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We investigate some geometric properties of the curl operator, based on its diagonalization and its expression as a non-local symmetry of the pseudo-derivative (-∆) 1/2 among divergence-free vector fields with finite energy. In this context, we introduce the notion of spin-definite fields, i.e. eigenvectors of (-∆) -1/2 curl. The two spin-definite components of a general 3D incompressible flow untangle the right-handed motion from the left-handed one.

Having observed that the non-linearity of Navier-Stokes has the structure of a cross-product and its weak (distributional) form is a determinant that involves the vorticity, the velocity and a test function, we revisit the conservation of energy and the balance of helicity in a geometrical fashion. We show that in the case of a finite-time blow-up, both spin-definite components of the flow will explose simultaneously and with equal rates, i.e. singularities in 3D are the result of a conflict of spin, which is impossible in the poorer geometry of 2D flows. We investigate the role of the local and non-local determinants

and their spin-definite counterparts, which drive the enstrophy and, more generally, are responsible for the regularity of the flow and the emergence of singularities or quasi-singularities. As such, they are at the core of turbulence phenomena.

The initial value problem for the Navier-Stokes system for incompressible fluids is usually written as

   ∂u ∂t + (u • ∇)u -ν∆u = -∇p, div u = 0, u |t =0 = u 0 . (1) 
Here u = u(t , x) is a time-dependent vector field on R 3 , the viscosity ν is a positive parameter (expressed in Stokes, i.e. L 2 T -1 ) and u 0 is a given divergence-free vector field.

In 1934, Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] proved the existence of global weak solutions in

L ∞ t L 2 x ∩ L 2 t Ḣ 1 
x . In 3D, the question of their uniqueness remains elusive and is intimately connected to deciding whether the weak solutions enjoy a higher regularity. Well-posedness in various function spaces has been studied thoroughly and culminates in Koch and Tataru's result [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] if the data u 0 is small in the largest (i.e. less constraining) function space (called BMO -1 ) that is scale and translation invariant and on which the heat flow remains locally uniformly in L 2 t ,x . The set of singular times may or not be empty, but it is a compact subset of R + , whose Hausdorff measure of dimension 1/2 is zero. The celebrated theorem of Caffarelli, Kohn and Nirenberg [START_REF] Caffarelli | Partial regularity of suitable weak solutions of the Navier-Stokes equations[END_REF] ensures that singularities form a subset of space-time whose parabolic Hausdorff measure of dimension 1 vanishes too (see also Arnold and Craig [START_REF] Arnold | On the size of the Navier-Stokes singular set[END_REF]).

Note that equation [START_REF] Alexakis | Helically decomposed turbulence[END_REF] corresponds to an Eulerian point of view, i.e. it describes the movement of the fluid in a fixed reference frame. The natural question of tracking individual fluid particles, i.e. the Lagrangian point of view, is equivalent to the existence of a flow ξ : R

+ × R d → R d ∂ξ ∂t = u(t , ξ(t , x)), ξ(0, x) = x. ( 2 
)
The volume preserving map ξ(t , •) tracks the deformations of the fluid (see e.g. [START_REF] Foias | Lagrangian representation of a flow[END_REF] and [START_REF] Chemin | Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes[END_REF]).

For a comprehensive covering of most of the classical theory of Navier-Stokes, we refer the reader to, e.g., Lemarié's book [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF] and the references therein. Berselli's recent book [START_REF] Berselli | Three-Dimensional Navier-Stokes Equations for Turbulence[END_REF] offers an interesting complement that blends theoretical results on the energy fluxes with numerical methods and turbulence theory. Davidson's book [START_REF] Davidson | Turbulence: an Introduction for Scientists and Engineers[END_REF] provides valuable physical insight on the latter subject.

Introduction

In the next few lines, we will present a small subset of these classical results, not necessarily in chronological order, to provide some background on the arduous question of the regularity of the solutions. Then we will expose our own contribution, which is a new geometric approach based on the diagonalization of the curl operator.

Classical regularity theory near a singular event

The behavior of smooth solutions of the Navier-Stokes equation as they approach a (still conjectural) finite blow-up time has been studied very carefully.

For the Ḣ 1 semi-norm, a precise rate has been known since Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF]: if the first time of singularity T * of a smooth solution is finite, then

∇u(t ) L 2 ≥ C (T * -t ) 1/4 • (3) 
This inequality is the immediate consequence of a bootsrap of the local well-posedness result for data in H 1 , when one takes into account that if u 0 blows up at time T * , then u(t ) will blow up at time T *t . Similarly, for any 0 < γ < 1/2 and p = 3/(1 -2γ):

u(t ) Ḣ 1 2 +2γ u L p ≥ C γ (T * -t ) γ • (4) 
The endpoint L ∞ is admissible with a rate γ = 1/2.

Thanks to the energy inequality and the Sobolev embedding, any Leray solution enjoys a uniform control in

L ∞ t L 2 x ∩ L 2 t L 6
x , so in particular in L 4 t L 3

x and L 2+2/3 t L 4

x . Various authors including Foias, Guillopé & Temam [START_REF] Foias | New a priori estimates for Navier-Stokes equations in dimension 3[END_REF], Chemin [19], Cordoba, de la Llave & Fefferman [START_REF] Co Ŕdoba | On squirt singularities in hydrodynamics[END_REF] observed independently that the amplitude of Leray solutions is controlled in L 1 loc (R + ; L ∞ (R 3 )) i.e.

∀T > 0,

T 0 u(t ) L ∞ d t < ∞. ( 5 
)
This result is now known as the absence of squirt singularities (see e.g. [58, §11.6]).

In [START_REF] Vasseur | Higher derivatives estimate for the 3D Navier-Stokes equation[END_REF], Vasseur proved a family of estimates in various function spaces as long as the solution remains smooth, one of which reads

T * 0 |k|≤2 ∇ k u(t ) L 1 d t ≤ C (1 + u 0 4 L 2 ) (6) 
with a constant C that does not depend on the solution u, nor on the blow-up time T * . Interpolation between [START_REF] Protas | Extreme Vortex States and the Growth of Enstrophy in 3D Incompressible Flows[END_REF] and [START_REF] Barker | Uniqueness results for viscous incompressible fluids[END_REF] ensures that ∀p ∈ [1, ∞],

T * 0 u(t ) L p d t < ∞. (7) 
Using the energy inequality [START_REF] Barker | Quantitative regularity for the Navier-Stokes equations via spatial concentration[END_REF] can obviously be improved to L q ([0, T * ); L p ) with either q = 1 -3 p if p ≥ 6, or 2 q + 3 p = 3 2 if 2 ≤ p ≤ 6, or q = p 2-p if 1 ≤ p ≤ 2. These universal qualitative upper bounds are in sharp contrast with the lower bounds, which generalize (3)-( 4) in the case of a finite time blow-up. Regarding the supremum norm, (4) implies

T * 0 u(t ) 2 L ∞ d t = +∞. (8) 
In very rough terms and unless the amplitude oscillates wildly near T * , the behavior depicted by ( 5) and [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF] suggests that

C ∞ (T * -t ) 1/2 ≤ u(t ) L ∞ ≤ C (u) T * -t •
To "thicken" the peaks of amplitude, one may look at uniform bounds for the heat flow, i.e. Besov norms of negative regularity index. The quantitative lower bound of Chemin & Gallagher [START_REF] Chemin | A nonlinear estimate of the life span of solutions of the three dimensional Navier-Stokes equations[END_REF] 

u(t ) Ḃ -1+2γ ∞,∞ = sup τ>0 τ 1 2 -γ e τ∆ u(t ) L ∞ ≥ C γ (T * -t ) γ (0 < γ < 1/2) (9) 
is coherent with the previous intuition when γ = 1/2. The second endpoint (γ = 0) requires special care because it is also the end of the chain of critical scale-invariant spaces

Ḣ 1/2 ⊂ L 3 ⊂ BMO -1 ⊂ Ḃ -1 ∞,∞
i.e. Galilean invariant spaces X ⊂ S (R 3 ) whose norm satisfies λu(λx) X = u(x) X (see Meyer [START_REF] Meyer | Wavelets, paraproducts, and Navier-Stokes equations[END_REF] and also [START_REF] Chemin | A nonlinear estimate of the life span of solutions of the three dimensional Navier-Stokes equations[END_REF]Prop. 1.2]). Kato's [START_REF] Kato | Nonlinear evolution equations in Banach spaces[END_REF] and Escauriaza, Seregin & Sverák's [START_REF] Iskauriaza | ∞ -solutions of Navier-Stokes equations and backward uniqueness[END_REF] theorems state that lim inf t →T * u(t ) L 3 ≥ c 0 and lim sup

t →T * u(t ) L 3 = +∞.
Later, Seregin [START_REF] Seregin | A Certain Necessary Condition of Potential Blow up for Navier-Stokes Equations[END_REF] proved that there are no major fluctuations of the L 3 norm near the blow-up time, i.e. lim t →T * u(t ) L 3 = +∞ [START_REF] Brandolese | New Asymptotic Profiles of Nonstationary Solutions of the Navier-Stokes System[END_REF] and a quantitative polylogarithmic rate was obtained recently by Tao [START_REF] Tao | Quantitative bounds for critically bounded solutions to the Navier-Stokes equations[END_REF]:

limsup t →T * u(t ) L 3 log log log 1 T * -t c = +∞. (11) 
The well known Ladyzhenskaya-Prodi-Serrin condition reads:

T * 0 u(t ) q L p d t = +∞ for 2 q + 3 p = 1, p > 3. ( 12 
)
Note that [START_REF] Brandolese | New Asymptotic Profiles of Nonstationary Solutions of the Navier-Stokes System[END_REF] corresponds to the endpoint p = 3, while [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF] matches p = ∞. This second endpoint was investigated by Kozono & Taniuchi [START_REF] Kozono | Bilinear estimates in BMO and the Navier-Stokes equations[END_REF], who even generalized it to the (larger) BMO space.

The blow-up of scale-invariant Besov norms of negative regularity index was obtained by Gallagher, Koch & Planchon [START_REF] Gallagher | Blow-up of critical Besov norms at a potential Navier-Stokes singularity[END_REF]. This lower bound implies that most supercritical norms (i.e. Galilean invariant space-time function spaces Y such that λu(λ 2 t , λx) Y ≤ C λ 1-γ u(t , x) Y with γ < 1) will also blow up. For the subtle behavior at the endpoint among critical spaces, i.e. Ḃ -1 ∞,∞ , we refer to Cheskidov & Shvydkoy [START_REF] Cheskidov | The Regularity of Weak Solutions of the 3D Navier-Stokes Equations in B -1 ∞,∞[END_REF] and Ohkitani [START_REF] Koji Ohkitani | Characterization of blowup for the Navier-Stokes equations using vector potentials[END_REF].

Concerning spaces of higher regularity, we have known since Kato that

T * 0 ∇u L ∞ = +∞. ( 13 
)
The celebrated Beale-Kato-Majda criterion [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF], [START_REF] Planchon | An extension of the Beale-Kato-Majda criterion for the Euler equations[END_REF] reads

T * 0 curl u L ∞ = +∞ (14) 
and various generalizations in more involved function spaces are possible, e.g. [START_REF] Kozono | Bilinear estimates in BMO and the Navier-Stokes equations[END_REF], [START_REF] Planchon | An extension of the Beale-Kato-Majda criterion for the Euler equations[END_REF]. We will briefly present Cheskidov & Shvydkoy's [START_REF] Cheskidov | A unified approach to regularity problems for the 3D Navier-Stokes and Euler Equations: the use of Kolmogorov's dissipation range[END_REF] variant of this criterion (see equation (95) below).

Alternatively, each of the identities (8), ( 10), ( 12), ( 13), ( 14) can also be stated as a regularity criterion. If the left-hand side integral is finite on some time interval [0, T ], then the corresponding solution remains regular up to and including at time T , i.e. one has T * > T . Numerical investigations of quasi-singularities are still underway, e.g. by Sverak & al. [START_REF] Sverak | Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space?[END_REF], [START_REF] Guillod | Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces[END_REF], who possibly hint at the existence of actual singularities, or by Protas & al. [START_REF] Protas | Extreme Vortex States and the Growth of Enstrophy in 3D Incompressible Flows[END_REF], [START_REF] Kang | Maximum amplification of enstrophy in three-dimensional Navier-Stokes flows[END_REF], [START_REF] Kang | Searching for Singularities in Navier-Stokes Flows Based on the Ladyzhenskaya-Prodi-Serrin Conditions[END_REF], who seek flows that maximize the growth of various norms.

