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Stability analysis of a socially inspired

adaptive voter model

Emmanuel Kravitzch1, Yezekael Hayel1, Vineeth S. Varma2 and
Antoine O. Berthet3∗†‡§

February 2022

Abstract

In this work, we study an instance of continuous-time voter model over
directed graphs on social networks with a specific refinement: the agents
can break or create new links in the graph. The edges of the graph thus co-
evolve with the agents’ spin. Specifically, the agents may break their links
with neighbours of different spin, and create links with the neighbours of
their neighbours (2-hop neighbours), provided they have same spin. We
characterize the absorbing configurations and present a particular case
that corresponds to a single agent facing two antagonistic ideologies. By
asymptotic analysis, we observe two regimes depending on the parameters:
in one regime, hesitation disappears rapidly, while when the link creation
rate is high enough, slow extinction or metastability occurs. We compute
the threshold value and illustrate these results with numerical simulations.

1 Introduction

1.1 Research context

Recently, a pronounced surge of interest has grown in control community for the
study of opinion dynamics in social networks (see for instance [1] and references
therein). Among the numerous opinion dynamics’ models [2], the Voter Model
(VM), pioneered by Thomas Liggett in [3], is probably the most popular. It is
a paradigmatic spin system modeling a population of agents each endowed with
an orientation (or spin) and influence one each others. Soon after its introduc-
tion, the VM has been extensively analyzed and refined in various ways. Our
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work is in line with a specific refinement, namely the allowance of network re-
configuration performed by the agents themselves. Across social networks, two
features are indeed salient: homophily and selective exposure. They respectively
correspond to the natural trend one has to connect with alike people in one
hand and dismiss dissonant information on the other hand. By alike, we mean
having the same spin (which might indicate their preference, orientation or opin-
ion). People influence one another, but the network structure indeed co-evolves
with the opinion, which in turn influences the opinion dynamics. The more
standard VMs over static interaction networks neglect this essential feature of
social psychology. The core motivation of this work is then to model and ana-
lyze the complex interplay between the node and the link dynamics. We thus
propose a mathematical framework of opinion-network co-evolution encompass-
ing homophily and selective exposure phenomena. In this work, it is assumed
that the linking process is local, i.e., an agent seeks new connections among
his 2-hop neighbours. This local linking can be considered to be more realis-
tic compared to a global linking done uniformly at random (u.r) over the total
network because it captures a typical search behaviour in the specific context
of information-seeking. Several numerical simulations complete the analytical
treatment.

1.2 Related work

Since Liggett’s seminal work [3], numerous instances of VMs have been inves-
tigated: based on a group-pressure mechanism (called non-linear voter model)
[4], using the majority rule [5], or in presence of stubborn agents [6] just to
name a few (see the recent survey on VMs [7]). Latterly, the combination of
temporal network with VMs –often referred to as Adaptive or Co-evolving Voter
Model (AVM or CVM)– is gaining a lot of attention. Most of the existing papers
study a global linking where the agents create new links by picking u.r among
the whole population (rewire-to-random) [8], sometimes with an homophilic re-
finement: rewiring is global u.r but only with agreeing agents (rewire-to-same).
In the last two cases, the linking is long-range. This u.r linking has also been
analyzed in the context of epidemics [9], [10]. In [11] and [12], the linking is also
long-range but based on preferential attachment.
Local linking has also been taken into account: in the data-based analysis [13],
the authors reveal that locality-constrained link formation substantially shapes
the overall network structure. This corroborates the psycho-social studies, where
homophily and selective exposure are classical and have been copiously described
in the literature: see for instance [14, 15]. The 2-hop-based rewiring, often called
triadic closure (TC), has thus inspired a generative network model proposed in
[16]. Some already existing AVMs also incorporate this important feature: [17]
presents an edge-centric model with a mixture of TC and global rewiring. Fi-
nally, a combination of non-linear VM and TC has been investigated in [18].
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1.3 Contributions

First, to the best of the authors’ knowledge, the introduced model is new: a
node-centric linear VM combined with pure local linking where breaking and
linking are two separated processes, allowing dynamical degree distribution.
Second, we take into account the initial configuration and propose an original
particular case.Third, as highlighted in [19], the classical issues of VMs like phase
transition are often tackled via numerical simulations and approximations. In
this work, we propose a detailed mathematical analysis.

