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ABSTRACT

The ability to monitor the evolution of the coastal zone over time is an important factor in coastal
knowledge, development, planning, risk mitigation, and overall coastal zone management. While
traditional bathymetry surveys using echo-sounding techniques are expensive and time consuming,
remote sensing tools have recently emerged as reliable and inexpensive data sources that can be
used to estimate bathymetry using depth inversion models. Deep learning is a growing field of
artificial intelligence that allows for the automatic construction of models from data and has been
successfully used for various Earth observation and model inversion applications. In this work, we
make use of publicly available Sentinel-2 satellite imagery and multiple bathymetry surveys to train a
deep learning-based bathymetry estimation model. We explore for the first time two complementary
approaches, based on color information but also wave kinematics, as inputs to the deep learning
model. This offers the possibility to derive bathymetry not only in clear waters as previously done
with deep learning models but also at common turbid coastal zones. We show competitive results
with a state-of-the-art physical inversion method for satellite-derived bathymetry, Satellite to Shores
(S2Shores), demonstrating a promising direction for worldwide applicability of deep learning models
to inverse bathymetry from satellite imagery and a novel use of deep learning models in Earth
observation.

Keywords deep learning · convolutional neural networks · bathymetry · Sentinel-2 · wave kinematics · coastal physics

1 Introduction

Coastal areas are under a constant multitude of pressures resulting from different natural forces. The ability to reliably
track and measure the nearshore bathymetry over time is critical for a wide array of applications including coastal
development and management, coastal risk monitoring and mitigation, coastal science studies, among others Cesbron
et al. [2021], Gonçalves et al. [2019]. Traditional in situ bathymetric measurements using echo-sounding or Light
Detection and Ranging (LiDAR) are time-consuming and expensive Jagalingam et al. [2015] and are preconditioned
on a number of environmental factors such as the navigability of the site to be surveyed Gao [2009], in addition to a
multitude of logistical constraints Salameh et al. [2019], Ashphaq et al. [2021].

Remote sensing tools have recently become an important tool to collect different types of data that allows the monitoring
of coastal areas Benveniste et al. [2019], Melet et al. [2020]. These tools differ in their temporal frequency and
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spatial coverage. Shore-based or drone-mounted video cameras provide high-resolution imagery frequently with a
spatially limited coverage [Almar et al., 2009, Holman et al., 2013, Bergsma et al., 2019]. On the other hand, satellite
constellations such as the European Space Agency’s (ESA) Sentinel-2 satellite constellation provide high resolution
(10 m) imagery with global coverage at a relatively high revisit frequency (every 5 days with Sentinel-2) [Drusch
et al., 2012, Bergsma and Almar, 2020]. These remotely sensed satellite products have been shown to be a valuable
resource in a wide variety of coastal science studies and applications. For example, a large body of work exists on the
use of ocean color data to quantify water quality parameters Erena et al. [2019], Liu et al. [2003], Brando and Dekker
[2003]. Methods making use of satellite imagery to estimate water depth can be divided into two categories based on
the target phenomena studied. Namely, the effect of bathymetry on the propagation and dispersion of surface waves
(wave kinematics), as well as the relation between water depth and light penetration and reflectance in water (water
color). Methods based on the radiative transfer of light in water as a function of depth and wavelength (i.e., color-based
methods) can be used to estimate depth in optically shallow waters Lyzenga [1978], Giardino et al. [2012], Legleiter
et al. [2009], Caballero and Stumpf [2019], Evagorou et al. [2019], Sagawa et al. [2019]. Such methods are sensitive to
the optical properties of seawater and are generally limited to clear and non-turbid waters Cesbron et al. [2021], Almar
et al. [2021]. Other methods based on wave kinematics extract wave features from satellite imagery such as the wave
phase shift and wave number to estimate depth using the linear dispersion relation [Bergsma et al., 2021] (described in
more detail in Section 2). Both approaches offer different advantages. Methods based on the radiative transfer of light in
water are more accurate in shallow waters (up to 15 m depth) and are able to detect smaller-scale bathymetric features,
with an absolute error order of 10–20% of the target value, and an average RMSE of 1.5 m [Pacheco et al., 2015,
Chénier et al., 2018, Traganos et al., 2018]. On the other hand, wave kinematics-based approaches are preconditioned
on the observability of wave patterns in the input imagery, however, their detectable depth range is significantly larger
than the typical range of color-based methods [Caballero and Stumpf, 2019] but with less accuracy when applied
globally (RMSE between 6–9 m, Almar et al. [2021]). The task of constructing a depth estimation function applicable
to satellite data is non-trivial and remains a topic of ongoing research due to the great potential it offers to in-expensively
monitor coastal morphodynamics at a large scale.

Machine learning has been applied to satellite-derived bathymetry to automatically learn an estimation function,
bringing great expectations to solve satellite-based bathymetry issues in areas of complex physics and environmental
parameters. Early works made use of multi-layered perceptrons to estimate water depth as a function of spectral
radiance in input satellite imagery [Sandidge and Holyer, 1998]. Other works that make use of more traditional machine
learning algorithms include [Vojinovic et al., 2013], where support vector machines are used to estimate depth based
on a transformed ratio between the blue and green bands of the National Aeronautics and Space Administration’s
(NASA) EO-1 satellite imagery. In [Sagawa et al., 2019], random forests are used to analyze several Landsat 8 surface
reflectance products over a specific site in order to create a map of the bathymetry in shallow waters (0 to 20 m).

