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Similarities on a Sphere

We define dilations and similarities on a sphere with the use of quaternions. As an application, we produce a simple algorithm for the calculation of the angles of a polyhedron.

Introduction

The orientation preserving similarities of the usual plane are well known: They are composition of translations, rotations and dilations. We can define as well rotations and dilations on a sphere in a simple manner by the use of quaternions. The big advantage of quaternions is to facilitate the calculation of the composition R 2 • R 1 of two rotations in the usual 3D-space ( [START_REF] Hladik | Quaternions réels, duaux, complexes[END_REF]), and to avoid singularities like the poles.

We begin by looking for the local similarities on the unit sphere S 2 of the usual 3D-real euclidean space R 3 . We say that f is a local similarity of S 2 if there exist neighbourhoods V Ω , V Ω of points Ω, Ω such that f : V Ω → V Ω preserves the distance ratios. Recall that the exponential map exp Ω : m ∈ T Ω → M ∈ V Ω sends points m in a neighbourhood of Ω in the tangent plane T Ω to points M in the unit sphere. Geometrically, it corresponds to laying off a length equal to Ωm along the geodesic that passes through m in the direction of --→ Ωm. So we can define the local induced map f :

T Ω → T Ω by f = exp -1 Ω • f • exp Ω .
Indeed, it is a local plane similarity because distance ratios and angles from Ω are preserved. If we specialize to positive similarities with a fixed point Ω, we then

obtain that f = exp Ω • f • exp -1
Ω is a local rotation or dilation of center Ω (or their composition), which we want now to describe in terms of quaternions.

Local similarities in terms of quaternions

We first recall some basic facts and notations about the space H of quaternions. We will denote by q = a + q or q = (a, q) a quaternion of scalar part (or real part) a and vector part (or imaginary part) q, with q = bi + cj + dk, (b, c, d) ∈ R 3 . H is then an associative, anticommutative real algebra of dimension 4 with respect to the usual addition and the multiplication rule: We also identify the number q with the vector (b, c, d) of R 3 . The conjugate q * of q is defined by q * = aq, in such a way that qq * = q * q = a 2 + b 2 + c 2 + d 2 is the usual euclidean norm of R 4 . This leads us to define the set of unit quaternions H( 1 ). In fact, we can introduce a scalar product on H by q • q = aa + bb + cc + dd and qq * is nothing but q • q = q 2 . On the second hand, each unit quaternion q can be rewritten as cos(ϕ)+sin(ϕ)u where u is a pure imaginary and unit quaternion. Finally, we can represent rotations R u,θ with axis R u ( u unitary) and angle θ by the quaternion q = cos(θ/2) + sin(θ/2)u in the following manner: R u,θ ( v) = qvq * . Moreover, the mapping q ∈ H( 1 ) → R ∈ SO( 3) is a group homomorphism for multiplication and composition, that is the composition of two rotations is represented by the product of two unit quaternions.

ii = jj = kk = -1, ij = k, jk = i, ki = j.
Next, let us look at spherical dilation. We fix a point Ω ∈ S 2 and a real positive number λ. The dilation H Ω,λ of center Ω and ratio λ is a map from the spherical cap V Ω,π/λ = M ∈ S 2 : ∠OΩM < π/λ to S 2 . By noting M the image of M and C Ω,M the meridian of origin Ω passing through M , it is defined by: M ∈ C Ω,M and ΩM = λ • ΩM . This motion may be described by quaternion interpolation ( [START_REF] Ge | Computer aided geometric design of motion interpolants[END_REF]) in the following way. Let q 0 = q 0 and q = q be the unit quaternions (and purely imaginary) representing the vectors -→ OΩ and --→ OM . Then the quaternion (where θ is the angle between q 0 and q)

q (λ) = q (λ) = q 0 • sin(1 -λ)θ + q • sin(λθ) sin(θ)
is exactly the quaternion representing M . It is also denoted by Slerp(λ; q 0 , q) and it is known as "Spherical Linear Interpolation". Let us summarize the previous results.

Theorem 1. The local positive similarities of the unit sphere S 2 with a fixed point Ω are the rotations R-→ OΩ,δ , the dilations H Ω,λ of center Ω, and their compositions. They can be algebraically represented by quaternions as:

• R-→ OΩ,δ : v → qvq * where q = cos δ 2 + sin δ 2

• ω,

• H Ω,λ : v → Slerp(λ; ω, v) = ω • sin(1 -λ)θ + v • sin(λθ) sin(θ) ,
where ω is the quaternion representing Ω and θ = ∠( ω, v).