1.4 Paper outline

The rest of the paper is organized as follows. In section 2, we introduce our
model intertwining edges and nodes’ dynamics. In section 3, we characterize
absorbing points for K < ∞. In Section 4, we focus on a particular scenario
where a single agent is under the pressure of two static and opposite blocks
and provide an analytical treatment for this case. In Section 5, we display
numerical simulations illustrating the results. Section 6 concludes the paper
with a discussion on the model and future research perspectives.

2 Model

Let us consider a population of K agents. Each agent is denoted by an integer
k ∈ [K] := {1, ...,K}. At each time t ∈ R+ each agent k is equipped with a
spin xk(t) ∈ {+1,−1}. These two values can represent an orientation, a vote,
a preference, etc. Denote by x⃗(t) = (x1(t), . . . , xK(t)) ∈ {+1,−1}K the vector
of agent’s spin at time t. The agents interact through a directed unweighted
evolving graph with the associated adjacency matrix A(t), t ∈ R+ and akj(t) ∈
{0, 1}. At each time t, each agent k is influenced by its out-neighbours given by
the set Nk(t) := {j ∈ [K] : akj(t) = 1}. Note dk(t) = |Nk(t)| =

(∑
j akj

)
(t) the

out-degree of k at time t, and we write k −→t j if there exists a directed path
from k to j at time t (the dependence in time will be omitted when clear from
the context). The evolution of the network and agent’s spin is a Markov Process

(X⃗, A) with state-space S := {+1,−1}K × {0, 1}K2

. One of the following three
types of events can occur and induce a change in the state of the Markov process:
a flip of an agent’s spin, the creation of a link between two agents or the breaking
of an existing link between two agents.

Spin flipping procedure Each agent k owns an individual Poisson ”flipping”
clock N ϕ

k , which means that time duration between two clock ticks are i.i.d and
follows Exp(ϕ). At each clock’s tick, say at time t, agent k picks an agent j
u.r in Nk(t−). If agent k has a different spin, i.e. xj(t

−) ̸= xk(t−), then he
aligns on agent j, i.e. xk(t) = xj(t). Thus, an interaction between two agents
imply that both agents have the same spin after the interaction. The flipping
rate Φ > 0 is the rate at which an agent will change his spin value. Note that if
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all the neighbours j ∈ Nk have the same spin as agent k, then the flipping rate
of agent k is zero. On the contrary, if all neighbours of agent k have a different
spin from that of agent k, then agent k is highly likely to flip soon. This type
of jump modelling mimetic behaviour is standard in VMs (see chap. II of [20],
[5] or [21] and references therein). In this respect, the numerical value ϕ may
be interpreted as the ”open-mindedness coefficient” of the epistemic agent.

Definition 1 (Flipping rate) The flipping rate writes as the following func-
tion of the agent, adjacency matrix and spin vector:

Φ : [K] × {0, 1}K
2

× {−1, 1}K −→ R+,

Φ(k,A, x⃗) = ϕP
(
k picks a disagreeing neighbour

)
= ϕ

∑
j akj1(xj ̸=xk)

dk
= ϕ

∑
j akj(1 − xkxj)

2dk
. (1)

Link breaking procedure in an analogous way to the previous paragraph,
each agent has another Poisson clock, the ”link-breaking” clock N β

l of parameter

β. At each tick of his clock t ∈ N β
l , agent l picks a neighbour m ∈ Nl(t

−). If this
neighbour has an opposite spin, then the directed link from agent l to agent m is
broken. This procedure corresponds to selective exposure: the natural trend one
has to dismiss dissonant information. This reconfiguration mechanism is also
proposed in the context of epidemiology where susceptible nodes cease links
with neighbouring infected nodes [9, 10].

Definition 2 (Breaking rate) The breaking rate B is defined as the rate at
which a directed link between two agents breaks, and expressed by the following
function:

B : [K]2 × {0, 1}K
2

× {−1, 1}K −→ R+,

B(lm,A, x⃗) = β1(xl ̸=xm)P
(
l picks m

)
= β 1(xl ̸=xm)︸ ︷︷ ︸

selective exposure

alm
dl

. (2)

Link creation procedure Finally, new directed links can be created between
agents in the network. In the context of information seeking [22], we assume
the local exploration to prevail on long-range exploration, and then focus only
on the former. The 2-hop linking corresponds to iterative search from already
known information sources (immediate out-neighbours) to not-yet-explored peo-
ple. Then, each agent l ∈ [K] has a third Poisson clock N γ

l for exploration and
discovery: at each tick of the clock N γ

l , agent l seeks new friends among his
2-hop neighbour. For, agent l picks u.r an agent j ∈ Nl(t

−), and then picks
again u.r an m ∈ Nj(t

−). Finally, agent l creates a directed link toward m
provided l is not yet connected to m and the two agents have same spin (ho-
mophily). For sake of simplicity, we do not assign any social status neither
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psychological differentiation to the epistemic agent. Thus, only the spin may
distinguish in essence one agent from another, except maybe their respective
current network’s centrality. This is why the homophily mechanism relies only
on the spin differentiation.

