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Abstract

We investigate some geometric properties of the curl operator, based on its diagonalization and its
expression as a non-local symmetry of the pseudo-derivative (−∆)1/2 among divergence-free vector
fields with finite energy. In this context, we introduce the notion of spin-definite fields, i.e. eigenvectors
of (−∆)−1/2 curl. The two spin-definite components of a general 3D incompressible flow untangle the
right-handed motion from the left-handed one.

Having observed that the non-linearity of Navier-Stokes has the structure of a cross-product and its
weak (distributional) form is a determinant that involves the vorticity, the velocity and a test function,
we revisit the conservation of energy and the balance of helicity in a geometrical fashion. We show that
in the case of a finite-time blow-up, both spin-definite components of the flow will explose simultane-
ously and with equal rates, i.e. singularities in 3D are the result of a conflict of spin, which is impossible
in the poorer geometry of 2D flows. We investigate the role of the local and non-local determinants∫ T

0

∫
R3

det(curlu,u, (−∆)θu)

and their spin-definite counterparts, which drive the enstrophy and, more generally, are responsible
for the regularity of the flow and the emergence of singularities or quasi-singularities. As such, they are
at the core of turbulence phenomena.

Keywords: Navier-Stokes, Vorticity, Hydrodynamic spin, Critical determinants, Turbulence.

MSC primary: 35Q30, 35B06.
MSC secondary: 76D05, 76F02.

The initial value problem for the Navier-Stokes system for incompressible fluids is usually written as
∂u

∂t
+ (u ·∇)u −ν∆u =−∇p, divu = 0,

u|t=0 = u0.
(1)

Here u = u(t , x) is a time-dependent vector field on R3, the viscosity ν is a positive parameter (expressed
in Stokes, i.e. L2T−1) and u0 is a given divergence-free vector field.

In 1934, Leray [59] proved the existence of global weak solutions in L∞
t L2

x ∩L2
t Ḣ 1

x . In 3D, the question
of their uniqueness remains elusive and is intimately connected to deciding whether the weak solutions
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enjoy a higher regularity. Well-posedness in various function spaces has been studied thoroughly and cul-
minates in Koch and Tataru’s result [53] if the data u0 is small in the largest (i.e. less constraining) function
space (called BMO−1) that is scale and translation invariant and on which the heat flow remains locally
uniformly in L2

t ,x .
The set of singular times may or not be empty, but it is a compact subset of R+, whose Hausdorff

measure of dimension 1/2 is zero. The celebrated theorem of Caffarelli, Kohn and Nirenberg [18] ensures
that singularities form a subset of space-time whose parabolic Hausdorff measure of dimension 1 vanishes
too (see also Arnold and Craig [2]).

Note that equation (1) corresponds to an Eulerian point of view, i.e. it describes the movement of the
fluid in a fixed reference frame. The natural question of tracking individual fluid particles, i.e. the La-
grangian point of view, is equivalent to the existence of a flow ξ :R+×Rd →Rd

∂ξ

∂t
= u(t ,ξ(t , x)), ξ(0, x) = x. (2)

The volume preserving map ξ(t , ·) tracks the deformations of the fluid (see e.g. [41] and [23]).

For a comprehensive covering of most of the classical theory of Navier-Stokes, we refer the reader to,
e.g., Lemarié’s book [58] and the references therein. Berselli’s recent book [9] offers an interesting comple-
ment that blends theoretical results on the energy fluxes with numerical methods and turbulence theory.
Davidson’s book [35] provides valuable physical insight on the latter subject.

1 Introduction

In the next few lines, we will present a small subset of these classical results, not necessarily in chronologi-
cal order, to provide some background on the arduous question of the regularity of the solutions. Then we
will expose our own contribution, which is a new geometric approach based on the diagonalization of the
curl operator.

1.1 Classical regularity theory near a singular event

The behavior of smooth solutions of the Navier-Stokes equation as they approach a (still conjectural) finite
blow-up time has been studied very carefully.

For the Ḣ 1 semi-norm, a precise rate has been known since Leray [59]: if the first time of singularity T ∗

of a smooth solution is finite, then

‖∇u(t )‖L2 ≥ C

(T ∗− t )1/4
· (3)

This inequality is the immediate consequence of a bootsrap of the local well-posedness result for data
in H 1, when one takes into account that if u0 blows up at time T ∗, then u(t ) will blow up at time T ∗− t .
Similarly, for any 0 < γ< 1/2 and p = 3/(1−2γ):

‖u(t )‖
Ḣ

1
2 +2γ & ‖u‖Lp ≥ Cγ

(T ∗− t )γ
· (4)

The endpoint L∞ is admissible with a rate γ= 1/2.

Thanks to the energy inequality and the Sobolev embedding, any Leray solution enjoys a uniform con-
trol in L∞

t L2
x ∩ L2

t L6
x , so in particular in L4

t L3
x and L2+2/3

t L4
x . Various authors including Foias, Guillopé &

Temam [40], Chemin [19], Cordoba, de la Llave & Fefferman [34] observed independently that the ampli-
tude of Leray solutions is controlled in L1

loc(R+;L∞(R3)) i.e.

∀T > 0,
∫ T

0
‖u(t )‖L∞d t <∞. (5)

This result is now known as the absence of squirt singularities (see e.g. [58, §11.6]).
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In [75], Vasseur proved a family of estimates in various function spaces as long as the solution remains
smooth, one of which reads ∫ T ∗

0

∑
|k|≤2

‖∇k u(t )‖L1 d t ≤C (1+‖u0‖4
L2 ) (6)

with a constant C that does not depend on the solution u, nor on the blow-up time T ∗. Interpolation
between (5) and (6) ensures that

∀p ∈ [1,∞],
∫ T ∗

0
‖u(t )‖Lp d t <∞. (7)

Using the energy inequality (7) can obviously be improved to Lq ([0,T ∗);Lp ) with either q = 1− 3
p if p ≥ 6,

or 2
q + 3

p = 3
2 if 2 ≤ p ≤ 6, or q = p

2−p if 1 ≤ p ≤ 2.

These universal qualitative upper bounds are in sharp contrast with the lower bounds, which general-
ize (3)-(4) in the case of a finite time blow-up. Regarding the supremum norm, (4) implies∫ T ∗

0
‖u(t )‖2

L∞d t =+∞. (8)

In very rough terms and unless the amplitude oscillates wildly near T ∗, the behavior depicted by (5) and (8)
suggests that

C∞
(T ∗− t )1/2

≤ ‖u(t )‖L∞ ≤ C (u)

T ∗− t
·

To “thicken” the peaks of amplitude, one may look at uniform bounds for the heat flow, i.e. Besov norms of
negative regularity index. The quantitative lower bound of Chemin & Gallagher [21]

‖u(t )‖Ḃ−1+2γ
∞,∞

= sup
τ>0

τ
1
2−γ‖eτ∆u(t )‖L∞ ≥ Cγ

(T ∗− t )γ
(0 < γ< 1/2) (9)

is coherent with the previous intuition when γ = 1/2. The second endpoint (γ = 0) requires special care
because it is also the end of the chain of critical scale-invariant spaces

Ḣ 1/2 ⊂ L3 ⊂ BMO−1 ⊂ Ḃ−1
∞,∞

i.e. Galilean invariant spaces X ⊂ S ′(R3) whose norm satisfies ‖λu(λx)‖X = ‖u(x)‖X (see Meyer [66] and
also [21, Prop. 1.2]). Kato’s [52] and Escauriaza, Seregin & Sverák’s [48] theorems state that

liminf
t→T ∗ ‖u(t )‖L3 ≥ c0 and limsup

t→T ∗
‖u(t )‖L3 =+∞.

Later, Seregin [70] proved that there are no major fluctuations of the L3 norm near the blow-up time, i.e.

lim
t→T ∗ ‖u(t )‖L3 =+∞ (10)

and a quantitative polylogarithmic rate was obtained recently by Tao [72]:

limsup
t→T ∗

‖u(t )‖L3(
logloglog 1

T ∗−t

)c =+∞. (11)

However, a simple scaling argument (see [6, §5.1]) forces the inferior limit (over all solutions) to be zero
in (11) and in any similar estimate with a diverging rate, i.e. fluctuations of the L3 norm will sometimes be
visible at this time-scale. Soon afterwards, Barker & Prange [7] investigated the possibility of reducing the
length of the polylogarithm.
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The well known Ladyzhenskaya-Prodi-Serrin condition reads:∫ T ∗

0
‖u(t )‖q

Lp d t =+∞ for
2

q
+ 3

p
= 1, p > 3. (12)

Note that (10) corresponds to the endpoint p = 3, while (8) matches p = ∞. This second endpoint was
investigated by Kozono & Taniuchi [54], who even generalized it to the (larger) BMO space.

The blow-up of scale-invariant Besov norms of negative regularity index was obtained by Gallagher,
Koch & Planchon [42]. This lower bound implies that most supercritical norms (i.e. Galilean invariant
space-time function spaces Y such that ‖λu(λ2t ,λx)‖Y ≤ Cλ1−γ‖u(t , x)‖Y with γ < 1) will also blow up.
For the subtle behavior at the endpoint among critical spaces, i.e. Ḃ−1∞,∞, we refer to Cheskidov & Shvyd-
koy [26] and Ohkitani [68].

Concerning spaces of higher regularity, we have known since Kato that∫ T ∗

0
‖∇u‖L∞ =+∞. (13)

The celebrated Beale-Kato-Majda criterion [8], [69] reads∫ T ∗

0
‖curlu‖L∞ =+∞ (14)

and various generalizations in more involved function spaces are possible, e.g. [54], [69]. We will briefly
present Cheskidov & Shvydkoy’s [27] variant of this criterion (see equation (95) below).

Alternatively, each of the identities (8), (10), (12), (13), (14) can also be stated as a regularity criterion.
If the left-hand side integral is finite on some time interval [0,T ], then the corresponding solution remains
regular up to and including at time T , i.e. one has T ∗ > T . Numerical investigations of quasi-singularities
are still underway, e.g. by Sverak & al. [49], [46], who possibly hint at the existence of actual singularities,
or by Protas & al. [5], [51], [50], who seek flows that maximize the growth of various norms.

Let us close this first panorama by a word of caution. The heat equation is justly considered as the
archetype of a well behaved parabolic regularizing model. Its solution is indeed obtained by convolution
with a Gaussian kernel

e t∆u0 =
∫
R3

u0(x −p
t y)W (y)d y with W (y) = (4π)−3/2e−y2/4. (15)

However, as shown by Tychonov [73], [39], this solution is not the only one if one fails to restrict the growth
of u at infinity to, e.g., O(ecx2

). For anyα ∈R, the following function is a smooth (but not tempered) solution
of the heat equation that coincides with u0 at t = 0:

u(t , x)+α
∞∑

n=0
Pn

(1
t

)
e−1/t 2

H(t )
x2n

(2n)!
· (16)

Here u = e t∆u0, H(t ) is the Heaviside function, P0 = 1 and Pn+1(z) = 2z3Pn(z)+P ′
n(z) are the polynomials

involved in the computation of the nth derivative of e−1/t 2
. While this type of instability may seem far from

the physical range of validity of hydrodynamical models, it remains instructive. See also [60].

1.2 Geometric regularity theory near a singular event

All the criteria that we have mentioned up to now are obviously isotropic and do not rely on any geometric
structure of the flow. There have been a few remarkable attempts to take into account the geometric nature
of the Navier-Stokes equation and we shall now present them briefly.
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A striking example of the importance of the geometry for hydrodynamics is turbulence, where radically
anisotropic structures (vortex filaments and pancakes) play a central role [35]. This observation suggests
that the most fundamental and universal behavior of fluids is a microlocal cascade. However, it is equally
important (and more feasible) to describe the consequences of these interactions at intermediary scales,
for example by estimating the growth of norms of geometric quantities.

