
HAL Id: hal-03608412
https://hal.science/hal-03608412v1

Preprint submitted on 14 Mar 2022 (v1), last revised 2 May 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree Diet: Reducing the Treewidth to Unlock FPT
Algorithms in RNA Bioinformatics

Bertrand Marchand, Yann Ponty, Laurent Bulteau

To cite this version:
Bertrand Marchand, Yann Ponty, Laurent Bulteau. Tree Diet: Reducing the Treewidth to Unlock
FPT Algorithms in RNA Bioinformatics. 2022. �hal-03608412v1�

https://hal.science/hal-03608412v1
https://hal.archives-ouvertes.fr

Marchand et al.

RESEARCH

Tree Diet: Reducing the Treewidth to Unlock
FPT Algorithms in RNA Bioinformatics
Bertrand Marchand1,2, Yann Ponty1* and Laurent Bulteau2*

*Correspondence:

yann.ponty@lix.polytechnique.fr;

laurent.bulteau@u-pem.fr
1LIX CNRS UMR 7161, Ecole

Polytechnique, Institut

Polytechnique de Paris, Palaiseau,

France
2LIGM, CNRS, Univ Gustave

Eiffel, F77454 Marne-la-Vallée,

France

Full list of author information is

available at the end of the article

Abstract

Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of
specialized Fixed-Parameter Tractable algorithms, many of which rely on a
combination of tree-decomposition and dynamic programming. The time/space
complexities of such approaches hinge critically on low values for the treewidth
tw of the input graph. In order to extend their scope of applicability, we
introduce the Tree-Diet problem, i.e. the removal of a minimal set of edges
such that a given tree-decomposition can be slimmed down to a prescribed
treewidth tw′. Our rationale is that the time gained thanks to a smaller treewidth
in a parameterized algorithm compensates the extra post-processing needed to
take deleted edges into account.

Our core result is an FPT dynamic programming algorithm for Tree-Diet,
using 2O(tw)n time and space. We complement this result with parameterized
complexity lower-bounds for stronger variants (e.g., NP-hardness when tw′ or
tw − tw′ is constant). We propose a prototype implementation for our approach
which we apply on difficult instances of selected RNA-based problems: RNA
design, sequence-structure alignment, and search of pseudoknotted RNAs in
genomes, revealing very encouraging results. This work paves the way for a wider
adoption of tree-decomposition-based algorithms in Bioinformatics.

Keywords: RNA; treewidth; FPT algorithms; RNA design; structure sequence
alignment

1 Introduction
Graph models and parameterized algorithms are found at the core of a sizable pro-

portion of algorithmic methods in bioinformatics addressing a wide array of sub-

fields, spanning sequence processing [1], structural bioinformatics [2], comparative

genomics [3], phylogenetics [4], and further examples that can be found in a review

by Bulteau and Weller [5]. RNA bioinformatics is no exception, with the prevalence

of the secondary structure, an outer planar graph [6], as an abstraction of RNA con-

formations, and the notable utilization of graph models to represent complex topo-

logical motifs called pseudoknots [7], inducing the hardness of several tasks, such

as structure prediction [8, 9, 10], structure alignment [11], or structure/sequence

alignment [12]. Such motifs are functionally important and conserved, as witnessed

by their presence in the consensus structure of 336 RNA families in the 14.5 edi-

tion of the RFAM database [13]. Moreover, methods in RNA bioinformatics [14]

are increasingly considering non-canonical base pairs and modules [15, 16], further

increasing the density of RNA structural graphs and outlining the need for scalable

algorithms.

mailto:yann.ponty@lix.polytechnique.fr
mailto:laurent.bulteau@u-pem.fr

Marchand et al. Page 2 of 29

A parameterized complexity approach can be used to circumvent the frequent

NP-hardness of relevant problems. It generally considers one or several parameters,

whose values are naturally bounded (or much smaller than the input size) within

real-life instances. Once relevant parameters have been identified, one aims to de-

sign a Fixed Parameter Tractable (FPT) algorithm, having polynomial complexity

for any fixed value of the parameter, and reasonable dependency on the parameter

value. The treewidth is a classic parameter for FPT algorithms, and intuitively cap-

tures a notion of distance of the input to a tree. It is popular in bioinformatics due

to the existence of efficient heuristics [17, 18] for computing tree-decompositions of

reasonable treewidth. Given a tree-decomposition, many combinatorial optimization

tasks can be solved using dynamic programming (DP), in time/space complexities

that remain polynomial for any fixed treewidth value. Resulting algorithms remain

correct upon (almost) arbitrary modifications of the objective function parameters,

and can be adapted to study statistical properties of search spaces through changes

of algebra.

Unfortunately, the existence of a parameterized (or FPT) algorithm does not

necessarily imply that of a practically-efficient implementation, even when the pa-

rameter takes low typical values. Indeed, the dependency of the complexity on

the treewidth may be prohibitive, both in terms of time and memory require-

ments. This limitation is particularly obvious while searching and aligning struc-

tured RNAs, giving rise to an algorithmic problem called RNA structure-sequence

alignment [19, 20, 12], for which the best known exact algorithm is in Θ(n.mtw+1),

with n the structure length, m the sequence/window length, and tw the treewidth

of the structure (inc. backbone). Such a complexity becomes impractical for struc-

tures having a treewidth higher than ∼ 4, which represent 50 to 70% of known RNA

structures, as shown by Figure 1, based on a broad analysis of structures found in

the PDB database. Similar complexities hold for problems that can be expressed

as (weighted) constraint satisfaction problems, with m representing the cardinality

of the variable domains. Such frameworks are frequently used for molecular design,

both in proteins [21] and RNA [22], and may require the consideration of tree-widths

as high as 20 or more [23].

In this paper, we investigate a pragmatic strategy to increase the practicality

of parameterized algorithms based on the treewidth parameter [27]. We put our

instance graphs on a diet, i.e. we introduce a preprocessing that reduces their

treewidth to a prescribed value by removing a minimal cardinality set of edges.

As discussed previously, the practical complexity of many algorithms greatly bene-

fits from the consideration of simplified instances, having lower treewidth. Moreover,

specific countermeasures for errors introduced by the simplification can sometimes

be used to preserve the correctness of the algorithm. For instance, for searching

structured RNAs using RNA structure-sequence alignment [19], an iterated filter-

ing strategy could use instances of increasing treewidth to restrict potential hits,

weeding them early so that a – costly – full structure is reserved to (quasi-)hits.

This strategy could remain exact while saving substantial time. Alternative coun-

termeasures could be envisioned for other problems, such as a rejection approach

to correct a bias introduced by simplified instances in RNA design. An overview of

our approach is sketched on Figure 2

Marchand et al. Page 3 of 29

Figure 1 Histogram of treewidth values over all RNA-only structures in the PDB database [24].
The data consists of 5 760 non-redundant graphs, each corresponding to a “chain” of a PDB
entity. The nucleotide chains and their base pairs were extracted using the DSSR tool [25]. On
each of these graphs, 4 standard treewidth heuristics from the LibTW library [26] (min-degree,
min-fill-in, lex-BFS, max-cardinality-search) were launched, and the best width result was selected.
Even if these heuristics reputedly tend to yield results close to the optimal, these results are still
upper bounds. For each individual structure, the actual treewidth value may be lower. Depending
on whether non-canonical base pairs are taken into account (right) or not (left), the proportion of
structures having a width ≥ 4 ranges from 50 to 70%. For such values, the complexity of
structure-sequence alignment (O(n ·mtw+1)) becomes prohibitive. It is also worth noting that
only pseudo-knotted structures may have a treewidth ≥ 3.

After stating our problem(s) in Section 2, we study in Section 3 the parameterized

complexity of the Graph-Diet problem, the removal of edges to reach a prescribed

treewidth. We propose, in Section 4, a practical Dynamic Programing FPT algo-

rithm for Tree-Diet, along with possible further optimizations for Path-Diet,

two natural simplifications of the Graph-Diet problem, where a tree (resp. path)

decomposition is provided as input and used as a guide. Finally, we show in Sec-

tion 5 how our algorithm can be used to extract hierarchies of graphs/structural

models of increasing complexity to provide alternative sampling strategies for RNA

design, and speed-up the search for pseudoknotted non-coding RNAs. We conclude

in Section 6 with future considerations and open problems.

2 Statement of the problem(s) and results
A tree-decomposition T (over a set V of vertices) is a tree whose nodes are subsets

of V , known as bags. The bags containing any v ∈ V induce a (connected) subtree

of T . A path-decomposition is a tree-decomposition whose underlying tree T is a

path. The width of T (denoted w(T)) is the size of its largest bag minus 1. An edge

{u, v} is visible in T if some bag contains both u and v, otherwise it is lost. T is a

tree-decomposition of G if all edges of G are visible in T . The treewidth of a graph

G is the minimum width over all tree-decompositions of G.

Problem (Graph-Diet) Given a graph G = (V,E) of treewidth tw, and an

integer tw′ < tw, find a tree-decomposition over V of width at most tw′ losing a

minimum number of edges from G.

A tree-diet of T is any tree-decomposition T ′ obtained by removing vertices from

the bags of T . T ′ is a d-tree-diet if w(T ′) ≤ w(T)− d.

Marchand et al. Page 4 of 29

RNA structure with pseudoknots

1 10 20 30 32

(Labeled) graph representation

1
2

30

3

29

45
25

6

24

7
19

8

18
9

11
10

12

13

21

14

20

15

16

28

17

27

22
23

26

31

32

Input

Tree decomposition
Initial width tw = 4

1

2

3

4

bag
width

19 21

19 21
16

13 19
21 16

7 19 13
21 16

19 13
21 20

7 5 19
13 21 16

7 19
18 16

7 12
13 21

28 5 13
21 16

6 7
5 19

28 5 21
16 25

28 13
15 16

28 16
25 27

5 21
24 2528 5

4 25

26 25
27

21 24
23

18 16
17

13 15
14

7 12
11

28 29
4

2 29
4

30 29
2 3 2

4

30 1
2

31 30

21 23
22

7 11
8

10 11
8

10 9
8

32 31

Target width
tw' = 2

Path decomposition (width = 4)

FPT/XP algorithm

Target tw' = 1

Ta
rget tw

' =
 3

Tree diet

tw' = 2
Path diet

Target tw' = 3

tw' = 1

H
e

u
ristics

A
 p

o
ste

rio
ri

a
p

p
ro

x
im

a
tio

n

E
x

a
ct so

lu
tio

n

(p
ra

ctica
lsp

e
e

d
u

p
)

Figure 2 General description of our approach and rationale. Starting from a structured instance,
e.g. an RNA structure with pseudoknots, our tree-diet/path-diet algorithms extract simplified
tree/path decompositions, having prescribed target width tw′. Those can be used within existing
parameterized algorithms to yield efficient heuristics, a posteriori approximations or even exact
solutions.

a b

c d

e f
g

h i

a b d

a d c

c d e

d e f

e f hg e h f h i

a d e h

a d c ea b d

d e f h

f h i

g e h

Figure 3 Illustrations for the Graph-Diet and Tree-Diet problems. Given a graph G on the left
(treewidth 3), an optimal solution for Graph-Diet, with target treewidth 2, yields the
tree-decomposition in the middle (edge ah is lost). On the other hand, any 1-tree-diet for the
tree-decomposition on the right loses at least 3 edges.