Definition 3 (Linking rate) The linking rate is defined by the function:

Γ : [K]2 × {0, 1}K
2

{−1, 1}K −→ R+,

Γ(lm,A, x⃗) = γ1(xl=xm)(1 − alm)
∑
j

P (l picks j)P(l picks m from j)

Γ(lm,A, x⃗) = γ 1(xl=xm)︸ ︷︷ ︸
homophily

(1 − alm) ×
∑
j

aljajm
dldj

. (3)

Note that the transition functions Φ, B and Γ do not depend on time t, thus
defining an homogeneous Markov process. These functions completely describe
the evolution of the system. Then, the coupled dynamics of the spin profile
X⃗(t) and the graph A(t) can be written as:

dXk = −2Xk

∫
y

1(
y<pf (k|A,X⃗)

)N ϕ
k (dtdy),

dalm = (1 − alm)1(xl=xm)

∫
y

1(
y<pc(lm|A,x⃗)

)N γ
lm(dtdy)

− alm1(xl ̸=xm)

∫
y

1(
y<pb(lm|A,x⃗)

)N β
lm(dtdy),

(4)

with

pf (l|A, x⃗) =

∑
j akj(1 − xkxj)

2dk
, (5)

pb(lm|A, x⃗) =
1

dl
and (6)

pc(lm|A, x⃗) =
∑
j

aljajm
dldj

(7)

and where N ϕ
k (dtdy), N β

lm(dtdy),and N γ
lm(dtdy) respectively correspond to the

flipping, breaking and linking Poisson clocks with intensity ϕdt⊗Unif[0, 1], βdt⊗Unif[0, 1]
and γdt⊗Unif[0, 1].

3 Characterization of the absorbing states

An interesting state of such a dynamical system is the stationary regime, and
in particular, here we also observe absorbing state. If the system reaches such
a state, the system gets frozen and does not evolve anymore. In many mod-
els, the consensus state where all agents agree is indeed an absorbing state.
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The absorbing states are thus of paramount interest for the study of consensus
in opinion dynamics. The following proposition describes entirely the set of

absorbing states for the Markov process
(
X⃗, A

)
.

Proposition 4 Let the set of states A defined by

A :=
{

(x⃗, A) ∈ S
∣∣∣k → j =⇒ akj = 1 and xk = xj

}
.

A is the set of absorbing states of the Markov process (X⃗, A). Furthermore, the
set A is strongly attractive in the sense that there exists a finite time TA when
the Markov process reaches almost surely one of the absorbing states in time,
i.e. TA := inf{t ≥ 0 : (Xt, At) ∈ A} < ∞ a.s.

The transient analysis of the dynamics is investigated in the next section
when taking a particular initial configuration where one single agent is influenced
by two opposite stubborn cliques of large sizes.

4 One single individual under influence

In this particular configuration, the main question is to study how evolves the
influence of two opposite stubborn cliques exerted on a single agent when the
latter is initially connected to every one of each clique. Thus, we consider a
unique agent labeled agent 0 under the influence of two stubborn cliques B+

and B− of same sizes : |B+| = |B−| = N with N >> 1. Here, the total number
of agents in the system is K = 2N + 1. Initially, agent 0 is connected to every
agent in both cliques, i.e. a0k(0) = 1, for all k ∈ B+

⋃
B−. See Fig. 1 below.

We focus only on the links dynamics of agent 0 and its spin evolution. Cliques
have fixed complete graph topology and all agents in one clique have the same
spin, i.e. for all time t, alm(t) = 1 for all (l,m) ∈ (B+ ×B+)

⋃
(B− ×B−), and

xj = −1 (resp. xj = +1) ∀j ∈ B− (resp. B+). Furthermore, the two cliques
stay totally disconnected: for all time t, aml(t) = alm(t) = 0 ∀(l,m) ∈ B+×B−.
The two blocks B+ and B− may correspond to two static opposite ideological
mainstreams.