Let us close this first panorama by a word of caution. The heat equation is justly considered as the archetype of a well behaved parabolic regularizing model. Its solution is indeed obtained by convolution with a Gaussian kernel

e t ∆ u 0 = R 3 u 0 (x -t y)W (y)d y with W (y) = (4π) -3/2 e -y 2 /4 . (15) 
However, as shown by Tychonov [START_REF] Tychonoff | A uniqueness theorem for the heat equation[END_REF], [START_REF] Ferretti | Uniqueness in the Cauchy problem for parabolic equations[END_REF], this solution is not the only one if one fails to restrict the growth of u at infinity to, e.g., O(e c x 2 ). For any α ∈ R, the following function is a smooth (but not tempered) solution of the heat equation that coincides with u 0 at t = 0:

u(t , x) + α ∞ n=0 P n 1 t e -1/t 2 H (t ) x 2n (2n)! • (16) 
Here u = e t ∆ u 0 , H (t ) is the Heaviside function, P 0 = 1 and P n+1 (z) = 2z 3 P n (z) + P n (z) are the polynomials involved in the computation of the n th derivative of e -1/t 2 . While this type of instability may seem far from the physical range of validity of hydrodynamical models, it remains instructive. See also [START_REF] Lerner | Instability of the Cauchy-Kovalevskaya solution for a class of nonlinear systems[END_REF].

Geometric regularity theory near a singular event

All the criteria that we have mentioned up to now are obviously isotropic and do not rely on any geometric structure of the flow. There have been a few remarkable attempts to take into account the geometric nature of the Navier-Stokes equation and we shall now present them briefly.

A striking example of the importance of the geometry for hydrodynamics is turbulence, where radically anisotropic structures (vortex filaments and pancakes) play a central role [START_REF] Davidson | Turbulence: an Introduction for Scientists and Engineers[END_REF]. This observation suggests that the most fundamental and universal behavior of fluids is a microlocal cascade. However, it is equally important (and more feasible) to describe the consequences of these interactions at intermediary scales, for example by estimating the growth of norms of geometric quantities.

An important step in this direction was achieved by Constantin & Fefferman [START_REF] Constantin | Direction of Vorticity and the Problem of Global Regularity for The Navier-Stokes Equations[END_REF], [START_REF] Constantin | Geometric Statistics in Turbulence[END_REF], who studied the direction of the vorticity ω = curl u, i.e.:

ξ(t , x) = ω(t , x) |ω(t , x)| ∈ S 2 . ( 17 
)
Using ξ as a multiplier in the equation of vorticity (see [START_REF] Constantin | The Beltrami spectrum for incompressible fluid flows[END_REF] below), they established that

∂ t + u • ∇ -ν∆ (|ω|) + ν|ω||∇ξ| 2 = 〈(ω • ∇)u, ξ〉 R 3 . ( 18 
)
Integrating over [0, t ]×Ω for Ω = R 3 or T 3 leads (at first for smooth solutions, see [30, eq. 20]) to the identity

Ω |ω(t , x)|d x + ν t 0 Ω |ω(t , x)||∇ξ(t , x)| 2 d xd t = Ω |ω(0, x)|d x + t 0 Ω 〈(ω • ∇)u, ξ〉 R 3 d xd t .
The following geometric estimate follows immediately (using ( 48)):

Ω |ω(t , x)|d x + ν t 0 Ω |ω(t , x)||∇ξ(t , x)| 2 d xd t ≤ ω(0) L 1 + 1 2ν u(0) 2 L 2 -u(t ) 2 L 2 . ( 19 
)
To the best of our knowledge, this global L ∞ t L 1 x estimate is the only known a priori bound on the vorticity that holds for any Leray solution, apart from the obvious L 2 t L 2 x bound that follows from the energy inequality. This result illustrates how a local alignment in the direction of the vorticity can deplete the nonlinearity. An interpretation that connects this estimate to turbulence is given in [START_REF] Constantin | Geometric Statistics in Turbulence[END_REF].

Another notable geometric result is the one from Vasseur [START_REF] Vasseur | Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity[END_REF] on the direction of the velocity field. This result is specific to the 3D case and can be stated as follows. If a solution blows-up at a finite time T * , then:

T * 0 div u |u| q L p d t = +∞ for 2 q + 3 p ≤ 1 2 , q ≥ 4, p ≥ 6. (20) 
Conversely, a control of the norm implies the regularity of the solution. This criterion is based on the incompressibility of the flow and the identity

|u| div u |u| = - u |u| • ∇ |u|.
It means that the growth of |u| along the streamlines is linked to the divergence of the direction of u.

In particular, the kinetic energy |u| 2 can only increase along the streamlines if they are bent and produce some divergence in the direction of the velocity.

Among anisotropic criteria, let us also mention a recent result by Chemin, Gallagher & Zhang [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF] that investigates the possibility of detecting a singularity through one component only. If u is a smooth solution that presents a blow-up at a finite time T * , then inf

σ∈S 2 T * 0 u(t ) • σ p Ḣ 1/2+2/p d t = +∞ for p ≥ 2, (21) 
which means that all components will be affected. They also show that inf

σ∈S 2 sup t >t u(t ) • σ Ḣ 1/2 ≥ C log -1/2 e + u(t ) 4 L 2 T * -t . ( 22 
)
The fact that the right-hand side vanishes is coherent with the remark that follows [START_REF] Buckmaster | Anomalous dissipation for 1/5-Hölder Euler flows[END_REF].

Structure of this article and summary of our results

Our article is structured as follows.

In section §2, we expose some geometric properties of the curl operator. The non-local diagonalization of the curl (see Lemma 5 and Remark 6) establishes a geometrical link with the pseudo-derivative, i.e. |D| = (-∆) 1/2 : both operators are images of one another by a certain symmetry of the subset of L 2 formed by the divergence-free vector fields. This property leads us to introduce (Definition 7) the notion of spin-definite vector field, i.e. divergence-free fields such that curl u = ±|D|u.

The end of section §2 is dedicated to the study of such fields. In layman's terms, fields with positive spin display an exclusive right-handedness motion at all scales, while fields with negative spin are their chiral image in a mirror. Spin-definite fields are build as superpositions of planar Beltrami waves [START_REF] Foias | Lagrangian representation of a flow[END_REF] with independent directions of propagation and various frequencies. Any divergence-free field can be decomposed in a unique way as the sum of two fields with respectively a positive and a negative spin. A few numerical simulations illustrate the importance of this notion for the description of vortex filaments.

The next key observation is that the non-linearity of Navier-Stokes has a cross-product structure and its weak (i.e. distributional) form is a determinant (see equations ( 29) and (30) below). In section §3, we use this geometric approach to revisit the two classical conservation laws for Navier-Stokes, i.e. the balance of energy and the balance of helicity. While the former is constitutional of the definition of the Leray space

L ∞ t L 2 x ∩ L 2 t Ḣ 1
x , we expose the latter (see equations ( 50) and ( 54)) as a conservation law in

L ∞ t Ḣ 1/2 x ∩ L 2 t Ḣ 3/2
x for the spin-definite components of the flow. Our main Theorem, 15, can be restated as follows.

Theorem 1 In the case of a finite-time blow-up of Navier-Stokes, both of the spin-definite components of the flow will explode simultaneously and with equal rates.

In simple terms, this means that singularities can only appear as the result of an unresolved conflict of spin that escalated out of control. Proposition 17, Theorem 19 and 22 quantify how an imbalance between the two spins actually prevents singularities. In subsection §3.6, we explain how the poorer geometry of 2D flows either enforces the victory of one direction of rotation over the other or lets the viscosity dissolve the attempted conflict, while the richer 3D geometry allows for the possibility of an escalation of conflicting spins. In subsection 3.4, we also briefly discuss the recent developments regarding Onsager's conjecture for the balance of energy and its counterpart for the balance of helicity.

Section §4 pursues the geometric investigation of the weak form of the non-linearity, i.e. critical determinants. Applying this point of view to study the enstrophy produces a proof of the regularity of 2D flows based on the identity

R 3 det(curl u, u, -∆u) = 0,
which is valid if u is a 2D divergence-free field embedded in 3D space; note that the integrand is not identically zero and that the cancellation is the result of a space average. More generally, we investigate (Propositions 25 and 27 and the identity (79)) how the sign of

t 0 R 3 det(curl u, u, |D| 2θ u)d xd t
relates to the growth of the Sobolev norm Ḣ θ of the spin-definite components of the flow. This analysis suggests that even though the definition of regularity is obviously local, its control in the case of Navier-Stokes flows will likely involve non-local estimates. We also obtain a stability estimate among Leray solutions that has a geometric form:

u 1 (t ) -u 2 (t ) 2 L 2 ≤ u 1 (0) -u 2 (0) 2 L 2 exp T 0 u 1 × u 2 2 L 2 u 1 -u 2 2 L 2
and a variant of the Beale-Kato-Majda criterion.

For the convenience of the reader, Appendix A recalls the geometric proof of some vector calculus identities whose direct computational proofs in coordinates would be non-trivial.

Geometric properties of the curl operator

In this section, we collect some classical facts related to vorticity and we introduce notations, in particular the signed decomposition of curl in §2.3 and the associated notion of spin of a 3D divergence-free field, that will be used throughout the article.

We use the following definition for the Fourier transform on R n :

û(ξ) = (2π) -n/2 R n e -i x•ξ u(x)d x, u(x) = (2π) -n/2 R n e i x•ξ û(ξ)d ξ. ( 23 
)
This definition provides a unitary transformation in L2 (R n ). The operator D = -i ∇ satisfies

D α u(ξ) = ξ α û(ξ).
The operator |D| = (-∆)1/2 has symbol |ξ|. We focus exclusively on the three dimensional case, i.e. n = 3, except in the brief subsection §3.6.

The curl operator

We use the notation C = curl. It is a Fourier multiplier of symbol

C(ξ) =   0 -i ξ 3 i ξ 2 i ξ 3 0 -i ξ 1 -i ξ 2 i ξ 1 0   , ( 24 
)
which is the matrix of η → i ξ × η seen as an endomorphism of the Hermitian space C3 . Obviously

C(ξ) * = t C(ξ) = C(ξ), (25) 
which implies that the curl is (formally) self-adjoint over L 2 (R 3 ). One has

C(ξ) 2 = -   0 -ξ 3 ξ 2 ξ 3 0 -ξ 1 -ξ 2 ξ 1 0     0 -ξ 3 ξ 2 ξ 3 0 -ξ 1 -ξ 2 ξ 1 0   =   |ξ| 2 -ξ 2 1 -ξ 1 ξ 2 -ξ 1 ξ 3 -ξ 1 ξ 2 |ξ| 2 -ξ 2 2 -ξ 2 ξ 3 -ξ 1 ξ 3 -ξ 3 ξ 2 |ξ| 2 -ξ 2 3   , so that C(ξ) 2 = |ξ| 2 Id -ξ ⊗ ξ i.e. C 2 = ∇ div -∆.
The columns of C(ξ) are clearly orthogonal to ξ, which reflects the classical fact that div • curl = 0. The operator |D| -1 C is obviously bounded on L 2 and is even of Calderón-Zygmund type by Mikhlin's multiplier theorem. The Leray projection onto divergence-free vector fields can be expressed in terms of C:

P = |D| -2 C 2 = Id +∇(-∆) -1 div . ( 26 
)
The operator P is an orthogonal projection since P = P * and P 2 = P. Similarly, Id -P is an orthogonal projection onto gradient fields 1 , i.e. the nullspace of C. Note also that P and C commute.

The Navier-Stokes velocity equation in curl form

Let us briefly present some alternative expressions of the Navier-Stokes equation involving the operator C.

For now, we are not directly interested in the standard equation of vorticity but rather in expressing the linear and non-linear terms as curls.

When u is a divergence-free vector field, the identity [START_REF] Cheskidov | The Regularity of Weak Solutions of the 3D Navier-Stokes Equations in B -1 ∞,∞[END_REF] implies that C 2 u = -∆u. The Navier-Stokes equation ( 1) can thus also be written as

   ∂u ∂t + P (u • ∇)u + ν C 2 u = 0, u t =0 = u 0 , div u 0 = 0. ( 27 
)
Applying P to the equation ( 1) leads directly to [START_REF] Cheskidov | A unified approach to regularity problems for the 3D Navier-Stokes and Euler Equations: the use of Kolmogorov's dissipation range[END_REF]. Conversely, [START_REF] Cheskidov | A unified approach to regularity problems for the 3D Navier-Stokes and Euler Equations: the use of Kolmogorov's dissipation range[END_REF] implies that both ∂u/∂t and u(t = 0) are divergence-free, proving that div u = 0. Applying Id = P -∇(-∆) -1 div to u • ∇u, the pressure is immediately reconstructed with the identity ∇p = ∇(-∆) -1 div(u • ∇)u.

Remark 2 A common observation is that (u • ∇)u = j u j ∂ j u = j ∂ j (u j u) = div(u ⊗ u)
because u is a divergence-free vector field, which gives a meaning in the distributional sense to the non-linear term as soon as u(t , •) belongs to any space embedded in L 2 loc .