Problem (Tree-Diet) Given a graph G, a tree-decomposition T of G of width

tw, and an integer tw′ < tw, find a (tw − tw′)-tree-diet of T losing a minimum

number of edges.

Note that for Tree-Diet, T does not have to be optimal, so the width tw of

the input tree decomposition might be larger than the actual treewidth of G, thus

Tree-Diet can be used to reduce the width of any input decomposition. We define

Binary-Tree-Diet and Path-Diet analogously, where T is restricted to be a

binary tree (respectively, a path). An example of an instance of Graph-Diet and

of Tree-Diet are given in Figure 3.

Parameterized Complexity in a Nutshell The basics of parameterized complexity

can be loosely defined as follows (see [28] for the formal background). A parameter

k for a problem is an integer associated with each instance which is expected to

remain small in practical instances (especially when compared to the input size n).

An exact algorithm, or the problem it solves, is FPT if it takes time f(k)poly(n),

and XP if it takes time ng(k) (for some functions f, g). Under commonly accepted

conjectures (see for instance [29] for details), W[1]-hard problems may not be FPT,

Marchand et al. Page 5 of 29

Parameter Source treewidth Target treewidth Difference
Problem tw tw′ d = tw − tw′

Graph-Diet
FPT Para-NP-hard Para-NP-hard*

via MSO tw′ = 2 d = 1
Theorem 1 EDP(K4) [30] Theorem 2

Tree-Diet
XP Para-NP-hard

O∗((6∆)tw) FPT open d = 1
Theorem 7 Theorem 4

Binary-Tree-
XP open

Diet FPT

Path-Diet
O∗(12tw) XP
Theorem 7 O∗(twd)

Para-NP-hard

tw′ = 1

Theorem 3
W[1]-hard

Theorem 5

Theorem 8

Table 1 Parameterized results for our problems. Algorithm complexities are given up to polynomial
time factors (O∗ notation), ∆ denotes the maximum number of children in the input
tree-decomposition. (*) see Theorem 2 statement for a more precise formulation.

and Para-NP-hard problems (NP-hard even for some fixed value of k) are not FPT

nor XP.

2.1 Our results

Our results are summarized in Table 1. Although the Graph-Diet problem would

give the most interesting tree-decompositions in theory, it seems unlikely to admit

efficient algorithms in practice (see Section 3).

Thus we focus on the Tree-Diet relaxation, where an input tree-decomposition

is given, which we use as a guide/restriction towards a thinner tree-decomposition.

Seen as an additional constraint, it makes the problem harder (the case tw′ = 1

becomes NP-hard, Theorem 3, although for Graph-Diet it corresponds to the

Spanning Tree problem and is polynomial). With parameter tw however, it does

help reduce the search space. In Theorem 7 we give an O((6∆)tw∆2n) Dynamic

Programming algorithm, where ∆ is the maximum number of children of any bag in

the tree-decomposition. This algorithm can thus be seen as XP in general, but FPT

on bounded-degree tree-decompositions (e.g. binary trees and paths). This is not

a strong restriction, since the input tree may safely and efficiently be transformed

into a binary one (see Supplementary Section A for more details). Moreover, the

duplications of bags which are used in the conversion may only decease the number

of lost edges incurred by Tree-Diet.

We also consider the case where the treewidth needs to be reduced by d = 1

only, this without constraining the source treewidth. We give a polynomial-time

algorithm for Path-Diet in this setting (Theorem 8) which generalizes into an XP

algorithm for larger values of d, noting that an FPT algorithm for d is out of reach

by Theorem 5. We also show that the problem is Para-NP-hard if the tree degree is

unbounded (Theorem 4).

3 Algorithmic Limits: Parameterized Complexity Considerations
Graph-Diet can be seen as a special case of the Edge Deletion Problem (EDP)

for the family of graphs H of treewidth tw′ or less: given a graph G, remove as few

edges as possible to obtain a graph in H. Such edge modification problems are

more often parameterized by the number k of edited edges (see [31] for a complete

survey). Given our focus on increasing the practicality of treewdith-based algorithms

in bioinformatics, we restrict our focus to treewidth related parameters tw, tw′ and

d = tw − tw′.

Marchand et al. Page 6 of 29

a

b

c d

e

f

a

b

c’

e

f

Figure 4 A graph G (left) with treewidth 3. Deleting edge cd gives treewidth 2, implying that
G ∈ Treewidth2 + 1e. However, if one contracts edge cd, then the resulting graph (right) has
treewidth 3, and deleting any single edge does not decrease the treewidth. This example shows
that the graph family Treewidth 2+1e is not minor-closed.

Considering the target treewidth tw′, we note that EDP is NP-hard when H is

the family of treewidth-2 graphs [30], namely K4-free graphs, hence the notation

EDP(K4). It follows that Graph-Diet is Para-NP-hard for the target treewidth

parameter tw′.

3.1 Graph-Diet: practical solutions seem unlikely

For a combination of the parameters tw′ and k, we could imagine graph minor

theorems yielding parameterized algorithms “for free”, as it is often the case with

treewidth-based problems. In this respect, Graph-Diet corresponds to deciding if

a graph G belongs to the family of graphs having treewidth tw′, augmented by k

additional edges, denoted as Treewidth-tw′+ke since its introduction by Cai [32]. If

this family were minor-closed, polynomial minor-free-testing [33, 34] would yield an

FPT algorithm. However, this is not the case: for some graphs in the family, an edge

contraction yields a graph G′ not in Treewidth-tw′+ke, as illustrated by Figure 4.

Regarding the source graph treewidth tw, the vertex deletion equivalent of

Graph-Diet, where one asks for a minimum subset of vertices to remove to obtain

a given treewidth, is known as a Treewidth Modulator. This problem has been

better-studied than its edge-deletion counterpart [35], and has been shown to be

FPT for the treewidth [36]. For the edge-deletion version (Graph-Diet), we can

use an optimization variant of Courcelle’s Theorem [29, Thm. 7.12] to show that the

problem is FPT for tw. However, this is a purely theoretical result as the running-

time of such ”black-box” algorithms typically involve towers of exponentials on the

treewidth parameter.

Theorem 1 Graph Diet is FPT for the treewidth.

Proof We formulate Graph Diet as a Monadic Second-Order Logic (MSO) foru-

mula as follows: given a graph G = (V,E), an integer tw′ and a set X of edges, let

φtw′(G,X) be true iff G[E \ X] has treewidth tw′. Clearly φtw′ can be expressed

as an MSO formula, since both G[E \X] and ”being of treewidth tw′” can be ex-

pressed in MSO [37]. Thus, by Arnborg et al. [38], there exists an algorithm that,

given G of treewidth tw, finds a set X of minimum size satisfying φtw′(G,X) in

time ftw′(tw) · n. Writing g(tw) = maxtw′≤tw ftw′(tw), this yields an algorithm for

Graph Diet running in time at most g(tw) · n.

Marchand et al. Page 7 of 29

Overall, even though Graph Diet is FPT for the treewidth, ”practical” exact al-

gorithms seem out of reach. Indeed, any algorithm for Graph-Diet can be used to

compute the Treewidth of an arbitrary graph, for which current state-of-the-art

exact algorithms require time in twO(tw3) [27]. We thus have the following conjec-

ture, which motivates the Tree-Diet relaxation of the problem.

Conjecture 1 Graph-Diet does not admit algorithms with single-exponential

running time for the treewidth.

On a related note, it is worth noting that Edge Deletion to other graph classes

(interval, permutation, . . .) does admit efficient algorithms when parameterized by

the treewidth alone [39], painting a contrasted picture.

Finally, for parameter d, any polynomial-time algorithm for constant d would

allow to compute the treewidth of any graph in polynomial time. Since treewidth

is NP-hard we have the following result.

Theorem 2 There is no XP algorithm for Graph-Diet with parameter d unless

P= NP.

Proof We consider the decision version of Graph-Diet where a bound k on the

number of deleted edges is given. We build a Turing reduction from Treewidth:

more precisely, assuming an oracle for Graph-Diet with d = 1 is available, we

build a polynomial-time algorithm to compute the treewidth of a graph G. This

is achieved by computing Graph-Diet(G, tw, d = 1, k = 0) for decreasing values

of tw (starting with tw = |V |): the first value of tw for which this call returns no

solution is the treewidth of G. Note that this is not a many-one reduction, since

several calls to Graph-Diet may be necessary (so this does not precisely qualify as

an NP-hardness reduction, even though a polynomial-time algorithm for Graph-

Diet(G, tw, d = 1, k = 0) would imply P=NP).

3.2 Lower Bounds for Tree-Diet

Parameters tw′ and d would be the most interesting in practice, since parameterized

algorithms would be efficient for small diets or small target treewidth. However, we

prove strong lower-bounds for Tree-Diet on each of these parameters, leaving

very little hope for parameterized algorithms (we thus narrow down the possible

algorithms to the combined parameter tw′ + d, i.e. tw, see Section 4). Only XP for

parameter d when T has a constant degree remains open (cf. Table 1).

Theorem 3 Tree-Diet and Path-Diet are Para-NP-hard for the target

treewidth parameter tw′ (NP-hard for tw′ = 1).

Proof By reduction from the NP-hard problem Spanning Caterpillar Tree

[40]: given a graph G, does G have a spanning tree C that is a caterpillar? Given

G = (V,E) with n = |V |, we build a tree-decomposition T of G consisting of

n−1 bags containing all vertices (the width of the decomposition is therefore n−1)

connected in a path. Then (G, T) admits a tree-diet to treewidth 1 with n−1 visible

Marchand et al. Page 8 of 29

a
a

a a

b
b

b b

c
c

c c

•••••
•• • ••

•K1

(N + 1)

••• •••· · ·
Z1

(N)

d d

d d

e e

e e

f
f

f f

•••••
•• • ••

•K2

(N + 1)

••• •••· · ·
Z2

(N)g
g

g gh h h h

i i

i i

•••••
•• • ••

•K3

(N + 1)

••• •••· · ·
Z3

(N)

Figure 5 Reduction for Theorem 4 showing that Tree-Diet is NP-hard even for d = 1, from a
graph G (left) with k = 3 and n = 3 to a graph G′ (right, given by its tree-decomposition of
width N + n+ 1): a 1-tree-diet for G′ amounts to selecting a k-clique in the root bag, i.e. in G.

edges if, and only if, G admits a caterpillar spanning tree. Indeed, the subgraph of

G with visible edges must be a graph with pathwidth 1, i.e. a caterpillar [41]. With

n−1 visible edges, the caterpillar connects all n vertices together, i.e. it is a spanning

tree.