The previous characterization of the absorbing states shows that the spin
of agent 0 converges almost surely in finite time toward σ∞ ∈ {+1,−1} and
in addition agent 0 gets finally connected with all the agents of the final spin
and only with them: a0j = 1 for all j ∈ Bσ∞ and a0i = 0 for all i ∈ B−σ∞ in
finite time. Nevertheless, depending on the values of the model’s parameters,
the convergence time may be negligible with respect to K (fast convergence
regime) or on the contrary agent 0 may stay hesitant during a time of order a
power of K (slow convergence regime, or metastability). Our goal is to compute
the critical value at which the transition occurs. At each time t, the number of
links between agent 0 and each clique is defined as follows:

U(t) :=
∑

k∈B+

a0k(t) and V (t) :=
∑

k∈B−

a0k(t). (8)
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agent 0
V (t)

B−B+

U(t)

Figure 1: A single agent initially connected to two opposite stubborn cliques of
same sizes |B+| = |B−| = 6.

The spin of agent 0 at each time t is denoted by X0(t). The stochastic transition
rates of the process (U, V,X0) are described as follows depending on the type of
event that occurs and depending on the current spin of agent 0:

Γu(A, x⃗) = 1(x0=+1)1(U<N)γ
U

(U + V )

(N − U)

N
,

Bu(A, x⃗) = 1(x0=−1)1(U>0)β
U

U + V
,

Γv(A, x⃗) = 1(x0=−1)1(V <N)γ
V

(U + V )

(N − V )

N
,

Bv(A, x⃗) = 1(x0=+1)1(V >0)β
V

U + V
,

Φ(A, x⃗) = ϕ
1(x0=−1)U + 1(x0=+1)V

U + V
,

(9)

where Γu (resp. Γv) stands for the upward jump rate of U (resp. V ): agent 0
creates a new connection toward B+ (resp. B−), and Bu (resp. Bv) corresponds
to the downward jump rate of U (resp. V ): agent 0 breaks a directed link toward
B+ (resp. B−). Based on previous transition rates, let us write the associated
Stochastic Differential Equations (SDEs):

dU(t) =

∫ 1

0

{
1(γy<Γu)N

γ(dtdy) − 1(βy<Bu)N
β(dtdy)

}
,

dV (t) =

∫ 1

0

{
1(γy<Γv)N

γ(dtdy) − 1(βy<Bv)N
β(dtdy)

}
,

dX0(t) = −2X0(t−)

∫ 1

0

1(ϕy<Φ(A,X))N ϕ(dtdy).

(10)

Next analysis of the previous SDEs follows two steps: first, using classical fluid
limit techniques [23] (see also [24], chap. 9) and different time-scales between
links and spin dynamics, the long-term behaviour of the process (U, V ) is uncov-
ered; second, a 2-dimensional limiting ODE is used to compute the bifurcation
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point of the dynamics.

4.1 Long-term behaviour

Let us define the associated fluid limits as the clique sizes tend to be very large.
We consider the following time-space scaled processes for any time t:

U(t) : =
U(Nt)

N
, and U(0) = 1,

V (t) : =
V (Nt)

N
, and V (0) = 1.

(11)

Note that in this time scale, X0(s) := X0(Ns) oscillates very fast in {+1,−1}.

The system
(

(U, V ), X0

)
is a slow-fast dynamical system where (U, V ) is ”slow”

and X0 is ”fast”. The meaningful quantity in the sequel is rather the mean dwell
time over any interval [a, b], i.e. the proportion of time agent 0 spin is equal to
σ on the interval [a, b] ⊂ [0, T ], defined by the following:

∀σ = ±1,

∫ T

0

1[a,b](s)L
σ(s)ds,

with Lσ(s) := 1(X0(s)=σ). By a slight abuse of notation, we write L+ instead of

L+1. We have the following approximation of the previous coupled SDE.

Proposition 5 (long-term behaviour) Let T be a finite horizon time. The
system

(
U, V

)
can be approximated by the following

dU(t) = F1(U, V )dt + dw1(t),

dV (t) = F2(U, V )dt + dw2(t),
(12)

with F = (F1, F2) : [0, 1]2 −→ [0, 1]2 the following vector field:

F1(u, v) =
u

(u + v)2
(
γ(1 − u)u1(u<1) − βv1(u>0)

)
F2(u, v) =

v

(u + v)2
(
γ(1 − v)v1(v<1) − βu1(v>0)

) (13)

and where the noise process (w1, w2) decays in some natural norms: E||wj ||2[0,T ] −→
0 as N −→ ∞ for j = 1, 2.