An important step in this direction was achieved by Constantin & Fefferman [30], [29], who studied the
direction of the vorticity ω= curlu, i.e.:

ξ(t , x) = ω(t , x)

|ω(t , x)| ∈S
2. (17)

Using ξ as a multiplier in the equation of vorticity (see (32) below), they established that(
∂t +u ·∇−ν∆)

(|ω|)+ν|ω||∇ξ|2 = 〈(ω ·∇)u,ξ〉R3 . (18)

Integrating over [0, t ]×Ω forΩ=R3 orT3 leads (at first for smooth solutions, see [30, eq. 20]) to the identity∫
Ω
|ω(t , x)|d x +ν

∫ t

0

∫
Ω
|ω(t , x)||∇ξ(t ′, x)|2d xd t ′ =

∫
Ω
|ω(0, x)|d x +

∫ t

0

∫
Ω
〈(ω ·∇)u,ξ〉R3 d xd t ′.

The following geometric estimate follows immediately (using (48)):∫
Ω
|ω(t , x)|d x +ν

∫ t

0

∫
Ω
|ω(t , x)||∇ξ(t ′, x)|2d xd t ′ ≤ ‖ω(0)‖L1 + 1

2ν

(‖u(0)‖2
L2 −‖u(t )‖2

L2

)
. (19)

To the best of our knowledge, this global L∞
t L1

x estimate is the only known a priori bound on the vor-
ticity that holds for any Leray solution, apart from the obvious L2

t L2
x bound that follows from the energy

inequality. This result illustrates how a local alignment in the direction of the vorticity can deplete the
nonlinearity. An interpretation that connects this estimate to turbulence is given in [29].

Another notable geometric result is the one from Vasseur [74] on the direction of the velocity field. This
result is specific to the 3D case and can be stated as follows. If a solution blows-up at a finite time T ∗, then:∫ T ∗

0

∥∥∥∥div

(
u

|u|
)∥∥∥∥q

Lp
d t =+∞ for

2

q
+ 3

p
≤ 1

2
, q ≥ 4, p ≥ 6. (20)

Conversely, a control of the norm implies the regularity of the solution. This criterion is based on the
incompressibility of the flow and the identity

|u|div
u

|u| = −
( u

|u| ·∇
)
|u|.

It means that the growth of |u| along the streamlines is linked to the divergence of the direction of u.
In particular, the kinetic energy |u|2 can only increase along the streamlines if they are bent and produce
some divergence in the direction of the velocity.

Among anisotropic criteria, let us also mention a recent result by Chemin, Gallagher & Zhang [22] that
investigates the possibility of detecting a singularity through one component only. If u is a smooth solution
that presents a blow-up at a finite time T ∗, then

inf
σ∈S2

∫ T ∗

0
‖u(t ) ·σ‖p

Ḣ 1/2+2/p d t =+∞ for p ≥ 2, (21)

which means that all components will be affected. They also show that

inf
σ∈S2

sup
t ′>t

‖u(t ′) ·σ‖Ḣ 1/2 ≥C log−1/2

(
e +

‖u(t )‖4
L2

T ∗− t

)
. (22)

The fact that the right-hand side vanishes is coherent with the remark that follows (11).
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1.3 Structure of this article and summary of our results

Our article is structured as follows.

In section §2, we expose some geometric properties of the curl operator. The non-local diagonalization
of the curl (see Lemma 5 and Remark 6) establishes a geometrical link with the pseudo-derivative, i.e. |D| =
(−∆)1/2 : both operators are images of one another by a certain symmetry of the subset of L2 formed by the
divergence-free vector fields. This property leads us to introduce (Definition 7) the notion of spin-definite
vector field, i.e. divergence-free fields such that

curlu =±|D|u.

The end of section §2 is dedicated to the study of such fields. In layman’s terms, fields with positive spin
display an exclusive right-handedness motion at all scales, while fields with negative spin are their chiral
image in a mirror. Spin-definite fields are build as superpositions of planar Beltrami waves (41) with inde-
pendent directions of propagation and various frequencies. Any divergence-free field can be decomposed
in a unique way as the sum of two fields with respectively a positive and a negative spin. A few numerical
simulations illustrate the importance of this notion for the description of vortex filaments.

The next key observation is that the non-linearity of Navier-Stokes has a cross-product structure and its
weak (i.e. distributional) form is a determinant (see equations (29) and (30) below). In section §3, we use
this geometric approach to revisit the two classical conservation laws for Navier-Stokes, i.e. the balance
of energy and the balance of helicity. While the former is constitutional of the definition of the Leray
space L∞

t L2
x ∩L2

t Ḣ 1
x , we expose the latter (see equations (50) and (54)) as a conservation law in

L∞
t Ḣ 1/2

x ∩L2
t Ḣ 3/2

x

for the spin-definite components of the flow. Our main Theorem, 15, can be restated as follows.

Theorem 1 In the case of a finite-time blow-up of Navier-Stokes, both of the spin-definite components of
the flow will explode simultaneously and with equal rates.

In simple terms, this means that singularities can only appear as the result of an unresolved conflict of spin
that escalated out of control. Proposition 17, Theorem 19 and 22 quantify how an imbalance between the
two spins actually prevents singularities. In subsection §3.6, we explain how the poorer geometry of 2D
flows either enforces the victory of one direction of rotation over the other or lets the viscosity dissolve the
attempted conflict, while the richer 3D geometry allows for the possibility of an escalation of conflicting
spins. In subsection 3.4, we also briefly discuss the recent developments regarding Onsager’s conjecture
for the balance of energy and its counterpart for the balance of helicity.

Section §4 pursues the geometric investigation of the weak form of the non-linearity, i.e. critical deter-
minants. Applying this point of view to study the enstrophy produces a proof of the regularity of 2D flows
based on the identity ∫

R3
det(curlu,u,−∆u) = 0,

which is valid if u is a 2D divergence-free field embedded in 3D space; note that the integrand is not iden-
tically zero and that the cancellation is the result of a space average. More generally, we investigate (Propo-
sitions 25 and 27 and the identity (79)) how the sign of∫ t

0

∫
R3

det(curlu,u, |D|2θu)d xd t ′

relates to the growth of the Sobolev norm Ḣθ of the spin-definite components of the flow. This analysis
suggests that even though the definition of regularity is obviously local, its control in the case of Navier-
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Stokes flows will likely involve non-local estimates. We also obtain a stability estimate among Leray solu-
tions that has a geometric form:

‖u1(t )−u2(t )‖2
L2 ≤ ‖u1(0)−u2(0)‖2

L2 exp

(∫ T

0

‖u1 ×u2‖2
L2

‖u1 −u2‖2
L2

)
and a variant of the Beale-Kato-Majda criterion.

For the convenience of the reader, Appendix A recalls the geometric proof of some vector calculus
identities whose direct computational proofs in coordinates would be non-trivial.

2 Geometric properties of the curl operator

In this section, we collect some classical facts related to vorticity and we introduce notations, in particular
the signed decomposition of curl in §2.3 and the associated notion of spin of a 3D divergence-free field,
that will be used throughout the article.

We use the following definition for the Fourier transform on Rn :

û(ξ) = (2π)−n/2
∫
Rn

e−i x·ξu(x)d x, u(x) = (2π)−n/2
∫
Rn

e i x·ξû(ξ)dξ. (23)

This definition provides a unitary transformation in L2(Rn). The operator D =−i∇ satisfies�Dαu(ξ) = ξαû(ξ).

The operator |D| = (−∆)1/2 has symbol |ξ|. We focus exclusively on the three dimensional case, i.e. n = 3,
except in the brief subsection §3.6.

2.1 The curl operator

We use the notation C = curl. It is a Fourier multiplier of symbol

C(ξ) =
 0 −iξ3 iξ2

iξ3 0 −iξ1

−iξ2 iξ1 0

 , (24)

which is the matrix of η 7→ iξ×η seen as an endomorphism of the Hermitian space C3. Obviously

C(ξ)∗ = t C(ξ) = C(ξ), (25)

which implies that the curl is (formally) self-adjoint over L2(R3). One has

C(ξ)2 =−
 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

=
|ξ|2 −ξ2

1 −ξ1ξ2 −ξ1ξ3

−ξ1ξ2 |ξ|2 −ξ2
2 −ξ2ξ3

−ξ1ξ3 −ξ3ξ2 |ξ|2 −ξ2
3

 ,

so that
C(ξ)2 = |ξ|2 Id−ξ⊗ξ i.e. C2 =∇div−∆.

The columns of C(ξ) are clearly orthogonal to ξ, which reflects the classical fact that div◦curl = 0. The
operator |D|−1 C is obviously bounded on L2 and is even of Calderón-Zygmund type by Mikhlin’s multiplier
theorem. The Leray projection onto divergence-free vector fields can be expressed in terms of C:

P= |D|−2 C2 = Id+∇(−∆)−1 div. (26)

The operator P is an orthogonal projection since P = P∗ and P2 = P. Similarly, Id−P is an orthogonal
projection onto gradient fields1, i.e. the nullspace of C. Note also that P and C commute.

1As we plant our discussion exclusively within the L2 framework, there are no potential flows like ∇(x2− y2+x3−3xz2), which
is both a gradient and a divergence-free field on R3. Such a field is formally in the range of P.
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2.2 The Navier-Stokes velocity equation in curl form

Let us briefly present some alternative expressions of the Navier-Stokes equation involving the operator C.
For now, we are not directly interested in the standard equation of vorticity but rather in expressing the
linear and non-linear terms as curls.

When u is a divergence-free vector field, the identity (26) implies that C2 u =−∆u. The Navier-Stokes
equation (1) can thus also be written as

∂u

∂t
+P(

(u ·∇)u
)+νC2 u = 0,

ut=0 = u0, divu0 = 0.
(27)

Applying P to the equation (1) leads directly to (27). Conversely, (27) implies that both ∂u/∂t and u(t = 0)
are divergence-free, proving that divu = 0. Applying Id =P−∇(−∆)−1 div to u ·∇u, the pressure is immedi-
ately reconstructed with the identity ∇p =∇(−∆)−1 div(u ·∇)u.

Remark 2 A common observation is that (u · ∇)u = ∑
j u j∂ j u = ∑

j ∂ j (u j u) = div(u ⊗u) because u is a
divergence-free vector field, which gives a meaning in the distributional sense to the non-linear term as
soon as u(t , ·) belongs to any space embedded in L2

loc. ä

Let us now recall a well known identity of vector calculus. For any vector field u, one has :

(Cu)×u = (u ·∇)u − 1

2
∇|u|2. (28)

The first coordinate of Cu ×u is indeed:

(∂3u1 −∂1u3)u3 − (∂1u2 −∂2u1)u2 = (u3∂3 +u2∂2)(u1)− 1

2
∂1(u2

3 +u2
2) = (u ·∇)u1 − 1

2
∂1(|u|2).

The identity then follows by circular permutation among indices. There is also a profound geometric rea-
son for the above identity (known sometimes as the dot product rule), as it is elemental in the definition of
Riemannian connections (see appendix A, equation (107)).