Let us now recall a well known identity of vector calculus. For any vector field u, one has :

(C u) × u = (u • ∇)u - 1 2 ∇|u| 2 . ( 28 
)
The first coordinate of C u × u is indeed:

(∂ 3 u 1 -∂ 1 u 3 )u 3 -(∂ 1 u 2 -∂ 2 u 1 )u 2 = (u 3 ∂ 3 + u 2 ∂ 2 )(u 1 ) - 1 2 ∂ 1 (u 2 3 + u 2 2 ) = (u • ∇)u 1 - 1 2 ∂ 1 (|u| 2 ).
The identity then follows by circular permutation among indices. There is also a profound geometric reason for the above identity (known sometimes as the dot product rule), as it is elemental in the definition of Riemannian connections (see appendix A, equation (107)).

A direct consequence of (28) for the non-linear term of Navier-Stokes is that

P (u • ∇)u = P((C u) × u). ( 29 
)
We may therefore rewrite the Navier-Stokes equation in [START_REF] Cheskidov | A unified approach to regularity problems for the 3D Navier-Stokes and Euler Equations: the use of Kolmogorov's dissipation range[END_REF] as follows :

∂u ∂t + P (C u) × u + ν C 2 u = 0. ( 30 
)
This particular form of the equation will be of central importance in what follows. It suggests a new form of cancellations based on the following identity

〈(u • ∇)u, w〉 L 2 (R 3 ) = 〈C u × u, w〉 L 2 (R 3 ) = R 3 det(C u, u, w)d x, (31) 
which holds for any pair of divergence-free vector fields u, w. The identity [START_REF] Constantin | Geometric Statistics in Turbulence[END_REF] thus underlines that the non-linearity of Navier-Stokes has the structure of a cross-product, and that its weak (distributional) form ( 31) is a determinant that involves the vorticity, the velocity and a test function.

Of course, this formulation is related to the vorticity equation. One has:

C P((C u) × u) = P C((C u) × u) = C((C u) × u) = (u • ∇) C u -((C u) • ∇)u.
Therefore, applying C to (30) directly implies the vorticity equation

∂ω ∂t + (u • ∇)ω + ν C 2 ω = (ω • ∇)u (32) 
with ω = C u. In the line of [START_REF] Constantin | Direction of Vorticity and the Problem of Global Regularity for The Navier-Stokes Equations[END_REF], note that the nonlinear term of the vorticity equation inherits the structure of a cross-product:

(u • ∇)ω -(ω • ∇)u = C(ω × u). The vortex-stretching term (ω • ∇)u = (ω • ∇)|D| -2
C ω is of order zero but highly non-local in ω. On average, it is orthogonal to u (see [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF] below). The vortexstretching term plays a central role in the cascade of energy towards smaller scales in 3D turbulent flows by thinning the girth of vortex tubes.

Remark 3

The Navier-Stokes equation can also be rewritten as :

∂u ∂t + P(u • ∇)Pu + ν curl 2 u = 0, (33) 
to put the emphasis on the transport-diffusion aspect of the Navier-Stokes system. However, due to the embedded pressure, the transport part is not the divergence-free vector field u •∇, but the non-local skewadjoint operator P(u • ∇)P.

For a time-independent and divergence-free vector field U , the flow of that operator, i.e. the solution of ∂ t φ = P(U • ∇)Pφ, is given by the Fourier Integral Operator

φ(t ) = exp i t P(U •D)P φ 0 where U •D = -iU •∇; under rather mild assumptions of regularity, this operator is self-adjoint (unbounded) on L 2 (R 3 ; R 3 ).
This flow is strikingly different from that of the vector field

V , i.e. ψ(t ) = exp i t (U •D) ψ 0 .
The difference induced by a projector "sandwich" is already striking among matrices. For example, in R 2 , let us consider a self-adjoint matrix A and a self-adjoint projection P onto a non-eigenvector of A:

A = λ 0 0 µ P = 1 2 1 1 1 1 = P T
then e i t A = e i t λ 0 0 e i t µ while e i t P AP = Id +(e i t λ+µ 2 -1)P.

The presence of the projector P changes the evolution radically: the linear parts differ as t → 0 (the later being the P -projection of the former) and the long-term behaviors are obviously completely different.

Decomposition of curl as a superposition of signed operators

Let us denote by PL 2 the subspace of L 2 (R 3 ) composed of vector fields that are divergence-free. As recalled in §2.1, the curl operator is self-adjoint and elliptic on PL 2 . We now want to decompose PL 2 into an orthogonal direct sum of subspaces on which C = curl is signed. The definition of these subspaces involves the following non-local operators associated with the "square root" of P.

Lemma 4 One can decompose

P = Q + + Q -where Q ± = 1 2 P ± C |D| -1 . ( 34 
)
The operators

Q ± satisfy Q * ± = Q ± = Q 2 ± and Q + Q -= Q -Q + = 0. Proof. The main computation is Q 2 ± = 1 4 P 2 + C 2 |D| -2 ± (P C |D| -1 + C |D| -1 P) . Applying (26) ensures the simplifications P 2 = P and [P, C |D| -1 ] = 0. As P C = C, we obtain Q 2 ± = Q ± .
The other properties follow immediately.

Let us define the following signed curl operators:

C + = C Q + and C -= -C Q -. (35) 
These operators play a central role in this article.

Lemma 5 One can decompose

C = C + -C -. The operators C ± satisfy C * ± = C ± ≥ 0, (36) 
C + C -= C -C + = 0, (37) 
C + = |D|Q + = Q + |D|Q + = Q + C Q + , (38) 
C -= |D|Q -= Q -|D|Q -= -Q -C Q -. ( 39 
)
Proof.

Since [P, C] = 0 we have [C, Q ± ] = 0 so that C Q ± = C Q 2 ± = Q ± C Q ± .
The properties

C = P C = Q + C +Q -C = C + -C -, C + C -= C -C + = 0, C * ± = C ±
follow from the corresponding ones for Q ± . We also have

C Q + = 1 2 C P + C 2 |D| -1 = 1 2 C +P|D| = |D| 1 2 P + C |D| -1 = |D|Q + , C Q -= 1 2 C P -C 2 |D| -1 = 1 2 C -P|D| = -|D| 1 2 P -C |D| -1 = -|D|Q -.
Observing that |D|Q ± = Q ± |D|Q ± ensures the positivity of these operators.

Remark 6

The previous lemma ensures that the respective restrictions of

C ± to Q ± L 2 both coincide with |D|. The kernel of C ± in PL 2 is Q ∓ L 2 .
In the orthogonal decomposition

PL 2 = Q + L 2 ⊕ Q -L 2 , the matrix of the curl operator is thus |D| 0 0 -|D| i.e. C = |D| • (Q + -Q -)
is the diagonalization of the curl operator. This formula highlights a profound geometric connection between the curl and the pseudo-derivative |D| : both operators are images of one another by a symmetry of PL 2 . Note also that, by functional calculus, one may define fractional operators

C s ± = |D| s Q ± ( 40 
)
for any s ∈ R; the corresponding

C s = |D| s • (Q + + e si π Q -) is however not self-adjoint if s ∈ R\Z.
In view of these properties, we are led to introduce the following definition.

Definition 7 A divergence-free vector field in L 2 (R 3 ) is said to have positive (resp. negative) spin if it belongs to the subspace Q + L 2 (resp. Q -L 2 ).
We say that u is spin-definite if it has either positive or negative spin.

According to Remark 6, a square integrable field u has positive spin (up to a gradient field) if and only if C u = |D|Pu and negative spin if C u = -|D|Pu. In general, a divergence-free vector field is not spindefinite; however, Lemma 4 ensures that any PL 2 field is always the (direct) sum of two spin-definite vector fields with opposite spins.

Remark 8

The notion of spin-definite field has been known in physics literature under the denomination helical decomposition and dates back to Lesieur [START_REF] Lesieur | Décomposition d'un champ de vitesse non divergent en ondes d?hélicité[END_REF]. It has occasionally been used in theoretical and numerical investigations, e.g. Constantin & Majda [START_REF] Constantin | The Beltrami spectrum for incompressible fluid flows[END_REF], Cambon & Jacquin [START_REF] Jacquin | Spectral approach to non-isotropic turbulence subjected to rotation[END_REF], Waleffe [START_REF] Waleffe | The nature of triad interactions in homogeneous turbulence[END_REF], Alexakis [START_REF] Alexakis | Helically decomposed turbulence[END_REF]. See also the discussion in §3.6 below.

Example 9

The spin-definite fields that are spectrally supported on a sphere are examples of Beltrami flows. If W (ξ) is a distribution supported on {|ξ| = λ}, then |D|W = λW ; in this case, W is spin-definite if and only if CW = ±λW . In the periodic setting (or if one drops the square integrability on R 3 ), the simplest non-trivial example is of the form

W ± λ,φ (x) = cos(λx • #» e 1 + φ) #» e 2 ∓ sin(λx • #» e 1 + φ) #» e 3 ( 41 
)
for some orthonormal basis ( #» e 1 , #» e 2 , #» e 3 ), a frequency λ > 0 and a phase shift φ ∈ [0, 2π); W + λ,φ is spin-positive and W - λ,φ is spin-negative. The fields e -νt λ 2 W ± λ,φ (x) are exact solutions of the Navier-Stokes equation. They are a transient planar wave and a shear flow where the main direction of the shear rotates (resp. right-of left-handedly) as one travels along the axis R #» e 1 . It is the hydrodynamical equivalent of a circularly polarized electromagnetic wave (for further results on Beltrami flows, see e.g. [START_REF] Chicone | The topology of stationary curl parallel solutions of Euler's equations[END_REF] and [START_REF] Ghrist | Overtwisted energy-minimizing curl eigenfields[END_REF]).

Let us comment on the "microlocal" meaning of this definition. It is common knowledge that all complex vector spaces (even of higher dimension) are canonically oriented by the initial choice of one square root of -1 among the two choices ±i . For ξ = 0, the subspace ξ ⊥ of C 3 is of complex dimension 2; according to [START_REF] Cheskidov | The Regularity of Weak Solutions of the 3D Navier-Stokes Equations in B -1 ∞,∞[END_REF], the matrix |ξ| -1 C(ξ) ∈ M 3,3 (C) defined by ( 24) is a square root of the orthogonal projector

P(ξ) = I -|ξ| -2 (ξ ⊗ ξ) of C 3 onto ξ ⊥ .
The pair (P(ξ), -i |ξ| -1 C(ξ)) defines a complex structure with conjugate coordinates Q ± (ξ). A field has positive spin if, at each frequency ξ ∈ R 3 \{0}, the complex vector û(ξ) belongs to ran Q + (ξ).

Lemma 10 For ξ ∈ R 3 \{0} and the matrix C(ξ) ∈ M 3,3 (C) defined by [START_REF] Cheskidov | Energy conservation and Onsager's conjecture for the Euler equations[END_REF], we have

ker C(ξ) = Cξ, ran C(ξ) = ξ ⊥ = η ∈ C 3 ; η • ξ = 0 , ( 42 
) Spec C(ξ) = {0, ±|ξ|} , ker(C(ξ) ∓ |ξ|) = ran Q ± (ξ). ( 43 
)
In particular, ran

Q ± (ξ) is one-dimensional if ξ = 0. One has Q -(ξ) = Q + (-ξ) = Q + (ξ).
In local coordinates, the non-trivial eigenvectors are given, e.g. away from the axis ξ 2 = ξ 3 = 0, by:

δ ± (ξ) = 1 2|ξ| 2   ξ 2 2 + ξ 2 3 -ξ 1 ξ 2 ± i ξ 3 |ξ| -ξ 1 ξ 3 ∓ i ξ 2 |ξ|   ( 44 
)
and one has ker

Q ± (ξ) = Span C {ξ, δ ∓ (ξ)}, ran Q ± (ξ) = Cδ ± (ξ). ( 45 
)
Proof. Let ξ be in R 3 \{0}. If for a, b ∈ R 3 we have i ξ × (a + i b) = 0, we obtain that ξ × a = ξ × b = 0, which is equivalent to a ∧ ξ = b ∧ ξ = 0, i.e. (a + i b) ∈ Cξ.
On the other hand, the two-dimensional ξ ⊥ contains the two-dimensional range of C(ξ). Properties (43) follow from Lemma 5, which implies that

C(ξ) = |ξ|Q + (ξ) -|ξ|Q -(ξ)
where Q ± (ξ) are the rank-one projections defined by

Q ± (ξ) = 1 2 I -|ξ| -2 (ξ ⊗ ξ) real symmetric ± |ξ| -1 C(ξ)
purely imaginary anti-symmetric .

The operators Q ± are the Fourier multiplier Q ± (D). The formula for δ ± (ξ) is obtained by choosing the first column of Q ± (ξ).

Remark 11

The previous choice for δ ± (ξ) becomes singular along the axis ξ 2 = ξ 3 = 0. To perform computations near this axis, one should instead choose another column of Q ± (ξ) as basis vectors.

