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Similarities on a Sphere

Pascal Honvault

Abstract. We define dilations and similarities on a sphere with the use of quater-
nions. As an application, we produce a simple algorithm for the calculation of
the angles of a polyhedron.

1. Introduction

The orientation preserving similarities of the usual plane are well known: They
are composition of translations, rotations and dilations. We can define as well
rotations and dilations on a sphere in a simple manner by the use of quaternions.
The big advantage of quaternions is to facilitate the calculation of the composition
R2 ◦R1 of two rotations in the usual 3D-space ([2]), and to avoid singularities like
the poles.

We begin by looking for the local similarities on the unit sphere S2 of the usual
3D-real euclidean space R3. We say that f is a local similarity of S2 if there exist
neighbourhoods VΩ, VΩ′ of points Ω, Ω′ such that f : VΩ → VΩ′ preserves the
distance ratios. Recall that the exponential map expΩ : m ∈ TΩ �→ M ∈ VΩ

sends points m in a neighbourhood of Ω in the tangent plane TΩ to points M
in the unit sphere. Geometrically, it corresponds to laying off a length equal to
Ωm along the geodesic that passes through m in the direction of

−−→
Ωm. So we

can define the local induced map f̃ : TΩ → TΩ′ by f̃ = exp−1
Ω′ ◦ f ◦ expΩ.

Indeed, it is a local plane similarity because distance ratios and angles from Ω are
preserved. If we specialize to positive similarities with a fixed point Ω, we then
obtain that f = expΩ ◦ f̃ ◦ exp−1

Ω is a local rotation or dilation of center Ω (or their
composition), which we want now to describe in terms of quaternions.

2. Local similarities in terms of quaternions

We first recall some basic facts and notations about the space H of quaternions.
We will denote by q = a+ q or q = (a, q) a quaternion of scalar part (or real part)
a and vector part (or imaginary part) q, with q = bi + cj + dk, (b, c, d) ∈ R3. H
is then an associative, anticommutative real algebra of dimension 4 with respect to
the usual addition and the multiplication rule:

ii = jj = kk = −1, ij = k, jk = i, ki = j.
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We also identify the number q with the vector (b, c, d) of R3. The conjugate q∗ of
q is defined by q∗ = a− q, in such a way that qq∗ = q∗q = a2 + b2 + c2 + d2 is
the usual euclidean norm of R4. This leads us to define the set of unit quaternions
H(‖1‖). In fact, we can introduce a scalar product on H by q · q′ = aa′ + bb′ +
cc′ + dd′ and qq∗ is nothing but q · q = ‖q‖2. On the second hand, each unit
quaternion q can be rewritten as cos(ϕ)+sin(ϕ)u where u is a pure imaginary and
unit quaternion. Finally, we can represent rotations R�u,θ with axis R�u (�u unitary)
and angle θ by the quaternion q = cos(θ/2)+ sin(θ/2)u in the following manner:
R�u,θ(�v) = qvq∗. Moreover, the mapping q ∈ H(‖1‖) �→ R ∈ SO(3) is a group
homomorphism for multiplication and composition, that is the composition of two
rotations is represented by the product of two unit quaternions.

Next, let us look at spherical dilation. We fix a point Ω ∈ S2 and a real positive
number λ. The dilation HΩ,λ of center Ω and ratio λ is a map from the spherical cap
VΩ,π/λ =

{
M ∈ S2 : ∠OΩM < π/λ

}
to S2. By noting M ′ the image of M and

CΩ,M the meridian of origin Ω passing through M , it is defined by: M ′ ∈ CΩ,M

and Ω̃M ′ = λ · Ω̃M . This motion may be described by quaternion interpolation
([3]) in the following way. Let q0 = q0 and q = q be the unit quaternions (and
purely imaginary) representing the vectors

−→
OΩ and

−−→
OM . Then the quaternion

(where θ is the angle between q0 and q)

q′(λ) = q′(λ) =
q0 · sin(1− λ)θ + q · sin(λθ)

sin(θ)

is exactly the quaternion representing M ′. It is also denoted by Slerp(λ; q0, q) and
it is known as ”Spherical Linear Interpolation”. Let us summarize the previous
results.

Theorem 1. The local positive similarities of the unit sphere S2 with a fixed point
Ω are the rotations R−→

OΩ,δ
, the dilations HΩ,λ of center Ω, and their compositions.

They can be algebraically represented by quaternions as:

• R−→
OΩ,δ

: v �→ qvq∗ where q = cos
δ

2
+ sin

δ

2
· ω,

• HΩ,λ : v �→ Slerp(λ;ω, v) =
ω · sin(1− λ)θ + v · sin(λθ)

sin(θ)
,

where ω is the quaternion representing Ω and θ = ∠(ω̂, v).