A direct consequence of (28) for the non-linear term of Navier-Stokes is that

P
(
(u ·∇)u

)=P((Cu)×u). (29)

We may therefore rewrite the Navier-Stokes equation in (27) as follows :

∂u

∂t
+P(

(Cu)×u
)+νC2 u = 0. (30)

This particular form of the equation will be of central importance in what follows. It suggests a new form
of cancellations based on the following identity

〈(u ·∇)u, w〉L2(R3) = 〈Cu ×u, w〉L2(R3) =
∫
R3

det(Cu,u, w)d x, (31)

which holds for any pair of divergence-free vector fields u, w . The identity (29) thus underlines that the
non-linearity of Navier-Stokes has the structure of a cross-product, and that its weak (distributional)
form (31) is a determinant that involves the vorticity, the velocity and a test function.

Of course, this formulation is related to the vorticity equation. One has:

CP((Cu)×u) =PC((Cu)×u) = C((Cu)×u) = (u ·∇)Cu − ((Cu) ·∇)u.
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Therefore, applying C to (30) directly implies the vorticity equation

∂ω

∂t
+ (u ·∇)ω+νC2ω= (ω ·∇)u (32)

withω= Cu. In the line of (30), note that the nonlinear term of the vorticity equation inherits the structure
of a cross-product: (u · ∇)ω− (ω · ∇)u = C(ω×u). The vortex-stretching term (ω · ∇)u = (ω · ∇)|D|−2 Cω is
of order zero but highly non-local in ω. On average, it is orthogonal to u (see (58) below). The vortex-
stretching term plays a central role in the cascade of energy towards smaller scales in 3D turbulent flows
by thinning the girth of vortex tubes.

Remark 3 The Navier-Stokes equation can also be rewritten as :

∂u

∂t
+P(u ·∇)Pu +νcurl2 u = 0, (33)

to put the emphasis on the transport-diffusion aspect of the Navier-Stokes system. However, due to the
embedded pressure, the transport part is not the divergence-free vector field u ·∇, but the non-local skew-
adjoint operator

P(u ·∇)P.

For a time-independent and divergence-free vector field U , the flow of that operator, i.e. the solution
of ∂tφ=P(U ·∇)Pφ, is given by the Fourier Integral Operator

φ(t ) = expi t P(U ·D)Pφ0

where U ·D =−iU ·∇; under rather mild assumptions of regularity, this operator is self-adjoint (unbounded)
on L2(R3;R3).

This flow is strikingly different from that of the vector field V , i.e. ψ(t ) = expi t (U ·D)ψ0. The difference
induced by a projector “sandwich” is already striking among matrices. For example, in R2, let us consider
a self-adjoint matrix A and a self-adjoint projection P onto a non-eigenvector of A:

A =
(
λ 0
0 µ

)
P = 1

2

(
1 1
1 1

)
= P T

then

e i t A =
(
e i tλ 0

0 e i tµ

)
while e i tPAP = Id+(e i t λ+µ2 −1)P.

The presence of the projector P changes the evolution radically: the linear parts differ as t → 0 (the later
being the P-projection of the former) and the long-term behaviors are obviously completely different. ä

2.3 Decomposition of curl as a superposition of signed operators

Let us denote by PL2 the subspace of L2(R3) composed of vector fields that are divergence-free. As recalled
in §2.1, the curl operator is self-adjoint and elliptic on PL2. We now want to decompose PL2 into an or-
thogonal direct sum of subspaces on which C = curl is signed. The definition of these subspaces involves
the following non-local operators associated with the “square root” of P.

Lemma 4 One can decompose P=Q++Q− where

Q± = 1

2

(
P±C |D|−1). (34)

The operatorsQ± satisfyQ∗
± =Q± =Q2

± andQ+Q− =Q−Q+ = 0.

9



Proof. The main computation is Q2
± = 1

4

(
P2 +C2 |D|−2 ± (PC |D|−1 +C |D|−1P)

)
. Applying (26) ensures the

simplifications P2 = P and [P,C |D|−1] = 0. As PC = C, we obtain Q2
± = Q±. The other properties follow

immediately.

Let us define the following signed curl operators:

C+ = CQ+ and C− =−CQ−. (35)

These operators play a central role in this article.

Lemma 5 One can decompose C = C+−C−. The operators C± satisfy

C∗
± = C± ≥ 0, (36)

C+ C− = C− C+ = 0, (37)

C+ = |D|Q+ =Q+|D|Q+ =Q+ CQ+, (38)

C− = |D|Q− =Q−|D|Q− =−Q− CQ−. (39)

Proof. Since [P,C] = 0 we have [C,Q±] = 0 so that CQ± = CQ2
± =Q± CQ±. The properties

C =PC =Q+ C+Q− C = C+−C−, C+ C− = C− C+ = 0, C∗
± = C±

follow from the corresponding ones forQ±. We also have

CQ+ = 1

2

(
CP+C2 |D|−1)= 1

2

(
C+P|D|)= |D|1

2

(
P+C |D|−1)= |D|Q+,

CQ− = 1

2

(
CP−C2 |D|−1)= 1

2

(
C−P|D|)=−|D|1

2

(
P−C |D|−1)=−|D|Q−.

Observing that |D|Q± =Q±|D|Q± ensures the positivity of these operators.

Remark 6 The previous lemma ensures that the respective restrictions of C± toQ±L2 both coincide with |D|.
The kernel of C± in PL2 is Q∓L2. In the orthogonal decomposition PL2 = Q+L2 ⊕Q−L2, the matrix of the
curl operator is thus (|D| 0

0 −|D|
)

i.e. C = |D| ◦ (Q+ −Q−) is the diagonalization of the curl operator. This formula highlights a profound
geometric connection between the curl and the pseudo-derivative |D| : both operators are images of one
another by a symmetry of PL2. Note also that, by functional calculus, one may define fractional operators

Cs
± = |D|sQ± (40)

for any s ∈R; the corresponding Cs = |D|s ◦ (Q++e siπQ−) is however not self-adjoint if s ∈R\Z. ä

In view of these properties, we are led to introduce the following definition.

Definition 7 A divergence-free vector field in L2(R3) is said to have positive (resp. negative) spin if it belongs
to the subspaceQ+L2 (resp. Q−L2). We say that u is spin-definite if it has either positive or negative spin.

According to Remark 6, a square integrable field u has positive spin (up to a gradient field) if and only
if Cu = |D|Pu and negative spin if Cu = −|D|Pu. In general, a divergence-free vector field is not spin-
definite; however, Lemma 4 ensures that anyPL2 field is always the (direct) sum of two spin-definite vector
fields with opposite spins.
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Remark 8 The notion of spin-definite field has been known in physics literature under the denomination
helical decomposition and dates back to Lesieur [62]. It has occasionally been used in theoretical and
numerical investigations, e.g. Constantin & Majda [32], Cambon & Jacquin [17], Waleffe [77], Alexakis [1].
See also the discussion in §3.6 below. ä

Example 9 The spin-definite fields that are spectrally supported on a sphere are examples of Beltrami flows.
If Ŵ (ξ) is a distribution supported on {|ξ| = λ}, then |D|W = λW ; in this case, W is spin-definite if and
only if CW = ±λW . In the periodic setting (or if one drops the square integrability on R3), the simplest
non-trivial example is of the form

W ±
λ,φ(x) = cos(λx · #»e1 +φ) #»e2 ∓ sin(λx · #»e1 +φ) #»e3 (41)

for some orthonormal basis ( #»e1, #»e2, #»e3), a frequency λ> 0 and a phase shift φ ∈ [0,2π); W +
λ,φ is spin-positive

and W −
λ,φ is spin-negative. The fields e−νtλ2

W ±
λ,φ(x) are exact solutions of the Navier-Stokes equation. They

are a transient planar wave and a shear flow where the main direction of the shear rotates (resp. right- of
left-handedly) as one travels along the axis R#»e1. It is the hydrodynamical equivalent of a circularly polarized
electromagnetic wave (for further results on Beltrami flows, see e.g. [28] and [45]).

Let us comment on the “microlocal” meaning of this definition. It is common knowledge that all com-
plex vector spaces (even of higher dimension) are canonically oriented by the initial choice of one square
root of −1 among the two choices ±i . For ξ 6= 0, the subspace ξ⊥ of C3 is of complex dimension 2; ac-
cording to (26), the matrix |ξ|−1 C(ξ) ∈M3,3(C) defined by (24) is a square root of the orthogonal projector
P(ξ) = I − |ξ|−2(ξ⊗ ξ) of C3 onto ξ⊥. The pair (P(ξ),−i |ξ|−1 C(ξ)) defines a complex structure with conju-
gate coordinates Q±(ξ). A field has positive spin if, at each frequency ξ ∈ R3\{0}, the complex vector û(ξ)
belongs to ranQ+(ξ).

Lemma 10 For ξ ∈R3\{0} and the matrix C(ξ) ∈M3,3(C) defined by (24), we have

kerC(ξ) =Cξ, ranC(ξ) = ξ⊥ = {
η ∈C3 ; η ·ξ= 0

}
, (42)

SpecC(ξ) = {0,±|ξ|} , ker(C(ξ)∓|ξ|) = ranQ±(ξ). (43)

In particular, ranQ±(ξ) is one-dimensional if ξ 6= 0. One has Q−(ξ) =Q+(−ξ) =Q+(ξ). In local coordinates,
the non-trivial eigenvectors are given, e.g. away from the axis ξ2 = ξ3 = 0, by:

δ±(ξ) = 1

2|ξ|2

 ξ2
2 +ξ2

3
−ξ1ξ2 ± iξ3|ξ|
−ξ1ξ3 ∓ iξ2|ξ|

 (44)

and one has
kerQ±(ξ) = SpanC{ξ,δ∓(ξ)}, ranQ±(ξ) =Cδ±(ξ). (45)

Proof. Let ξ be in R3\{0}. If for a,b ∈ R3 we have iξ× (a + i b) = 0, we obtain that ξ×a = ξ×b = 0, which is
equivalent to a ∧ξ= b ∧ξ= 0, i.e. (a + i b) ∈ Cξ. On the other hand, the two-dimensional ξ⊥ contains the
two-dimensional range of C(ξ). Properties (43) follow from Lemma 5, which implies that

C(ξ) = |ξ|Q+(ξ)−|ξ|Q−(ξ)

whereQ±(ξ) are the rank-one projections defined by

Q±(ξ) = 1

2

(
I −|ξ|−2(ξ⊗ξ)︸ ︷︷ ︸

real symmetric

± |ξ|−1 C(ξ)︸ ︷︷ ︸
purely imaginary
anti-symmetric

)
.

The operatorsQ± are the Fourier multiplierQ±(D). The formula for δ±(ξ) is obtained by choosing the first
column ofQ±(ξ).
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Remark 11 The previous choice for δ±(ξ) becomes singular along the axis ξ2 = ξ3 = 0. To perform compu-
tations near this axis, one should instead choose another column ofQ±(ξ) as basis vectors. ä

With these local coordinates, the general expression of the Fourier reconstruction of a divergence-free
vector field is:

u(x) =
∫
R3

[ϑ+(ξ)δ+(ξ)+ϑ−(ξ)δ−(ξ)]e i x·ξdξ (46)

for some spectral weights ϑ±(ξ) ∈ C defined almost everywhere and obtained in a unique way by the de-
composition of û(ξ) on the basis (δ+(ξ),δ−(ξ)) of ξ⊥. As u is real-valued, the weights have to satisfy

ϑ±(−ξ) =ϑ±(ξ).

One can easily compute:

Cu(x) =
∫
R3
|ξ| [ϑ+(ξ)δ+(ξ)−ϑ−(ξ)δ−(ξ)]e i x·ξdξ

and

|D|u(x) =
∫
R3
|ξ| [ϑ+(ξ)δ+(ξ)+ϑ−(ξ)δ−(ξ)]e i x·ξdξ.

