusive flux. Despite our efforts, this is not completely explained yet, but the presence of the
grains leading to a local forcing must play a large role in this phenomenon. To completely understand this effect, it is
necessary to go further, experimentally by directly measuring the flow within the pores close to the surface [32], and/or
numerically by using pore scale simulations [61] to investigate such dynamics at small scales. These simulations remain
much more costly than the ones performed up to now in the investigation of the convective dissolution instability, but
they appear necessary to highlight the local effect of the structure of the pore space at scales smaller than the Darcy
scale, instead of assuming Darcy’s law in a homogeneous and isotropic porous medium.

The presence of a granular porous medium, intrinsically random at the pore scale, in our experiments, has revealed a
completely different onset of the CO2 convective dissolution than the one expected by current numerical and theoretical
approaches. Indeed, within the time range investigated experimentally (up to t/T ≈ 300), only the diffusive regime
and a small portion of the linear-growth regime should be visible [7], while we have observed the development of the
instability to a large extent. Therefore, the instability starts much faster in our experiments than what is expected
from the current theory based on Darcy’s law, and highlights the existence of a forcing of the instability. Note that the
Darcy number of potential sequestration sites is generally smaller than in our experiments, and the scale separation
is therefore larger than in our setup. The forcing mechanism highlighted in our laboratory model may therefore be
weaker or occur at early time scales in the geological applications, but the scale separation between the most unstable
wave length of the instability and the typical pore size is already in a range 60 to 600 in our experiments, i.e., a range
at which Darcy’s law is expected to be fully valid. Hence the question here is not merely that of the upscaling of
Darcy’s law. It is that of the upscaling of Darcy’s law coupled to the solute transport equation by buoyancy. Hence,
in order to understand and predict faithfully the onset of this process in sequestration sites, these results show that
it is necessary to go beyond the models of flow based on Darcy’s law in homogeneous media and to account in some



21

way for the sub-Darcy scale complexity and the heterogeneity of the porous media at all scales.
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Appendix A: Measurements of the permeability K of the different porous media

The permeability K of each porous medium made with the 3 different sets of grains (see Table I) has been obtained
by measuring the evolution of the water level in the tank opened at its bottom and containing a porous medium with a
given height Hb ≈ 90 mm, as illustrated in Fig. 10(a). It is similar to the one used for the instability characterization,
with a typical size of 300 × 300 × 15 mm3. 6 holes are drilled at its bottom: having a diameter of 12 mm, they are
equipped with a small grid to prevent the grains to be evacuated by the flow. Note that the vertical z-axis is oriented
in the opposite direction of the gravity in that case. With Darcy’s law (see Eq. (7)) projected vertically, one gets

wP = −K
µ

(
∂P

∂z
+ ρwg

)
, (A1)

with wP being the typical Darcy velocity in the porous medium and ρw the water density. At the free surface of
the liquid the derivative of h is equal to the fluid velocity w in the tank above the porous medium. The flow-rate
conservation at the interface between that tank and the porous medium imposes that wP = w = dh/dt, and therefore

dh

dt
= −K

µ

(
∂P

∂z
+ ρwg

)
. (A2)

One can then multiply Eq. (A2) by dz and integrate it between 0 and Hb, i.e. across the porous medium’s height.
This leads to

dh

dt
Hb = −K

µ

(∫ Hb

0

∂P

∂z
dz + ρwgHb

)
, (A3)

where ∫ Hb

0

∂P

∂z
dz = P (Hb)− P (0) (A4)

= Patm + ρwg(h(t)−Hb)−
(
Patm − γ

dh

dt

)
(A5)

= ρwg(h(t)−Hb) + γ
dh

dt
. (A6)

The last term, γ dh/dt, is here to account for the pressure drop at the bottom of the tank, which is not directly at
the atmospheric pressure Patm due to hole configuration and the grids retaining the grains. Combining Eqs. (A3)
and (A6) leads to a differential equation for the water level h

dh

dt

(
1 +

Kγ

µHb

)
= −Kρwg

µHb
h(t), (A7)

whose solution is given by

h(t) = hi exp

(
− Kρwg t

µHb +Kγ

)
, (A8)

with hi the initial water level in the tank.
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FIG. 10. (a) Sketch of the experimental setup to measure the permeability K of the porous medium. (b) Data obtained for
the FEP grains: water level h as a function of time in a log-lin scale, without (blue dots) and with (red squares) grains at the
bottom of the tank. The two dashed lines show the exponential fits to determine γ (fit of the blue dots) and K (fit of the red
squares).