3. Application to polyhedra

We apply here the above results to compute some angles of a given polyhedral
angle. As in our technical report ([4]), we are interested in the calculation of the
last three angles of such a polyhedra. That is, let P be a polyhedral angle of
vertex p and degree n, and F1, ..., Fn its faces. It intersects the unit sphere of
center p in a spherical polygon (q0, q1, ..., qn−1, qn = q0). If we fix the internal
angles α1 = ∠q0pq1, . . . , αn−1 = ∠qn−2pqn−1 of the faces F1, ..., Fn−1 and the
external (dihedral) angles δ1 = ∠(F1, F2), . . . , δn−2 = ∠(Fn−2, Fn−1), then the
polyhedron is entirely known up to a motion (see [1] for rigidity-type results). Thus
we may compute the last three angles αn = ∠qn−1pqn, δn−1 = ∠(Fn−1, Fn) and
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δn = ∠(Fn, F1). The angles αi are measured in ]0, π[ and are equal to the lengths
of the geodesic arcs q̃i−1qi, whereas the angles δi are measured in ]0, 2π[ and are
equal to the angles (q̃iqi−1, q̃iqi+1).

qi−1
qi

qi+1

δi

αi

αi+1

Figure 1. Polygonal view of P on S2

If we associate with each point qi = (b, c, d) the quaternion qi = qi = bi+ cj+
dk, then we have the simple following relationship between qi−1, qi and qi+1:

qi+1 = Slerp(
αi+1

αi
; qi, Qiqi−1Q

∗
i )

=
sin(αi − αi+1)qi + sin(αi+1)Qiqi−1Q

∗
i

sin(αi)
(1)

with Qi = cos(
δi
2
) + sin(

δi
2
)qi. For this calculation, we also need the value of θ

which is here arccos qi · (Qiqi−1Q
∗
i ) (because Slerp is independent of the sign of

θ). For the algorithm, we fix the values q0 = i, q1 = cos(α1)i+ sin(α1)j, and we
compute qn−1 step by step by using the equation (1) for i = 1 to n− 2.

Now we can compute αn = arccos(qn−1.qn) = arccos
qn−1q

∗
0 + q0q

∗
n−1

2
.

For the last two dihedral angles, we will use the following lemma.

Lemma 2. Let u, v be two unit vectorial quaternions, q = cos(δ/2) + sin(δ/2)u

and Q = cos(δ) + sin(δ)u. Then Q =
(u · v)u ∧ v + (qvq∗)((u · v)u− v)

1− (u · v)2 .

Proof. Recall that if q = cos(δ/2)+sin(δ/2)u is a unit quaternion and v a vectorial
quaternion, then

qvq∗ = cos(δ)v + (1− cos(δ))(u.v)u+ sin(δ).u ∧ v (2)

and that the product of two vectorial quaternions q1 and q2 is

q1q2 = −(q1.q2) + q1 ∧ q2.

So, if v is unitary, then

(qvq∗)v = − cos(δ) + (1− cos(δ))(u · v)(−(u · v) + u ∧ v) + sin(δ)(u ∧ v) ∧ v.
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By the vector triple product formula (u∧ v)∧w = (u.w)v− (v.w)u, this leads to

(qvq∗)v = −(cos(δ) + sin(δ)u)− (u · v)2(1− cos(δ)) + sin(δ)(u · v)v
+ (1− cos(δ))(u · v)u ∧ v.

We have similarly

(qvq∗)u = −(u ·v)(cos(δ)+sin(δ)u)−(u ·v)(1−cos(δ))+sin(δ)v−cos(δ)u∧v.

Thus, (qvq∗)(v − (u · v)u) = Q((u · v)2 − 1) + (u.v)u ∧ v and this proves the
lemma. �
Now, formula (1) tells us that

Qiqi−1Q
∗
i =

sin(αi)qi+1 − sin(αi − αi+1)qi
sin(αi+1)

. (3)

Thus, we have by Lemma 2

cos(δi) + sin(δi)qi =
cos(αi+1)(cos(αi) + qiqi−1) + qi+1(cos(αi)qi − qi−1)

sin(αi+1) sin(αi)

giving us the values of δn−1 and δn by identifying the real and imaginary parts.

Theorem 3. The dihedral angles δn−1 and δn are given by

cos(δn−1) + sin(δn−1)qn−1

=
cos(αn)(cos(αn−1) + qn−1qn−2) + q0(cos(αn−1)qn−1 − qn−2)

sin(αn) sin(αn−1)
,

cos(δn) + sin(δn)q0

=
cos(α1)(cos(αn) + q0qn−1) + q1(cos(αn)q0 − qn−1)

sin(α1) sin(αn)
.
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