Recently, numerous Earth observation and remote sensing applications have adopted deep learning (DL) methods using
convolutional neural networks (CNN), due to their image processing and feature analysis abilities [Iglovikov et al.,
2017, Zhu et al., 2017, Hoeser and Kuenzer, 2020, Ma et al., 2019]. The use of DL for bathymetry estimation is a
recent and growing application; Ref. [Ghorbanidehno et al., 2021] estimate river bed topography from depth-averaged
flow velocity observations. Both [Collins et al., 2021, Mandlburger et al., 2021] use aerial imagery to estimate water
depth, on the surf zone of Duck, North Carolina (NC) and the floodplain of the Lech river, respectively. The use of DL
on satellite products for bathymetry estimation is relatively unexplored but presents an opportunity for global, low-cost
bathymetry estimation. In [Dickens and Armstrong, 2019], DL is used to estimate seabed depth based on the radiative
transfer of light in water in multispectral images from the Orbview-3 satellite. In [Wilson et al., 2020], a CNN is used
to estimate depths of the Devils Lake Area (ND, USA), casting estimation as a classification problem with classes at
each foot of depth. The most convincing application of deep learning to coastal SDB currently appears to be from
[Lumban-Gaol et al., 2021], which uses reflectance values from Sentinel-2 Level 2A images to estimate coastal water
depth with high precision in clear waters (1.48 m RMSE). While machine learning and deep learning applications
for satellite-derived bathymetry have—until now—mainly been applied to color-based approaches, great expectations
come from the combination of different methods, in particular, based on wave information [Danilo and Melgani, 2016,
Benshila et al., 2020]. To our knowledge, this work’s contribution of DL for satellite-derived coastal bathymetry based
on wave kinematics from real satellite products is novel.

In this work, we apply the previously developed Deep Single-Point Estimation of Bathymetry (DSPEB) method
[Al Najar et al., 2021] and showcase its ability to reconstruct bathymetry using real-world data. We create a supervised
dataset for bathymetry inversion using publicly available Sentinel-2 imagery [Drusch et al., 2012] and a number of
bathymetry surveys obtained from the French Naval Hydrographic and Oceanographic Service (SHOM). We present
two different satellite image pre-processing techniques to augment wave kinematics and color information as inputs to
two DSPEB models. We train our models in two different sites and compare the performance of color-based and wave
kinematics-based DSPEB to one of the current state-of-the-art bathymetry inversion models based on wave kinematics,
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Satellite to Shores (S2Shores) [Bergsma et al., 2021, Baba et al., 2021]. The layout of this article is as follows. In
Section 2, we present the DSPEB and S2Shores approaches for SDB. We then describe our dataset creation methodology
and the datasets used in our experiments. In Section 3, we present our results and compare our DSPEB models to the
physical method’s performances in two application sites. Section 4 concludes the work with a discussion of the results
presented, highlighting possible further research paths. In the appendices, we include additional supporting results from
the different models presented in the article, our first steps towards a hybrid approach to SDB using deep learning that
makes use of the physical characteristics of surface waves in addition to water color to estimate depth, in addition to a
full list of the Sentinel-2 images used in order to facilitate reproducibility.

2 Data and Methods

In this section, we first present the DSPEB approach for bathymetry estimation using deep learning, as well as the
physics-based method S2Shores, which we use as a reference for comparison. We then describe our data setup and
input data pre-processing for both wave kinematics-based and color-based DSPEB. We give an overview of the sites
used in this study and the final supervised datasets used to train our DSPEB models. Finally, we present a summarized
description of the functioning of DSPEB as a complete workflow.

2.1 Deep Single-Point Estimation of Bathymetry

Deep neural networks are a family of algorithms that are inspired by and modeled after the human brain. These networks
are trained to approximate a mapping between inputs and outputs that minimizes an objective function. Training such
networks is done through Stochastic Gradient Descent (SGD); a network’s prediction error is calculated according to the
objective (loss) function over a batch of training samples and is then propagated backward through the different layers
of the network using backpropagation, where an optimizer (SGD) is responsible for updating the different parameters of
the network. This process is repeated over multiple iterations of the available data and is stopped according to varying
criteria. As part of the optimization process, a learning rate is employed to control the scale of weight updates that are
done at each step.

The Deep Single-Point Estimation of Bathymetry method [Al Najar et al., 2021] is a deep learning-based bathymetry
inversion method that operates on 40 × 40 × 4 px multi-spectral input subtiles (corresponding to the blue (B2), green
(B3), red (B4), and near-infrared (B8) bands of the Sentinel-2 satellite constellation Drusch et al. [2012] at 10 m
resolution) to estimate the water depth corresponding to the center of each input subtile. The neural network input is an
image of 40 × 40 × 4 px input channels conforming to our dataset of 40 × 40 × 4 satellite subtiles; and a single output
neuron with a Rectified Linear Unit (ReLU) activation, corresponding to the average depth beneath the imaged area.
Figure 1 presents the different steps of the DSPEB method.