A field u has positive (resp. negative) spin if and only if ϑ− ≡ 0 (resp. ϑ+ ≡ 0).

Corollary 12 The spin is a chiral notion: the mirror image of a field with positive spin by a planar symmetry
of R3 is a field of negative spin.

Proof. Without impeding on the generality, one may assume that v(x1, x2, x3) = u(x1, x2,−x3). It is then
clear from (46) and (44) that the two fields u and v have opposite spins.

Figure 1: Real (left) and imaginary (right) parts of δ+(ξ) on the unit sphere |ξ| = 1. Multiplication by
a suitable prefactor in C can rotate the axis (and the apparent singularity) of δ+(ξ) to any point on the
sphere (the axis for the real and imaginary parts are the same). One obtains δ−(ξ) by complex conjugation
of δ+(ξ); therefore, the imaginary part of the Fourier field “flows” the other way around in C3.
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Figure 2: Two examples of non-trivial divergence-free fields, with positive spin in the periodic setting
x ∈ T3. Above: field u1 (Beltrami); below: field u2 (not generalized Beltrami). Left: streamlines of
u j (x) over the pressure field. Right: streamlines of u j (x) over the intensity of the dissipation field.
Units are arbitrary. Observe the righ-hand side motion.

The family of spin-definite vector fields is quite rich and appears to have a tubular jet-structure, where
the sign of the spin reflects whether the forward motion is right- or left-handed. For example,

u1(x) =−1

2
(cos(x1 −x2)+2sin(x2 +x3)) #»e1 − 1

2

(
cos(x1 −x2)+

p
2cos(x2 +x3)

)
#»e2

+
p

2

2
(sin(x1 −x2)+cos(x2 +x3)) #»e3

u2(x) =−1

5
(4cos(x1 −2x2)+5sin(x2 +x3)) #»e1 − 1

10

(
4cos(x1 −2x2)+5

p
2cos(x2 +x3)

)
#»e2

+ 1

10

(
4
p

5sin(x1 −2x2)+5
p

2cos(x2 +x3)
)

#»e3

are divergence-free and have positive spin i.e. Cu j = |D|u j . They are illustrated in Figure 2.
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Note that Cu1 = p
2u1 so this example is a Beltrami flow; û1 is supported on the spectral sphere of

radius
p

2. On the contrary, C(Cu2 ×u2) 6= 0 so this second example is not even a generalized Beltrami
flow; û2 involves frequencies of magnitudes

p
2 and

p
5. However, both are clearly the superposition of

two planar Beltrami waves of positive spin (i.e. flows from Example 9) that progress in different directions.
Both flows have a similar structure: they swirl in a right-hand fashion, the center of each vortex is a zone of
low pressure and high dissipation, the four hyperbolic corners of each cell (where the convection diverges)
are axes of high pressure with minimal dissipation. Accounting for box-periodicity, these two examples
display one single continuous vortex tube.

If we superpose three or more planar Beltrami waves of positive spin, one can build more refined flows
with positive spin that contain an intricate network of vortex tubes. The positive spin imposes that the
movement remains exclusively right-handed at all scales. In the example shown in Figure 3, four distinct
regions (accounting for periodicity) of high vorticity appear to be disconnected, i.e. one generates vortex
tubes of finite length.

Figure 3: A third example of a non-trivial divergence-free field, with positive spin in the periodic
setting x ∈ T3. The field is constructed as the superposition of three planar Beltrami waves with
linearly independent directions. Left: streamlines of u j (x) over the pressure field. Right: intensity of
the vorticity field. Units are arbitrary. The viewpoint is slightly different for better legibility. Four
vortex filaments occur in the high-pressure region.

These examples suggest that the family of spin-definite flows is structurally simple (superposition of
planar Beltrami waves) and yet quite rich. It is the building blocks of intricate vortex structures and de-
serves to be studied specifically, as we will now do.

Remark 13 The question of defining a microlocal notion of spin is legitimate2, albeit non-trivial because
the operators C± |D| are non-local. If u is a divergence-free field, there exists a stream vector (i.e. vector
potential) Ψ such that u = CΨ. It is given by Ψ = |D|−2 Cu +∇q where ∇q is an arbitrary irrotational
component, e.g. q = 0. If one is interested only in the local behavior of the flow near a point x0 ∈ R3,
one could consider a smooth cut-off function χ ∈ D(R3) supported in a ball of radius r > 0 and such that

2The notion of spin introduced in this article could then reasonably be called Fourier spin to insist on its global nature.
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χ(x) = 1 if |x| ≤ r /2. The field

ũ = C
(
χ(x −x0)Ψ(x)

)=χ(x −x0)u(x)+ ∇χ(x −x0)×Ψ︸ ︷︷ ︸
recirculation around

the cutout zone

remains divergence-free, coincides with u on the ball B(x0,r /2) and is compactly supported on B(x0,r ).
The two spin-definite components of ũ can be seen as a local expression of the spin of the original field u
near x0. However, the recirculation of ũ near the edge of the cutoff zone may shadow the meaning of the
spin at low frequencies, so a secondary microlocal cutout to isolate frequencies |ξ|À r−1 may be necessary.
We will not investigate this question further in this article. ä

3 Two integral quantities preserved by the Navier-Stokes evolution

In this section, we revisit the classical energy balance for Navier-Stokes in the light of the aforementioned
properties of the curl operator over PL2 =Q+L2 ⊕Q−L2.

3.1 Classical energy method

Leray’s method was introduced in 1934 in the seminal article [59]. It consists in multiplying (30) by u to get

d

d t
‖u(t )‖2

L2 +2〈P(Cu ×u),u〉L2 +2ν‖Cu‖2
L2 = 0.

Since P∗u =Pu = u, the non-linear term formally cancels out

〈P(Cu ×u),u〉 = 〈Cu ×u,u〉 = det(Cu,u,u) = 0. (47)

This leads to the classical energy balance

‖u(t )‖2
L2 +2ν

∫ t

0
‖Cu‖2

L2 d t ′ = ‖u(0)‖2
L2 ,

which, truthfully, only holds for smooth solutions in the three-dimensional case. As Leray solutions are
obtained as limits of compact sequences (un)n∈N that satisfy the energy equality but converge to u only
weakly in H 1, Fatou’s lemma implies

‖u(t )‖2
L2 +2ν

∫ t

0
‖Cu‖2

L2 d t ′ ≤ ‖u(0)‖2
L2 . (48)

The possibility of anomalous dissipation, i.e. a strict inequality in (48), was envisioned by Onsager [67] and
formalized e.g. in [38]. Onsager’s conjecture on the minimal regularity assumption on u that is necessary
to ensure (48) was solved recently by the conjonction of the works of Isett [47] and Constantin, Weinan &
Titi [33]. Soon afterwards, its importance was renewed by the construction of Buckmaster, Vicol [14] of
wild (i.e. non-Leray) solutions of Navier-Stokes that defy any physically reasonable energy balance (their
energy profile can even be prescribed arbitrarily) even though they belong to a reasonable function space
C 0

t (Hσ
x ) for some σ> 0, typically σ' 2−18. For further details, see §3.4 below.

3.2 Conservation law associated with the signed curl

Let us define the following quantities:

N±(u, t ) = ‖C1/2
± u(t )‖2

L2 +2ν
∫ t

0
‖C3/2

± u‖2
L2 d t ′. (49)

Thanks to the results of §2.3, the sum N+(u, t )+N−(u, t ) is equivalent, for divergence-free vector fields, to
the square of the norm of u in L∞

t Ḣ 1/2
x ∩L2

t Ḣ 3/2
x . Inspired by the negative sign of the curl on Q−L2, let us

now turn our attention to the Krein [55] “norm” N+(u, t )−N−(u, t ).
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Proposition 14 Let u be a smooth solution of (30). The following conservation law then holds:

N+(u, t )−N−(u, t ) = N+(u,0)−N−(u,0). (50)

Proof. Thanks to the self-adjointness of the curl, one has 〈Cu,∂t u〉L2 = 〈∂t Cu,u〉L2 pointwise in time. Let
us multiply the equation (30) by 2Cu. We get

d

d t
〈Cu(t ),u(t )〉L2 +2〈P(Cu ×u),Cu〉L2 +2ν〈C3 u,u〉L2 = 0.

For smooth vector fields, the cubic term vanishes since

〈P(Cu ×u),Cu〉 = 〈Cu ×u,Cu〉 = det(Cu,u,Cu) = 0. (51)

The lemma then follows, with k = 1 or 3, from the identities Ck = (C+−C−)k = Ck++(−1)k Ck− and

〈Ck u,u〉L2 = ‖Ck/2
+ u‖2

L2 + (−1)k‖Ck/2
− u‖2

L2 ,

which are a consequence of the diagonalization of the curl obtained in §2.3.

For Leray solutions, the pendant of the conservation law (50) is not obvious. For example, it is not clear
how N+(u, t )−N−(u, t ) compares to N+(u,0)−N−(u,0) for all Leray solutions (see §3.5 below). However, if
one considers the first singularity event, the following result expresses that singularities for the 3D Navier-
Stokes equation can only occur as the result of a direct conflict of spin.

Theorem 15 If u is a smooth solution of Navier-Stokes on [0,T ∗) with a maximal life-time T ∗ <∞, then

limsup
t→T ∗

N±(u, t ) =+∞ and lim
k

N+(u, tk )

N−(u, tk )
= 1 (52)

for some increasing sequence of times tk → T ∗.

An attempt at a physical interpretation of this result is proposed in §3.6 below.

Proof. As u is smooth on [0,T ∗), the conservation law (50) holds for any t < T ∗ and

|N+(u, t )−N−(u, t )| ≤C0

with e.g. C0 = ∣∣∫
R3 ω0 ·u0

∣∣ according to (53) below. Thanks to [42], the sum N+(u, t )+N−(u, t ) and there-
fore at least one of the two norms N±(u, t ) must diverge in lim-sup as t → T ∗. As the difference remains
bounded, both norms N±(u, t ) must diverge simultaneously. One obtains an increasing sequence tk → T ∗

such that
N+(u, tk ) ≥C0 +k and therefore N−(u, tk ) ≥ k.

Then |N+(u, tk )/N−(u, tk )−1| ≤C0/k → 0.

3.3 Helicity

Using the properties of C± exposed in §2.3, one recovers the helicity:

H (t ) =
∫
R3
ω ·u = 〈(C+−C−)u,u〉L2 = ‖C1/2

+ u(t )‖2
L2 −‖C1/2

− u(t )‖2
L2 . (53)

More generally, the quantity N+−N− can be written as a conservation law for helicity:

N+(u, t )−N−(u, t ) =
∫
R3
ω ·u −2ν

∫ t

0

∫
R3
ω ·∆u =

∫
R3
ω ·u +2ν

∫ t

0

∫
R3
∇ω ·∇u. (54)
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The previous results imply that, for smooth solutions of the Euler equation, H (t ) is conserved and that
for smooth solutions of Navier-Stokes, the quantity (54) is invariant. The benefit of using the non-local
diagonalization of the curl operator (i.e. the C± operators) is that this new point of view isolates two distinct
signed quantities N± in the balance of helicity, which is really not obvious in the right-hand side of (54).
Helicity thus appears as a measure of the balance between the spin-definite components of u.

Let us also point out that (53) and Lemma 5 imply immediately

|H (t )| ≤ ‖C1/2
+ u(t )‖2

L2 +‖C1/2
− u(t )‖2

L2 = ‖u‖2
Ḣ 1/2 . (55)

One recovers the classical estimate |H (t )| = ∣∣〈|D|−1/2 Cu, |D|1/2u〉∣∣≤C‖u‖2
H 1/2 , which relies on the fact that

the operator |D|−1 C is obviously bounded on L2.