Let us first define the intermediate functions:

H+(s) :=
U

U + V
(s) and H−(s) :=

V

U + V
(s), (14)
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In order to prove the last proposition, let us consider the first term of (10),
namely the upward jumps term of U defined by

U↑(dt) : =

∫ 1

0

1(γy<Γu)N
γ(dtdy),

U↓(dt) : =

∫ 1

0

1(βy<Bu)N
β(dtdy).

(15)

The two other jumps V ↑ and V ↓ can be treated similarly.
The first part of the proof relies on the dwell time approximation to decouple
the fast and slow dynamics, as stated in the following lemma.

Lemma 6 Considering the upward jumps term U↑, for any a < b < T ,

ϵdwe :=

∫ T

0

1[a,b](s)
(
L+ −H+

)
(s)ds −→ 0 as N −→ +∞. (16)

The same result is also valid when replacing L+ and H+ by L− and H−. More-
over, the next result will equally be used.

Lemma 7 Let us take any bounded process {Ys}s∈[0,T ], N λ(dtdy) ∼ λdt⊗Unif[0,1]

with λ > 0 and any A ⊂ [0, 1]. Let Mλ(dtdy) =
[
N λ − λ1[0,1](y)

]
(dtdy). Define

for any integer N and t ∈ [0, T ], {(Y 1A) ·M} (Nt) := 1
N

∫ Nt

0

∫
y
Ys1A(y)Mλ(dsdy).

Then,
E||(Y 1A) ·Mλ||2∞ → 0 as N → ∞.

With this in mind, we prove the main result.

Proof 8 (of proposition 5) Let us consider the first term of (10), namely
the upward jumps term of U defined by U↑(dt). Then we have that dU(t) =
U↑(dt) − U↓(dt).

The martingale-compensator decomposition for marked point processes ([25],

chap.8) applied to U
↑
gives for all t ∈ [0, T ]:

U
↑
(t) =

U↑(Nt)

N
=

1

N

∫ Nt

0

∫ 1

0

1(γy<Γu)N
γ(dsdy)

=
1

N

∫ Nt

0

∫
y

1(γy<Γu) [γdsdy + (N γ(dsdy) − γdsdy)]

=
1

N

∫ Nt

0

Γu(s)ds +
1

N

∫ Nt

0

∫
y

1(γy<Γu)M
γ(dsdy)

where Mγ(dsdy) =
(
N γ − γ1[0,1](y)

)
(dsdy) as in lemma 7. By a change of

variable and the definition of Γu given by equation (9), we get:

1

N

∫ Nt

0

Γu(s)ds =

∫ t

0

Γu(Ns)ds =

∫ t

0

(
U

U + V
(1 − U)

)
(s)1(U<1)L

+(s)γds,

9



with L+(s) = 1(X0(Ns)=+1). We now make use of the dwell time approximation
(16): ∫ t

0

W (s)L+(s)ds =

∫ t

0

W (s)H+(s)ds + ϵu↑,dwe,

with W (s) :=
(

U
U+V

(1 − U)
)

(s)1(U<1)γ being a bounded process. Therefore,

we obtain:

U
↑
(t) =

∫ t

0

(
U

U + V

)2

(1 − U)1(U<1)γds +
1

N

∫ Nt

0

∫
y

1(γy<Γu)M
γ(dsdy) + ϵdwe

Applying the same reasoning to U
↓
, it leads to

U(t) = U
↑
(t) − U

↓
(t) =

∫ t

0

F1(U, V )ds + ϵtot + MN (t),

for all t ∈ [0, T ] and where

MN (t) =
1

N

∫ Nt

0

∫
y

[
1(γy<Γu)M

γ − 1(βy<Bu)M
β
]

(dsdy),

and ϵtot is the aggregate error. It is left to bound the martingale term MN

standing as the noisy component of the process. Applying lemma 7 to 1(γy<Γu) ·
Mγ and 1(βy<Bu) ·Mβ concludes the proof.

4.2 Bifurcation point

Based on the following proposition we are able to explicitly determine the bi-
furcation point.

Proposition 9 Let g = γ
β . For g < 1, there is no equilibrium. For 1 < g < 3,

there is a unique equilibrium p0 = (w∗, w∗) lying on the diagonal, with w∗ = 1− 1
g

and it is unstable. Finally, for g > 3, two extra equilibria p1, p2 appear and p0
becomes stable. In contrast, the two other equilibria p1, p2 are always unstable,
regardless of the values (γ, β).