Figure 1: The steps of the DSPEB method using a deep convolutional neural network. * The input and output data used
in the figure are synthetic examples.

The deep learning parameters for DSPEB, including the choice of the model architecture and learning hyperparameters,
were studied in a previous work Al Najar et al. [2021]. We found that while networks of varying depth can perform
bathymetry estimation, small convolutional neural networks CNN are sufficient. The chosen architecture for this work
is ResNet20 He et al. [2015], a small version of a residual architecture that achieves state-of-the-art performance on
many computer vision tasks Wightman et al. [2021]. The network is trained using Adam Kingma and Ba [2014], a
standard CNN optimization method based on stochastic gradient descent (SGD). In this work, the hyperparameters of
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Adam (lr, gradient estimate decay factors β1 and β2, and ϵ) are optimized based on a grid search and findings from our
previous work Al Najar et al. [2021].

2.2 Satellite to Shores

We compare our deep learning-based approach (DSPEB) to a wave kinematics-based depth inversion model named
Satellite to Shores (S2Shores) [Bergsma et al., 2019, 2021]. S2Shores employs a Fourier slicing method (FS), consisting
of a combined radon transform (RT) and a discrete Fourier transform (DFT). The FS technique is used to detect spectral
wave characteristics such as the spectral wave phase shift and the wave number to invert water depth using the linear
dispersion relation for free surface waves (2). The depth estimation procedure is repeated for each sub-window around
a point where one wants to know the depth (h). Each sub-window has a user-defined size in O(100 s m), as such that it
contains at least 1–2 wavelengths (λ). The radon transform is applied to the sub-sampled image to produce a sinogram
of integrated pixel-intensities per direction. The angle corresponding to the maximum variance in the RT-sinogram
corresponds to the wave direction (see [Bergsma et al., 2019, 2021] for more details). A 1D DFT procedure per
direction over the sinogram enables to pass from the spatial domain to a complex spectral domain in polar space. From
the resulting polar spectrum, the wave phase and amplitude can be determined per wave number, per direction. The
difference in phase (∆Φ) can be found between (several) pairs of detector bands. Presuming that the wavenumber (k) is
constant or near-constant over the sub-window, ∆Φ can be seen as representative of ω(t), and given that the timing
between the different detector bands (∆t) is constant, the wave celerity (c) can be determined as:

c =
∆Φ

2πk∆t
=

∆Φλ

2π∆t
(1)

For each wavenumber or celerity pair, (2) can be solved for depth.

c2 =
g

h
tanh(kh) ⇐⇒ h =

tanh−1(
c2k

g
)

k
(2)

Estimates of water depth, wave celerity, wavenumber (wavelength), and direction are output by the S2Shores algorithm
at each point on an output grid with a resolution of 500 m. To evaluate and compare S2Shores to the survey data and
the DSPEB results, we use linear interpolation of the raw sparse output grid.

2.3 Sentinel-2 Data Pre-Processing

For this work, we apply our DSPEB method to two different types of inputs, corresponding to the wave kinematics-based
DSPEB approach (W-DSPEB) and color-based DSPEB (C-DSPEB). Throughout the article, we make a distinction
between two types of information included in raw satellite imagery over coastal areas. Signals and information
corresponding to ocean waves are referred to as “wave kinematics information”. These signals are pre-processed
(described further in this section) and used as inputs to the W-DSPEB model. The remaining signals, termed “color
information”, are presumed to represent ocean water color as affected by the optical properties of water, water
constituents, seabed reflectance and depth. These signals are filtered and used as inputs to the C-DSPEB model.

The inputs to both neural networks are 40 × 40 × 4 px satellite images. We noted that model training was sensitive to
different dates with varying meteorological conditions. To construct a training dataset, we select dates based on high
estimation correlation from the S2Shores method, which depends on visible waves. We provide a list of all images
used in this work in Appendix A. While the focus of this work is to develop on our previous work on DSPEB, a less
expensive and more general date selection method is a topic of on-going work.

The first step in our pre-processing workflow is cloud detection. We make use of a simple cloud detector based on the
percentage of blue pixels in each subtile by looking at the RGB Sentinel-2 bands. We discard all subtiles where the
percentage of blue pixels is less than 80%, allowing for a margin of noise in the input data.

We apply a pass-band filter to our input subtiles in the range of ocean-specific wavelengths (periods Tmin = 5 s
to Tmax = 25 s). First, we create a frequency filter based on Tmin and Tmax. Then, a discrete FFT is applied in
two dimensions to the signals of each Sentinel-2 subtile band. The original filter is then used to filter the resulting
frequencies, discarding all wave signals with periods outside of the specified range. For W-DSPEB, we further process
our filtered subtiles by calculating the two-dimensional normalized cross-correlation (NORMXCORR) of each band, in
order to extract the most consistent and recurring wave signals, which we presume correspond to the crests of actual
ocean waves. For C-DSPEB, we subtract the filtered signals from the raw input image in order to retain the background
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color rather than the ocean wave signals. Figure 2 demonstrates our pre-processing workflow on an example 400 × 400
m Sentinel-2 subtile. For C-DSPEB, we scale all input images such that the minimum and maximum pixel values over
the full dataset are equal to −0.9 and 0.9, respectively.