Theorem 4 Tree-Diet is Para-NP-hard for parameter d. More precisely, it is

W[1]-hard for parameter ∆, the degree of T , even when d = 1.

Proof By reduction from Multi-Colored Clique. Consider a k-partite graph

G = (V,E) with V =
⋃k
i=1 Vi. We assume that G is regular (each vertex has degree

δ and that each Vi has the same size n (Multi Colored Clique is W[1]-hard

under these restrictions [28, 29]). Let L := δk −
(
k
2

)
and N = max{|V |, L + 1}.

We now build a graph G′ and a tree-decomposition T ′: start with G′ := G. Add k

independent cliques K1, . . . ,Kk of size N + 1. Add k sets of N vertices Zi (i ∈ [k])

and, for each i ∈ [k], add edges between each v ∈ Vi and each z ∈ Zi. Build T
using 2k + 1 bags T0, T1,i, T2,i for i ∈ [k], such that T0 = V , T1,i = Vi ∪ Ki and

T2,i = Vi ∪ Zi. The tree-decomposition is completed by connecting T2,i to T1,i and

T1,i to T0 for each i ∈ [k]. Thus, T is a tree-decomposition of G′ with ∆ = k and

maximum bag size n+N +1 (vertices of V induce a size-3 path in T , other vertices

appear in a single bag, edges of G appear in T0, edges of Ki in T1,i, and finally edges

between Vi and Zi appear in T2,i). The following claim completes the reduction:

T has a 1-tree-diet losing at most L edges from G′ ⇔ G has a k-clique.

⇐ Assume G has a k-clique X = {x1, . . . , xk} (with xi ∈ Vi). Build T ′ by

removing each xi from bags T0 and T1,i. Then T ′ is a 1-tree-diet of T . There are

no edges lost by removing xi from T1,i (since xi is not connected to Ki), and the

edges lost in T0 are all edges of G adjacent to any xi. Since X forms a clique and

each xi has degree δ, there are L = kδ −
(
k
2

)
such edges.

⇒ Consider a 1-tree-diet T ′ of T losing L edges. Since each bag T1,i has max-

imum size, T ′ must remove at least one vertex xi in each T1,i. Note that xi ∈ Vi

Marchand et al. Page 9 of 29

(since removing xi ∈ Ki would loose at least N ≥ L+1 edges). Furthermore, xi may

not be removed from T2,i (otherwise N edges between xi and Zi would be lost), so

xi must also be removed from T0. Let K be the number of edges in G[{x1 . . . xk}].
The total number of lost edges in T0 is δk − K. Thus, we have δk − K ≤ L and

K ≥
(
k
2

)
: {x1, . . . , xk} form a k-clique of G.

Theorem 5 Path-Diet is W[1]-hard for parameter d.

Proof By reduction from Clique. Given a δ-regular graph G with n vertices and m

edges and an integer k, consider the trivial tree-decomposition T of G with a single

bag containing all vertices of G (it has width n− 1). Then (T , G) has a k-tree-diet

losing δk −
(
k
2

)
edges if and only if G has a k-clique. Indeed, such a tree-diet T ′

would remove a set X of k vertices from G and losing δk−
(
k
2

)
edges, so X induces(

k
2

)
edges and is a k-clique of G.

4 FPT Algorithm
4.1 For general tree-decompositions

We describe here a O(3twn)-space, O(∆tw+2 · 6twn)-time dynamic programming

algorithm for the Tree-Diet problem, with ∆ and tw being respectively the max-

imum number of children of a bag in the input tree-decomposition and its width.

On binary tree-decompositions (where each bag has at most 2 children), it yields a

O(3twn)-space O(12twn)-time FPT algorithm.

4.1.1 Coloring formulation

We aim at solving the following problem: given a tree-decomposition T of width tw

of a graph G, we want to remove vertices from the bags of T to reach a target width

tw′ while losing as few edges from G as possible. We tackle the problem through an

equivalent coloring formulation: our algorithm will assign a color to each occurrence

of a vertex in the tree decomposition. We work with three colors: red (r), orange

(o), and green (g). Green means that the vertex is kept in the bag, while orange and

red means removal of the vertex. An edge is thus visible within a bag when both its

ends are green. It is lost if there is no bag where it is visible. To ensure equivalence

with the original problem, the colors will be assigned following local rules, which

we now describe.

Definition 1 A coloring of vertices in the bags of the decomposition is said to be

valid if it follows the following rules:

• A vertex of a bag not present in its parent may be green or orange (R1)

• A green vertex in a bag may be either green or red in its children (R2)

• A red vertex in a bag must stay red in its children (R3)

• An orange vertex in a bag has to be either orange or green in exactly one

child (unless there is no child with this vertex), and must be red in the other

children (R4)

These rules are summarized in Figure 6 (a).

When going down the tree, a green vertex may only stay green or permanently

become red. An immediate consequence of these rules is therefore that the green

Marchand et al. Page 10 of 29

occurences of a given vertex form a (possibly empty) connected subtree. Informally,

orange vertices are locally absent but “may potentially be found further down the

tree”, while red vertices are removed from both the current bag and its entire

subtree. Figure 6 (b) shows an example sketch for a valid coloring of the occurrences

of a given vertex in the tree-decomposition. A vertex may only be orange along a

path starting form its highest occurrence in the tree, with any part branching off

that path entirely red. It ends at the top of a (potentially empty) green subtree,

whose vertices may also be parents to entirely red subtrees.

We will now more formally prove the equivalence of the coloring formulation to

the original problem. Let us first introduce two definitions. Given a valid coloring

C of a tree-decomposition of G, an edge (u, v) of G is said to be realizable if there

exists a bag in which both u and v are green per C. Given an integer d, a coloring

C of T is said to be d−diet-valid if removing red/orange vertices reduces the width

of T from w(T) to w(T)− d.

Proposition 1 Given a graph G, a tree-decomposition T of width tw, and a target

width tw′ < tw, The Tree-Diet problem is equivalent to finding a (tw− tw′)-diet-

valid coloring C of T allowing for a number of realizable edges in G as large as

possible.

Proof Given a (tw− tw′)-tree-diet of T , specifying which vertices are removed from

which bags, we obtain a valid coloring C for T incurring the same number of lost

(unrealizable) edges. To start with, a vertex u is colored green in the bags where

it is not removed. By the validity of T ′ as a decomposition, this set of bags forms

a connected subtree, that we denote T g
u . We also write Tu for the subtree of bags

containing u in the original decomposition T . If T g
u and Tu do not have the same

root, then u is colored orange on the the path in T from the root of Tu (included) and

the root of T g
u (excluded). Vertex u is colored red in any other bag of Tu not covered

by these two cases. The resulting coloring follows rules (R1-4) and induces the same

set of lost/non-realizable edges as the original (tw − tw′)-tree-diet. Conversely, an

equivalent (tw − tw′)-tree-diet is obtained from a (tw − tw′)-diet-valid coloring by

removing red/orange vertices and keeping green ones. If a given vertex has no green

occurences, it is entirely removed from the tree decomposition and all its edges are

lost (it becomes an isolated vertex). We may add it back to the tree decomposition

by introducing a new bag containing only this vertex, which we connect arbitrarily

to the tree decomposition.

4.1.2 Decomposition of the search space and sub-problems

Based on this coloring formulation, we now describe a dynamic programming scheme

for the Tree-Diet problem. We work with sub-problems indexed by tuples (Xi, f),

with Xi a bag of the input tree decomposition and f a coloring of the vertices of

Xi in green, orange or red (in particular, f−1(g) denotes the green vertices of Xi,

and similarly for o and r).

Let us introduce some notations before giving the definition of our dynamic

programming table. Given an edge (u, v) of G, realizable when coloring a tree-

decomposition T of G with C, we write T g
uv the subtree of T in which both u and

Marchand et al. Page 11 of 29

Figure 6 (a) Color assignation rules for vertices, when going down-tree. (b) Sketch of the general
pattern our color assignation rules create on Tu, the subtree of bags containing a given vertex u

v are green. We denote by Ti the subtree of the decomposition rooted at Xi, and

C(i, f) the d-diet-valid colorings of Ti agreeing with f on i, with d = tw− tw′. Our

dynamic programming table is then defined as:

c(Xi, f) =

max
C∈C(i,f)

∣∣∣∣∣∣
Edges (u, v) of G, realizable within Ti colored with C

such that T g
uv is entirely contained strictly below Xi

∣∣∣∣∣∣

if f assigns green to at most tw′ + 1 vertices

−∞ otherwise

The cell c(Xi, f) therefore aggregates all edges realizable strictly below Xi. As we

shall see through the recurrence relation below and its proof, edges with both ends

green in Xi will be accounted for above Xi in T .

We assume w.l.o.g that the tree-decomposition is rooted at an empty bag R. Given

the definition of the table, the maximum number of realizable edges, compatible

with a tree-diet of (tw − tw′) to T , can be found in c(R, ∅).
The following theorem presents a recurrence relation obeyed by c(Xi, f) :

Theorem 6 For a bag Xi of T , with children Y1, ...Y∆, we have:

c(Xi, f) = max
m:f−1(o)→[1..∆]

 ∑
1≤j≤∆

(
max

f ′j∈compatible(Yj ,f,m)
c(Yj , f

′
j) +

∣∣count(f, f ′j)∣∣
)

with

• m: a map from the orange vertices in Xi to the children of Xi. It decides for

each orange vertex u, which child, among those which contain u, will color u

orange or green; If there are no orange vertices in Xi, only the trivial empty

map is considered.

• compatible(Yj , f,m): the set of colorings of Yj compatible with f on Xi and

m;

• count(f, f ′j): set of edges of G involving two vertices of Yj green by f ′j, but

such that one of them is either not in Xi or not green by f .

Note that compatible(Yj , f,m) may contain colorings f ′j that colour too many

vertices in Yj in green to reach target width tw′. In that case c(Yj , f
′
j) = −∞.

Marchand et al. Page 12 of 29

Theorem 6 relies on the following separation lemma for realizable edges under

a valid coloring of a tree-decomposition. Recall that we suppose w.l.o.g that the

tree-decomposition is rooted at an empty bag.

Lemma 1 An edge (u, v) of G, realizable in T under C, is contained in exactly

one set of the form count(C|P , C|X) with X a bag of T and P its parent, C|P , C|X

the restrictions of C to P and X, respectively, and “count” defined as above. In

addition, X is the root of the subtree of T in which both u and v are green.