Remark 16 Note that, contrary to the phrasing of most proofs, the conservation of helicity does not result
from a global cancellation of terms; instead, each term (and sub-term) given by the respective evolution
equations for u and ω vanishes on its own:∫

R3
(∂tω) ·u +ν〈∇u,∇ω〉L2 = 〈(u ·∇)ω,u〉L2 +〈(ω ·∇)u,u〉L2 = 0+0 = 0

and ∫
R3

(∂t u) ·ω+ν〈∇u,∇ω〉L2 = 〈(u ·∇)u,ω〉+〈∇p,ω〉 = 0+0 = 0.

Indeed, using the self-adjointness of the curl twice, the identity (28) implies (either formally or for smooth u)
that, on average, the convection term (u ·∇)u is orthogonal to the vorticity:

〈w, (u ·∇)u〉L2 = 〈curlu, (u ·∇)u〉L2 = 〈u,curl[(u ·∇)u]〉L2 = 〈u,curl[ω×u]〉L2 = 〈ω,ω×u〉L2 = 0. (56)

If u is divergence-free, one has the well known identity:

〈ω, (u ·∇)u〉L2 +〈u, (u ·∇)ω〉L2 =−〈divu,u ·ω〉 = 0.

Combining this last identity with (56), one gets that the transport term (u ·∇)ω is, on average, orthogonal
to the velocity field:

〈u, (u ·∇)ω〉L2 = 0. (57)

Finally, as divω= 0, and assuming enough decay at infinity:

〈(ω ·∇)u,u〉L2 = 1

2

∫
R3

(ω ·∇)|u|2 = 1

2

∫
R3

div(|u|2ω) = 0. (58)

The identities (56), (57), (58) provide a simple derivation of the conservation of helicity for the Euler equa-
tion, which holds as long as it is legitimate to test the equation for vorticity (32) against u itself. ä

The connection with helicity provides the following uniform integral bounds that imply that the two
spin-definite components of u must have, on average, a comparable size in Ḣ 1/2. Note however that the
last result of §3.2 provides a stronger insight at the time of first singularity.

Proposition 17 For any Leray solution of Navier-Stokes, one has∫ ∞

0
|H (t )|2d t =

∫ ∞

0

(‖C1/2
+ u(t )‖2

L2 −‖C1/2
− u(t )‖2

L2

)2
d t ≤

‖u0‖4
L2

8ν
(59)

and

‖u‖2
L4

t Ḣ 1/2
x

=
∫ ∞

0

(‖C1/2
+ u(t )‖2

L2 +‖C1/2
− u(t )‖2

L2

)2
d t ≤

‖u0‖2
L2

4
p

2ν
. (60)
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Proof. The helicity is globally square-integrable in time because∫ ∞

0
|H (t )|2d t ≤

∫ ∞

0
‖ω(t )‖2

L2‖u(t )‖2
L2 d t ≤ ‖ω‖2

L2
t L2

x
‖u‖2

L∞
t L2

x
≤

‖u0‖4
L2

8ν
·

For the last step, we used the energy inequality (48) and ab ≤ c2

4β if a,b,c,β > 0 with a +βb ≤ c. The full

L4
t Ḣ 1/2

x norm of u is controlled by interpolation between L∞
t L2

x and L2
t Ḣ 1

x .

3.4 Onsager’s conjecture anew

In this section, we investigate briefly the minimal regularity that is required to ensure respectively the
conservation of energy or the balance of helicity.

Onsager’s famous conjecture [67] states that unless u ∈ Cα
x with α > 1/3, there may be an energy mis-

count at spectral infinity and that u itself is not an admissible test function. The heuristic leading to that
exponent is that the minimal regularity required to make sense of (47) consists in spreading one deriva-
tive across the three factors, hence the C 1/3

x critical space. For the Euler equation, Constantin, Weinan &
Titi [33] indeed proved the conservation of energy for α > 1/3 while Isett [47], using convex integration,
recently showed its failure for α< 1/3 and solved the problem that had been open for 69 years.

For the Navier-Stokes equation, the conservation of energy for Leray solutions was proved by Serrin
under an Lq

t Lp
x assumption with 2

q + 3
p = 1, p ≥ 3, which also implies smoothness (see criterion (12) above).

Lions [63], Ladyzhenskaya [57] and Shinbrot [71] also proved the conservation of energy when

2

q
+ 2

p
≤ 1, p ≥ 4

so in particular for L4
t L4

x . This intermediary scaling ( 2
4 + 3

4 = 5
4 ) is of particular interest because it is both

too low to be a guaranteed bound for all Leray solutions, but also too high to automatically imply the
smoothness of the solution. Kukavica [56] weakened this assumption to a local L2

t ,x bound on the pressure
(recall that p is obtained by a Calderón-Zygmund operator applied to u ×u). The last gap in scaling was
closed by Cheskidov, Friedlander & Shvydkoy [25], who proved that any Leray solution in L3([0,T ]; H 5/6)
conserves energy. See also Leslie-Shvydkoy [61].

To understand why the space L3
t Ḣ 5/6

x is exactly consistent with Onsager’s heuristic, let us point out that,
even with a loose Leibniz rule, one cannot expect to make sense of∫ T

0

∫
R3

det(Cu,u,u) = 0 unless
∫ T

0

∫
K
||D|1/3u(t , x)|3d xd t <∞

for any compact subset K ⊂ R3. The Navier-Stokes (i.e. parabolic) scaling of L3
t Ẇ 1/3,3

x is 2
3 + 3

3 − 1
3 = 1+ 1

3 ,

which matches that of L3
t Ḣ 5/6

x ⊂ L3
t Ẇ 1/3,3

x . The local integrability at this scale is ensured in the following
way. For a triple s1 + s2 + s3 ≥ 3/2 with s j ≥ 0 and at least two non-zero regularity indices and K ⊂ R3

bounded, Hölder law and the Sobolev embeddings imply (see Constantin-Foias [31]):∫
K
|(u ·∇)v ·w | ≤ cK ‖u‖L6/(3−2s1)+‖∇v‖L6/(3−2s2)+‖w‖L6/(3−2s3)+ ≤CK ‖u‖H s1‖∇v‖H s2‖w‖H s3 .

At Onsager’s scaling, the difficulty is that, when u ∈ H 5/6, then ∇u ∈ H−1/6 may fail to be locally integrable.
Very elegantly, Cheskidov, Friedlander & Shvydkoy [25] used a frequency decomposition u = ul+uh with an
arbitrary spectral threshold κ and controlled the non-trivial terms with Bernstein’s inequalities to transfer
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the singularity across the trilinear interaction, effectively loosening Leibniz’s rule:∫
K
|(u ·∇)ul ·u| ≤

∫
K
|(uh ·∇)ul ·uh |+

∫
K
|(ul ·∇)ul ·uh |+0

≤ ‖uh‖2
H 1/2‖ul‖H 3/2 +‖ul‖H 5/6‖ul‖H 1‖uh‖H 2/3

.
(
κ−1/3‖uh‖H 5/6

)2 (
κ2/3‖ul‖H 5/6

)+‖ul‖H 5/6

(
κ1/6‖ul‖H 5/6

)(
κ−1/6‖uh‖H 5/6

)
. ‖u‖3

H 5/6

This computation ensures that the cancellation lim
κ→∞

∫
R3

(u ·∇)ul ·u = 0 is legitimate.

The other side of Onsager’s conjecture for Navier-Stokes is still open. A historical breakthrough3 was
achieved very recently by Buckmaster & Vicol [14], [15] and with Colombo [12]. They showed that a small
positive regularity C 0

t Hσ
x with σ' 2−18 is not enough to prevent the existence of non-conservative viscous

flows. They constructed flows in that class whose energy profile can be prescribed arbitrarily. Such strange
flows are weak solutions of the Navier-Stokes equation but are not Leray solutions. While this pathology
may seem to be of a purely mathematical nature, it does have a deep connection with turbulence [36],
[16]. These flows display a persistent low-frequency shadow of a vanishing high-frequency forcing, which
was first observed for Euler [11]. This reverse cascade ends up to be stronger than what the viscosity can
diffuse. In the absence of viscosity [13], one can even push the regularity of the pathologies to σ= 1/2−.

In the same spirit as Onsager’s original conjecture, one can ask which minimal regularity will ensure
the balance of the helicity, i.e. the conservation of N+−N− defined above. Roughly speaking, in order to
use Cu as a test function and ensure (51), one would need to spread two derivatives across three factors,
which would place the bar at C 2/3

x . This threshold is sometimes known as Onsager’s conjecture for helic-
ity. In the case of Euler’s equation, Onsager’s conjecture for helicity was essentially resolved by Cheskidov,
Constantin, Friedlander & Shvydkoy [24]. Recently, Luigi de Rosa [37] investigated the possibility of split-
ting the assumption between u ∈ Lq1

t Cα1
x and curlu ∈ Lq2

t W α2,1
x with 2

q1
+ 1

q2
= 1 and 2α1 +α2 ≥ 1, which

suggests that, for helicity, subtle plays with scaling are possible.

Because of the higher regularity threshold, the estimate in the case of Navier-Stokes is simpler than the
one presented above. For example, having u ∈ L3

t (Ḣ 7/6
x ) provides enough integrability∫ t

0

∫
R3
|(u ·∇)u ·Cu| ≤ ‖u‖L3(L9)‖∇u‖L3(L9/4)‖Cu‖L3(L9/4) ≤ ‖u‖L3(Ḣ 7/6)‖∇u‖2

L3(Ḣ 1/6)
≤ ‖u‖3

L3(Ḣ 7/6)

and thus legitimizes (51). Note that the scaling of L3
t (Ḣ 7/6

x ) is consistent with 1/3 more derivative than that
of L3

t (Ḣ 5/6
x ), which was critical for the conservation of energy. This scaling is thus coherent, in spirit, with

Onsager’s conjecture for helicity. The scaling of L3(Ḣ 7/6) differs from that of L∞(L2)∩L2(Ḣ 1) by 7
6 − 2

3 = 1
2

derivative; such a control is similar in scaling to L∞(Ḣ 1/2) ∩ L2(Ḣ 3/2) and is therefore not known (and
possibly not expected) for the most general Leray solutions.

Remark 18 Formally, there are two other known conserved integrals for Euler and Navier-Stokes: the mo-
mentum

P (t ) =
∫
R3 or T3

u(t , x)d x, (61)

3This article is the result of three years of reflection inspired by Vlad Vicol’s remarkable talk at the CIRM of Marseille, in De-
cember 2018, which brought the two authors together. We are grateful to Prof. Vicol for his kind advice at that time and when we
met again at the IHES in Gif-sur-Yvette in early 2020 [76]. Our meditation on the Beltrami waves that were used in the original
proof [14] ultimately led us to Definition 7 of spin-definite fields and convinced us of the importance of this notion for hydrody-
namics.
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and the angular momentum

L(t ) =
∫
R3 or T3

x ×u(t , x)d x. (62)

However, on R3, the decay of the velocity field that is necessary to define the momentum is not benign; for
example, P (t ) is identically zero for any integrable divergence-free field. Similarly, the weighted integra-
bility

u ∈ L1((1+|x|)d x)

happens to be the critical one that cannot be propagated by the flow because the generic profile of a well
localized flow decays exactly as |x|−d−1 at infinity along most directions, which is due to the non-local
effect of the pressure field (see Brandolese-Vigneron [10]). Therefore P and L are not the most useful
conservation laws for flows on the full space R3. ä

3.5 Non-explosion criteria

The Navier-Stokes system can be written for the decomposition u = u++u− where u± =Q±u are the two
spin-definite components of u (see Definition 7):

∂u+
∂t

+Q+
(
Cu ×u

)+νC2
+ u+ = 0, u+(0) =Q+u0,

∂u−
∂t

+Q−
(
Cu ×u

)+νC2
− u− = 0, u−(0) =Q−u0.