(a) (b)

(c) (d)

Figure 2: Pre-processing of a single 400 × 400 m Sentinel-2 subtile band (10 m resolution). (a) Raw subtile. (b)
Passband-filtered subtile. (c) Final NORMXCORR result used as input to W-DSPEB. (d) Color-augmented subtile.

2.4 Study Sites

In this work, we apply and test our methods in French Guiana and in the Gironde area in France. For each site, we
select a number of Sentinel-2 images according to cloud coverage and the visibility of wave patterns. A full list of
images used and the wave conditions on those dates are provided in Appendix A. Figure 3 shows the measurement area
and depth distribution of the surveys used in French Guiana and Gironde.

(a) (b)

Figure 3: The bathymetry survey obtained from the French Naval Hydrographic and Oceanographic Service (SHOM).
(a,b) show the positioning and depth distribution of survey points included in this study.

To create a supervised dataset for each site, the raw bathymetry survey is coupled with a set of Sentinel-2 images with
varying wave conditions. The resulting subtiles and their corresponding depths are grouped into training and validation
sets. For the final datasets, we make use of points with depth values ranging between 2 and 40 m only. The distributions
of depths used in the training and validation sets are shown in Figure 4.
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(a) (b) (c)

Figure 4: Distribution of depths included in the training (a), validation (b), and test (c) sets in French Guiana (blue) and
Gironde (red).

By including Sentinel-2 images from different dates in the training and validation sets, we expose the DSPEB models to
a wide variety of wave conditions during training, reducing the models’ ability to overfit to any specific conditions.
The distributions of wave period, wavelength, and the direction of propagation on the dates used for this study are
documented in Figure 5.

(a) (b) (c)

Figure 5: The distributions of wave period (a), wavelength (b), and direction (c) at the different dates included in the
training and validation sets in French Guiana and Gironde.

To test our models, we create a test set for each site. In French Guiana, we use the south-eastern section of the raw
bathymetry survey as our target area, and we collect Sentinel-2 images from six different dates in 2018 to create the
inputs to the models during application. For Gironde, the whole area is reconstructed over four different 2018 dates.

2.5 Application Workflow

This section presents a summarized overview of the functioning of DSPEB as a complete workflow, going from raw
Sentinel-2 imagery and raw bathymetry measurements to model application and the creation of composite estimates.

Figure 6a shows the first steps of DSPEB, where the exact dates for model training are selected. The first step in our
workflow is concerned with the date preselection, where a set of Sentinel-2 images are filtered and only images where
wave propagation and activity can be observed. As mentioned in Section 4, our current date selection criteria is based
on S2Shores. Each of the initial images is used with S2Shores and a resulting bathymetry estimate is compared to
the target bathymetry survey. The images are only kept in our pipeline if the correlation between S2Shores’ estimate
and the target survey is higher or equal to 0.5. Next, a subtile is extracted from each of these images for each depth
measurement point, such that the depth point is situated in the center of the extracted subtiles. These subtiles are then
passed through our pre-processing chain, described in Section 2.3, subtiles are either pre-processed or recorded on disk
to be used for model training. A test dataset is created following the same methodology using a different set of initial
Sentinel-2 images with different dates.
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The DSPEB model is then trained on the prepared training dataset following the method further described in Section 3.1.
After model training, the DSPEB model is used to estimate bathymetry from a Sentinel-2 image using a sliding-window
technique (Figure 6b), where each subtile is treated according to the previously described pre-processing scheme
(Section 2), resulting in an estimate profile from a single date. Finally, a composite estimate can be created by grouping
multiple single-date estimated profiles using a simple point-wise mean (Figure 6c).

(a)

(b)

(c)

Figure 6: The full workflow of dataset creation (a), single date estimation using DSPEB (b), and composite estimate
creation in (c).

3 Research and Results

This section evaluates and compares the performances of wave kinematics-based DSPEB (W-DSPEB), color-based
DSPEB (C-DSPEB), and S2Shores. In the following, we analyze our results based on two different criteria. First,
Section 3.2 compares the performance of the models in reconstructing bathymetry using a single Sentinel-2 image
(single date) as input. Section 3.3 then compares the different models based on aggregate (composite) estimates, which
are created by calculating the point-wise mean over all six dates.
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The metrics used to evaluate the predictions of each of the models are the root mean squared error (RMSE), the Pearson
correlation coefficient (r), the concordance correlation coefficient (CCC) Lin [1989], and the slope of the predictions
compared to the target depths.