Proof Given, in a tree-decomposition, a bag P colored with f , with a childX colored

with h, a more precise definition for count(f, h) is:

count(f, h) =

{
(u, v) ∈ E

∣∣∣ h(u) = h(v) = g and

(u /∈ P or f(u) 6= g or v /∈ P or f(v) 6= g)

}

Now, given a realizable edge (u, v), in a tree-decomposition T colored with C,
the set of bags in which both u and v are green forms a connected subtree of T .

This subtree has a root, or lowest common ancestor, that we denote R(u,v). Since

we assumed T to be rooted at an empty bag, R(u,v) is not the root of T , and

has a parent. We call this parent P(u,v). Clearly, (u, v) belongs to the “count set”

associated to the edge (P(u,v)) → (R(u,v)) of T , while for any other edge X → Y

of T , the colors of u and v cannot verify the conditions to belong to the associated

“count set”.

Proof of Theorem 6

≤ Let us more concisely use RE↓(Ti, C, G) to denote the set of edges (u, v) of

G, realizable under the (tw− tw′)-diet-valid coloring C of Ti, such that T g
uv is

entirely contained strictly below Xi. We have, if f contains enough red/orange

vertices to reduce the size of Xi to target size:

c(Xi, f) = max
C∈C(i,f)

|RE↓(Ti, C, G)|

By definition, c(Xi, f) is the maximum number of realizable edges in the

subtree-decomposition rooted at Xi, such that all green-green occurences of

the edge occur strictly below Xi, and under the constraint that f colors Xi.

Let C be a coloring for Ti realizing the optimum c(Xi, f). Its restrictions to

Y1 . . . Y∆ yield colorings f ′1 . . . f
′
∆. Likewise, its restrictions to the subtree-

decompositions T ′1 . . . T ′∆ rooted at Y1 . . . Y∆ yield colorings C′1 . . . C′∆ com-

patible with f ′1 . . . f
′
∆. C′1 . . . C′∆ cannot be better than the optimal, so ∀j,

|RE↓(T ′j , C′j , G)| ≤ c(Yj , f ′j)
Let (u, v) be an edge of RE↓(Ti, C, G). Per Lemma 1, either (u, v) ∈
count(f, f ′j) for some j (if Yj is the root of T g

uv) and (u, v) /∈ ∪jRE↓(T ′j , C′j , G)

Marchand et al. Page 13 of 29

or (u, v) ∈ count(f, f ′j) and ∃j such that (u, v) ∈ RE↓(T ′j , C′j , G). Therefore:

c(Xi, f) = |RE↓(Ti, C, G)| =
∑

1≤j≤∆

[
|RE↓(T ′j , C′j , G)|+ count(f, f ′j)

]
≤

∑
1≤j≤∆

(
c(Yj , f

′
j) + count(f, f ′j)

)
and, a fortiori

c(Xi, f) ≤ max
m:f−1(o)→[1...∆]

∑
1≤j≤∆

max
f ′j∈compatible(Yj ,f,m)

(
c(Yj , f

′
j) + count(f, f ′j)

)

≥ Conversely, given f , let m be an assignation map for orange vertices and

f ′1 . . . f
′
∆ colorings of Y1 . . . Y∆ compatible with f and m, and let C′1 . . . C′∆ be

colotings of T ′1 . . . T ′∆ realizing the optima c(Y1, f
′
1) . . . c(Y∆, f

′
∆). The union of

C′1 . . . C′∆ and f is a coloring C for Ti, the subtree-decomposition rooted at Xi,

which can not be better than optimal (|RE↓(Ti, C, G)| ≤ c(Xi, f)). As before,

an edge (u, v) either belongs to ∪jcount(f, f ′j) or to ∪jRE↓(T ′j , C′j , G) but not

both. In any case, it belongs to RE↓(Ti, C, G). Therefore:

∑
1≤j≤∆

(
c(Yj , f

′
j) + count(f, f ′j)

)
=

∑
1≤j≤∆

(
|RE↓(T ′j , C′j , G)|+ count(f, f ′j)

)
= |RE↓(Ti, C, G)|
≤ c(Xi, f)

This is true for any choice of m, f ′1 . . . f
′
∆, therefore:

max
m:f−1(o)→[1...∆]

∑
1≤j≤∆

max
f ′j∈compatible(Yj ,f,m)

(
c(Yj , f

′
j) + count(f, f ′j)

)
≤ c(Xi, f)

which concludes the proof.

Dynamic programming algorithm The recurrence relation of Theorem 6 naturally

yields a dynamic programming algorithm for the Tree-Diet problem, as stated

below:

Theorem 7 There exists a O(∆tw+2 ·6tw ·n)-time, O(3tw ·n)-space algorithm for

the Tree-Diet problem, with ∆ the maximum number of children of a bag in the

input tree-decomposition, and tw its width.

Proof of Theorem 7 Given the sub-problems and c(Xi, f)-table definitions, with R

the (empty) root of the tree-decomposition, c(R, ∅) is indeed the maximum possible

number of realizable edges when imposing a (tw − tw′)-diet to T . The recurrence

relation of Theorem 6 therefore lends itself to a dynamic programming approach,

over the tree-decomposition T following leaf-to-root order, for the problem.

Marchand et al. Page 14 of 29

It is reasonable to assume the number of bags in a tree decomposition to be linear

in n (this is for instance the case for a nice tree decomposition [42, 29], or for a

tree decomposition obtained from an elimination ordering, see [43, 17]). Therefore,

the number of entries to the table is O(3twn), given that a bag X may be colored

in 3|X| ways, and that the maximum size of X is tw+ 1. For a given entry Xi, one

must first enumerate all possible choices of m : f−1(o)→ [1...∆], map assigning one

child of Xi to each orange vertex in Xi. There are O(∆tw+1) possibilities for m in

the worst case, as |f−1(o)| ≤ tw + 1. Then, for each child Yj , one must enumerate

all possible colorings f ′j compatible with f . Possibilities for f ′j(u) depend on the

color by f :

• if u /∈ Xi → f ′j(u) = o or g

• if f(u) = g→ f ′j(u) = g or r

• if f(u) = o→ f ′j(u) = o or g if m[u] = j or f ′j(u) = r otherwise.

• if f(u) = r→ f ′j(u) = r

Overall, as there are at most ∆ children, tw + 1 vertices in each child, and 2

possibilities (see enumeration of cases above) of color for each vertex in a child,

yielding a total number of compatible colorings bounded by O(∆ · 2tw+1). Multi-

plying these contributions, the overall time complexity of our algorithm is therefore

O(∆tw+2 · 6tw · n).

Corollary 1 Binary-Tree-Diet (∆ = 2) admits an FPT algorithm for the tw

parameter.

A pseudo-code implementation of the algorithm, using memoization, is included

in Supplementary Section B

4.2 For path decompositions

In the context of path decompositions, we note that the number of removed vertices

per bag can be limited to at most 2d without losing the optimality. More precisely,

we say that a coloring C is d-simple if any bag has at most d orange and d red

vertices. We obtain the following result, using transformations given in Figure 7.

Proposition 2 Given a graph G and a path-decomposition T , if C is a d-diet-valid

coloring of T losing k edges, then T has a d-diet-valid coloring that is d-simple, and

loses at most k edges.

Proof of Proposition 2 Consider such a coloring C with a maximal number of green

vertices. We show that it is d-simple. Assume the path-decomposition T is rooted

in bag X1 and each Xi is the parent of Xi+1. Pick i to be the smallest index so that

at least d + 1 vertices in Xi are colored red by C, assume any such i exists. Then

one of these vertices, say u, is not colored red in Xi−1 (either because i = 1, or it

is not in Xi−1, or it is orange or green in Xi−1). Consider C′ obtained by C and

coloring u green in Xi. Then C′ satisfies local rules R1 through R4 (a green vertex

may be absent, green or orange in the parent bag, and a red vertex may be green in

the parent bag). Furthermore, it is d-diet-valid since it still removes at least d (red)

vertices in Xi. Overall C′ is another d-diet-valid coloring with more green vertices:

a contradiction, so no such i exist (and no bag has d + 1 red vertices). The same

argument works symmetrically for orange vertices. Overall, C is d-simple.

Marchand et al. Page 15 of 29

(a) (b)

(c) (d)

• •• •

• •

• •• •

• •

u v

u
v

(e)

Figure 7 Five cases where two vertices are deleted in the same bag with d = 1. Bags are points in
the line, and an interval covering all bags containing v is drawn for each v (with an equivalent
coloring, see Proposition 1). Cases (a) to (d) can be safely avoided by applying the given
transformations. In the example for case (e), however, it is necessary to delete both vertices u and
v form a central bag. It is sufficient to avoid cases (a) and (b) in order to obtain an XP algorithm
for d.

Together with Proposition 1, this shows that it is sufficient to restrict our al-

gorithm to d-simple colorings. (See also Figure 7). In particular, for any set Xi,

choosing which ≤ d vertices are orange and which ≤ d are red, among the total of

n vertices, is enough to fix a coloring. The number of such colorings is therefore

bounded by O(tw2d). Applying this remark to our algorithm presented in Section 4.1

yields the following result:

Theorem 8 Path-Diet can be solved in O(tw2dn)-space and O(tw4dn)-time.

5 Proofs of concept
We now illustrate the relevance of our approach, and the practicality of our algo-

rithm for Tree-Diet, by using it in conjunction with FPT algorithms for three

problems in RNA bioinformatics. We implemented in C++ the dynamic program-

ming scheme described in Theorem 7 and Supplementary Section B. Its main prim-

itives are made available for Python scripting through pybind11 [44].

It actually allows to solve a generalized weighted version of Tree Diet, as ex-

plained in Supplementary Section B. This feature allows to favour the conservation

of important edges (e.g. RNA backbone) during simplification, by assigning them a

much larger weight compared to other edges. Our implementation is freely available

at https://gitlab.inria.fr/amibio/tree-diet.

The execution time of this implementation on elements of the data set used for

Figure 1 (all RNA-only structures of the PDB database) is represented on Figure 8,

for input treewidth values of up to 7. It shows that our tree-diet method is applicable

with reasonable run-times (. 1 hour) for all structures of width ≤ 7. The proofs-of-

concepts presented in this section involve however instances with treewidth of up

to 9, in the case of RNA design, for which the run-time also stays reasonable.

5.1 Memory-parsimonious unbiased sampling of RNA designs

As a first use case for our simplification algorithm, we strive to ease the sampling

phase of a recent method, called RNAPond [22], addressing RNA negative design.

https://gitlab.inria.fr/amibio/tree-diet

Marchand et al. Page 16 of 29

0 500 1000 1500 2000 2500
number of vertices

10 2

10 1

100

101

102

103

tre
e-

di
et

 ru
nt

im
e

(s
)

width=3->1
width=4->2
width=5->3
width=6->4
width=7->5

Figure 8 Run-time of the tree-diet algorithm on all RNA-only structures of the PDB database,
versus the size (length of the RNA string) of these structures. The data set is the same as
Figure 1, limited to structures of treewidth ≤ 7. Structures are colored by their original treewidth.
Here, we have asked the algorithm to reduce the treewidth by 2.