With these local coordinates, the general expression of the Fourier reconstruction of a divergence-free vector field is:

u(x) = R 3 [ϑ + (ξ)δ + (ξ) + ϑ -(ξ)δ -(ξ)] e i x•ξ d ξ (46)
for some spectral weights ϑ ± (ξ) ∈ C defined almost everywhere and obtained in a unique way by the decomposition of û(ξ) on the basis (δ + (ξ), δ -(ξ)) of ξ ⊥ . As u is real-valued, the weights have to satisfy

ϑ ± (-ξ) = ϑ ± (ξ).
One can easily compute:

C u(x) = R 3 |ξ| [ϑ + (ξ)δ + (ξ) -ϑ -(ξ)δ -(ξ)] e i x•ξ d ξ and |D|u(x) = R 3 |ξ| [ϑ + (ξ)δ + (ξ) + ϑ -(ξ)δ -(ξ)] e i x•ξ d ξ.
A field u has positive (resp. negative) spin if and only if ϑ -≡ 0 (resp. ϑ + ≡ 0).

Corollary 12

The spin is a chiral notion: the mirror image of a field with positive spin by a planar symmetry of R 3 is a field of negative spin.

Proof. Without impeding on the generality, one may assume that v(x 1 , x 2 , x 3 ) = u(x 1 , x 2 , -x 3 ). It is then clear from ( 46) and ( 44) that the two fields u and v have opposite spins. The family of spin-definite vector fields is quite rich and appears to have a tubular jet-structure, where the sign of the spin reflects whether the forward motion is right-or left-handed. For example,

u 1 (x) = - 1 2 (cos(x 1 -x 2 ) + 2 sin(x 2 + x 3 )) #» e 1 - 1 2 cos(x 1 -x 2 ) + 2 cos(x 2 + x 3 ) #» e 2 + 2 2 (sin(x 1 -x 2 ) + cos(x 2 + x 3 )) #» e 3 u 2 (x) = - 1 5 (4 cos(x 1 -2x 2 ) + 5 sin(x 2 + x 3 )) #» e 1 - 1 10 
4 cos(x 1 -2x 2 ) + 5 2 cos(x 2 + x 3 ) #» e 2 + 1 10 
4 5 sin(x 1 -2x 2 ) + 5 2 cos(x 2 + x 3 ) #» e 3
are divergence-free and have positive spin i.e. C u j = |D|u j . They are illustrated in Figure 2.

Note that C u 1 = 2u 1 so this example is a Beltrami flow; û1 is supported on the spectral sphere of radius 2. On the contrary, C(C u 2 × u 2 ) = 0 so this second example is not even a generalized Beltrami flow; û2 involves frequencies of magnitudes 2 and 5. However, both are clearly the superposition of two planar Beltrami waves of positive spin (i.e. flows from Example 9) that progress in different directions. Both flows have a similar structure: they swirl in a right-hand fashion, the center of each vortex is a zone of low pressure and high dissipation, the four hyperbolic corners of each cell (where the convection diverges) are axes of high pressure with minimal dissipation. Accounting for box-periodicity, these two examples display one single continuous vortex tube.

If we superpose three or more planar Beltrami waves of positive spin, one can build more refined flows with positive spin that contain an intricate network of vortex tubes. The positive spin imposes that the movement remains exclusively right-handed at all scales. In the example shown in Figure 3, four distinct regions (accounting for periodicity) of high vorticity appear to be disconnected, i.e. one generates vortex tubes of finite length. These examples suggest that the family of spin-definite flows is structurally simple (superposition of planar Beltrami waves) and yet quite rich. It is the building blocks of intricate vortex structures and deserves to be studied specifically, as we will now do.

Remark 13

The question of defining a microlocal notion of spin is legitimate2 , albeit non-trivial because the operators C ± |D| are non-local. If u is a divergence-free field, there exists a stream vector (i.e. vector potential) Ψ such that u = C Ψ. It is given by Ψ = |D| -2 C u + ∇q where ∇q is an arbitrary irrotational component, e.g. q = 0. If one is interested only in the local behavior of the flow near a point x 0 ∈ R 3 , one could consider a smooth cut-off function χ ∈ D(R 3 ) supported in a ball of radius r > 0 and such that

χ(x) = 1 if |x| ≤ r /2. The field ũ = C χ(x -x 0 )Ψ(x) = χ(x -x 0 )u(x) + ∇χ(x -x 0 ) × Ψ recirculation around
the cutout zone remains divergence-free, coincides with u on the ball B (x 0 , r /2) and is compactly supported on B (x 0 , r ). The two spin-definite components of ũ can be seen as a local expression of the spin of the original field u near x 0 . However, the recirculation of ũ near the edge of the cutoff zone may shadow the meaning of the spin at low frequencies, so a secondary microlocal cutout to isolate frequencies |ξ| r -1 may be necessary. We will not investigate this question further in this article.

Two integral quantities preserved by the Navier-Stokes evolution

In this section, we revisit the classical energy balance for Navier-Stokes in the light of the aforementioned properties of the curl operator over

PL 2 = Q + L 2 ⊕ Q -L 2 .

Classical energy method

Leray's method was introduced in 1934 in the seminal article [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF]. It consists in multiplying [START_REF] Constantin | Direction of Vorticity and the Problem of Global Regularity for The Navier-Stokes Equations[END_REF] by u to get

d d t u(t ) 2 L 2 + 2〈P(C u × u), u〉 L 2 + 2ν C u 2 L 2 = 0.
Since P * u = Pu = u, the non-linear term formally cancels out

〈P(C u × u), u〉 = 〈C u × u, u〉 = det(C u, u, u) = 0. ( 47 
)
This leads to the classical energy balance

u(t ) 2 L 2 + 2ν t 0 C u 2 L 2 d t = u(0) 2 L 2 ,
which, truthfully, only holds for smooth solutions in the three-dimensional case. As Leray solutions are obtained as limits of compact sequences (u n ) n∈N that satisfy the energy equality but converge to u only weakly in H 1 , Fatou's lemma implies

u(t ) 2 L 2 + 2ν t 0 C u 2 L 2 d t ≤ u(0) 2 L 2 . ( 48 
)
The possibility of anomalous dissipation, i.e. a strict inequality in [START_REF] Iskauriaza | ∞ -solutions of Navier-Stokes equations and backward uniqueness[END_REF], was envisioned by Onsager [START_REF] Onsager | Statistical hydrodynamics[END_REF] and formalized e.g. in [START_REF] Duchon | Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations[END_REF]. Onsager's conjecture on the minimal regularity assumption on u that is necessary to ensure [START_REF] Iskauriaza | ∞ -solutions of Navier-Stokes equations and backward uniqueness[END_REF] was solved recently by the conjonction of the works of Isett [START_REF] Isett | A proof of Onsager's conjecture[END_REF] and Constantin, Weinan & Titi [START_REF] Constantin | Onsager's conjecture on the energy conservation for solutions of Euler's equation[END_REF]. Soon afterwards, its importance was renewed by the construction of Buckmaster, Vicol [START_REF] Buckmaster | Nonuniqueness of weak solutions to the Navier-Stokes equation[END_REF] of wild (i.e. non-Leray) solutions of Navier-Stokes that defy any physically reasonable energy balance (their energy profile can even be prescribed arbitrarily) even though they belong to a reasonable function space C 0 t (H σ x ) for some σ > 0, typically σ 2 -18 . For further details, see §3.4 below.

Conservation law associated with the signed curl

Let us define the following quantities:

N ± (u, t ) = C 1/2 ± u(t ) 2 L 2 + 2ν t 0 C 3/2 ± u 2 L 2 d t . ( 49 
)
Thanks to the results of §2.3, the sum N + (u, t ) + N -(u, t ) is equivalent, for divergence-free vector fields, to the square of the norm of u in

L ∞ t Ḣ 1/2 x ∩ L 2 t Ḣ 3/2
x . Inspired by the negative sign of the curl on Q -L 2 , let us now turn our attention to the Krein [START_REF] Krein | Introduction to the geometry of indefinite J -spaces and the theory of operators in these spaces[END_REF] "norm" N + (u, t ) -N -(u, t ). Proposition 14 Let u be a smooth solution of [START_REF] Constantin | Direction of Vorticity and the Problem of Global Regularity for The Navier-Stokes Equations[END_REF]. The following conservation law then holds:

N + (u, t ) -N -(u, t ) = N + (u, 0) -N -(u, 0). ( 50 
)
Proof. Thanks to the self-adjointness of the curl, one has 〈C u, ∂ t u〉 L 2 = 〈∂ t C u, u〉 L 2 pointwise in time. Let us multiply the equation ( 30) by 2 C u. We get

d d t 〈C u(t ), u(t )〉 L 2 + 2〈P(C u × u), C u〉 L 2 + 2ν〈C 3 u, u〉 L 2 = 0.
For smooth vector fields, the cubic term vanishes since

〈P(C u × u), C u〉 = 〈C u × u, C u〉 = det(C u, u, C u) = 0. ( 51 
)
The lemma then follows, with k = 1 or 3, from the identities

C k = (C + -C -) k = C k + +(-1) k C k -and 〈C k u, u〉 L 2 = C k/2 + u 2 L 2 + (-1) k C k/2 -u 2 L 2 ,
which are a consequence of the diagonalization of the curl obtained in §2.3.

For Leray solutions, the pendant of the conservation law ( 50) is not obvious. For example, it is not clear how N + (u, t ) -N -(u, t ) compares to N + (u, 0) -N -(u, 0) for all Leray solutions (see §3.5 below). However, if one considers the first singularity event, the following result expresses that singularities for the 3D Navier-Stokes equation can only occur as the result of a direct conflict of spin.

Theorem 15 If u is a smooth solution of Navier-Stokes on [0, T * ) with a maximal life-time T * < ∞, then

lim sup t →T * N ± (u, t ) = +∞ and lim k N + (u, t k ) N -(u, t k ) = 1 ( 52 
)
for some increasing sequence of times t k → T * .

An attempt at a physical interpretation of this result is proposed in §3.6 below.

Proof. As u is smooth on [0, T * ), the conservation law (50) holds for any t < T * and [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] below. Thanks to [START_REF] Gallagher | Blow-up of critical Besov norms at a potential Navier-Stokes singularity[END_REF], the sum N + (u, t ) + N -(u, t ) and therefore at least one of the two norms N ± (u, t ) must diverge in lim-sup as t → T * . As the difference remains bounded, both norms N ± (u, t ) must diverge simultaneously. One obtains an increasing sequence

|N + (u, t ) -N -(u, t )| ≤ C 0 with e.g. C 0 = R 3 ω 0 • u 0 according to
t k → T * such that N + (u, t k ) ≥ C 0 + k and therefore N -(u, t k ) ≥ k. Then |N + (u, t k )/N -(u, t k ) -1| ≤ C 0 /k → 0.

Helicity

Using the properties of C ± exposed in §2.3, one recovers the helicity:

H (t ) = R 3 ω • u = 〈(C + -C -)u, u〉 L 2 = C 1/2 + u(t ) 2 L 2 -C 1/2 -u(t ) 2 L 2 . ( 53 
)
More generally, the quantity N + -N -can be written as a conservation law for helicity:

N + (u, t ) -N -(u, t ) = R 3 ω • u -2ν t 0 R 3 ω • ∆u = R 3 ω • u + 2ν t 0 R 3 ∇ω • ∇u. (54) 
The previous results imply that, for smooth solutions of the Euler equation, H (t ) is conserved and that for smooth solutions of Navier-Stokes, the quantity ( 54) is invariant. The benefit of using the non-local diagonalization of the curl operator (i.e. the C ± operators) is that this new point of view isolates two distinct signed quantities N ± in the balance of helicity, which is really not obvious in the right-hand side of [START_REF] Kozono | Bilinear estimates in BMO and the Navier-Stokes equations[END_REF]. Helicity thus appears as a measure of the balance between the spin-definite components of u.

Let us also point out that [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] and Lemma 5 imply immediately

|H (t )| ≤ C 1/2 + u(t ) 2 L 2 + C 1/2 -u(t ) 2 L 2 = u 2 Ḣ 1/2 . ( 55 
)
One recovers the classical estimate

|H (t )| = 〈|D| -1/2 C u, |D| 1/2 u〉 ≤ C u 2 H 1/2
, which relies on the fact that the operator |D| -1 C is obviously bounded on L 2 .