3.1 Model Training

We train the DSPEB models using the Adam optimizer [Kingma and Ba, 2014], with mean squared error (MSE) loss
and a batch size of 256. We optimize the learning process of W-DSPEB and C-DSPEB separately, using a simple
grid-search procedure over a predefined set of values for the learning rate (lr) and Adam’s hyperparameters (ϵ, β1

and β2) as described in our previous work Al Najar et al. [2021]. The best-performing configurations were used to
train the models used in this work. The lr, ϵ, β1, and β2 were respectively set to 1× 10−4, 1× 10−8, 0.99, and 0.999
for W-DSPEB, and to 1× 10−3, 1× 10−6, 0.5, and 0.9 for C-DSPEB. To stop the training, we make use of an early
stopping mechanism that stops training if no improvement in performance on the validation set is achieved for 10
consecutive epochs, known as a patience value of 10. The learning curves of the trained models are presented in Figure
7, showing the models’ errors on the training and validation sets at each training step.

(a) (b)

Figure 7: Training of the W-DSPEB and C-DSPEB models, showing the MSE losses over the training and validation
sets in French Guiana (a) and Gironde (b). Dashed lines represent performance on the validation set.

Figure 7 shows the MSE training and validation losses of W-DSPEB and C-DSPEB on both study sites and demonstrates
the difference in convergence speed between the two models due to the higher learning rate used for C-DSPEB. We
note that W-DSPEB was unable to converge using larger learning rates. The training of W-DSPEB stops at 53 and 29
epochs in French Guiana and Gironde and achieves 4.2 and 5.9 m RMSE on the test set of each site respectively. The
training of the C-DSPEB model halted at 30 and 13 epochs and achieves 5.8 and 7.8 m RMSE on the test sets in French
Guiana and Gironde.

3.2 Single Date Estimation Comparison

In this subsection, we compare the performances of the wave kinematics-based DSPEB model (W-DSPEB), color-based
DSPEB (C-DSPEB), and S2Shores based on their single-date estimates. All test images date to 2018. Six images
are collected for the tests in French Guiana, and four images for Gironde. Figure 8 shows an example single-date
reconstruction over each of the test sites.

As seen in Figure 8, we note that W-DSPEB outperforms S2Shores on RMSE and correlation in the French Guiana site.
While S2Shores predicts shallow depths with high accuracy, W-DSPEB maintains a higher correlation in deeper waters.
On the selected date in the Gironde site, we observe a scattered estimate from the W-DSPEB method which has an
overall high correlation but is outperformed by S2Shores in terms of RMSE.

The performance of C-DSPEB varied greatly over different dates due to its sensitivity to background color, which we
further discuss in the next section. The highest single-date RMSE of C-DSPEB based on the selected dates is 15.26,
whereas the lowest single-date RMSE of C-DSPEB in French Guiana was 4.33. We note that this lower RMSE is
similar to the performance of other deep learning color-based methods, notably Lumban-Gaol et al. [2021], which
has an RMSE of 3.03 in San Juan for a single date; Ref. Lumban-Gaol et al. [2021] notes that the performance of
the color-based deep learning model highly depends on water turbidity, which we observe here in the difference of
prediction between different dates.

We note that the training of both deep learning models C-DSPEB and W-DSPEB uses gradient estimates from mini-
batches which can contain multiple dates together. The same point may therefore have multiple estimates attributed to it
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from different satellite images, and the gradient directions from these estimates will be averaged for the network update.
We hypothesize that a training method focused on accuracy for a single date could improve the variability of estimates
for the same date.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Single-date estimation comparison of—from left to right—S2Shores, C-DSPEB and W-DSPEB in French
Guiana and Gironde. (a–c,d–f) show the correlations and point-wise absolute errors in French Guiana; (g–i,j–l) show

the correlations and absolute errors in Gironde.

3.3 Composite Estimation Comparison

We observed that all three models performed inconsistently over Sentinel-2 images from different dates, which motivated
the use of a composite estimate from multiple dates. For each model, a composite profile is created by calculating a
point-wise average over selected dates (six for French Guiana and four for Gironde). In this section, we compare the
composite estimates of W-DSPEB, C-DSPEB, and S2Shores, and further detail is provided in Appendix B, including
the point-wise absolute errors of the final estimates as well as the point-wise standard deviation of each method’s single
date estimates. Figure 9 presents the composite estimate of each of the models at French Guiana (top) and Gironde
(bottom).

9



PREPRINT

(a) (b) (c)

(d) (e) (f)

Figure 9: Composite estimation correlation comparison of S2Shores (left), C-DSPEB (middle), and W-DSPEB (right)
in French Guiana (a–c) and Gironde (d–f).

Compared to S2Shores and C-DSPEB, W-DSPEB achieves the lowest RMSE score over the entire bathymetry profiles
in both test sites when a composite profile is considered. W-DSPEB also achieves a similar correlation to the S2Shores
model on the French Guiana site and a much higher correlation on the Gironde site. We note that the use of a composite
estimate appears to reduce outliers with high error in the two deep learning methods, but not in S2Shores. We assume
that this is due to the batched training of the deep learning methods which tend to improve the average estimate of the
models over multiple dates, as previously mentioned. All three methods, including S2Shores, benefit from a composite
estimate over multiple dates rather than a single-date estimate. The composite results of the three methods are analyzed
further in Table 1.

Table 1: Comparison of the composite estimates for the three methods. Temporal STD refers to the standard deviation
over estimates of the same area from different dates.