The method targets a set of base pairs S, representing a secondary structure of

length n, and infers a set D of m disruptive base pairs (DBPs) that must be avoided.

It relies on a Θ(k · (n + m)) time algorithm for sampling k random sequences (see

Supplementary Section C for details) after a preprocessing in Θ(n ·m · 4tw) time

and Θ(n · 4tw) space. Here, the input consists of a graph G = ([1, n], S ∪ D) and a

tree decomposition T of G, having width tw. In practice, the preprocessing largely

dominates the overall runtime, even for large values of k, and its large memory

consumption represents the main bottleneck.

This discrepancy in the complexities/runtimes of the preprocessing and sampling

suggests an alternative strategy: relaxing the set of constraints to (S′,D′), with

(S′ ∪D′) ⊂ (S ∪D), and compensating it through a rejection of sequences violating

constraints in (S,D)\ (S′,D′). The relaxed algorithm would remain unbiased, while

the average-case time complexity of the rejection algorithm would be in Θ(k · q ·
(n+m)) time, where q represents the relative increase of the partition function (≈
the sequence space) induced by the relaxation. The preprocessing step would retain

the same complexity, but based on a (reduced) treewidth tw′ ≤ tw for the relaxed

graph G′ = ([1, n], S′ ∪ D′).
These complexities enable a tradeoff between the rejection (time), and the prepro-

cessing (space), which may be critical to unlock future applications of RNA design.

Indeed, the treewidth can be decreased by removing relatively few base pairs, as

demonstrated below using our algorithm on pairs inferred for hard design instances.

We considered sets of DBPs inferred by RNAPond over two puzzles in the EteRNA

benchmark. The EteRNA22 puzzle is an empty secondary structure spanning 400

nts, for which RNAPond obtains a valid design after inferring 465 DBPs. A tree

decomposition of the graph formed by these 465 DPBs is then obtained with the

standard min-fill-ordering heuritic [18], giving a width of 6. The EteRNA77 puzzle

is 105 nts long, and consists in a collection of helices interspersed with destabilizing

internal loops. RNApond failed to produce a solution, and its final set of DBPs

consists of 183 pairs, for which the same heuristic yields a tree decomposition of

Marchand et al. Page 17 of 29

1 10 20 30 40 50 60 70 80 90 100 105

Width

8

7

6

5

4

#Preserved BPs
tw′ EteRNA22 EteRNA77

9 – 183
8 – 182
7 – 180
6 465 176
5 460 168
4 456 157
3 445 144
2 418 121
1 320 86

Figure 9 (Left) Target secondary structure (blue BPs), full set of disruptive base pairs (DPB;
top) inferred by RNAPond on the Eterna77 puzzle, and subsets of DBPs (bottom) cumulatively
removed by the tree-diet algorithm to reach prescribed treewidths. (Right) Number of BPs
retained by our algorithm, targeting various treewidth values for the EteRNA22 and EteRNA77
puzzles.

width 9. We further make both tree decompositions binary through bag duplications

(see Supplementary Section A), giving an FPT runtime to our algorithm, while

potentially lowering the number of lost edges.

Executing the tree-diet algorithm (Theorem 7) on both graphs and their tree de-

compositions, we obtained simplified graphs, having lower treewidth while typically

losing few edges, as illustrated and reported in Figure 9. Remarkably, the treewidth

of the DBPs inferred for EteRNA22 can be decreased to tw′ = 5 by only removing

5 DBPs/edges (460/465 retained), and to tw′ = 4 by removing 4 further DBPs

(456/465). For EteRNA77, our algorithm reduces the treewidth from 9 to 6 by only

removing 7 DBPs.

Rough estimates can be provided for the tradeoff between the rejection and prepro-

cessing complexities, by assuming that removing a DBP homogeneously increases

the value of Z by a factor α := 16/10 (#pairs/#incomp. pairs). The relative in-

crease in partition function is then q ≈ αb, when b base pairs are removed. For

EteRNA22, reducing the treewidth by 2 units (6→4), i.e. a 16 fold reduction of the

memory and preprocessing time, can be achieved by removing 9 DBPs, i.e. a 69

fold expected increase in the time of the generation phase. For EteRNA77, the same

16 fold (tw′ = 9 → 7) reduction of the preprocessing time/space can be achieved

through an estimated 4 fold increase of the generation time. A more aggressive

256 fold memory gain can be achieved at the expense of an estimated 1 152 fold

increase in generation time. Given the large typical asymmetry in runtimes and

implementation constants between the computation-heavy preprocessing and, rela-

tively light, generation phases, the availability of an algorithm for the tree-diet

problem provides new options, especially to circumvent memory limitations.

5.2 Structural alignment of complex RNAs

Structural homology is often posited within functional families of non-coding RNAs,

and is foundational to algorithmic methods for multiple RNA alignments [13], con-

sidering RNA base pairs while aligning distant homologs. In the presence of complex

structural features (pseudoknots, base triplets), the sequence-structure alignment

problem becomes hard, yet admits XP solutions based on the treewidth of the base

Marchand et al. Page 18 of 29

pair + backbone graph. In particular, Rinaudo et al. [12] describe a Θ(n.mtw+1)

algorithm for optimally aligning a structured RNA of length n onto a genomic

region of length m. It optimizes an alignment score that includes: i) substitution

costs for matches/mismatches of individual nucleotides and base pairs (including

arc-breaking) based on the RIBOSUM matrices [45]; and ii) an affine gap cost

model [46]. We used the implementation of the Rinaudo et al. algorithm, imple-

mented in the LicoRNA software package [47, 48].

5.2.1 Impact of treewidth on the structural alignment of a riboswitch

In this case study, we used our tree-diet algorithm to modulate the treewidth of

complex RNA structures, and investigate the effect of the simplification on the

quality and runtimes of structure-sequence alignments. We considered the Cyclic

di-GMP-II riboswitch, a regulatory motif found in bacteria that is involved in sig-

nal transduction, and undergoes conformational change upon binding the second

messenger c-di-GMP-II [49, 50]. A 2.5Å resolution 3D model of the c-di-GMP-II

riboswitch in C. acetobutylicum, proposed by Smith et al. [51] based on X-ray crys-

tallography, was retrieved from the PDB [24] (PDBID: 3Q3Z). We annotated its

base pairs geometrically using the DSSR method [52]. The canonical base pairs, sup-

plemented with the backbone connections, were then accumulated in a graph, for

which we heuristically computed an initial tree decomposition T4, having treewidth

tw = 4.

We simplified our the initial tree decomposition T4, and obtained simplified models

T3, and T2, having width tw′ = 3 and 2 respectively. As controls, we included tree

decompositions based on the secondary structure (max. non-crossing set of BPs;

T2D) and sequence (T1D). We used LicoRNA to predict an alignment aT ,w of each

original/simplified tree decomposition T onto each sequence w of the c-di-GMP-II

riboswitch family in the RFAM database [13] (RF01786). Finally, we reported the

LicoRNA runtime, and computed the Sum of Pairs Score (SPS) [53] as a measure

of the accuracy of aT ,w against a reference alignment a?w:

SPS(aT ,w; a?w) =
|MatchedCols(aT ,w) ∩MatchedCols(a?w) |

|MatchedCols(a?w) | ,

using as reference the alignment a?w between the 3Q3Z sequence and w induced by

the manually-curated RFAM alignment of the RF01786 family.

The results, presented in Figure 10, show a limited impact of the simplification

on the quality of the predicted alignment, as measured by the SPS in comparison

with the RFAM alignment. The best average SPS (77.3%) is achieved by the initial

model, having treewidth of 4, but the average difference with simplified models

appears very limited (e.g. 76.5% for T3), especially when considering the median.

Meanwhile, the runtimes mainly depend on the treewidth, ranging from 1h for T4

to 300ms for T1D. Overall, T2D seems to represent the best compromise between

runtime and SPS, although its SPS may be artificially inflated by our election

of RF01786 as our reference (built from a covariance model, i.e. essentially a 2D

structure). Finally, the difference in number of edges (and induced SPS) between

T2D and T2, both having tw = 2, exemplifies the difference between the Tree-Diet

and Graph-Diet problems, and motivates further work on the latter.

Marchand et al. Page 19 of 29

Figure 10 Impact on alignment quality (SPS; Left) and runtime (Right) of simplified instances for
the RNA sequence-structure alignment of the pseudoknotted c-di-GMP-II riboswitch. The impact
of simplifications on the quality of predicted alignments, using RFAM RF01786 as a reference,
appears limited while the runtime improvement is substantial.

5.2.2 Exact iterative strategy for the genomic search of ncRNAs

In this final case study, we consider an exact filtering strategy to search new oc-

currences of a structured RNA within a given genomic context. In this setting, one

attempts to find all ε-admissible (cost ≤ ε) occurrences/hits of a structured RNA

S of length n within a given genome of length g � n, broken down in windows of

length κ.n, κ > 1. Classically, one would align S against individual windows, and

report those associated with an ε−admissible alignment cost. This strategy would

have an overall Θ(g · ntw+2) time complexity, applying for instance the algorithm

of [12].

Our instance simplification framework enables an alternative strategy, that incre-

mentally filters out unsuitable windows based on models of increasing granularity.

Indeed, for any given target sequence, the min alignment cost cδ obtained for a

simplified instance of treewidth tw− δ can be corrected (cf Supplementary Section

D) into a lower bound c?δ for the min alignment cost c?0 of the full-treewidth instance

tw. Any window such that c?δ > ε thus also obeys c?0 > ε, and can be safely dis-

carded from the list of putative ε-admissible windows, without having to perform

a full-treewidth alignment. Given the exponential growth of the alignment runtime

for increasing treewidth values (see Figure 10-right) this strategy is expected to

yield substantial runtime savings.

We used this strategy to search occurrences of the Twister ribozyme (PDBID

4OJI), a highly-structured (tw = 5) 54nts RNA initially found in O. sativa (Asian

rice) [54]. We targeted the S. bicolor genome (sorghum), focusing on a 10kb region

centered on the 2,485,140 position of the 5th chromosome, where an instance of

the ribozyme was suspected within an uncharacterized transcript (LOC110435504).

The 4OJI sequence and structure were extracted from the 3D model as above, and

included into a tree decomposition T5 (73 edges), simplified into T4 (71 edges), T3

(68 edges) and T2 (61 edges) using the tree-diet algorithm.