Remark 16

Note that, contrary to the phrasing of most proofs, the conservation of helicity does not result from a global cancellation of terms; instead, each term (and sub-term) given by the respective evolution equations for u and ω vanishes on its own:

R 3 (∂ t ω) • u + ν〈∇u, ∇ω〉 L 2 = 〈(u • ∇)ω, u〉 L 2 + 〈(ω • ∇)u, u〉 L 2 = 0 + 0 = 0 and R 3 (∂ t u) • ω + ν〈∇u, ∇ω〉 L 2 = 〈(u • ∇)u, ω〉 + 〈∇p, ω〉 = 0 + 0 = 0.
Indeed, using the self-adjointness of the curl twice, the identity ( 28) implies (either formally or for smooth u) that, on average, the convection term (u • ∇)u is orthogonal to the vorticity:

〈w, (u • ∇)u〉 L 2 = 〈curl u, (u • ∇)u〉 L 2 = 〈u, curl[(u • ∇)u]〉 L 2 = 〈u, curl[ω × u]〉 L 2 = 〈ω, ω × u〉 L 2 = 0. ( 56 
)
If u is divergence-free, one has the well known identity:

〈ω, (u • ∇)u〉 L 2 + 〈u, (u • ∇)ω〉 L 2 = -〈div u, u • ω〉 = 0.
Combining this last identity with [START_REF] Kukavica | Role of the pressure for validity of the energy equality for solutions of the Navier-Stokes equation[END_REF], one gets that the transport term (u • ∇)ω is, on average, orthogonal to the velocity field:

〈u, (u • ∇)ω〉 L 2 = 0. ( 57 
)
Finally, as div ω = 0, and assuming enough decay at infinity:

〈(ω • ∇)u, u〉 L 2 = 1 2 R 3 (ω • ∇)|u| 2 = 1 2 R 3 div(|u| 2 ω) = 0. ( 58 
)
The identities ( 56), ( 57), (58) provide a simple derivation of the conservation of helicity for the Euler equation, which holds as long as it is legitimate to test the equation for vorticity [START_REF] Constantin | The Beltrami spectrum for incompressible fluid flows[END_REF] against u itself.

The connection with helicity provides the following uniform integral bounds that imply that the two spin-definite components of u must have, on average, a comparable size in Ḣ 1/2 . Note however that the last result of §3.2 provides a stronger insight at the time of first singularity.

Proposition 17 For any Leray solution of Navier-Stokes, one has

∞ 0 |H (t )| 2 d t = ∞ 0 C 1/2 + u(t ) 2 L 2 -C 1/2 -u(t ) 2 L 2 2 d t ≤ u 0 4 L 2 8ν ( 59 
)
and u 2

L 4 t Ḣ 1/2 x = ∞ 0 C 1/2 + u(t ) 2 L 2 + C 1/2 -u(t ) 2 L 2 2 d t ≤ u 0 2 L 2 4 2ν . ( 60 
)
Proof. The helicity is globally square-integrable in time because

∞ 0 |H (t )| 2 d t ≤ ∞ 0 ω(t ) 2 L 2 u(t ) 2 L 2 d t ≤ ω 2 L 2 t L 2 x u 2 L ∞ t L 2 x ≤ u 0 4 L 2 8ν •
For the last step, we used the energy inequality [START_REF] Iskauriaza | ∞ -solutions of Navier-Stokes equations and backward uniqueness[END_REF] and ab ≤ c 2 4β if a, b, c, β > 0 with a + βb ≤ c. The full

L 4 t Ḣ 1/2
x norm of u is controlled by interpolation between L ∞ t L 2 x and L 2 t Ḣ 1 x .

Onsager's conjecture anew

In this section, we investigate briefly the minimal regularity that is required to ensure respectively the conservation of energy or the balance of helicity.

Onsager's famous conjecture [START_REF] Onsager | Statistical hydrodynamics[END_REF] states that unless u ∈ C α x with α > 1/3, there may be an energy miscount at spectral infinity and that u itself is not an admissible test function. The heuristic leading to that exponent is that the minimal regularity required to make sense of ( 47) consists in spreading one derivative across the three factors, hence the C 1/3

x critical space. For the Euler equation, Constantin, Weinan & Titi [START_REF] Constantin | Onsager's conjecture on the energy conservation for solutions of Euler's equation[END_REF] indeed proved the conservation of energy for α > 1/3 while Isett [START_REF] Isett | A proof of Onsager's conjecture[END_REF], using convex integration, recently showed its failure for α < 1/3 and solved the problem that had been open for 69 years.

For the Navier-Stokes equation, the conservation of energy for Leray solutions was proved by Serrin under an L q t L p x assumption with 2 q + 3 p = 1, p ≥ 3, which also implies smoothness (see criterion (12) above). Lions [START_REF] Lions | Sur la régularité et l'unicité des solutions turbulentes des équations de Navier-Stokes[END_REF], Ladyzhenskaya [START_REF] Ladyzhenskaya | Linear and quasilinear equations of parabolic type[END_REF] and Shinbrot [START_REF] Shinbrot | The energy equation for the Navier-Stokes system[END_REF] also proved the conservation of energy when

2 q + 2 p ≤ 1, p ≥ 4 so in particular for L 4 t L 4
x . This intermediary scaling ( 2 4 + 3 4 = 5 4 ) is of particular interest because it is both too low to be a guaranteed bound for all Leray solutions, but also too high to automatically imply the smoothness of the solution. Kukavica [START_REF] Kukavica | Role of the pressure for validity of the energy equality for solutions of the Navier-Stokes equation[END_REF] weakened this assumption to a local L 2 t ,x bound on the pressure (recall that p is obtained by a Calderón-Zygmund operator applied to u × u). The last gap in scaling was closed by Cheskidov, Friedlander & Shvydkoy [START_REF] Cheskidov | On the Energy Equality for Weak Solutions of the 3D Navier-Stokes Equations[END_REF], who proved that any Leray solution in L 3 ([0, T ]; H 5/6 ) conserves energy. See also Leslie-Shvydkoy [START_REF] Leslie | SHVYDKOY Conditions implying energy equality for weak solutions to the Navier-Stokes equation[END_REF].

To understand why the space L 3 t Ḣ 5/6

x is exactly consistent with Onsager's heuristic, let us point out that, even with a loose Leibniz rule, one cannot expect to make sense of

T 0 R 3 det(C u, u, u) = 0 unless T 0 K ||D| 1/3 u(t , x)| 3 d xd t < ∞
for any compact subset K ⊂ R 3 . The Navier-Stokes (i.e. parabolic) scaling of

L 3 t Ẇ 1/3,3 x is 2 3 + 3 3 -1 3 = 1 + 1 3 , which matches that of L 3 t Ḣ 5/6 x ⊂ L 3 t Ẇ 1/3,3
x . The local integrability at this scale is ensured in the following way. For a triple s 1 + s 2 + s 3 ≥ 3/2 with s j ≥ 0 and at least two non-zero regularity indices and K ⊂ R 3 bounded, Hölder law and the Sobolev embeddings imply (see Constantin-Foias [START_REF] Constantin | Navier-Stokes equations[END_REF]):

K |(u • ∇)v • w| ≤ c K u L 6/(3-2s 1 ) + ∇v L 6/(3-2s 2 ) + w L 6/(3-2s 3 ) + ≤ C K u H s 1 ∇v H s 2 w H s 3 .
At Onsager's scaling, the difficulty is that, when u ∈ H 5/6 , then ∇u ∈ H -1/6 may fail to be locally integrable. Very elegantly, Cheskidov, Friedlander & Shvydkoy [START_REF] Cheskidov | On the Energy Equality for Weak Solutions of the 3D Navier-Stokes Equations[END_REF] used a frequency decomposition u = u l +u h with an arbitrary spectral threshold κ and controlled the non-trivial terms with Bernstein's inequalities to transfer the singularity across the trilinear interaction, effectively loosening Leibniz's rule:

K |(u • ∇)u l • u| ≤ K |(u h • ∇)u l • u h | + K |(u l • ∇)u l • u h | + 0 ≤ u h 2 H 1/2 u l H 3/2 + u l H 5/6 u l H 1 u h H 2/3 κ -1/3 u h H 5/6
2 κ 2/3 u l H 5/6 + u l H 5/6 κ 1/6 u l H 5/6 κ -1/6 u h H 5/6 u 3

H 5/6
This computation ensures that the cancellation lim

κ→∞ R 3 (u • ∇)u l • u = 0 is legitimate.
The other side of Onsager's conjecture for Navier-Stokes is still open. A historical breakthrough 3 was achieved very recently by Buckmaster & Vicol [START_REF] Buckmaster | Nonuniqueness of weak solutions to the Navier-Stokes equation[END_REF], [START_REF] Buckmaster | Convex integration and phenomenologies in turbulence[END_REF] and with Colombo [START_REF] Buckmaster | Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1[END_REF]. They showed that a small positive regularity C 0 t H σ x with σ 2 -18 is not enough to prevent the existence of non-conservative viscous flows. They constructed flows in that class whose energy profile can be prescribed arbitrarily. Such strange flows are weak solutions of the Navier-Stokes equation but are not Leray solutions. While this pathology may seem to be of a purely mathematical nature, it does have a deep connection with turbulence [START_REF] De | On turbulence and geometry: from Nash to Onsager[END_REF], [START_REF] Buckmaster | Convex integration constructions in hydrodynamics[END_REF]. These flows display a persistent low-frequency shadow of a vanishing high-frequency forcing, which was first observed for Euler [START_REF] Buckmaster | Anomalous dissipation for 1/5-Hölder Euler flows[END_REF]. This reverse cascade ends up to be stronger than what the viscosity can diffuse. In the absence of viscosity [START_REF] Buckmaster | Non-conservative H 1/2weak solutions of the incompressible 3D Euler equations[END_REF], one can even push the regularity of the pathologies to σ = 1/2 -.

In the same spirit as Onsager's original conjecture, one can ask which minimal regularity will ensure the balance of the helicity, i.e. the conservation of N + -N -defined above. Roughly speaking, in order to use C u as a test function and ensure [START_REF] Kang | Maximum amplification of enstrophy in three-dimensional Navier-Stokes flows[END_REF], one would need to spread two derivatives across three factors, which would place the bar at C 2/3 x . This threshold is sometimes known as Onsager's conjecture for helicity. In the case of Euler's equation, Onsager's conjecture for helicity was essentially resolved by Cheskidov, Constantin, Friedlander & Shvydkoy [START_REF] Cheskidov | Energy conservation and Onsager's conjecture for the Euler equations[END_REF]. Recently, Luigi de Rosa [START_REF] Rosa | On the Helicity conservation for the incompressible Euler equations[END_REF] investigated the possibility of splitting the assumption between u ∈ L q 1 t C α 1

x and curl u ∈ L q 2 t W α 2 ,1 x with 2 q 1 + 1 q 2 = 1 and 2α 1 + α 2 ≥ 1, which suggests that, for helicity, subtle plays with scaling are possible.

Because of the higher regularity threshold, the estimate in the case of Navier-Stokes is simpler than the one presented above. For example, having u ∈ L 3 t ( Ḣ 7/6

x ) provides enough integrability

t 0 R 3 |(u • ∇)u • C u| ≤ u L 3 (L 9 ) ∇u L 3 (L 9/4 ) C u L 3 (L 9/4 ) ≤ u L 3 ( Ḣ 7/6 ) ∇u 2 L 3 ( Ḣ 1/6 ) ≤ u 3 L 3 ( Ḣ 7/6 )
and thus legitimizes [START_REF] Kang | Maximum amplification of enstrophy in three-dimensional Navier-Stokes flows[END_REF]. Note that the scaling of L 3 t ( Ḣ 7/6

x ) is consistent with 1/3 more derivative than that of L 3 t ( Ḣ 5/6 x ), which was critical for the conservation of energy. This scaling is thus coherent, in spirit, with Onsager's conjecture for helicity. The scaling of L 3 ( Ḣ 7/6 ) differs from that of L ∞ (L 2 ) ∩ L 2 ( Ḣ 1 ) by 7 6

-2 3 = 1 2 derivative; such a control is similar in scaling to L ∞ ( Ḣ 1/2 ) ∩ L 2 ( Ḣ 3/2
) and is therefore not known (and possibly not expected) for the most general Leray solutions.

Remark 18

Formally, there are two other known conserved integrals for Euler and Navier-Stokes: the momentum

P (t ) = R 3 or T 3 u(t , x)d x, ( 61 
)
and the angular momentum

L(t ) = R 3 or T 3 x × u(t , x)d x. ( 62 
)
However, on R 3 , the decay of the velocity field that is necessary to define the momentum is not benign; for example, P (t ) is identically zero for any integrable divergence-free field. Similarly, the weighted integrability

u ∈ L 1 ((1 + |x|)d x)
happens to be the critical one that cannot be propagated by the flow because the generic profile of a well localized flow decays exactly as |x| -d -1 at infinity along most directions, which is due to the non-local effect of the pressure field (see Brandolese-Vigneron [START_REF] Brandolese | New Asymptotic Profiles of Nonstationary Solutions of the Navier-Stokes System[END_REF]). Therefore P and L are not the most useful conservation laws for flows on the full space R 3 .

Non-explosion criteria

The Navier-Stokes system can be written for the decomposition u = u + + u -where u ± = Q ± u are the two spin-definite components of u (see Definition 7):

       ∂u + ∂t + Q + C u × u + ν C 2 + u + = 0, u + (0) = Q + u 0 , ∂u - ∂t + Q -C u × u + ν C 2 -u -= 0, u -(0) = Q -u 0 . ( 63 
)
However, the coupling of the two equations through C u × u is highly intricate. The point of this section is to investigate how this coupling relates to issues of regularity.