Site Metric S2Shores C-DSPEB W-DSPEB

French Guiana
r 0.93 0.89 0.91

RMSE (m) 3.63 3.96 3.26
Temporal STD (m) 3.99 6.23 3.49

Gironde
r 0.62 0.71 0.86

RMSE (m) 6.46 7.59 5.12
Temporal STD (m) 3.89 6.13 4.01

Table 1 shows that when using composite estimates, W-DSPEB outperforms S2Shores on almost all metrics for the two
sites (correlation, RMSE, and standard deviation over individual estimates). On two metrics, it is slightly worse but
competitive with S2Shores: W-DSPEB has a correlation of 0.91 in French Guiana compared to 0.93 for S2Shores, and
it has a slightly higher standard deviation over the 4 estimates from different dates in Gironde (4.01 versus 3.89). We
note that W-DSPEB has an overall low temporal STD, which is averaged over the entire area, even in Gironde where
single date estimates had high error.

Compared to the wave kinematics-based methods, we observe a higher temporal variance from the color-based method
C-DSPEB. In Figure 10, the sensitivity of C-DSPEB to background color change is evident as the prediction is highly
influenced by turbidity. This variance due to turbidity has been noted in other deep learning approaches Lumban-Gaol
et al. [2021]. While other color-based methods may account for this variance, we consider it a strong argument for
W-DSPEB over C-DSPEB.

10



PREPRINT

(a) (b)

Figure 10: Sensitivity of C-DSPEB to background color. (a) C-DSPEB estimation standard deviation over six dates in
French Guiana. (b) Example image of the test area in French Guiana showing high water turbidity which causes the

large temporal variance in the C-DSPEB model estimates.

When using the DSPEB methods to estimate bathymetry over a large area, as seen in Figure 11, we note the stability of
the W-DSPEB method. This correctly predicts water depth around the coastline and up to 35 m of depth. We note the
limit at 40 m, as these models were trained with samples only up to 40 m, and therefore do not predict greater values
even in deeper waters.

(a) (b)

Figure 11: Reconstruction of a full Sentinel-2 tile in Gironde using composite estimates from C-DSPEB (a) and
W-DSPEB (b). The bathymetry survey data used for Gironde is presented in Figure 3.

4 Discussion

In this work, we have shown that deep learning can be used for SDB using wave kinematics information as well as color.
We have evaluated the performance of a deep learning SDB approach (DSPEB) on real data using Sentinel-2 satellite
imagery. We propose two different variants of DSPEB based on wave kinematics (W-DSPEB) and color (C-DSPEB;
Section 2.3) and we compare them to a state-of-the-art physics-based SDB method, S2Shores [Bergsma et al., 2021,
Baba et al., 2021], on two different sites. We show in Section 3.3 that the use of composite estimates over multiple
dates compared to single-date estimates improves the performance of all methods tested. We show that the performance
of the deep learning-based model (W-DSPEB) exceeds that of the physical method (S2Shores) and the deep learning
color-based method (C-DSPEB) in correlation, RMSE, and temporal standard deviation on two test sites. W-DSPEB
achieves an RMSE of 3.26 m in French Guiana and of 5.12 m in Gironde. While this does not yet meet international
standards for bathymetry surveys, it demonstrates that deep learning can be applied to both spectral and wave kinematic
information for coastal SDB, rivaling existing physics-based models.
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4.1 Research Implications

We believe that this work has implications both for satellite-derived coastal bathymetry estimation and deep learning for
Earth observation. We highlight the possibility to integrate wave and color information for SDB and the application of
deep learning to physical modeling.

Color information is often used to estimate coastal bathymetry [Chénier et al., 2018, Pacheco et al., 2015, Traganos
et al., 2018, Caballero and Stumpf, 2019, Evagorou et al., 2019, Sagawa et al., 2019], but these methods can be sensitive
to site and/or season-specific features such as turbidity and bottom reflectance. In this work, we observed a high
sensitivity of our color-based model C-DSPEB to the background color, which led to high uncertainty in the estimated
profiles. We propose that a wave kinematics-based method would have the potential for global application, which would
be difficult with color-based estimation.

This work demonstrates that physical information, i.e., wave kinematics, can be used by deep neural networks for
estimation. This follows a recent trend in machine learning for Earth system science where machine learning models
use information from existing physical models Reichstein et al. [2019]. W-DSPEB is a deep learning regression model
based on physical information, which is a relatively unexplored model type as deep learning is more often used in
classification tasks [Lathuilière et al., 2019].

4.2 Limitations

While the results we present show that DSPEB is capable of reconstructing bathymetry, there are limitations to the
current method. Specifically, we highlight the limitations of data pre-selection based on dates and the requirement to
train on application sites.

The accuracy of W-DSPEB was found to be sensitive to the dates selected, as was S2Shores, indicating that the necessary
wave kinematics information was lacking for certain dates. Currently, S2Shores is used as a date-selection method to
dictate which images can be used for training W-DSPEB at a certain site, requiring large amounts of computing time
before dataset construction. A possible solution to this limitation could be the use of a CNN as a binary classifier to
dictate whether a Sentinel-2 image contains the necessary information for W-DSPEB. Such a model would greatly
minimize the amount of computing power required for date selection, in addition to providing insight into this issue.
Breaking this limitation is important in order to achieve the operational requirements of the International Hydrographic
Organization (IHO).