5 Numerical results

The next picture shows the trajectory of the system (U, V ) ∈ [0, 1]2 (in green
on the picture) with |B+| = |B−| = 500. The two parabolic curves represent
the curves F1(x, y) = 0 and F2(x, y) = 0 in the axis (Ox,Oy). The intersection
points of the last two curves exactly correspond to the equilibria of the system.

In Fig. 2, on the left (γ < 3β), only one equilibrium appears p0 (the one on
the diagonal). Furthermore, it is unstable (not attractive) and the trajectory
of the stochastic process is short and quickly gets absorbed. On the other hand
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Figure 2: For γ
β = 3.5, persistent hesitation occurs (right). On the contrary,

agent 0 is quickly convinced when γ
β = 2 (left). As expected, the trajectory

converges towards a full connection of agent 0 to only one clique.

when g > 3 (as seen on the right), the equilibrium on the diagonal p is attractive.
It can be noticed that for all values of β and γ, the two curves cross at (0, 0).
This configuration is indeed an (unstable) equilibrium: it corresponds to the
case where agent 0 has no link and cannot thus create some anymore. This
configuration is actually unreachable provided agent 0 starts with a positive
number of out-neighbours. Fig. 3 displays the integral curves associated to the
limiting deterministic ODE (13). On the left when γ

β = 2, the instability of
the symmetric equilibrium p0 is patent. While on the right, its attractiveness is
easily observable in view of the numerous incoming curves.

Figure 3: Phase portraits for the two cases γ
β = 2 (left) and γ

β = 3.5. As ex-
pected, the symmetric equilibrium is stable and the 2 other equilibria are unstable
in the later case.

In order to highlight the transition from a fast extinction regime to a metastable
one, we have plotted in the last figure (see Fig. 4 below) the time (in terms of
iterations number which is asymptotically proportional to the continuous time
duration) for the system to get absorbed depending on g. For g < 3 (subcritical
regime), we see that the absorbing time is always very low (Tsub < 2 × 105).
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Figure 4: N = 800. Each red point corresponds to one simulation. 20 simu-
lations have been performed by step, and the blue curve is the average. The
vertical line g = 3 corresponds to the critical value.

From g > 3 on (super critical), some higher times appear. At g = 3.1, a first
remarkably high value occurs (∼ 1.7 × 106 > 8Tsub). And when g gets close to
3.5, the mean value (blue curve) substantially increases, but the extreme values
data (∼ 1.2 × 107 > 60Tsub) are a much stronger indicator of the attractor’s
emergence .

6 Conclusions and Research perspectives

To conclude, we have presented and analyzed a simple linear adaptive voter
model in continuous time whose edges are unweighted and directed with pure
local linkage. Though original, it pertains to a flourishing literature on co-
evolutionary frameworks. We have used the fluid limits approach to treat a
particular case. More generally, adaptive network models may significantly ben-
efit from a mathematical theory of time-varying graphs. In terms of modelling,
the multi-layers frame may be able to capture both agents and bounds hetero-
geneity. Finally, we provide several directions for future work.

Asymmetric case One can generalize the particular case by dropping the
assumption |B+| = |B−|. Setting |B−| = q|B+| with q > 0 not necessarily
equal to 1, the fluid limits analysis still applies, but the bifurcation analysis of
the ODE (13) is more involved due to the additional parameter q > 0.
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Opinion space Defining the structure of the opinion space is a broad and
very general problem: continuous or discrete, totally ordered (like an interval)
or toric, etc. Though extremely simple, a binary opinion space is quite realistic,
since there are many situations where the choice has to be made between two
possibilities. Nonetheless, the actual opinion may be more complex. Some
authors [26, 27] define two layers to distinguish public from private opinion, the
latter living in a larger and more complex space.

Edge space Concerning the edge space, assigning weights to the edges may
add interesting features to the problem, aligning with the reinforcement-penalization
mechanism proposed in [28]. Rather than weighting the edges, introducing a
qualitative distinction of the links (family, professional, etc) may be another
avenue to explore, even though the modeling part seems demanding. Such an
additional edge granularity may be harmoniously tailored in accordance with a
psycho-social profiling.