Let us briefly explain the technical difficulty that one encounters when one attempts to generalize the conservation law [START_REF] Kang | Searching for Singularities in Navier-Stokes Flows Based on the Ladyzhenskaya-Prodi-Serrin Conditions[END_REF] to the framework of Leray solutions. Let u be a Leray solution of Navier-Stokes with u 0 ∈ H 1/2 and u k a sequence of Galerkine approximations of u that are spin-definite. It is common knowledge (see e.g. [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF]) that the convergence of u k to u holds in the strong topology of L ∞ ([0, T ]; H -1 ) ∩ L 2 ([0, T ], H s ) for any T > 0 and any arbitrary but fixed value s < 1. In particular, with s = 1/2, one gets that

lim〈C ± u k (t ), u k (t )〉 L 2 = 〈C ± u(t ), u(t )〉 L 2
for almost every t ≥ 0. The proof of (50) can be reproduced for the smooth functions u k leading to:

〈C + u k (t ), u k (t )〉 L 2 + 2ν t 0 〈C 3 + u k , u k 〉 L 2 + 〈C -u k (0), u k (0)〉 L 2 = 〈C + u k (0), u k (0)〉 L 2 + 〈C -u k (t ), u k (t )〉 L 2 + 2ν t 0 〈C 3 -u k , u k 〉 L 2 i.e. N + (u k , t ) + N 0 -= N 0 + + N -(u k , t ).
However, in general, Fatou's lemma can only guarantee that

N ± (u, t ) ≤ lim inf k→∞ N ± (u k , t ),
which is not in our favor if we want to pass to the limit in the previous identity.

It is possible to circumvent this difficulty in the case of spin-definite solutions. 

T = sup {t ∈ [0, T 1 ] ; u is smooth on [0, t ]} ≥ T 2 .
Reasoning by contradiction, let us assume that T ≤ T 1 . Then [START_REF] Kang | Searching for Singularities in Navier-Stokes Flows Based on the Ladyzhenskaya-Prodi-Serrin Conditions[END_REF] and the fact that u has positive spin imply

N + (u, t ) = N + (u, 0) for all t ∈ [0, T ) i.e. u(t ) 2 Ḣ 1/2 + 2ν t 0 u 2 Ḣ 3/2 d t = C 1/2 + u(t ) 2 L 2 + 2ν t 0 C 3/2 + u 2 L 2 d t = u 0 2 Ḣ 1/2 .
In particular, u ∈ L ∞ ([0, T ); Ḣ 1/2 ) and [START_REF] Gallagher | Blow-up of critical Besov norms at a potential Navier-Stokes singularity[END_REF] implies that T cannot be a singular time; consequently, one has T > T 1 .

Remark 20 According to [START_REF] Lions | Sur la régularité et l'unicité des solutions turbulentes des équations de Navier-Stokes[END_REF], a solution u remains spin-definite if and only if P(C u ×u) has the same spin as u. In general, it is not clear that this property is propagated by the flow. At least, this is the case for generalized Beltrami flows, i.e. when C(C u × u) = 0 because then

P(C u × u) = 0.
The assumptions of the previous statement are somewhat exhorbitant. In the rest of this section, we investigate instead how the respective sizes of the spin-definite components Q ± u of a smooth solution u are related to the emergence of singularities. However, as we only need smoothness to ensure the conservation of N + (u, t )-N -(u, t ), we will preserve some generality by assuming instead that u is a Leray solution such that

|N + (u, t ) -N -(u, t )| ≤ C 0 .
The following lemma will be useful to bound a pair of close numbers from a common lower bound.

Lemma 21

For α, β ∈ R + and positive C j , ε j , we have:

C 0 ≥ |α -β| ≥ -C 1 + ε 1 min(α ε 2 , β ε 2 ) =⇒ max(α, β) ≤ C 0 + ε -1 1 (C 0 +C 1 ) 1/ε 2 and C 0 ≥ |α -β| ≥ -C 1 + ε 1 min(log α, log β) =⇒ max(α, β) ≤ C 0 + exp ε -1 1 (C 0 +C 1 )
. Proof. Since the assumption and the conclusion are symmetrical in α, β, we may assume that 0 ≤ β ≤ α. We then have

C 0 + β +C 1 ≥ α +C 1 ≥ β + ε 1 β ε 2 so ε 1 β ε 2 ≤ C 0 +C 1 i.e. β ≤ ε -1 1 (C 0 +C 1 ) 1/ε 2 . Consequently, max(α, β) = α ≤ β + C 0 ≤ ε -1 1 (C 0 + C 1 ) 1/ε 2 + C 0 .
The second claim can be obtained in a similar way.

At a time of first singularity, we have already mentioned (see the last result of §3.2) that N + (u, t ) and N -(u, t ) will simultaneously diverge to +∞ and at the same rate. As Leray's flow goes on, the value of N + (u, t ) -N -(u, t ) may be altered through each singular event. If the conflicts of spins were resolved (possibly in a non-unique way) by favoring one over the other, this could lead to a substantial drift. The following result quantifies, in this general setting, that even a logarithmic in-balance between the two spins is enough to deter singularities.

Theorem 22 If u is a Leray solution of Navier-Stokes such that

∀t ∈ [0, T ), C 0 ≥ |N + (u, t ) -N -(u, t )| ≥ -C 1 + ε min log N + (u, t ), log N -(u, t ) (64) 
for some constants C 0 ,C 1 , ε > 0. Then u remains smooth on [0, T * ) with T * > T .

Proof. The previous lemma implies

N ± (u, t ) ≤ exp ε -1 1 (C 0 +C 1 ) on [0, T ) and in particular u 2 L ∞ ([0,T ]; Ḣ 1/2 ) ≤ sup t ∈[0,T ] N + (u, t ) + N -(u, t ) ≤ 2 exp ε -1 1 (C 0 +C 1 )
thus u(T ) is smooth thanks to [START_REF] Gallagher | Blow-up of critical Besov norms at a potential Navier-Stokes singularity[END_REF] and the solution can be extended slightly beyond that point by the standard local well-posedness argument.

Comparison with the dimension n = 2

Let us conclude this section by a brief investigation of the case of dimension 2. The general expression of a divergence-free real-valued 2D vector field is

#» u (x) = 1 2π R 2 ϑ(ξ) # » δ(ξ)e i x•ξ d ξ (65)
where

# » δ(ξ) = ξ ⊥ /|ξ| ∈ R 2 and ϑ(ξ) ∈ C satisfies ϑ(ξ) = -ϑ(ξ)
; note the anti-Hermitian symmetry because of the anti-symmetric nature of # » δ(ξ) in 2D. Exceptionally, we write the arrows as a visual cue to distinguish between vector and scalar quantities. It is obvious that

|D| #» u = 1 2π R 2 |ξ|ϑ(ξ) # » δ(ξ)e i x•ξ d ξ, ω = curl #» u = 1 2π R 2 i |ξ|ϑ(ξ)e i x•ξ d ξ. ( 66 
)
Even though |D| #» u ∈ R 2 is non-local while ω ∈ R and is local, on the spectral side, the two operators are conjugate of one another:

ω = i # » δ(D) • |D| #» u and |D| #» u = -i # » δ(D)(ω). ( 67 
)
This property means that, in 2D, the structure of the curl is not as rich as its 3D analog (compare with Remark 6) and that, consequently, the conflict of two 2D contra-rotating vortices is not as profound as a conflict of spins in 3D.

In 2D, the resolution of such a conflict can only lead to a plain redistribution of the amplitude ϑ(ξ) in ( 65) and as the geometry of the equation does not leave any room for microlocal compensations, the flow either "has to" make a choice in favor of one direction of rotation or, in the case of perfect balance, let the viscosity eat up the singularity attempt. As we know, the Navier-Stokes equation is well-posed in 2D and the qualitative behavior of the vorticity [START_REF] Wayne | Long-time asymptotics of the Navier-Stokes equation in R 2 and R 3[END_REF] matches this heuristic.

In 3D, a redistribution among the pair of amplitudes (ϑ + (ξ), ϑ -(ξ)) in ( 46) also means favoring one spin over the other. However, the richer geometry provides the flow with a new way of "not chosing": it can amplify both spins simultaneously instead of letting the viscosity take over, which results in an escalating conflict of spin. Singularities, if they occur, are thus the byproduct of this unresolved microlocal game of chicken.

Of course, in the physical realm, the presence of sticky boundaries (i.e. with Dirichlet conditions) can produce numerous cases of spin imbalance and couplings, which gives the boundary layer its driving role in turbulence, regardless of whether or not true singularities or only quasi-singularities occur. One also has to wonder whether the late resolution of physically admissible extreme events of this type (i.e. conflict of spins that have escalated for a long time) favors subsequent cancellations, which could be the mechanism that drives intermittency.

Remark 23

We encourage the reader to consider the recent numerical simulations of Alexakis [START_REF] Alexakis | Helically decomposed turbulence[END_REF]. Our colleagues in physics study the energy and helicity fluxes of turbulent flows, by decomposing the influence of all possible interactions among spin-definite components. The numerical evidence hints at multiple non-trivial facts: the total energy flux can be split into three spin-related fluxes that remain independently constant in the inertial range; one of them amounts to 10% of the total energy flux and is a (hidden) backwards energy cascade, which subsists even in fully developed 3D turbulence. The helicity flux can be decomposed in a similar fashion into two fluxes that remain constant in the inertial range.

Critical determinants and non-local aspects of the regularity theory

In this section, we investigate the idea of computing energy estimates for C θ u with various values of θ > 0. Each computation leads to a determinant whose average sign plays a key role both in the growth of the regularity norms in the case of a potential blow-up and in their control as long as the flow remains smooth. It is worth insisting on the fact that geometric and non-local estimates seem to play a central role in the question of the regularity of the solutions of 3D Navier-Stokes. This study also leads to a geometric criterion for the uniqueness of Leray solutions and a slight variant of the Beale-Kato-Majda criterion.

Example: a geometric drive for enstrophy

Let us first investigate the well-known case of the enstrophy

E (t ) = R 3 |∇u| 2 = R 3 |ω| 2 . ( 68 
)
The equivalence between the two formulations follows e.g. from C 2 = -∆ for divergence-free fields.

Assuming regularity, one uses ω as a test function in the vorticity equation [START_REF] Constantin | The Beltrami spectrum for incompressible fluid flows[END_REF] and takes advantage of the cross-product structure of the nonlinearity, i.e. (u

• ∇)ω -(ω • ∇)u = C(ω × u).
One is led to the following balance:

ω(t ) 2 L 2 + 2ν t 0 C ω(t ) 2 L 2 d t + 2 t 0 R 3 det u, C u, ∆u d xd t = ω 0 2 L 2 . ( 69 
) Note that 〈ω × u, C ω〉 L 2 = R 3 det u, C u, ∆u d x.
This computation is a typical example involving a critical determinant: the average sign of the determinant is responsible for the variations of the norms measuring the regularity of the flow, here in terms of enstrophy. When ν = 0, i.e. for (smooth) 3D Euler flows, the space-time average of det u, C u, ∆u is the sole geometrical drive of the variations of enstrophy.

The best known a priori upper bounds for enstrophy is a Riccati-type control by Lu & Doering [START_REF] Lu | Limits on enstrophy growth for solutions of the three-dimensional Navier-Stokes equations[END_REF]:

E (t ) ≤ C E 3 (t ) (70) 
It is obtained by estimating the critical determinant mentioned above and diverges in finite time. For advanced numerical experiments on the growth of enstrophy for 3D viscous flows, see e.g. [START_REF] Protas | Extreme Vortex States and the Growth of Enstrophy in 3D Incompressible Flows[END_REF], [START_REF] Kang | Maximum amplification of enstrophy in three-dimensional Navier-Stokes flows[END_REF], [START_REF] Kang | Searching for Singularities in Navier-Stokes Flows Based on the Ladyzhenskaya-Prodi-Serrin Conditions[END_REF] and the numerous references to the numerical literature therein. An immediate corollary of ( 69) is a geometric criterion for regularity:

T 0 R 3 det u, C u, ∆u d xd t ≥ 0 =⇒ u ∈ L ∞ ([0, T ]; Ḣ 1 ) ∩ L 2 ([0, T ]; Ḣ 2 ). ( 71 
)
For example, one recovers in this manner that all irrotational flows are smooth because the critical determinant vanishes identically (they are indeed the gradients of solutions of the heat equation).