We aligned all tree decompositions against all windows of size 58nts using a 13nts

offset, and measured the score and runtime of the iterative filtering strategy using

a cost cutoff ε = −5. The search recovers the suspected occurrence of twister as

its best result (Figure 11.C), but produced hits (cf Figure 11.D) with comparable

sequence conservation that could be the object of further studies. Regarding the

Marchand et al. Page 20 of 29

Figure 11 Corrected costs associated with the search for structured homologs of the Twister
ribozyme in chromosome 5 of S. bicolor, using simplified instances of various treewidth (A). Gray
areas represent scores which, upon correction, remain below the cutoff, and have to be considered
for further steps of the iterated filtering. Canonical base pairs of the ribozyme (PDBID 4OJI; B),
mapped onto to the best hit (C) and second best hit (D) found along the search colored depending
on their support in the target sequence (Red: incompatible; Purple: unstable G-U; Blue: stable).

filtering strategy, while T2 only allows to rule out 3 windows out of 769, T3 allows to

eliminate an important proportion of putative targets, retaining only 109 windows,

further reduced to 15 windows by T4, 6 of which end up as final hits for the full

model T5 (cf Figure 11.A). The search remains exact, but greatly reduces the overall

runtime from 24 hours to 34 minutes (42 fold!).

6 Conclusion and discussion
We have established the parameterized complexity of three treewidth reduction

problems, motivated by applications in Bioinformatics, as well as proposed practi-

cal algorithms for instances of reasonable treewidths. The reduced widths obtained

by our proposed algorithm can be used to obtain: i) sensitive heuristics, owing to

the consideration of a maximal amount of edges/information in the thinned graphs;

ii) a posteriori approximation ratios, by comparing the potential contribution of re-

moved edges to the optimal score obtained of the thinned instance by a downstream

FPT/XP algorithm; iii) substantial practical speedups without loss of correctness,

e.g. when partial filtering can be safely achieved based on simplified input graphs.

6.1 Open questions

Regarding the parameterized complexity of Graph-Diet and Tree-Diet, some

questions remain open (see Table 1): an FPT algorithm for Tree-Diet (ideally,

with 2O(tw) ·n running time), would be the most desirable, if possible satisfying the

backbone constraints. The existence of such an algorithm is not trivial. In particular,

it is perhaps worth noting that it is not implied by the existence of an FPT algorithm

for graph-diet with the input treewidth as a parameter (1). Indeed, in comparison

to the latter, tree-diet subtly restricts the search space to tree decompositions

that subsets of the input. It follows that the result of graph diet for a graph G

may substantially differ from the result of tree-diet given a tree decomposition

T of G as input. We also aim at trying to give efficient exact algorithms for graph

diet in the context of RNA (we conjecture this is impossible in the general case).

Finally, we did not include the number of deleted edges in our multivariate analysis:

even though in practice it is more difficult a priori to guarantee their small number,

we expect it can be used to improve the running time in many cases.

Marchand et al. Page 21 of 29

6.2 Backbone Preservation.

In two of our applications, the RNA secondary structure graph contains two types

of edges: those representing the backbone of the sequence (i.e., between consecutive

bases) and those representing base pair bonds. In practice, we want all backbone

edges to be visible in the resulting tree-decomposition, and only base pairs may

be lost. This can be integrated to the Tree-Diet model (and to our algorithms)

using weighted edges, using the total weight rather than the count of deleted edges

for the objective function. Note that some instances might be unrealizable (with

no tree-diet preserving the backbone, especially for low tw′). In most cases, ad-hoc

bag duplications can help avoid this issue. The design of pre-processing methods,

involving bag duplications or other operations on tree decompositions, and aimed

at ensuring the existence of a backbone-preserving tree-diet will be the subject of

future work.

From a theoretical perspective, weighted edges may only increase the algorithmic

complexity of the problems. However, a more precise model could consider graphs

which already include a hamiltonian path (the backbone), and the remaining edges

form a degree-one or two subgraph. Such extra properties may, in some cases, ac-

tually reduce the complexity of the problem. As an extreme case, we conjecture the

Path-Diet problem for tw′ = 1 becomes polynomial in this setting.

Acknowledgements

The authors would like to thank Julien Baste for pointing out prior work on treewidth modulators, and providing

valuable input regarding vertex deletion problems.

Availability of data and materials

Source code of tree-diet method available at:https://gitlab.inria.fr/amibio/tree-diet

Competing interests

The authors declare that they have no competing interests.

Author details
1LIX CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France. 2LIGM, CNRS,

Univ Gustave Eiffel, F77454 Marne-la-Vallée, France.

References
1. Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. BMC Bioinformatics 16(S14) (2015).

doi:10.1186/1471-2105-16-s14-s2

2. Xu, J.: Rapid protein side-chain packing via tree decomposition. In: Lecture Notes in Computer Science, pp.

423–439. Springer, ??? (2005). doi:10.1007/11415770 32

3. Bulteau, L., Fertin, G., Jiang, M., Rusu, I.: Tractability and approximability of maximal strip recovery.

Theoretical Computer Science 440, 14–28 (2012)

4. Baste, J., Paul, C., Sau, I., Scornavacca, C.: Efficient FPT algorithms for (strict) compatibility of unrooted

phylogenetic trees. Bulletin of Mathematical Biology 79(4), 920–938 (2017). doi:10.1007/s11538-017-0260-y

5. Bulteau, L., Weller, M.: Parameterized algorithms in bioinformatics: An overview. Algorithms 12(12), 256

(2019). doi:10.3390/a12120256

6. Waterman, M.S.: Secondary structure of single stranded nucleic acids. Advances in Mathematics

Supplementary Studies 1(1), 167–212 (1978)

7. Xayaphoummine, A., Bucher, T., Thalmann, F., Isambert, H.: Prediction and statistics of pseudoknots in RNA

structures using exactly clustered stochastic simulations. Proc. Natl. Acad. Sci. U. S. A. 100(26), 15310–15315

(2003)

8. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots.

Discrete Appl. Math. 104(1-3), 45–62 (2000). doi:10.1016/S0166-218X(00)00186-4

9. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy-based models. Journal of Computational

Biology 7(3-4), 409–427 (2000)

10. Sheikh, S., Backofen, R., Ponty, Y.: Impact Of The Energy Model On The Complexity Of RNA Folding With

Pseudoknots. In: Kärkkäinen, J., Stoye, J. (eds.) CPM - 23rd Annual Symposium on Combinatorial Pattern

Matching - 2012. Combinatorial Pattern Matching, vol. 7354, pp. 321–333. Springer, Helsinki, Finland (2012).

doi:10.1007/978-3-642-31265-6 26. Juha Kärkkäinen

11. Blin, G., Denise, A., Dulucq, S., Herrbach, C., Touzet, H.: Alignments of RNA structures. IEEE/ACM

Transactions on Computational Biology and Bioinformatics 7(2), 309–322 (2010). doi:10.1109/tcbb.2008.28

https://gitlab.inria.fr/amibio/tree-diet
http://dx.doi.org/10.1186/1471-2105-16-s14-s2
http://dx.doi.org/10.1007/11415770_32
http://dx.doi.org/10.1007/s11538-017-0260-y
http://dx.doi.org/10.3390/a12120256
http://dx.doi.org/10.1016/S0166-218X(00)00186-4
http://dx.doi.org/10.1007/978-3-642-31265-6_26
http://dx.doi.org/10.1109/tcbb.2008.28

Marchand et al. Page 22 of 29

12. Rinaudo, P., Ponty, Y., Barth, D., Denise, A.: Tree decomposition and parameterized algorithms for RNA

structure-sequence alignment including tertiary interactions and pseudoknots. In: Lecture Notes in Computer

Science, pp. 149–164. Springer, ??? (2012). doi:10.1007/978-3-642-33122-0 12

13. Kalvari, I., Nawrocki, E.P., Ontiveros-Palacios, N., Argasinska, J., Lamkiewicz, K., Marz, M., Griffiths-Jones,

S., Toffano-Nioche, C., Gautheret, D., Weinberg, Z., Rivas, E., Eddy, S.R., Finn, R.D., Bateman, A., Petrov,

A.I.: Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research

49(D1), 192–200 (2020). doi:10.1093/nar/gkaa1047

14. Sarrazin-Gendron, R., Yao, H.-T., Reinharz, V., Oliver, C.G., Ponty, Y., Waldispühl, J.: Stochastic sampling of

structural contexts improves the scalability and accuracy of RNA 3d module identification. In: Lecture Notes in

Computer Science, pp. 186–201. Springer, ??? (2020). doi:10.1007/978-3-030-45257-5 12

15. Leontis, N.B., Westhof, E.: Geometric nomenclature and classification of RNA base pairs. RNA 7(4), 499–512

(2001)

16. Reinharz, V., Soulé, A., Westhof, E., Waldispühl, J., Denise, A.: Mining for recurrent long-range interactions in

RNA structures reveals embedded hierarchies in network families. Nucleic Acids Research 46(8), 3841–3851

(2018). doi:10.1093/nar/gky197

17. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. arXiv preprint arXiv:1207.4109 (2012)

18. Bodlaender, H.L., Koster, A.M.: Treewidth computations i. upper bounds. Information and Computation

208(3), 259–275 (2010)

19. Song, Y., Liu, C., Malmberg, R., Pan, F., Cai, L.: Tree decomposition based fast search of RNA structures

including pseudoknots in genomes. In: Computational Systems Bioinformatics Conference, 2005. Proceedings.