(63)

However, the coupling of the two equations through Cu ×u is highly intricate. The point of this section is
to investigate how this coupling relates to issues of regularity.

Let us briefly explain the technical difficulty that one encounters when one attempts to generalize
the conservation law (50) to the framework of Leray solutions. Let u be a Leray solution of Navier-Stokes
with u0 ∈ H 1/2 and uk a sequence of Galerkine approximations of u that are spin-definite. It is common
knowledge (see e.g. [58]) that the convergence of uk to u holds in the strong topology of L∞([0,T ]; H−1)∩
L2([0,T ], H s) for any T > 0 and any arbitrary but fixed value s < 1. In particular, with s = 1/2, one gets that

lim〈C± uk (t ),uk (t )〉L2 = 〈C± u(t ),u(t )〉L2

for almost every t ≥ 0. The proof of (50) can be reproduced for the smooth functions uk leading to:

〈C+ uk (t ),uk (t )〉L2 +2ν
∫ t

0
〈C3

+ uk ,uk〉L2 +〈C− uk (0),uk (0)〉L2

= 〈C+ uk (0),uk (0)〉L2 +〈C− uk (t ),uk (t )〉L2 +2ν
∫ t

0
〈C3

− uk ,uk〉L2

i.e. N+(uk , t )+N 0− = N 0++N−(uk , t ). However, in general, Fatou’s lemma can only guarantee that

N±(u, t ) ≤ liminf
k→∞

N±(uk , t ),

which is not in our favor if we want to pass to the limit in the previous identity.

It is possible to circumvent this difficulty in the case of spin-definite solutions.

Theorem 19 If u is a Leray solution of Navier-Stokes stemming from u0 ∈ H 1/2, then u is smooth as long as
it remains spin-definite.
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Proof. Let u be a Leray solution of Navier-Stokes with u0 ∈ H 1/2 and T1 > 0 such that u is spin-definite
on [0,T1]. Without impeding the generality, one can apply a planar symmetry if necessary and assume
positive spin. It is common knowledge that u is smooth on some non-trivial interval [0,T2]. One considers

T = sup{t ∈ [0,T1] ; u is smooth on [0, t ]} ≥ T2.

Reasoning by contradiction, let us assume that T ≤ T1. Then (50) and the fact that u has positive spin imply
N+(u, t ) = N+(u,0) for all t ∈ [0,T ) i.e.

‖u(t )‖2
Ḣ 1/2 +2ν

∫ t

0
‖u‖2

Ḣ 3/2 d t ′ = ‖C1/2
+ u(t )‖2

L2 +2ν
∫ t

0
‖C3/2

+ u‖2
L2 d t ′ = ‖u0‖2

Ḣ 1/2 .

In particular, u ∈ L∞([0,T ); Ḣ 1/2) and [42] implies that T cannot be a singular time; consequently, one
has T > T1.

Remark 20 According to (63), a solution u remains spin-definite if and only if P(Cu×u) has the same spin
as u. In general, it is not clear that this property is propagated by the flow. At least, this is the case for
generalized Beltrami flows, i.e. when C(Cu ×u) = 0 because then P(Cu ×u) = 0. ä

The assumptions of the previous statement are somewhat exhorbitant. In the rest of this section, we
investigate instead how the respective sizes of the spin-definite components Q±u of a smooth solution u
are related to the emergence of singularities. However, as we only need smoothness to ensure the conser-
vation of N+(u, t )−N−(u, t ), we will preserve some generality by assuming instead that u is a Leray solution
such that |N+(u, t )−N−(u, t )| ≤C0.

The following lemma will be useful to bound a pair of close numbers from a common lower bound.

Lemma 21 For α,β ∈R+ and positive C j ,ε j , we have:

C0 ≥ |α−β| ≥ −C1 +ε1 min(αε2 ,βε2 ) =⇒ max(α,β) ≤C0 +
(
ε−1

1 (C0 +C1)
)1/ε2

and
C0 ≥ |α−β| ≥ −C1 +ε1 min(logα, logβ) =⇒ max(α,β) ≤C0 +exp

(
ε−1

1 (C0 +C1)
)
.

Proof. Since the assumption and the conclusion are symmetrical in α,β, we may assume that 0 ≤ β ≤ α.
We then have C0 +β+C1 ≥α+C1 ≥β+ε1β

ε2 so

ε1β
ε2 ≤C0 +C1 i.e. β≤ (

ε−1
1 (C0 +C1)

)1/ε2 .

Consequently, max(α,β) = α ≤ β+C0 ≤ (
ε−1

1 (C0 +C1)
)1/ε2 +C0. The second claim can be obtained in a

similar way.

At a time of first singularity, we have already mentioned (see the last result of §3.2) that N+(u, t ) and
N−(u, t ) will simultaneously diverge to +∞ and at the same rate. As Leray’s flow goes on, the value of
N+(u, t )−N−(u, t ) may be altered through each singular event. If the conflicts of spins were resolved (pos-
sibly in a non-unique way) by favoring one over the other, this could lead to a substantial drift. The fol-
lowing result quantifies, in this general setting, that even a logarithmic in-balance between the two spins
is enough to deter singularities.

Theorem 22 If u is a Leray solution of Navier-Stokes such that

∀t ∈ [0,T ), C0 ≥ |N+(u, t )−N−(u, t )| ≥ −C1 +εmin
(
log N+(u, t ), log N−(u, t )

)
(64)

for some constants C0,C1,ε> 0. Then u remains smooth on [0,T ∗) with T ∗ > T .

Proof. The previous lemma implies N±(u, t ) ≤ exp
[
ε−1

1 (C0 +C1)
]

on [0,T ) and in particular

‖u‖2
L∞([0,T ];Ḣ 1/2)

≤ sup
t∈[0,T ]

N+(u, t )+N−(u, t ) ≤ 2exp
[
ε−1

1 (C0 +C1)
]

thus u(T ) is smooth thanks to [42] and the solution can be extended slightly beyond that point by the
standard local well-posedness argument.
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3.6 Comparison with the dimension n = 2

Let us conclude this section by a brief investigation of the case of dimension 2. The general expression of
a divergence-free real-valued 2D vector field is

#»u (x) = 1

2π

∫
R2
ϑ(ξ)

#    »

δ(ξ)e i x·ξdξ (65)

where
#    »

δ(ξ) = ξ⊥/|ξ| ∈ R2 and ϑ(ξ) ∈ C satisfies ϑ(ξ) =−ϑ(ξ); note the anti-Hermitian symmetry because of
the anti-symmetric nature of

#    »

δ(ξ) in 2D. Exceptionally, we write the arrows as a visual cue to distinguish
between vector and scalar quantities. It is obvious that

|D|#»u = 1

2π

∫
R2
|ξ|ϑ(ξ)

#    »

δ(ξ)e i x·ξdξ, ω= curl #»u = 1

2π

∫
R2

i |ξ|ϑ(ξ)e i x·ξdξ. (66)

Even though |D|#»u ∈ R2 is non-local while ω ∈ R and is local, on the spectral side, the two operators are
conjugate of one another:

ω= i
#      »

δ(D) · |D|#»u and |D|#»u =−i
#      »

δ(D)(ω). (67)

This property means that, in 2D, the structure of the curl is not as rich as its 3D analog (compare with
Remark 6) and that, consequently, the conflict of two 2D contra-rotating vortices is not as profound as a
conflict of spins in 3D.

In 2D, the resolution of such a conflict can only lead to a plain redistribution of the amplitude ϑ(ξ)
in (65) and as the geometry of the equation does not leave any room for microlocal compensations, the
flow either “has to” make a choice in favor of one direction of rotation or, in the case of perfect balance, let
the viscosity eat up the singularity attempt. As we know, the Navier-Stokes equation is well-posed in 2D
and the qualitative behavior of the vorticity [43] matches this heuristic.

In 3D, a redistribution among the pair of amplitudes (ϑ+(ξ),ϑ−(ξ)) in (46) also means favoring one
spin over the other. However, the richer geometry provides the flow with a new way of “not chosing”: it can
amplify both spins simultaneously instead of letting the viscosity take over, which results in an escalating
conflict of spin. Singularities, if they occur, are thus the byproduct of this unresolved microlocal game of
chicken.

Of course, in the physical realm, the presence of sticky boundaries (i.e. with Dirichlet conditions) can
produce numerous cases of spin imbalance and couplings, which gives the boundary layer its driving role
in turbulence, regardless of whether or not true singularities or only quasi-singularities occur. One also has
to wonder whether the late resolution of physically admissible extreme events of this type (i.e. conflict of
spins that have escalated for a long time) favors subsequent cancellations, which could be the mechanism
that drives intermittency.

Remark 23 We encourage the reader to consider the recent numerical simulations of Alexakis [1]. Our col-
leagues in physics study the energy and helicity fluxes of turbulent flows, by decomposing the influence
of all possible interactions among spin-definite components. The numerical evidence hints at multiple
non-trivial facts: the total energy flux can be split into three spin-related fluxes that remain independently
constant in the inertial range; one of them amounts to 10% of the total energy flux and is a (hidden) back-
wards energy cascade, which subsists even in fully developed 3D turbulence. The helicity flux can be
decomposed in a similar fashion into two fluxes that remain constant in the inertial range. ä

4 Critical determinants and non-local aspects of the regularity theory

In this section, we investigate the idea of computing energy estimates for Cθ u with various values of θ > 0.
Each computation leads to a determinant whose average sign plays a key role both in the growth of the
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regularity norms in the case of a potential blow-up and in their control as long as the flow remains smooth.
It is worth insisting on the fact that geometric and non-local estimates seem to play a central role in
the question of the regularity of the solutions of 3D Navier-Stokes. This study also leads to a geometric
criterion for the uniqueness of Leray solutions and a slight variant of the Beale-Kato-Majda criterion.

4.1 Example: a geometric drive for enstrophy

Let us first investigate the well-known case of the enstrophy

E (t ) =
∫
R3
|∇u|2 =

∫
R3
|ω|2. (68)

The equivalence between the two formulations follows e.g. from C2 =−∆ for divergence-free fields.

Assuming regularity, one uses ω as a test function in the vorticity equation (32) and takes advantage of
the cross-product structure of the nonlinearity, i.e. (u ·∇)ω− (ω ·∇)u = C(ω×u). One is led to the following
balance:

‖ω(t )‖2
L2 +2ν

∫ t

0
‖Cω(t ′)‖2

L2 d t ′+2
∫ t

0

∫
R3

det
(
u,Cu,∆u

)
d xd t ′ = ‖ω0‖2

L2 . (69)

Note that 〈ω×u,Cω〉L2 = ∫
R3 det

(
u,Cu,∆u

)
d x. This computation is a typical example involving a critical

determinant: the average sign of the determinant is responsible for the variations of the norms measuring
the regularity of the flow, here in terms of enstrophy. When ν = 0, i.e. for (smooth) 3D Euler flows, the
space-time average of det

(
u,Cu,∆u

)
is the sole geometrical drive of the variations of enstrophy.

The best known a priori upper bounds for enstrophy is a Riccati-type control by Lu & Doering [64]:

E ′(t ) ≤CE 3(t ) (70)

It is obtained by estimating the critical determinant mentioned above and diverges in finite time. For
advanced numerical experiments on the growth of enstrophy for 3D viscous flows, see e.g. [5], [51], [50]
and the numerous references to the numerical literature therein.