Linking mechanism The most structural feature of the present paper is
the 2-hop linking procedure (3). Although it may seem natural for modeling
iterative search, it assumes the standard agent to be quite conservative. A model
combining 2-hop linking and a specific long-range exploration mechanism like
preferential attachment is a plausible candidate for future works.
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A Appendix

A.1 Proof of proposition 4 (absorbing states)

Proof 10 We first show that all configurations in A are absorbing. Let us take
(x⃗, A) ∈ A. It suffices to show that all rates are identically 0. Let l,m ∈ [K].
There are two cases:

• either l → m. In this case, alm = 1 and thus Γ(lm, x⃗, A) = 0. We also
have xl = xm, implying B(lm, x⃗, A) = 0.

• or ¬(l → m). In this case, alm = 0 and thus B(lm, x⃗, A) = 0. More-
over, there is obviously no path of size 2 between l and m, which implies:
aljajm = 0 ∀j =⇒ Γ(lm, x⃗, A) = 0.
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We now show that the flip rate is identically 0: let us take k ∈ [K]. For all
j ∈ Nout

k , j → k =⇒ xk = xj =⇒ Φ(k, x⃗, A) = 0.

We have shown that all elements of A are absorbing. We shall show that they
are the only ones: let us take a configuration (x⃗, V ) /∈ A. It means that there
exists some k, j ∈ [K] with k → j and such that (xk ̸= xj or akj = 0). Then,
it exists a directed path p = p1p2...pM of size M such that p1 = k, pM = j and
aplpl+1

= 1.
We define the index v as v := min{l ∈ [2,M ] : (xpl

̸= xq or aqpl
= 0)}. This set

is finite and non empty because it contains M . The minimum necessarily exists
and we have: xpl−1

= xk, akpl−1
= 1 and apl−1pl

= 1. Here, we have two cases:

• If xpl
̸= xk, then pl−1 is susceptible to flip: Φ(pl−1, u⃗, V ) > 0. This

configuration is thus not absorbing.

• Else, xpl
= xpl−1

= xk but akpl
= 0. In this case, k is thus susceptible to

get linked with pl: Γ(kpl, x⃗, V ) > 0.

Finally, the finite time convergence is an immediate corollary on the following
lemma:

Lemma 11 Let a discrete-time Markov chain
{

(Xk)k, Qxy

}
in a finite state

space S = S′⋃ ∂ with S′ being a SCC and ∂ an absorbing state. If it exists an
s ∈ S′ such that ps∂ > 0, then a.s the Markov chain is absorbed in finite time.

Proof 12 (of lemma 11) We shall show that the hitting time of ∂ T∂ is in-
tegrable.

Ex[T∂ ] ≤ ExTs +
∑
k

Es

{
1{X hits k times s and jumps to ∂} × (T (k)

s + 1)
}

≤ ExTs +Es

∑
k

T (k)
s 1{Z = k},

where T
(k)
s is the kth hitting time of s, and Z is a geometric law with a success

probability Qs∂ . Because EsT
(k)
s = kEsTs, we have,

ExT∂ ≤ ExTs +
∑
k

kEsTs(1 −Qs∂)kQs∂ < ∞.

ET∂ < ∞ implies P(T∂ < ∞) = 1.

One has finally to notice that for all (x,A) ∈ S : (x,A) → A. Applying the
lemma to the embedded Markov chain terminates the proof.

A.2 Proof of lemma 6 (dwell-time approximation)

Proof 13 To prove this, let us define a subdivision of [a, b] ∆ := {a = t1 < ... <
tp = b} with Ij = [tj , tj+1[ and |∆| = maxj |Ij |. Consider the approximation

16



H̃σ(s) :=
∑

j H
σ(tj)1Ij (s) and the approximation L̃σ as the locally homoge-

neous Markov: on Ij, its transition rates are ρ0→1 = ϕHσ(tj), and ρ1→0 =
ϕH−σ(tj) whose unique stationary probability measure is (Hσ(tj), H

−σ(tj)).
We then write∫

(Lσ −Hσ) =

∫ (
L̃σ − H̃σ

)
+

∫
(H̃σ −Hσ) +

∫ (
Lσ − L̃σ

)
. (17)

As N gets large, the convergence to 0 of the first term in the right-hand side
of (17) is an application of the ergodic theorem (sect. 4.7 of [29]): a.s., ∀j =
1, ...p,∃Nϵ,j such that ∀N > Nϵ,j, we have∫

Ij

(
L̃σ(Ns) −Hσ(tj)

)
ds < ϵ

=⇒ ∃Nϵ ⊥⊥ j,

∫
[a,b]

(
L̃σ − H̃σ

)
=

p∑
j=1

∫
Ij

(
L̃σ − H̃σ

)
< ϵp.