2005 IEEE, pp. 223–234 (2005). IEEE

20. Han, B., Dost, B., Bafna, V., Zhang, S.: Structural alignment of pseudoknotted RNA. Journal of

Computational Biology 15(5), 489–504 (2008). doi:10.1089/cmb.2007.0214

21. Vucinic, J., Simoncini, D., Ruffini, M., Barbe, S., Schiex, T.: Positive multistate protein design. Bioinformatics

36(1), 122–130 (2019). doi:10.1093/bioinformatics/btz497

22. Yao, H.-T., Waldispühl, J., Ponty, Y., Will, S.: Taming Disruptive Base Pairs to Reconcile Positive and

Negative Structural Design of RNA. In: RECOMB 2021 - 25th International Conference on Research in

Computational Molecular Biology, Padova, France (2021)

23. Hammer, S., Wang, W., Will, S., Ponty, Y.: Fixed-parameter tractable sampling for RNA design with multiple

target structures. BMC Bioinformatics 20(1) (2019). doi:10.1186/s12859-019-2784-7

24. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.:

The protein data bank. Nucleic acids research 28, 235–242 (2000). doi:10.1093/nar/28.1.235

25. Lu, X.-J., Bussemaker, H.J., Olson, W.K.: Dssr: an integrated software tool for dissecting the spatial structure

of rna. Nucleic acids research 43(21), 142–142 (2015)

26. van Dijk, T., van den Heuvel, J.-P., Slob, W.: Computing treewidth with libtw. Citeseer. http://citeseerx. ist.

psu. edu/viewdoc/download (2006)

27. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on

computing 25(6), 1305–1317 (1996)

28. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, ??? (2012)

29. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.:

Parameterized Algorithms vol. 5. Springer, ??? (2015)

30. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems. IEEE transactions on circuits

and systems 35(3), 354–362 (1988)

31. Crespelle, C., Drange, P.G., Fomin, F.V., Golovach, P.A.: A survey of parameterized algorithms and the

complexity of edge modification. arXiv preprint arXiv:2001.06867 (2020)

32. Cai, L.: Parameterized complexity of vertex colouring. Discrete Applied Mathematics 127(3), 415–429 (2003)

33. Lovász, L.: Graph minor theory. Bulletin of the American Mathematical Society 43(1), 75–86 (2006)

34. Robertson, N., Seymour, P.D.: Graph minors. xiii. the disjoint paths problem. Journal of combinatorial theory,

Series B 63(1), 65–110 (1995)

35. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the hardness of losing width. In:

International Symposium on Parameterized and Exact Computation, pp. 159–168 (2011). Springer

36. Baste, J., Sau, I., Thilikos, D.M.: Hitting minors on bounded treewidth graphs. i. general upper bounds. SIAM

J. Discret. Math. 34(3), 1623–1648 (2020). doi:10.1137/19M1287146

37. Courcelle, B.: The monadic second-order logic of graphs iii: Tree-decompositions, minors and complexity issues.

RAIRO-Theoretical Informatics and Applications-Informatique Théorique et Applications 26(3), 257–286 (1992)

38. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms

12(2), 308–340 (1991)

39. Saitoh, T., Yoshinaka, R., Bodlaender, H.L.: Fixed-treewidth-efficient algorithms for edge-deletion to interval

graph classes. In: WALCOM: Algorithms and Computation - 15th International Conference and Workshops,

2021, Proceedings. Lecture Notes in Computer Science, vol. 12635, pp. 142–153. Springer, ??? (2021).

doi:10.1007/978-3-030-68211-8 12. https://doi.org/10.1007/978-3-030-68211-8 12

40. Tan, J., Zhang, L.: The consecutive ones submatrix problem for sparse matrices. Algorithmica 48(3), 287–299

(2007)

41. Proskurowski, A., Telle, J.A.: Classes of graphs with restricted interval models. Discrete Mathematics &

Theoretical Computer Science 3(4) (2006)

42. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded treewidth. The Computer

Journal 51(3), 255–269 (2008)

43. Bodlaender, H.L.: Discovering treewidth. In: International Conference on Current Trends in Theory and

Practice of Computer Science, pp. 1–16 (2005). Springer

44. Jakob, W., Rhinelander, J., Moldovan, D.: pybind11 – Seamless operability between C++11 and Python.

https://github.com/pybind/pybind11 (2017)

http://dx.doi.org/10.1007/978-3-642-33122-0_12
http://dx.doi.org/10.1093/nar/gkaa1047
http://dx.doi.org/10.1007/978-3-030-45257-5_12
http://dx.doi.org/10.1093/nar/gky197
http://dx.doi.org/10.1089/cmb.2007.0214
http://dx.doi.org/10.1093/bioinformatics/btz497
http://dx.doi.org/10.1186/s12859-019-2784-7
http://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.1137/19M1287146
http://dx.doi.org/10.1007/978-3-030-68211-8_12

Marchand et al. Page 23 of 29

45. Klein, R.J., Eddy, S.R.: Rsearch: finding homologs of single structured RNA sequences. BMC bioinformatics

4(1), 44 (2003)

46. Rivas, E., Eddy, S.R.: Parameterizing sequence alignment with an explicit evolutionary model. BMC

bioinformatics 16(1), 406 (2015)

47. Wang, W.: Practical sequence-structure alignment of rnas with pseudoknots. PhD thesis, Université

Paris-Saclay, School of Computer Science (2017)

48. Wang, W., Denise, A., Ponty, Y.: LicoRNA: aLignment of Complex RNAs v1.0 (2017).

https://licorna.lri.fr

49. Sudarsan, N., Lee, E.R., Weinberg, Z., Moy, R.H., Kim, J.N., Link, K.H., Breaker, R.R.: Riboswitches in

eubacteria sense the second messenger cyclic di-gmp. Science 321(5887), 411–413 (2008).

doi:10.1126/science.1159519. https://science.sciencemag.org/content/321/5887/411.full.pdf

50. Tamayo, R.: Cyclic diguanylate riboswitches control bacterial pathogenesis mechanisms. PLOS Pathogens

15(2), 1–7 (2019). doi:10.1371/journal.ppat.1007529

51. Smith, K.D., Shanahan, C.A., Moore, E.L., Simon, A.C., Strobel, S.A.: Structural basis of differential ligand

recognition by two classes of bis-(3’-5’)-cyclic dimeric guanosine monophosphate-binding riboswitches.

Proceedings of the National Academy of Sciences 108(19), 7757–7762 (2011). doi:10.1073/pnas.1018857108.

https://www.pnas.org/content/108/19/7757.full.pdf

52. Lu, X.-J., Bussemaker, H.J., Olson, W.K.: DSSR: an integrated software tool for dissecting the spatial structure

of RNA. Nucleic Acids Research 43(21), 142–142 (2015). doi:10.1093/nar/gkv716.

https://academic.oup.com/nar/article-pdf/43/21/e142/17435026/gkv716.pdf

53. Thompson, J.D., Plewniak, F., Poch, O.: BAliBASE: a benchmark alignment database for the evaluation of

multiple alignment programs. Bioinformatics 15(1), 87–88 (1999). doi:10.1093/bioinformatics/15.1.87.

https://academic.oup.com/bioinformatics/article-pdf/15/1/87/9731974/150087.pdf

54. Liu, Y., Wilson, T.J., McPhee, S.A., Lilley, D.M.: Crystal structure and mechanistic investigation of the twister

ribozyme. Nature chemical biology 10(9), 739–744 (2014)

https://licorna.lri.fr
http://dx.doi.org/10.1126/science.1159519
http://arxiv.org/abs/https://science.sciencemag.org/content/321/5887/411.full.pdf
http://dx.doi.org/10.1371/journal.ppat.1007529
http://dx.doi.org/10.1073/pnas.1018857108
http://arxiv.org/abs/https://www.pnas.org/content/108/19/7757.full.pdf
http://dx.doi.org/10.1093/nar/gkv716
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/43/21/e142/17435026/gkv716.pdf
http://dx.doi.org/10.1093/bioinformatics/15.1.87
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/15/1/87/9731974/150087.pdf

Marchand et al. Page 24 of 29

b d b c d a b c d b c d b c b d b c d a b c d a b c d b c d b c

a

b

c d

b d b c d a b c d b c d b c

a

b

c d

b d b c d a b c d a b c d b c d b c

Figure 12 Left: A graph and a path-decomposition whose optimal 1-tree-diet loses an edge (ad).
However, duplicating the bag abcd (right) yields a tree-decomposition with a lossless 1-tree-diet.

Supplementary Material
Section A: Editing Trees before the Diet
Any tree decomposition can be transformed into a binary one through the duplica-

tions of bags having more than 2 children. To do so in practice, one will, as long as

the tree decomposition is not binary, apply the following transformation:

1. Find a bag X with children Y1, . . . , Y∆ and ∆ > 2.

2. Introduce a new bag X ′ with the same content as X and locally modify

the tree decomposition in the following way: X will now have Y1 and X ′ as

children, while X ′ will have Y2 · · ·Y∆.

When it is no longer possible to apply this transformation, the tree decomposition

is binary. For each bag having originally ∆ > 2 children in the decomposition, ∆−1

new bags have been introduced. In total, with Nbags the original number of bags

in the decomposition, strictly less than Nbags new bags have been introduced (each

new bag is associated to an edge of the original tree decomposition).

This tranformation is in fact the first step towards obtaining a nice tree decom-

position [42, 29].

A question that arises then is what impact these modifications may have on the

output of Tree-Diet, when applied to the tree decomposition given as input. We

argue that duplication operations (as used above to get a binary tree decomposition)

can only improve the solution, i.e decrease the number of lost edges. Indeed, within

the coloring formulation of the problem, new bags yield new opportunities for an

edge to be represented, with both its end-points green in some bag. See Figure 12

for an illustration.

More generally, any operation on the input tree decomposition that does not

suppress any of the original bags can only improve the solution to the Tree Diet

problem. We do not tackle here the problem of finding the best edition operations

to apply onto a tree decomposition given as input to Tree Diet, which is an a

priori difficult task.

Section B: Pseudo-code
Algorithm 1 and 2 present a pseudo-code of our dynamic programming algorithm

for Tree Diet, with a memoization approach. The C++/pybind11 [44] implemen-

tation is available at https://gitlab.inria.fr/amibio/tree-diet.

Note that the implementation allows to solve a more general weighted version

of Tree Diet, where each edge is given a weight, and the objective is to find a

(tw−tw′)-diet of the input tree decomposition preserving a set of edges of maximum

total weight.

In the context of RNA applications, this feature allows to favour as much as pos-

sible preservation of the backbone of RNA molecules, i.e. edges between consecutive

https://gitlab.inria.fr/amibio/tree-diet

Marchand et al. Page 25 of 29

nucleotides along the string, by assigning them a weight greater than the number

of non-backbone edges.

Edge weights are passed to the function in the form of a dictionary/map W

associating a real weight to each edge. Within Algorithm 1, the only place where it

is taken into account is the the count function, which computes the weight of edges

accounted for by the bag that is currently visited.

Input : Tree-decomposition T , graph G, target width tw′, edge weights W
Output : Maximum total weight of a set of realizable/non-lost edges in a

(tw − tw′)-diet of T
Side-Product: A filled table c[Xi, f], ∀Xi bag and f coloring of Xi

1 Function optim num real edges(Xi, f, G, tw
′,W):

2 if c[Xi, f] already computed then return c[Xi, f]; ;

3 if |f−1(o) ∪ f−1(r)| ≤ (|Xi| − tw′ − 1) then
4 //not enough removals.;
5 c[Xi, f] = −∞;
6 return c[Xi, f];
7 end

8 if Xi == leaf then
9 c[Xi, f] = 0;

10 return c[Xi, f];
11 end

12 int ans = −∞;

13 for m ∈ orange maps(Xi, f) do
14 int ans m = 0;
15 for Yj ∈ Xi.children do
16 int ans j = −∞;
17 for f ′j ∈ compatible(f,m,Xi, Yj) do

18 int val = 0;

19 val += count(f, f ′j ,W);

20 val += optim num real edges(Yj , f
′
j , G, tw

′);

21 if val ≥ ans j then ans j = val;
22 ;
23 end
24 ans m += ans j;
25 end
26 if ans m ≥ ans then ans = ans m; ;
27 end
28 c[Xi, f] = ans

29 return c[Xi, f];
30 end

Algorithm 1: Dynamic programming algorithm for Tree-Diet.