As a slightly more involved application, let us investigate the case of 3D fields with 2D symmetry, i.e.

v =   v 1 (x 1 , x 2 ) v 2 (x 1 , x 2 ) 0   and ω =   0 0 ∂ 1 v 2 -∂ 2 v 1   .
For such a field, one has

det(v, C v, ∆v) = - 0 v 1 ∆v 1 0 v 2 ∆v 2 ∂ 1 v 2 -∂ 2 v 1 0 0 = (∂ 2 v 1 -∂ 1 v 2 ) v 1 ∆v 2 -v 2 ∆v 1 .
If one introduces the stream function ψ(x 1 , x 2 ) such that v 1 = ∂ 2 ψ and v 2 = -∂ 1 ψ:

det(v, C v, ∆v) = -(∂ 2 ψ)(∂ 1 ∆ψ) + (∂ 1 ψ)(∂ 2 ∆ψ) ∆ψ,
which has no particular reason to vanish but leads to a global cancellation for any t > 0:

R 3 det(v, C v, ∆v) = 1 2 〈∂ 2 ψ, -∂ 1 (∆ψ) 2 〉 L 2 + 〈∂ 1 ψ, ∂ 2 (∆ψ) 2 〉 L 2 = 1 2 〈∂ 1 ∂ 2 ψ -∂ 2 ∂ 1 ψ, (∆ψ) 2 〉 L 2 = 0.
In particular, [START_REF] Shinbrot | The energy equation for the Navier-Stokes system[END_REF] implies the global regularity of such solutions, which has been known since Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF].

As the balance law (69) also holds for smooth solutions of the Euler equation, the previous computation implies the conservation of enstrophy for smooth 2D Euler flows.

Remark 24 For a general 3D divergence-free flow u, invoking the vector potential u = C Ψ and computing the critical determinant in (69) brings out 288 terms involving the product of a first, second and third order derivative of the components of Ψ, with no obvious compensations through space averages. This remark illustrates the huge gap in complexity between 2D and 3D flows.

General case

Let us go back to the Navier-Stokes equation written in the form [START_REF] Constantin | Direction of Vorticity and the Problem of Global Regularity for The Navier-Stokes Equations[END_REF]. The weak form of the nonlinear term is, as mentioned in [START_REF] Constantin | Navier-Stokes equations[END_REF], a determinant:

〈∂ t u, w〉 L 2 + ν〈C 2 u, w〉 L 2 + R 3 det(C u, u, w)d x = 0 ( 72 
)
for all divergence-free test fields w. Assuming u is smooth, one can collect various balance laws for Navier-Stokes by choosing w appropriately as a function of u. The two standard choices are either w = u, which gives Leray's energy equality for smooth solutions, and w = C u, which we explored in §3.2 and which relates to the balance of helicity. Taking w = C 2 u leads to [START_REF] Planchon | An extension of the Beale-Kato-Majda criterion for the Euler equations[END_REF] and the balance of enstrophy with, this time, a non-trivial critical determinant.

Leray's energy identity can be extended given a first integral of the flow, i.e. α such that (u • ∇)α = 0. Then w = αu is a divergence-free field and we have 〈∂ t u, αu〉 L 2 + ν〈C 2 u, αu〉 L 2 = 0, and thus

〈αu, u〉 L 2 - t 0 〈 αu, u〉 L 2 + 2ν t 0 〈C 2 v, αu〉 L 2 = 〈α(0)u 0 , u 0 〉 L 2 . ( 73 
)
For example, with α(t ) = e -2λt , we get a family of conservation laws indexed by λ > 0:

e -2λt u(t ) 2 L 2 + 2λ t 0 e -2λt u(t ) 2 L 2 d t + 2ν t 0 e -2λt ∇u(t ) 2 L 2 d t = u 0 2 L 2 , (74) 
which is a weighted time-integral (gauge transform) of the classical energy balance that puts t ∼ 1/(2λ) into focus. Similarly, for w = e -2λt C u, one gets a variant of ( 50):

e -2λt 〈u, C u〉 L 2 + 2λ t 0 e -2λt 〈u, C u〉 L 2 + 2ν t 0 e -2λt 〈C 2 u, C u〉 L 2 = 〈u 0 , C u 0 〉 L 2 . ( 75 
) Note that 〈u, C u〉 L 2 = C 1/2 + u 2 L 2 -C 1/2 -u 2 L 2 and 〈C 2 u, C u〉 L 2 = C 3/2 + u 2 L 2 -C 3/2 -u 2 L 2 .
Let us now investigate the more interesting case where w = C ± u.

Proposition 25 If u is a smooth solution of Navier-Stokes, one has the following balance laws:

C 1/2 ± u(t ) 2 + 2ν t 0 C 3/2 ± u 2 d t + t 0 R 3 det(C u, u, |D|u)d xd t = C 1/2 ± u 0 2 . ( 76 
)
Note that the critical determinant is identical in both cases, which is a new proof of [START_REF] Kang | Searching for Singularities in Navier-Stokes Flows Based on the Ladyzhenskaya-Prodi-Serrin Conditions[END_REF]. One has also:

u(t ) 2 Ḣ 1/2 + 2ν t 0 u(t ) 2 Ḣ 1/2 d t + t 0 R 3 det(C u, u, |D|u)d xd t = u 0 2 Ḣ 1/2 . ( 77 
)
Proof. The only non-trivial point is the critical determinant. One has: Remark 26 Thanks to Lemma 5, one can rewrite this critical determinant as:

det(C u, u, C + u)d x = det(C u, u, C u + C -u) = det(C u, u, C -u) and thus det(C u, u, | C |u)d x = det(C u, u, C + u) + det(C u, u, C -u) = 2 det(C u, u, C ± u).
det(C u, u, |D|u) = det((C + -C -)u, u, (C + + C -)u) = -2 det(u, C + u, C -u). ( 78 
)
This determinant is the geometrical drive for the growth of the Ḣ 1/2 norm. Among possible cancellations, it vanishes for Beltrami waves (C u proportional to u), for flows spectrally supported on a sphere (|D|u proportional to u) and, most importantly, for spin-definite flows (C u proportional to |D|u).

To handle fractional powers, it is simplest to split the spin-definite components to avoid problems with the lack of self-adjointness. Using w = C 2θ ± u for some θ > 0 and the properties established in §2.3, one gets:

C θ ± u(t ) 2 L 2 + 2ν t 0 C θ+1 ± u(t ) 2 L 2 d t + 2 t 0 R 3 det(C u, u, C 2θ ± u)d xd t = C θ ± u 0 2 L 2 . ( 79 
)
This time, the cancellation takes the form:

det(C u, u, C 2θ + u) + det(C u, u, C 2θ -u) = det(C u, u, |D| 2θ u).
For integer values of 2θ, one has:

det(C u, u, C 2θ + u) -det(C u, u, C 2θ -u) = det(C u, u, C 2θ u).
The determinants det(C u, u, C 2θ ± u) are the geometric drive for the growth of the Ḣ θ norm of the spindefinite components of u. In particular, we have proven the following statement.

Proposition 27 If u is a smooth solution of Navier-Stokes, one has the following balance laws:

u(t ) 2 Ḣ θ + 2ν t 0 u(t ) 2 Ḣ θ+1 d t + 2 t 0 R 3 det(C u, u, |D| 2θ u)d xd t = u 0 2 Ḣ θ ( 80 
)
for any θ > 0, and the spin-definite variants (79); when θ ∈ N, one can replace |D| 2θ by (-∆) θ . For any n ∈ N * , one has also

N n + (u, t ) -N n -(u, t ) + 2 t 0 R 3 det(C u, u, C n u)d xd t = u + 0 2 Ḣ n/2 -u - 0 2 Ḣ n/2 (81)
where the definition (49) is extended by

N n ± (u, t ) = u ± (t ) 2 Ḣ n/2 + 2ν t 0 u ± (t ) 2 Ḣ n/2+1 d t (82) and u ± 0 = Q ± u 0 .
The case θ = 0 is of special interest because, as for θ = 1/2, both critical determinants coïncide.

Proposition 28 If u is a smooth solution of Navier-Stokes, one has the following balance laws:

u ± (t ) 2 L 2 + 2ν t 0 ∇u ± (t ) 2 L 2 d t ± 2 t 0 R 3 det(C u, u -, u + )d xd t = u ± 0 2 L 2 . ( 83 
)
In particular, the balance between the spin-definite components is ruled by:

N 0 + (u, t ) -N 0 -(u, t ) + 4 t 0 R 3 det(C u, u -, u + )d xd t = u + 0 2 L 2 -u - 0 2 L 2 (84) Proof. Using u ± as a test function, one has det(C u, u, u ± ) = det(C u, u + + u -, u ± ) = ± det(C u, u -, u + ).

Applications

Regularity on [0, T ] × R 3 is assured when the following inequality holds:

∃θ ≥ 1/2, T 0 R 3 det(C u, u, |D| 2θ u)d xd t ≥ 0. ( 85 
)
Of course, giving sense to the previous integral requires some a priori knowledge that the solution is smooth. However, if the inequality is satisfied for some θ ≥ 1/2 along a sequence of, e.g., Galerkine approximations that converge to a given Leray solution u, then u enjoys a uniform bound in L ∞ ([0, T ]; Ḣ θ ) and therefore, according to [START_REF] Gallagher | Blow-up of critical Besov norms at a potential Navier-Stokes singularity[END_REF], is smooth on [0, T ]. To avoid making an assumption on approximating sequences, one can require instead the slightly stronger property on a general Leray solution:

∃θ ≥ 1/2, a. e. t ∈ [0, T ] R 3 det(C u, u, |D| 2θ u)d x ≥ 0 (86) 
with u 0 ∈ H θ . Then one can proceed as in the proof of Theorem 19 and show that the first time of singularity cannot occur before T .

Uniqueness criterion based on critical determinants

In this section, we revisit the weak-strong uniqueness result and investigate how the associated stability estimate can be expressed in a more geometric way. We refer the reader to [START_REF] Germain | Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations[END_REF] and the references therein for an in-depth discussion of weak-strong uniqueness for Navier-Stokes.

Let us consider two Leray solutions u j ( j = 1, 2) of the incompressible Navier-Stokes equation [START_REF] Constantin | Direction of Vorticity and the Problem of Global Regularity for The Navier-Stokes Equations[END_REF] and their difference δ = u 1u 2 . Using the energy inequality for each, one gets

δ(t ) 2 L 2 + 2ν t 0 ∇δ 2 L 2 ≤ u 1 (0) 2 L 2 + u 2 (0) 2 L 2 -2 〈u 1 (t ), u 2 (t )〉 L 2 + 2ν t 0 〈∇u 1 , ∇u 2 〉 L 2 .
The standard argument in favor of weak-strong uniqueness consists in observing that each equation tested against (a regularized version of) the other field ultimately gives:

〈u 1 (t ), u 2 (t )〉 L 2 + 2ν t 0 〈∇u 1 , ∇u 2 〉 L 2 = 〈u 1 (0), u 2 (0)〉 L 2 - t 0 〈(δ • ∇)u 1 , δ〉 L 2 , which implies δ(t ) 2 L 2 + 2ν t 0 ∇δ 2 L 2 ≤ δ(0) 2 L 2 + 2 t 0 〈(δ • ∇)u 1 , δ〉 L 2 (87)
and, with Gronwall's inequality:

δ(t ) 2 L 2 ≤ δ(0) 2 L 2 exp t 0 ∇u 1 (t ) L ∞ d t . ( 88 
)
This control is enough to ensure the uniqueness of all Leray solutions stemming from u 1 (0) as long as u 1 remains smooth. It remains nonetheless quite crude.

Instead, using [START_REF] Constantin | Navier-Stokes equations[END_REF], let us rewrite the crucial step in a more geometric way:

〈u 1 (t ), u 2 (t )〉 L 2 + 2ν t 0 〈∇u 1 , ∇u 2 〉 L 2 + t 0 det(C u 1 , u 1 , u 2 ) + det(C u 2 , u 2 , u 1 ) = 〈u 1 (0), u 2 (0)〉 L 2 . Observe that det(C u 1 , u 1 , u 2 ) + det(C u 2 , u 2 , u 1 ) = det(C δ, u 1 , u 2 ) = (u 1 × u 2 ) • C δ.
As div δ = 0, one has C δ L 2 = ∇δ L 2 and one can completely absorb the offending derivative:

δ(t ) 2 L 2 ≤ δ(0) 2 L 2 + 1 2ν t 0 u 1 × u 2 2 L 2 . ( 89 
)
In particular, we have the following statement.

Theorem 29 If u 1 and u 2 are two Leray solutions such that

u 1 × u 2 2 L 2 ≤ γ(t ) u 1 -u 2 2 L 2 with γ ∈ L 1 ([0, T ]) (90) 
then for any t ∈ [0, T ], one has

δ(t ) 2 L 2 ≤ δ(0) 2 L 2 exp T 0 γ(t )d t . (91) 
For example, if u 1 ∈ L 2 t L ∞ x we can apply this result because u 1 × u 2 = -u 1 × δ and we recover a well-known case of weak-strong uniqueness. However, the geometric assumption (90) is a priori weaker if, for example, the two fields tend to line up when one of them grows unbounded.