An immediate corollary of (69) is a geometric criterion for regularity:∫ T

0

∫
R3

det
(
u,Cu,∆u

)
d xd t ≥ 0 =⇒ u ∈ L∞([0,T ]; Ḣ 1)∩L2([0,T ]; Ḣ 2). (71)

For example, one recovers in this manner that all irrotational flows are smooth because the critical deter-
minant vanishes identically (they are indeed the gradients of solutions of the heat equation).

As a slightly more involved application, let us investigate the case of 3D fields with 2D symmetry, i.e.

v =
v1(x1, x2)

v2(x1, x2)
0

 and ω=
 0

0
∂1v2 −∂2v1

 .

For such a field, one has

det(v,C v,∆v) =−
∣∣∣∣∣∣

0 v1 ∆v1

0 v2 ∆v2

∂1v2 −∂2v1 0 0

∣∣∣∣∣∣= (∂2v1 −∂1v2)
(
v1∆v2 − v2∆v1

)
.

If one introduces the stream function ψ(x1, x2) such that v1 = ∂2ψ and v2 =−∂1ψ:

det(v,C v,∆v) =
(
−(∂2ψ)(∂1∆ψ)+ (∂1ψ)(∂2∆ψ)

)
∆ψ,
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which has no particular reason to vanish but leads to a global cancellation for any t > 0:∫
R3

det(v,C v,∆v) = 1

2

(〈∂2ψ,−∂1(∆ψ)2〉L2 +〈∂1ψ,∂2(∆ψ)2〉L2

)
= 1

2
〈∂1∂2ψ−∂2∂1ψ, (∆ψ)2〉L2 = 0.

In particular, (71) implies the global regularity of such solutions, which has been known since Leray [59].
As the balance law (69) also holds for smooth solutions of the Euler equation, the previous computation
implies the conservation of enstrophy for smooth 2D Euler flows.

Remark 24 For a general 3D divergence-free flow u, invoking the vector potential u = CΨ and computing
the critical determinant in (69) brings out 288 terms involving the product of a first, second and third order
derivative of the components of Ψ, with no obvious compensations through space averages. This remark
illustrates the huge gap in complexity between 2D and 3D flows. ä

4.2 General case

Let us go back to the Navier-Stokes equation written in the form (30). The weak form of the nonlinear term
is, as mentioned in (31), a determinant:

〈∂t u, w〉L2 +ν〈C2 u, w〉L2 +
∫
R3

det(Cu,u, w)d x = 0 (72)

for all divergence-free test fields w . Assuming u is smooth, one can collect various balance laws for Navier-
Stokes by choosing w appropriately as a function of u. The two standard choices are either w = u, which
gives Leray’s energy equality for smooth solutions, and w = Cu, which we explored in §3.2 and which
relates to the balance of helicity. Taking w = C2 u leads to (69) and the balance of enstrophy with, this time,
a non-trivial critical determinant.

Leray’s energy identity can be extended given a first integral of the flow, i.e. α such that (u · ∇)α = 0.
Then w =αu is a divergence-free field and we have

〈∂t u,αu〉L2 +ν〈C2 u,αu〉L2 = 0,

and thus

〈αu,u〉L2 −
∫ t

0
〈α̇u,u〉L2 +2ν

∫ t

0
〈C2 v,αu〉L2 = 〈α(0)u0,u0〉L2 . (73)

For example, with α(t ) = e−2λt , we get a family of conservation laws indexed by λ> 0:

e−2λt‖u(t )‖2
L2 +2λ

∫ t

0
e−2λt ′‖u(t ′)‖2

L2 d t ′+2ν
∫ t

0
e−2λt ′‖∇u(t ′)‖2

L2 d t ′ = ‖u0‖2
L2 , (74)

which is a weighted time-integral (gauge transform) of the classical energy balance that puts t ′ ∼ 1/(2λ)
into focus. Similarly, for w = e−2λt Cu, one gets a variant of (50):

e−2λt 〈u,Cu〉L2 +2λ
∫ t

0
e−2λt ′〈u,Cu〉L2 +2ν

∫ t

0
e−2λt ′〈C2 u,Cu〉L2 = 〈u0,Cu0〉L2 . (75)

Note that 〈u,Cu〉L2 = ‖C1/2+ u‖2
L2 −‖C1/2− u‖2

L2 and 〈C2 u,Cu〉L2 = ‖C3/2+ u‖2
L2 −‖C3/2− u‖2

L2 .

Let us now investigate the more interesting case where w = C± u.
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Proposition 25 If u is a smooth solution of Navier-Stokes, one has the following balance laws:

‖C1/2
± u(t )‖2 +2ν

∫ t

0
‖C3/2

± u‖2d t ′+
∫ t

0

∫
R3

det(Cu,u, |D|u)d xd t ′ = ‖C1/2
± u0‖2. (76)

Note that the critical determinant is identical in both cases, which is a new proof of (50). One has also:

‖u(t )‖2
Ḣ 1/2 +2ν

∫ t

0
‖u(t ′)‖2

Ḣ 1/2 d t ′+
∫ t

0

∫
R3

det(Cu,u, |D|u)d xd t ′ = ‖u0‖2
Ḣ 1/2 . (77)

Proof. The only non-trivial point is the critical determinant. One has:

det(Cu,u,C+ u)d x = det(Cu,u,Cu +C− u) = det(Cu,u,C− u)

and thus
det(Cu,u, |C |u)d x = det(Cu,u,C+ u)+det(Cu,u,C− u) = 2det(Cu,u,C± u).

Finally, since |C | = |D|P, we can replace |C |u by |D|u. Subtracting the two identities gives (50), while
adding them up provides the last claim.

Remark 26 Thanks to Lemma 5, one can rewrite this critical determinant as:

det(Cu,u, |D|u) = det((C+−C−)u,u, (C++C−)u) =−2det(u,C+ u,C− u). (78)

This determinant is the geometrical drive for the growth of the Ḣ 1/2 norm. Among possible cancellations,
it vanishes for Beltrami waves (Cu proportional to u), for flows spectrally supported on a sphere (|D|u
proportional to u) and, most importantly, for spin-definite flows (Cu proportional to |D|u). ä

To handle fractional powers, it is simplest to split the spin-definite components to avoid problems with
the lack of self-adjointness. Using w = C2θ

± u for some θ > 0 and the properties established in §2.3, one gets:

‖Cθ
± u(t )‖2

L2 +2ν
∫ t

0
‖Cθ+1

± u(t ′)‖2
L2 d t ′+2

∫ t

0

∫
R3

det(Cu,u,C2θ
± u)d xd t ′ = ‖Cθ

± u0‖2
L2 . (79)

This time, the cancellation takes the form:

det(Cu,u,C2θ
+ u)+det(Cu,u,C2θ

− u) = det(Cu,u, |D|2θu).

For integer values of 2θ, one has:

det(Cu,u,C2θ
+ u)−det(Cu,u,C2θ

− u) = det(Cu,u,C2θ u).

The determinants det(Cu,u,C2θ
± u) are the geometric drive for the growth of the Ḣθ norm of the spin-

definite components of u. In particular, we have proven the following statement.

Proposition 27 If u is a smooth solution of Navier-Stokes, one has the following balance laws:

‖u(t )‖2
Ḣθ +2ν

∫ t

0
‖u(t ′)‖2

Ḣθ+1 d t ′+2
∫ t

0

∫
R3

det(Cu,u, |D|2θu)d xd t ′ = ‖u0‖2
Ḣθ (80)

for any θ > 0, and the spin-definite variants (79); when θ ∈N, one can replace |D|2θ by (−∆)θ. For any n ∈N∗,
one has also

N n
+ (u, t )−N n

− (u, t )+2
∫ t

0

∫
R3

det(Cu,u,Cn u)d xd t ′ = ‖u+
0 ‖2

Ḣ n/2 −‖u−
0 ‖2

Ḣ n/2 (81)

where the definition (49) is extended by

N n
± (u, t ) = ‖u±(t )‖2

Ḣ n/2 +2ν
∫ t

0
‖u±(t ′)‖2

Ḣ n/2+1 d t ′ (82)

and u±
0 =Q±u0.
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The case θ = 0 is of special interest because, as for θ = 1/2, both critical determinants coïncide.

Proposition 28 If u is a smooth solution of Navier-Stokes, one has the following balance laws:

‖u±(t )‖2
L2 +2ν

∫ t

0
‖∇u±(t ′)‖2

L2 d t ′±2
∫ t

0

∫
R3

det(Cu,u−,u+)d xd t ′ = ‖u±
0 ‖2

L2 . (83)

In particular, the balance between the spin-definite components is ruled by:

N 0
+(u, t )−N 0

−(u, t )+4
∫ t

0

∫
R3

det(Cu,u−,u+)d xd t ′ = ‖u+
0 ‖2

L2 −‖u−
0 ‖2

L2 (84)

Proof. Using u± as a test function, one has det(Cu,u,u±) = det(Cu,u++u−,u±) =±det(Cu,u−,u+).

4.3 Applications

Regularity on [0,T ]×R3 is assured when the following inequality holds:

∃θ ≥ 1/2,
∫ T

0

∫
R3

det(Cu,u, |D|2θu)d xd t ≥ 0. (85)

Of course, giving sense to the previous integral requires some a priori knowledge that the solution is
smooth. However, if the inequality is satisfied for some θ ≥ 1/2 along a sequence of, e.g., Galerkine ap-
proximations that converge to a given Leray solution u, then u enjoys a uniform bound in L∞([0,T ]; Ḣθ)
and therefore, according to [42], is smooth on [0,T ]. To avoid making an assumption on approximating
sequences, one can require instead the slightly stronger property on a general Leray solution:

∃θ ≥ 1/2, a.e. t ∈ [0,T ]
∫
R3

det(Cu,u, |D|2θu)d x ≥ 0 (86)

with u0 ∈ Hθ. Then one can proceed as in the proof of Theorem 19 and show that the first time of singular-
ity cannot occur before T .

4.3.1 Uniqueness criterion based on critical determinants

In this section, we revisit the weak-strong uniqueness result and investigate how the associated stability
estimate can be expressed in a more geometric way. We refer the reader to [44] and the references therein
for an in-depth discussion of weak-strong uniqueness for Navier-Stokes.

Let us consider two Leray solutions u j ( j = 1,2) of the incompressible Navier-Stokes equation (30) and
their difference δ= u1 −u2. Using the energy inequality for each, one gets

‖δ(t )‖2
L2 +2ν

∫ t

0
‖∇δ‖2

L2 ≤ ‖u1(0)‖2
L2 +‖u2(0)‖2

L2 −2

(
〈u1(t ),u2(t )〉L2 +2ν

∫ t

0
〈∇u1,∇u2〉L2

)
.

The standard argument in favor of weak-strong uniqueness consists in observing that each equation tested
against (a regularized version of) the other field ultimately gives:

〈u1(t ),u2(t )〉L2 +2ν
∫ t

0
〈∇u1,∇u2〉L2 = 〈u1(0),u2(0)〉L2 −

∫ t

0
〈(δ ·∇)u1,δ〉L2 ,

which implies

‖δ(t )‖2
L2 +2ν

∫ t

0
‖∇δ‖2

L2 ≤ ‖δ(0)‖2
L2 +2

∫ t

0
〈(δ ·∇)u1,δ〉L2 (87)
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and, with Gronwall’s inequality:

‖δ(t )‖2
L2 ≤ ‖δ(0)‖2

L2 exp

(∫ t

0
‖∇u1(t ′)‖L∞d t ′

)
. (88)

This control is enough to ensure the uniqueness of all Leray solutions stemming from u1(0) as long as u1

remains smooth. It remains nonetheless quite crude.