Application to polyhedra

We apply here the above results to compute some angles of a given polyhedral angle. As in our technical report ([4]), we are interested in the calculation of the last three angles of such a polyhedra. That is, let P be a polyhedral angle of vertex p and degree n, and F 1 , ..., F n its faces. It intersects the unit sphere of center p in a spherical polygon (q 0 , q 1 , ..., q n-1 , q n = q 0 ). If we fix the internal angles α 1 = ∠q 0 pq 1 , . . . , α n-1 = ∠q n-2 pq n-1 of the faces F 1 , ..., F n-1 and the external (dihedral) angles δ 1 = ∠(F 1 , F 2 ), . . . , δ n-2 = ∠(F n-2 , F n-1 ), then the polyhedron is entirely known up to a motion (see [START_REF] Alexandrov | Convex polyhedra[END_REF] for rigidity-type results). Thus we may compute the last three angles

α n = ∠q n-1 pq n , δ n-1 = ∠(F n-1 , F n ) and δ n = ∠(F n , F 1 )
. The angles α i are measured in ]0, π[ and are equal to the lengths of the geodesic arcs q i-1 q i , whereas the angles δ i are measured in ]0, 2π[ and are equal to the angles ( q i q i-1 , q i q i+1 ). If we associate with each point q i = (b, c, d) the quaternion q i = q i = bi + cj + dk, then we have the simple following relationship between q i-1 , q i and q i+1 :

q i+1 = Slerp( α i+1 α i ; q i , Q i q i-1 Q * i ) = sin(α i -α i+1 )q i + sin(α i+1 )Q i q i-1 Q * i sin(α i ) (1) 
with

Q i = cos( δ i 2 ) + sin( δ i 2 )q i .
For this calculation, we also need the value of θ which is here arccos q i • (Q i q i-1 Q * i ) (because Slerp is independent of the sign of θ). For the algorithm, we fix the values q 0 = i, q 1 = cos(α 1 )i + sin(α 1 )j, and we compute q n-1 step by step by using the equation (1) for i = 1 to n -2. Now we can compute α n = arccos(q n-1 .q n ) = arccos q n-1 q * 0 + q 0 q * n-1 2 .

For the last two dihedral angles, we will use the following lemma.

Lemma 2. Let u, v be two unit vectorial quaternions, q = cos(δ/2) + sin(δ/2)u and Q = cos(δ) + sin(δ)u.

Then Q = (u • v)u ∧ v + (qvq * )((u • v)u -v) 1 -(u • v) 2 .
Proof. Recall that if q = cos(δ/2)+sin(δ/2)u is a unit quaternion and v a vectorial quaternion, then

qvq * = cos(δ)v + (1 -cos(δ))(u.v)u + sin(δ).u ∧ v (2)
and that the product of two vectorial quaternions q 1 and q 2 is

q 1 q 2 = -(q 1 .q 2 ) + q 1 ∧ q 2 .
So, if v is unitary, then

(qvq * )v = -cos(δ) + (1 -cos(δ))(u • v)(-(u • v) + u ∧ v) + sin(δ)(u ∧ v) ∧ v.
By the vector triple product formula (u ∧ v) ∧ w = (u.w)v -(v.w)u, this leads to

(qvq * )v = -(cos(δ) + sin(δ)u) -(u • v) 2 (1 -cos(δ)) + sin(δ)(u • v)v + (1 -cos(δ))(u • v)u ∧ v.
We have similarly

(qvq * )u = -(u•v)(cos(δ)+sin(δ)u)-(u•v)(1-cos(δ))+sin(δ)v -cos(δ)u∧v. Thus, (qvq * )(v -(u • v)u) = Q((u • v) 2 -1) + (u.v)u ∧ v
and this proves the lemma. Now, formula (1) tells us that

Q i q i-1 Q * i =
sin(α i )q i+1 -sin(α iα i+1 )q i sin(α i+1 ) .

(3) Thus, we have by Lemma 2 cos(δ i ) + sin(δ i )q i = cos(α i+1 )(cos(α i ) + q i q i-1 ) + q i+1 (cos(α i )q iq i-1 ) sin(α i+1 ) sin(α i )

giving us the values of δ n-1 and δ n by identifying the real and imaginary parts.

Theorem 3. The dihedral angles δ n-1 and δ n are given by cos(δ n-1 ) + sin(δ n-1 )q n-1 = cos(α n )(cos(α n-1 ) + q n-1 q n-2 ) + q 0 (cos(α n-1 )q n-1q n-2 ) sin(α n ) sin(α n-1 ) , cos(δ n ) + sin(δ n )q 0 = cos(α 1 )(cos(α n ) + q 0 q n-1 ) + q 1 (cos(α n )q 0q n-1 ) sin(α 1 ) sin(α n ) .
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 1 Figure 1. Polygonal view of P on S 2