A variant of BKM based on critical determinants

Formally, the standard argument for the Beale-Kato-Majda criterion [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF], [START_REF] Planchon | An extension of the Beale-Kato-Majda criterion for the Euler equations[END_REF] consists in writing the equation for vorticity [START_REF] Constantin | The Beltrami spectrum for incompressible fluid flows[END_REF] in weak form against ω itself, which gives:

ω(t ) 2 L 2 + 2ν t 0 C ω 2 L 2 = ω 0 2 + 2 t 0 〈(ω • ∇)u, ω〉 L 2
and thus, in particular

ω(t ) 2 L 2 ≤ ω 0 2 + 2 t 0 ω 2 L 2 ω L ∞ .
Combined with Gronwall lemma, this ensures that the solution (of either Euler or Navier-Stokes) remains smooth as long as

T 0 ω(t ) L ∞ d t < +∞. (92) 
Let us present a variant of this computation, inspired by the previous critical determinants.

Our starting point is similar, but we write the non-linear term slightly differently:

ω(t ) 2 L 2 + 2ν t 0 C ω 2 L 2 + 2 t 0 〈ω × u, C ω〉 L 2 = ω 0 2 L 2 .
Now, if one splits ν = ν 1 + ν 2 with arbitrary values ν j > 0, one gets:

ω(t ) 2 L 2 + 2ν 1 t 0 C ω + 1 2ν 1 (ω × u) 2 L 2 + 2ν 2 t 0 C ω 2 L 2 = 1 2ν 1 t 0 ω × u 2 L 2 + ω 0 2 L 2 .
In particular, one obtains an estimate that is now specific to Navier-Stokes:

ω(t ) 2 L 2 + 2ν 2 t 0 C ω 2 L 2 ≤ ω 0 2 L 2 + 1 2ν 1 t 0 ω × u 2 L 2 . ( 93 
) Consequently, as ω × u 2 L 2 ≤ ω 2 L 2 u 2 L ∞ , Gronwall's lemma ensures the regularity of the flow on [0, T ] provided that T 0 u(t ) 2 L ∞ d t < +∞. ( 94 
)
This condition is the endpoint of the Prodi-Serrin L q t L p x family with 2 q + 3 p = 1. Let us finally point out that an interesting connection between the Beale-Kato-Majda criterion and the theory of turbulence was established by Cheskidov & Shvydkoy [START_REF] Cheskidov | A unified approach to regularity problems for the 3D Navier-Stokes and Euler Equations: the use of Kolmogorov's dissipation range[END_REF], who showed that a condition

T 0 ω ≤Q(t ) (t ) B 0 ∞,∞ d t < ∞ (95) 
ensures the regularity of the flow on [0, T ]. The dynamic wave-number 2 Q(t ) separates high-frequency modes where viscosity prevails over the non-linear term from the low-frequency modes where the Euler dynamics is dominant. It is defined by

Q(t ) = min q ∈ N ; ∀p > q, 2 -p ∆ p u L ∞ < c 0 ν . ( 96 
)
The constant c 0 > 0 is absolute. The operators ∆ p are the Littlewood-Paley projection on the p-th dyadic shell and ω ≤Q denotes the corresponding projection on the spectral ball of radius 2 Q . Using this criterion and a relation between the time-average of 2 Q(t ) and Kolmogorov's dissipation wave-number, the authors of [START_REF] Cheskidov | A unified approach to regularity problems for the 3D Navier-Stokes and Euler Equations: the use of Kolmogorov's dissipation range[END_REF] provide a strong analytical support to the fact that most turbulent flows (i.e. even mildly intermittent ones) are actually regular solutions of Navier-Stokes.

In retrospect, this last observation makes the denomination of turbulent solution given by Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] to his weak solutions a now unnecessarily confusing linguistic choice and it may be unwise to propagate it in the modern literature: mathematical singularities, if they exist, will be violent events that are likely to be of turbulent nature; however, most turbulent flows of practical interest for engineering purposes are smooth, albeit less smooth (e.g. in terms of analyticity radius) than the laminar flows, and only display quasi-singularities. Of course, this remark does not intend to denigrate in any way the admirable work of Jean Leray, who was greatly ahead of his era and whose entire life [65], [START_REF] Chemin | Jean Leray et les fondements mathématiques de la turbulence[END_REF] was a tribute to what a great mind can achieve in adversity, when it is moved by an unquenchable curiosity and a strong sense of humanism.

A Appendix

In this appendix, we recall some well known facts that bridge the standard vector calculus with its geometric foundations. We denote by 〈•, •〉 the canonical Euclidian scalar product of R 3 and by ( #» e 1 , #» e 2 , #» e 3 ) the canonical orthonormal basis. For a comprehensive introduction to geometrical hydrodynamics, we refer the reader to Arnold's works [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF], [START_REF] Arnold | Topological methods in hydrodynamics[END_REF].

A.1 Some vector calculus formulas

Let us start with the defining identity for the vector product in R 3 . 

Claim 30

A.2 Some differential calculus formulas

An orientation of R 3 is a choice of a non-trivial ω 0 in the 3rd exterior power Λ 3 R 3 , i.e. a non-degenerate alternating trilinear form on R 3 .

Definition 33

Let w be a one-form in R 3 . We define the vector field curl w by the identity

ι (curl w) ω 0 = d w, ( 102 
)
where ι stands for the interior product.

Remark 34

For ω 0 = d x 1 ∧ d x 2 ∧ d x 3 the interior product reads

ι X (ω 0 ) = X 1 d x 2 ∧ d x 3 -X 2 d x 1 ∧ d x 3 + X 3 d x 1 ∧ d x 2 (103) 
and with w = w j d x j we recover the usual formula for the curl.

In particular, for a function α, identifying a vector field u to a one-form we find: curl(αu) = α curl u + ∇α × u.

(104)

Next we investigate the curl of a general advection term and how these operators (do not) commute. (∇u j × ∇v j ).

(105)

Proof. We use a geometric approach because any direct attempt leads to nightmarish computations. We consider u as a vector and v as a 1-form and use Einstein summation convention freely:

u = u j ∂ ∂x j and v = v j d x j .
With ω 0 = d x 1 ∧ d x 2 ∧ d x 3 , recall that ι (curl v) ω 0 = d v i.e. curl v is a vector and d v is a 2-form. The Lie derivative L u is defined by Elie Cartan's Formula:

L u (ω) = ι u d ω + d (ι u ω). ( 106 
)
The convective term can be expressed as a 1-form in the following way:

(u • ∇)v = L u (v j )d x j = L u (v) -v j L u (d x j ) = L u (v) -v j d (ι u d x j ) = L u (v) -v j d u j .
As the Lie derivative commutes with exterior differentiation, one gets:

d (u • ∇)v = L u (d v) + d u j ∧ d v j .
Proceeding by identification, one gets The geometrical reason that gives the convection term its cross-product structure (see identity [START_REF] Chicone | The topology of stationary curl parallel solutions of Euler's equations[END_REF] when u = v) is the following.

ι curl((u•∇)v) ω 0 = d (u • ∇)v = L u (ι (curl v) ω 0 ) + d u j ∧ d v j = ι (curl v) L u (ω 0 ) + ι L u (curl v) ω 0 + d u j ∧ d v j = ( 
Lemma 36 Let u, v be vector fields in R 3 . Then we have

(u • ∇)v + (v • ∇)u = ∇(u • v) -u × curl v -v × curl u. ( 107 
)
Proof. We introduce ũ = u j d x j , ṽ = v j d x j the two one-forms associated to u and v and proceed as in the proof of the previous Lemma:

(u • ∇) ṽ + (v • ∇) ũ = L u (v j )d x j + L v (u j )d x j = L u ( ṽ) -v j L u (d x j ) + L v ( ũ) -u j L v (d x j ) = ι u d ṽ + d (ι u ṽ) -v j d u j +ι v d ũ + d (ι v ũ) -u j d v j = d (ι v ũ) + ι u ι curl v ω 0 + ι v ι curl u ω 0
In the last expression, we used (102) to expand d ũ and d ṽ. The three underlined terms cancel each other out because ι u ṽ = u j v j . Recall that the cross-product u × v is defined as a 1-form by the identity

(u × v) • w = ω 0 (u, v, w) i.e. u × v = ι v ι u ω 0 . ( 108 
)
We thus get (u

• ∇) ṽ + (v • ∇) ũ = ∇(u • v) + curl v × u + curl u × v,
which is the sought result.

Figure 1 :

 1 Figure 1: Real (left) and imaginary (right) parts of δ + (ξ) on the unit sphere |ξ| = 1. Multiplication by a suitable prefactor in C can rotate the axis (and the apparent singularity) of δ + (ξ) to any point on the sphere (the axis for the real and imaginary parts are the same). One obtains δ -(ξ) by complex conjugation of δ + (ξ); therefore, the imaginary part of the Fourier field "flows" the other way around in C 3 .

Figure 2 :

 2 Figure 2: Two examples of non-trivial divergence-free fields, with positive spin in the periodic setting x ∈ T 3 . Above: field u 1 (Beltrami); below: field u 2 (not generalized Beltrami). Left: streamlines of u j (x) over the pressure field. Right: streamlines of u j (x) over the intensity of the dissipation field. Units are arbitrary. Observe the righ-hand side motion.

Figure 3 :

 3 Figure 3: A third example of a non-trivial divergence-free field, with positive spin in the periodic setting x ∈ T 3 . The field is constructed as the superposition of three planar Beltrami waves with linearly independent directions. Left: streamlines of u j (x) over the pressure field. Right: intensity of the vorticity field. Units are arbitrary. The viewpoint is slightly different for better legibility. Four vortex filaments occur in the high-pressure region.

Finally

  , since | C | = |D|P, we can replace | C |u by |D|u. Subtracting the two identities gives (50), while adding them up provides the last claim.

1 and B = #» e 2 ,Claim 31 x 1 y 1 0 x 2 y 2 1 x 3 y 3 = x 1 y 2 -x 2 y 1 Remark 32

 123132132 Let A, B,C be vectors in R3 . Then we have〈A × B,C 〉 R 3 = det(A, B,C ) (97) In particular if R is a 3 × 3 matrix, we have t R R A × RB ) = (det R)(A × B ). (98)Proof. Both sides are bilinear antisymmetric in A, B thus one can reduce the identity to the sole case A = #» e Let A, B,C , X , Y be vectors in R 3 . Then we have:det(A × B, X , Y ) = 〈A, X 〉〈B, Y 〉 -〈B, X 〉〈A, Y 〉 (99)and the triple cross-product formula:(A × B ) ×C = 〈C , A〉B -〈C , B 〉A. (100)Proof. For each identity, both sides are bilinear antisymmetric in A, B The formulas reduce respectively to 0 Equation (100) implies the Jacobi identity(A × B ) ×C + (B ×C ) × A + (C × A) × B = 0,(101)since the left-hand side of (101) is also 〈C , A〉 B -〈C , B 〉A +〈A, B 〉C -〈A,C 〉B + 〈B,C 〉A -〈B, A〉C = 0.

Lemma 35

 35 Let u ∈ W 1,p loc and v ∈ W 2,p loc be two vector fields on R 3 for some p ∈ [1, +∞]. We have curl (u • ∇)v = (u • ∇) curl v -((curl v) • ∇)u + (div u)(curl v) + 1≤ j ≤3

  divu)ι curl v ω 0 + ι [u,curl v] ω 0 + d u j ∧ d v j ,providing (105) since d u j ∧ d v j = ι (∇u j ×∇v j ) ω 0 .

  Theorem19 If u is a Leray solution of Navier-Stokes stemming from u 0 ∈ H 1/2 , then u is smooth as long as it remains spin-definite.Proof. Let u be a Leray solution of Navier-Stokes with u 0 ∈ H 1/2 and T 1 > 0 such that u is spin-definite on [0, T 1 ]. Without impeding the generality, one can apply a planar symmetry if necessary and assume positive spin. It is common knowledge that u is smooth on some non-trivial interval [0, T 2 ]. One considers

As we plant our discussion exclusively within the L

framework, there are no potential flows like ∇(x 2y 2 + x

-3xz 2 ), which is both a gradient and a divergence-free field on R 3 . Such a field is formally in the range of P.

The notion of spin introduced in this article could then reasonably be called Fourier spin to insist on its global nature.

This article is the result of three years of reflection inspired by Vlad Vicol's remarkable talk at the CIRM of Marseille, in December 2018, which brought the two authors together. We are grateful to Prof. Vicol for his kind advice at that time and when we met again at the IHES in Gif-sur-Yvette in early 2020[START_REF] Vicol | Wild Weak Solutions to Equations arising in Hydrodynamics[END_REF]. Our meditation on the Beltrami waves that were used in the original proof[START_REF] Buckmaster | Nonuniqueness of weak solutions to the Navier-Stokes equation[END_REF] ultimately led us to Definition 7 of spin-definite fields and convinced us of the importance of this notion for hydrodynamics.