Another limitation of DSPEB is that it currently requires local training before application, limiting the model to sites
with existing survey data. A future direction of this work is to use trained models from individual sites and fine-tune
them to unseen sites. Applying a network to a site for which no survey data is available is also a goal but requires
further study in developing models capable of zero-shot learning Xian et al. [2017].

4.3 Future Research

Beyond addressing the limitations of the current approach, DSPEB opens many directions that could be explored further.
We believe that single-date estimation and a global model which combines wave and color information are important
directions for future work.

The results presented in this work show the improvement of accuracy when integrating estimations from multiple dates
to create a composite estimate, compared to using the original single-dates estimates. However, a model capable of
obtaining single-date estimates with accuracy similar to the composite estimates would be preferable. As mentioned
in Section 3.2, an interesting path for future work would be to design the training scheme to maximize single-date
accuracy specifically (through e.g., training batch management). We also believe that study of the estimation variability
between dates for wave kinematics-based methods such as W-DSPEB and S2Shores can lead to improvements for
single-date SDB estimation.

A potential direction for SDB is to combine wave and color information to achieve local estimates with high accuracy
and global applicability. In Appendix E, we explore a hybrid model which combines estimates from W-DSPEB and
C-DSPEB. While the results from this experiment were inconclusive, with the hybrid model performing worse than
W-DSPEB in some cases, we strongly believe that a combined model incorporating both types of methods (color-based
and wave kinematics-based methods) is the way forward to unlock and extend the applicability of SDB to a global scale
covering all types of coastal waters and coastal depths. While we present H-DSPEB as our first steps in this direction by
engineering a hybrid model, other possibilities exist including traditional and/or deep learning-based data assimilation
techniques for example Arcucci et al. [2021].
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A fundamental direction for future research in deep learning-based SDB is the development of a singular model which
can be applied directly to sites without training. Such a model would require the inclusion of multiple sites in a single
training dataset (mixed-site training), which should minimize the model’s ability to overfit to any site-specific features,
and consequently increase the model’s ability to generalize to previously unseen sites. We also expect that it would need
to include both wave kinematic information and color information, as proposed above. In this work, we demonstrate
first steps in this direction with local site training of deep learning models using wave kinematics and color information,
showing that deep learning can outperform existing physical methods for coastal bathymetry estimation.

5 Conclusions

This work showcases the performance of the W-DSPEB approach to satellite-derived bathymetry based on wave
kinematics using deep convolutional neural networks and Sentinel-2 satellite imagery. In a direct comparison, W-
DSPEB is shown to be competitive with a state-of-the-art physics-based SDB method, S2Shores, achieving RMSE
performance of 3–5 m over areas reaching 40 m depths.

The wider applicability of wave kinematics-based approaches for SDB is demonstrated through a comparison with
C-DSPEB, a color-based variant of DSPEB, showing a promising direction towards a more global application of wave
kinematics-based SDB.

The use of composite bathymetry profiles over estimates from single dates is discussed and in shown to improve the test
RMSE performance of all methods included in this study by ≃50%.

Finally, considering the impressive capabilities deep learning has recently demonstrated in image processing and model
inversion applications, we strongly believe that the H-DSPEB model architecture presented in Appendix E is a strong
motivation for further exploration in deep learning-based methods for satellite-derived bathymetry.

13



PREPRINT

Appendices

Appendix A Data Used in This Work

Table 2: A log of all Sentinel-2 images used in this work.
Site Sentinel-2 Image ID

Guyane

SENTINEL2B_20180417-140050-461_L2A_T22NCL_D_V1-7
SENTINEL2A_20180711-140053-463_L2A_T22NCL_D_V1-8
SENTINEL2A_20180731-140053-455_L2A_T22NCL_D_V1-8
SENTINEL2A_20180909-140049-464_L2A_T22NCL_D_V1-9
SENTINEL2B_20181024-140049-459_L2A_T22NCL_D_V1-9
SENTINEL2A_20181228-140102-278_L2A_T22NCL_D_V1-9
SENTINEL2B_20190919-140108-144_L2A_T22NCL_D_V2-2
SENTINEL2A_20200809-140115-000_L2A_T22NCL_D_V2-2
SENTINEL2B_20200814-140112-512_L2A_T22NCL_D_V2-2
SENTINEL2B_20200824-140112-496_L2A_T22NCL_D_V2-2
SENTINEL2A_20200918-140113-715_L2A_T22NCL_D_V2-2
SENTINEL2B_20201023-140112-483_L2A_T22NCL_D_V2-2
SENTINEL2A_20201107-140113-483_L2A_T22NCL_D_V2-2