To estimate the pressure drop coefficient γ, one first performs experiments without porous medium, such that φ = 1,
Hb = 0 and K = e2/12. Therefore, the water level h is expected to behave simply as

h(t) = hi exp

(
−ρwg t

γ

)
. (A9)

The data obtained for the FEP grains are shown in Fig. 10(b) with blue dots. They are in good agreement with an
exponential decay at early times, i.e. up to h = 100 mm where the influence of the position of the holes start to be
important. A total of 8 experiments with different initial water levels hi have been performed and a good collapse
is observed between these experiments once the initial starting times are adjusted as they start from different water
level. The pressure drop coefficient γ ≈ 3.37× 104 kg m−2 s−1 is measured by fitting the exponential decay before the
water level reaches 100 mm.

Then, the granular porous medium is introduced at the bottom of the tank, with a given height Hb ≈ 90 mm.
The position of the top of the porous medium is shown in Fig. 10(b) by a horizontal dashed dotted red line. Several
experiments with different preparations of the porous medium (with and without compaction, before or after removing
the bubbles) have been performed and do not show any significative difference in the data, all of which are presented in
Fig. 10(b) as red squares. Note that these data have been obtained for the FEP grains, but a similar small dispersion
of the data is observable for the two other sets of grains. By fitting the exponential decay above 100 mm, one gets
the permeability of the porous medium consisting of FEP grains as K = (9.3± 0.8)× 10−10 m2. The permeabilities
for the two other sets of grains are given in Table I, in the main body of the paper.

Note that these values are consistent with the estimation of the permeability from the typical grain size through
the Kozeny-Carman equation

K =
φ3d2

p

150(1− φ)2
, (A10)

with dp the diameter of spherical particle of identical volume. For example, for the FEP grains, dp ≈ 2.4 mm
and φ ≈ 0.39 (see Section II B), leading to K ≈ 6× 10−9 m2. One therefore recovers the order of magnitude obtained
in our experiments, while the limited discrepancy between the two values may come from the fact that the grains
we used are not spherical. In addition, we also remind that the prefactor 1/150 of the Kozeny-Carman equation
is not necessarily even expected to provide a perfect match to the permeability of a pack of monodisperse spheres.
Indeed, the prefactor that matches the best the permeability values measured for the PMMA and silica grains (than
are spherical) is 2 to 4 times smaller than the one given in Eq. (A10).
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FIG. 11. (a) Bjerrum plot of fluorescein species as a function of pH. (b) Variation of relative fluorescence (blued disks) and
absorption (black diamonds) of a salt water solution of fluorescein as a function of pH. The lines with corresponding colors
indicate theoretical curves based on parameters taken from the literature and given in Table III.

Appendix B: Calibration of the fluorescence as a function of the pH

The total fluorescence f(pH) of a fluorescein solution at excitation wavelength λe is given by the sum of the
fluorescence fi of the individual species i [46]

f(pH) =

4∑
i=1

fi(pH) ∝
4∑
i=1

εiΦi[Fli](pH), (B1)

where εi is the molar absorption at wavelength λe, Φi the fluorescence efficiency or quantum yield, and [Fli] the
concentrations of the different species present in the solution. There is a total of 4 different species, all connected
by 3 acid-base reactions: [Fl2−], [HFl−], [H2Fl] and [H3Fl+]. The relative concentration of the different species as a
function of pH is shown in Fig. 11(a), with the dissociation constants indicated in Table III. As the anions mostly
contribute to the fluorescence f , this quantity therefore varies significantly in the pH range 4 − 8 [44–48]. Using
our setup, we have measured the pH-dependency of the salt water solution of fluorescein, by decreasing the pH with
addition of concentrated HCl solution. The measured variations of the relative absorption and fluorescence as a
function of pH are shown in Fig. 11(b). Note that these quantities are normalized by their respective values at high
pH. There are in a good agreement with the previous works on fluorescein fluorescence [44, 46, 47], as the theoretical
lines represent the predictions based on parameters from this literature (see Table III). Note that the pKa for the
acid-base reaction between Fl2+ and HFl+ is slightly higher than the one reported earlier [46] and may have changed
due to the presence of salt in the solution. However, despite a proper calibration of the fluorescence f , it was not
possible to measure quantitatively the CO2 concentrations using this technique, as explained in section II C.

TABLE III. The different chemical parameters associated to fluorescein species which have been used to plot the theoretical
curves and compare with experimental data in Fig. 11(b). The references from which the parameters have been extracted or
compared are indicated in each column. Note that the dissociation constants on each line is the equilibrium constant for the
acid-base reaction with the species of the same line and of the line below.

Fluorescein Dissociation constant [46] Absorption at λe = 475 nm [47] Quantum yields [44, 47] Fluorescence constant [46]
species pKa εi [cm−1(mol/l)−1] Φi εiΦi/max(εΦ)× 100
Fl2− 6.85 48649 0.93 100
HFl− 4.24 31945 0.25 17.65
H2Fl 2.19 3934 0.20 1.74
H3Fl+ 966 0.95 2
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