Section C: Correctness of the rejection-based sampling of RNA
designs

A recent method for RNA design, called RNAPond [22], implements a sampling

approach to tackle the inverse folding of RNA. Targeting a secondary struc-

ture S of length n, it performs a Boltzmann-weighted sampling of sequences

and, at each iteration, identifies Disruptive Base Pairs (DBPs) that are not in

S, yet are recurrent in the Boltzmann ensemble of generated sequences. Those

base pairs are then added to a set D of DBPs, and excluded in subsequent gen-

erations through an assignment of non-binding pairs of nucleotides, outside of

B := {(G,C), (C,G), (A,U), (U,A), (G,U), (U,G)} .

Marchand et al. Page 26 of 29

Input : Tree-decomposition T , graph G, target width tw′, table c, edge weights W
Output : Optimal (tw − tw′)-diet-valid coloration for T

1 Function optim coloring(Xi, f, G, tw
′, c):

2 if Xi == leaf then
3 return ∅;
4 end

5 coloring C = ∅;
6 for m ∈ orange maps(Xi, f) do
7 int ans m = 0;
8 coloring best fjs = [];
9 for Yj ∈ Xi.children do

10 int best valj = −∞;
11 int best fj = ∅;
12 for f ′j ∈ compatible(f,m,Xi, Yj) do

13 int val = 0;
14 val += count(f, f ′j ,W);

15 val += c[Yj , f
′
j];

16 if val ≥ best valj then
17 best valj = val;
18 best fj = f ′j ;

19 end

20 end
21 ans m += best valj;
22 best fjs.add(best fj);
23 end
24 if ans m == c[Xi, f] then
25 C+ = [f ′j for f ′j in best fjs];

26 C+ = [optim coloring(Yj , f
′
j , G, tw

′, c) for f ′j in best fjs];

27 break; // break loop over m
28 end

29 end
30 return C;
31 end

Algorithm 2: Backtracking procedure for Tree-Diet.

Marchand et al. Page 27 of 29

At the core of the method, one finds a random generation algorithm which takes

as input a secondary structure S and a set D of DBPs. The algorithm generates

from the set WS,D of sequences w ∈ {A,C,G,U}n which are: i) compatible with all

(i, j) ∈ S, i.e. (wi, wj) ∈ B; and ii) incompatible with all (k, l) ∈ D, i.e. (wk, wl) /∈ B.

The algorithm then enforces a (dual) Boltzmann distribution over the sequences in

WS,D:

∀w ∈ WS,D : P(w | D, S) =
e−β.Ew,S

ZS,D
with ZS,D :=

∑
w′∈WS,D

e−β.Ew′,S (1)

where β > 0 is an arbitrary constant akin to a temperature. Yao et al. describe an

algorithm which generates k sequences in Θ(k(n+ |D|)) time, after a preprocessing

in Θ(n.|D|.4tw) time and Θ(n.4tw) space, where tw is the treewidth of the graph

having edges in S ∪ D.

The discrepancy in the preprocessing and sampling complexities suggests an al-

ternative strategy, utilizing rejection on top of a relaxed sampling. Namely, we

consider a rejection algorithm, which starts from a relaxation (S′,D′) of the initial

constraints (S′ ∪ D′ ⊂ S ∪ D), and iterates Yao et al.’s algorithm to generate se-

quences in WS′,D′ ⊃ WS,D, rejecting those outside of WS,D, until k suitable ones

are obtained. The rejection algorithm generates a given sequence w ∈ WS,D on its

first attempt with probability p := e−β.Ew,S/ZS′,D′ and, more generally, after r re-

jections with probability (1− q)r p with q := ZS,D/ZS′,D′ . The overall probability

of emitting w is thus

p ·
∑
r≥0

(1− q)r =
p

q
=
e−β.Ew,S

ZS,D
= P(w | D, S).

In other words, our relaxed generator coupled with the rejection step, represents an

unbiased algorithm for the Boltzmann distribution of Eq. (1) over WS,D.

Meanwhile, the average-case complexity can be impacted by the strategy. Indeed,

the relaxed instance (S′,D′) can accelerate the preprocessing due to a reduced

treewidth tw′ ≤ tw. The rejection step only increases the expected number of

generations by a factor q := ZS′,D′/ZS,D, representing the inflation of the sequence

space, induced by the relaxation of the constraints. Overall, the average-case time

complexity of the rejection algorithm is in Θ(n · |D′| · 4tw′ + k · q · (n+ |D′|)) time

and Θ(n ·4tw′) space. This space improvement is notable when tw′ < tw, and could

be key for the practical applicability of the method, especially given that memory

represents the bottleneck of most treewidth-based DP algorithms.

Section D: Lower bound for the min. alignment cost from
simplified models

Here, we justify the filtering strategy described in Section 5.2.2. Namely, we formally

prove that, given a structured RNA S and a targeted genomic region w, a lower

bound for the minimal alignment cost of S and w can be obtained from the minimal

alignment cost of some S′ ⊆ S and w. If this lower bound for S′ ⊆ S is higher than

the specified cutoff ε, then there is no need to align w to the full model S, as the

resulting cost is guaranteed to stay above the selection cutoff ε.

Marchand et al. Page 28 of 29

Let S be an arc-annotated sequence of length m (Si denotes the ith character

of S), w be a target (flat) sequence of length m, and µ : [1, n] → [1,m] ∪ {⊥}
represents an alignment[1]. We consider the following cost function, adapted from

eciteRinaudo2012, which quantifies the quality of an alignment µ for S and w:

C(S,w, µ) =
∑

i unpaired in S,
k:=µi

γ(Si, wk) +
∑

(i,j)∈S,
(k,l):=(µi,µj)

φ(Si, Sj , wk, wl)

+
∑

g∈gaps(S)

λq(g) +
∑

g∈gaps(w)

λT (g)

where

• γ(a, b) returns the substitution cost which penalizes (mismatches) or rewards

(matches) the substitution of a into b (set to 0 and handled in gaps if b =⊥);

• φ(a, b, c, d) returns a base pair substitution cost, penalizing (arc breaking) or

rewarding (conservation or compensatory mutations) the transformation of

nucleotides (a, b) into nucleotides/gaps (c, d) (set to 0 and handled in gaps if

(c, d) = (⊥,⊥));

• λS and λT penalize gaps introduced by µ respectively in S and w (affine cost

model).

Given this definition, consider a simplified model S′ ⊂ S, associated with a mini-

mal cost

c′ := min
µ
C(S,w, µ)

and denote by c? the minimal cost of the full model S, we have the following

inequality.

Proposition 3

c′ −
∑

i unpaired in S,′

paired in S

max
b
γ(Si, b) +

∑
(i,j)∈S\S′

min
a,b

φ(Si, Sj , a, b) ≤ c? (2)

Proof For any alignment, we have, per the definition of C(S,w, µ):

C(S,w, µ) = C(S′, w, µ)−
∑

i unpaired in S,′

paired in S,
and k:=µi

γ(Si, wk) +
∑

(i,j)∈S\S′
s.t. (k,l):=(µi,µj)

φ(Si, Sj , wk, wl).

Minimizing over all alignment µ, one obtains

min
µ
C(S,w, µ) = min

µ
C(S′, w, µ)−

∑
i unpaired in S,′

paired in S,
and k:=µi

γ(Si, wk) +
∑

(i,j)∈S\S′
s.t. (k,l):=(µi,µj)

φ(Si, Sj , wk, wl).

[1]An alignment µ is subject to further constraints, notably including some restricted

form of monotonicity, when represented as a function. However, those constraints are

reasonably intuitive and we omit them in this discussion for the sake of simplicity.

Marchand et al. Page 29 of 29

−50 0 50
full

−50

0

50

fu
ll

(a)

−50 0 50
width4

(b)

−50 0 50
width3

(c)

−50 0 50
width2

(d)

Figure 13 (a) Histogram of alignment scores obtained by aligning the full structure (tw = 5)
model of the Twister ribozyme (pdb-id: 4OJI) with κ · n-sized windows in a 10kb region of the
5th chromosome of S. bicolor. A vertical line is positioned at the ε threshold. (b;c;d) Corrected
alignment scores obtained for reduced-treewidth models for each window, plotted against the
corresponding score of the full model. The corrected alignment score indeed acts as a lower bound
to the full-model score (points above the y = x red line), allowing an iterative filtering strategy.

Independently minimizing each term of the right-hand-side, we obtain a first lower

bound

c? ≥ c′ −max
µ

∑
i unpaired in S,′

paired in S,
and k:=µi

γ(Si, wk) + min
µ

∑
(i,j)∈S\S′

s.t. (k,l):=(µi,µj)

φ(Si, Sj , wk, wl).

further coarsened by an independent optimization of the elements in the sums

c? ≥ c′ −
∑

i unpaired in S,′

paired in S

max
µ

γ(Si, wk) +
∑

(i,j)∈S\S′
min
µ
φ(Si, Sj , wk, wl)

= c′ −
∑

i unpaired in S,′

paired in S

max
a

γ(Si, a) +
∑

(i,j)∈S\S′
min
a,b

φ(Si, Sj , a, b).

where the last line is obtained by considering the worst-case contributors to nu-

cleotides and base pairs substitutions. Importantly, the right-hand side no longer

depends on µ any more, and can be used to easily computed a corrected score/lower

bound.

The corrected expression, shown in the left hand side of Equation (2) allows, when

lower than a cutoff ε, to safely discard w as a potential hit for the full model S.

This corrected score is plotted in Figure 11A, allowing for a gradual reduction of

the search space for ε-admissible hits. We show in Figure 13 the corrected scores

obtained for simplified structures S′ of various treewidths, plotted against the scores

of the full target structure.

	Abstract
	Introduction
	Statement of the problem(s) and results
	Our results

	Algorithmic Limits: Parameterized Complexity Considerations
	Graph-Diet: practical solutions seem unlikely
	Lower Bounds for Tree-Diet

	FPT Algorithm
	For general tree-decompositions
	Coloring formulation
	Decomposition of the search space and sub-problems

	For path decompositions

	Proofs of concept
	Memory-parsimonious unbiased sampling of RNA designs
	Structural alignment of complex RNAs
	Impact of treewidth on the structural alignment of a riboswitch
	Exact iterative strategy for the genomic search of ncRNAs

	Conclusion and discussion
	Open questions
	Backbone Preservation.

	Editing Trees before the Diet
	Pseudo-code
	Correctness of the rejection-based sampling of RNA designs
	Lower bound for the min. alignment cost from simplified models