Instead, using (31), let us rewrite the crucial step in a more geometric way:

〈u1(t ),u2(t )〉L2 +2ν
∫ t

0
〈∇u1,∇u2〉L2 +

∫ t

0
det(Cu1,u1,u2)+det(Cu2,u2,u1) = 〈u1(0),u2(0)〉L2 .

Observe that
det(Cu1,u1,u2)+det(Cu2,u2,u1) = det(Cδ,u1,u2) = (u1 ×u2) ·Cδ.

As divδ= 0, one has ‖Cδ‖L2 = ‖∇δ‖L2 and one can completely absorb the offending derivative:

‖δ(t )‖2
L2 ≤ ‖δ(0)‖2

L2 + 1

2ν

∫ t

0
‖u1 ×u2‖2

L2 . (89)

In particular, we have the following statement.

Theorem 29 If u1 and u2 are two Leray solutions such that

‖u1 ×u2‖2
L2 ≤ γ(t )‖u1 −u2‖2

L2 with γ ∈ L1([0,T ]) (90)

then for any t ∈ [0,T ], one has

‖δ(t )‖2
L2 ≤ ‖δ(0)‖2

L2 exp

(∫ T

0
γ(t ′)d t ′

)
. (91)

For example, if u1 ∈ L2
t L∞

x we can apply this result because u1 ×u2 =−u1 ×δ and we recover a well-known
case of weak-strong uniqueness. However, the geometric assumption (90) is a priori weaker if, for example,
the two fields tend to line up when one of them grows unbounded.

4.3.2 A variant of BKM based on critical determinants

Formally, the standard argument for the Beale-Kato-Majda criterion [8], [69] consists in writing the equa-
tion for vorticity (32) in weak form against ω itself, which gives:

‖ω(t )‖2
L2 +2ν

∫ t

0
‖Cω‖2

L2 = ‖ω0‖2 +2
∫ t

0
〈(ω ·∇)u,ω〉L2

and thus, in particular

‖ω(t )‖2
L2 ≤ ‖ω0‖2 +2

∫ t

0
‖ω‖2

L2‖ω‖L∞ .

Combined with Gronwall lemma, this ensures that the solution (of either Euler or Navier-Stokes) remains
smooth as long as ∫ T

0
‖ω(t )‖L∞d t <+∞. (92)

Let us present a variant of this computation, inspired by the previous critical determinants.

Our starting point is similar, but we write the non-linear term slightly differently:

‖ω(t )‖2
L2 +2ν

∫ t

0
‖Cω‖2

L2 +2
∫ t

0
〈ω×u,Cω〉L2 = ‖ω0‖2

L2 .
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Now, if one splits ν= ν1 +ν2 with arbitrary values ν j > 0, one gets:

‖ω(t )‖2
L2 +2ν1

∫ t

0
‖Cω+ 1

2ν1
(ω×u)‖2

L2 +2ν2

∫ t

0
‖Cω‖2

L2 = 1

2ν1

∫ t

0
‖ω×u‖2

L2 +‖ω0‖2
L2 .

In particular, one obtains an estimate that is now specific to Navier-Stokes:

‖ω(t )‖2
L2 +2ν2

∫ t

0
‖Cω‖2

L2 ≤ ‖ω0‖2
L2 + 1

2ν1

∫ t

0
‖ω×u‖2

L2 . (93)

Consequently, as ‖ω×u‖2
L2 ≤ ‖ω‖2

L2‖u‖2
L∞ , Gronwall’s lemma ensures the regularity of the flow on [0,T ]

provided that ∫ T

0
‖u(t )‖2

L∞d t <+∞. (94)

This condition is the endpoint of the Prodi-Serrin Lq
t Lp

x family with 2
q + 3

p = 1.

Let us finally point out that an interesting connection between the Beale-Kato-Majda criterion and the
theory of turbulence was established by Cheskidov & Shvydkoy [27], who showed that a condition∫ T

0
‖ω≤Q(t )(t )‖B 0∞,∞d t <∞ (95)

ensures the regularity of the flow on [0,T ]. The dynamic wave-number 2Q(t ) separates high-frequency
modes where viscosity prevails over the non-linear term from the low-frequency modes where the Euler
dynamics is dominant. It is defined by

Q(t ) = min
{

q ∈N ; ∀p > q, 2−p‖∆p u‖L∞ < c0ν
}

. (96)

The constant c0 > 0 is absolute. The operators ∆p are the Littlewood-Paley projection on the p-th dyadic
shell and ω≤Q denotes the corresponding projection on the spectral ball of radius 2Q . Using this criterion
and a relation between the time-average of 2Q(t ) and Kolmogorov’s dissipation wave-number, the authors
of [27] provide a strong analytical support to the fact that most turbulent flows (i.e. even mildly intermit-
tent ones) are actually regular solutions of Navier-Stokes.

In retrospect, this last observation makes the denomination of turbulent solution given by Leray [59]
to his weak solutions a now unnecessarily confusing linguistic choice and it may be unwise to propagate
it in the modern literature: mathematical singularities, if they exist, will be violent events that are likely
to be of turbulent nature; however, most turbulent flows of practical interest for engineering purposes are
smooth, albeit less smooth (e.g. in terms of analyticity radius) than the laminar flows, and only display
quasi-singularities. Of course, this remark does not intend to denigrate in any way the admirable work
of Jean Leray, who was greatly ahead of his era and whose entire life [65], [20] was a tribute to what a
great mind can achieve in adversity, when it is moved by an unquenchable curiosity and a strong sense of
humanism.

A Appendix

In this appendix, we recall some well known facts that bridge the standard vector calculus with its geo-
metric foundations. We denote by 〈·, ·〉 the canonical Euclidian scalar product of R3 and by ( #»e1, #»e2, #»e3) the
canonical orthonormal basis. For a comprehensive introduction to geometrical hydrodynamics, we refer
the reader to Arnold’s works [3], [4].
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A.1 Some vector calculus formulas

Let us start with the defining identity for the vector product in R3.

Claim 30 Let A,B ,C be vectors in R3. Then we have

〈A×B ,C〉R3 = det(A,B ,C ) (97)

In particular if R is a 3×3 matrix, we have

t R
(
RA×RB) = (detR)(A×B). (98)

Proof. Both sides are bilinear antisymmetric in A,B thus one can reduce the identity to the sole case A = #»e1

and B = #»e2, i.e.

c3 =
∣∣∣∣∣∣
1 0 c1

0 1 c2

0 0 c3

∣∣∣∣∣∣ ,

which is obviously true.

Claim 31 Let A,B ,C , X ,Y be vectors in R3. Then we have:

det(A×B , X ,Y ) = 〈A, X 〉〈B ,Y 〉−〈B , X 〉〈A,Y 〉 (99)

and the triple cross-product formula:

(A×B)×C = 〈C , A〉B −〈C ,B〉A. (100)

Proof. For each identity, both sides are bilinear antisymmetric in A,B The formulas reduce respectively to∣∣∣∣∣∣
0 x1 y1

0 x2 y2

1 x3 y3

∣∣∣∣∣∣= x1 y2 −x2 y1 and

0
0
1

×
c1

c2

c3

=
−c2

c1

0

 ,

which are obviously true.

Remark 32 Equation (100) implies the Jacobi identity

(A×B)×C + (B ×C )× A+ (C × A)×B = 0, (101)

since the left-hand side of (101) is also 〈C , A〉︸ ︷︷ ︸B −〈C ,B〉A︸ ︸+〈A,B〉C −〈A,C〉B︸ ︷︷ ︸+〈B ,C〉A︸ ︸−〈B , A〉C = 0. ä

A.2 Some differential calculus formulas

An orientation of R3 is a choice of a non-trivial ω0 in the 3rd exterior power Λ3R3, i.e. a non-degenerate
alternating trilinear form on R3.

Definition 33 Let w be a one-form in R3. We define the vector field curl w by the identity

ι(curl w)ω0 = d w, (102)

where ι stands for the interior product.

Remark 34 For ω0 = d x1 ∧d x2 ∧d x3 the interior product reads

ιX (ω0) = X1d x2 ∧d x3 −X2d x1 ∧d x3 +X3d x1 ∧d x2 (103)

and with w =∑
w j d x j we recover the usual formula for the curl. ä
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In particular, for a function α, identifying a vector field u to a one-form we find:

curl(αu) =αcurlu +∇α×u. (104)

Next we investigate the curl of a general advection term and how these operators (do not) commute.

Lemma 35 Let u ∈W 1,p
loc and v ∈W 2,p ′

loc be two vector fields on R3 for some p ∈ [1,+∞]. We have

curl
(
(u ·∇)v

)= (u ·∇)curl v − ((curl v) ·∇)u + (divu)(curl v)+ ∑
1≤ j≤3

(∇u j ×∇v j ). (105)

Proof. We use a geometric approach because any direct attempt leads to nightmarish computations. We
consider u as a vector and v as a 1-form and use Einstein summation convention freely:

u = u j
∂

∂x j
and v = v j d x j .

With ω0 = d x1 ∧ d x2 ∧ d x3, recall that ι(curl v)ω0 = d v i.e. curl v is a vector and d v is a 2-form. The Lie
derivative Lu is defined by Elie Cartan’s Formula:

Lu(ω) = ιudω+d(ιuω). (106)

The convective term can be expressed as a 1-form in the following way:

(u ·∇)v =Lu(v j )d x j =Lu(v)− v j Lu(d x j ) =Lu(v)− v j d(ιud x j ) =Lu(v)− v j du j .

As the Lie derivative commutes with exterior differentiation, one gets:

d
(
(u ·∇)v

)=Lu(d v)+du j ∧d v j .

Proceeding by identification, one gets

ιcurl((u·∇)v)ω0 = d
(
(u ·∇)v

)=Lu(ι(curl v)ω0)+du j ∧d v j

= ι(curl v)Lu(ω0)+ ιLu (curl v)ω0 +du j ∧d v j

= (divu)ιcurl vω0 + ι[u,curl v]ω0 +du j ∧d v j ,

providing (105) since du j ∧d v j = ι(∇u j×∇v j )ω0.

The geometrical reason that gives the convection term its cross-product structure (see identity (28) when
u = v) is the following.

Lemma 36 Let u, v be vector fields in R3. Then we have

(u ·∇)v + (v ·∇)u =∇(u · v)−u ×curl v − v ×curlu. (107)

Proof. We introduce ũ = u j d x j , ṽ = v j d x j the two one-forms associated to u and v and proceed as in the
proof of the previous Lemma:

(u ·∇)ṽ + (v ·∇)ũ =Lu(v j )d x j +Lv (u j )d x j

=Lu(ṽ)− v j Lu(d x j )+Lv (ũ)−u j Lv (d x j )

= ιud ṽ +d(ιu ṽ)− v j du j︸ ︸+ιv dũ +d(ιv ũ)−u j d v j︸ ︸
= d(ιv ũ)+ ιu ιcurl vω0 + ιv ιcurluω0

In the last expression, we used (102) to expand dũ and d ṽ . The three underlined terms cancel each other
out because ιu ṽ = u j v j . Recall that the cross-product u × v is defined as a 1-form by the identity

(u × v) ·w =ω0(u, v, w) i.e. u × v = ιv ιuω0. (108)

We thus get
(u ·∇)ṽ + (v ·∇)ũ =∇(u · v)+curl v ×u +curlu × v,

which is the sought result.
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