Gironde

SENTINEL2A_20160504-105917-634_L2A_T30TXR_D_V1-1
SENTINEL2A_20170618-110415-683_L2A_T30TXR_D_V1-4
SENTINEL2B_20180419-110127-730_L2A_T30TXR_C_V2-2
SENTINEL2A_20180504-110230-455_L2A_T30TXR_C_V2-2
SENTINEL2A_20180802-105938-888_L2A_T30TXR_C_V2-2
SENTINEL2B_20180817-110514-624_L2A_T30TXR_C_V2-2
SENTINEL2B_20190325-110833-768_L2A_T30TXR_C_V2-0
SENTINEL2B_20190424-110839-893_L2A_T30TXR_C_V2-0
SENTINEL2B_20190524-110841-657_L2A_T30TXR_C_V2-1
SENTINEL2B_20190703-110841-774_L2A_T30TXR_C_V2-2
SENTINEL2A_20190906-110832-459_L2A_T30TXR_C_V2-2
SENTINEL2A_20200622-110838-839_L2A_T30TXR_C_V2-2
SENTINEL2A_20210717-110836-344_L2A_T30TXR_C_V2-2
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Appendix B Detailed Composite Results

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 12: Composite estimation comparison of—from left to right—S2Shores, C-DSPEB, and W-DSPEB in French
Guiana (a–i) and Gironde (j–r). (a–c,a–c) Correlation with the target depths; (d–f,m–o) The point-wise absolute error;

(g–i,p–r) The point-wise standard deviation over the dates used to calculate the composite estimate at each site.
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Appendix C Single Date Results

(a) (b) (c) (d)

(e) (f) (j) (h)

Figure 13: Comparison of—from left to right—S2Shores, C-DSPEB, W-DSPEB, and H-DSPEB over a single
Sentinel-2 image of French Guiana. (a–d) Correlation with the target depths. (e–h) The point-wise absolute error.

Appendix D French Guiana Composite over the Full Water Body

(a) (b)

Figure 14: Reconstruction of a full Sentinel 2 tile in French Guiana using composite estimates from C-DSPEB (a) and
W-DSPEB (b). The bathymetry survey data used for French Guiana is presented in Figure 3. The white spots in the

image correspond to clouds over land areas.
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Appendix E Hybrid-DSPEB Model

Previous work in deep learning for computer vision has proposed multi-input convolutional neural networks to improve
performance on tasks where different views of the same input are useful for approximating a single output. This can
be done by grouping multiple neural networks, or duplicating a single network architecture, through an MLP-like
architecture near the output of the merged network Dua et al. [2021], Oktay et al. [2016], Cheng et al. [2016]. In this
experiment, we follow a similar methodology to create a hybrid model (H-DSPEB). We merge the output layers and the
last fully connected layers of each of the two pretrained C-DSPEB and W-DSPEB models, forming the final output
head of H-DSPEB. The architecture of H-DSPEB can be seen in Figure 15 (right).

Figure 15: The architectures of the three models C-DSPEB (top left), W-DSPEB (bottom left), and H-DSPEB (right).
The blue arrows represent non-parametric connections (flattening layer). Dotted lines represent pre-trained layers that

are frozen during H-DSPEB training.

The MLP head which we append to the end of the two pre-trained models is composed of two new fully connected
layers which connect to the last hidden layer of each sub-model, in addition to the output layer of each of the sub-models.
The single output of the MLP head corresponds to the final output of H-DSPEB. We tested various architectures for
the MLP head but noted little difference in performance. During training, we freeze all previously trained weights in
C-DSPEB and W-DSPEB, as indicated by the dotted lines in Figure 15.

The aim of this architecture is to evaluate whether color and celerity information can be automatically combined
for enhanced estimation, due to the different conditions in which these two model types function. By including
higher-level features from the final layer, our goal is that the hybrid model learns to estimate depth using both color and
celerity information. Because the two approaches are complementary for clear and turbid waters, contrary to previous
deep learning bathymetry inversion applications, the combination of the two unlocks the potential of inversion of the
bathymetry from a satellite at any coast worldwide. While the principal contribution of this work is the W-DSPEB
method, we find the H-DSPEB idea to be motivating and deserving of further study.

E.1 Hybrid H-DSPEB Preliminary Results

In this section, we present our preliminary results using H-DSPEB and we evaluate its performance in a comparison to
the results of DSPEB submodels and S2Shores presented in previous sections.

Figure 16 presents two example results obtained using H-DSPEB in the French Guiana site. The pattern produced by
H-DSPEB in both single-date and composite estimates suggests that the model learns to rely on the C-DSPEB submodel
more than W-DSPEB. We presume this is due to the higher accuracy of C-DSPEB on the training and validation sets
compared to W-DSPEB in French Guiana, as can be seen in Figure 7, which could be leading the H-DSPEB model
towards the same minima as C-DSPEB. However, a comparison to the DSPEB submodels’ results presented in Figure 8
shows that the hybrid model H-DSPEB does improve the accuracy estimation over the individual DSPEB submodels in
cases where C-DSPEB is more accurate than W-DSPEB, suggesting that H-DSPEB does make use of the W-DSPEB
submodel to perform the final (merged) approximation.
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(a) (b)

(c) (d)

Figure 16: H-DSPEB composite results in French Guiana using dates from 2018 Showing the correlation and the
point-wise errors of the estimations. (a,c) Single date result. (b,d) Composite estimate.
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