As N gets large, the second term of (17) vanishes as well since on each interval
Ij, H

σ varies about (β + γ)|∆|:

sup
s∈Ij

∣∣∣H̃σ(s) −Hσ(Ns)
∣∣∣ ≤ ∣∣∣{jumps on [Ntj , Ntj+1[}

∣∣∣× (jump size)

≤
(
|N γN | + |N βN |

)
(Ij)

1

N
.

Applying Tchebychev inequality on the random variables |N λN |(Ij) which are
Poisson distributions with parameter λN |Ij | for λ ∈ {β, γ}:

∀η, j,P
(∣∣∣∣ |N λN |(Ij)

N
− |Ij |λ

∣∣∣∣ > η

)
≤ λ|Ij |

η2N
→ 0 as N → ∞.

As the intervals Ij are disjointed, the random variables |N γN |(Ij) are indepen-
dent for all ϵ > 0,

P

(∫ T

0

1[a,b]

∣∣∣Hσ − H̃σ
∣∣∣ (Ns) > ϵ

)
≤ P

(
|b− a| sup

a<s<b
|Hσ − H̃σ|(Ns) > ϵ

)

≤ 1 − Πp
j=1P

(
sup
s∈Ij

|Hσ − H̃σ|(Ns) <
ϵ

b− a

)

≤ 1 − Πp
j=1

(
1 − γ|Ij |

ϵ20N

)
< 1 −

(
1 − γ|∆|

ϵ20N

)p

→ 0

as N → ∞.
Finally, we shall show that the last term

∫
Ij

(
Lσ − L̃σ

)
tends to 0:

E

∫
Ij

(
Lσ − L̃σ

)
=

∫
s∈Ij

∫
x=+1,−1

1(x=σ)

(
µs − µ̃s

)
(dx)ds,
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where µs (resp. µ̃s) stands for the law at time s of the spin X0 of agent 0
(resp. X̃0). {µ̃s}s∈Ij only depends on H±σ(tj) while µs continuously depends
on (U, V ). By the computations performed before, their difference if of order
|∆|, implying ∣∣∣∣∣E

∫
Ij

(
Lσ − L̃σ

)∣∣∣∣∣ ≤ |Ij | sup
s∈Ij

|µs − µ̃s| < |Ij | (|∆|γ) ,

=⇒ E

∫
1[a,b]

(
Lσ − L̃σ

)
= E

∑
j

∫
Ij

(
Lσ − L̃σ

)
≤ T |∆|.

A.3 Proof of lemma 7 (convergence of the martingale term)

Proof 14 We have:

E
{

(Y 1A) ·Mλ
}2

(Nt) =
1

N2
E

{∫ Nt

0

∫
y

Ys1A(y)Mλ(dsdy)

}2

=
|A|2

N2
E

{∫ Nt

0

Ys

[
N λ − λ

]
(ds)

}2

=
|A|2

N2
E

∫ Nt

0

Y 2
s ⟨N λ − λ⟩(ds),

where the last equality is due to the Moments formula (eq. (5.8) of [30]), and
where ⟨.⟩ (resp. ⟨., .⟩) stands for the quadratic variation (resp. co-variation).
Because the family of processes {Ys(w)1A : Ys bounded, A ⊂ [0, 1]} generates all
the bounded processes Zs(w, y) : [0, T ]×Ω×[0, 1] → R, it can be straightforwardly
extended to the latter space. Moreover, by standard properties on quadratic
variations, namely ⟨N λ⟩ = N λ and ⟨λ⟩ = ⟨N λ, λ⟩ = 0, we get

⟨N λ − λ⟩ = ⟨N λ⟩ + ⟨λ⟩ − 2⟨N λ, λ⟩ = N λ.

It finally leads to

E||(Y 1A) ·Mλ||2∞ = E sup
0<t<T

∣∣(Y 1A) ·Mλ
∣∣2 (Nt)

≤ E
∣∣(Y 1A) ·Mλ

∣∣2 (NT )

≤ |A|2

N2
E

∫ Nt

0

Y 2
s N λ(ds)

=
|A|2

N2

∫ Nt

0

E[Y 2
s ]λ(ds)

≤ |A|T ||Y ||2∞λ
1

N
→ 0 as N → ∞.
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A.4 Proof of proposition 9 (bifurcation point of the lim-
iting ODE)

Proof 15 Recall g = γ
β . Let find a couple (u, v) ∈ [0, 1]2 solution of the follow-

ing system: {
F1(u, v) = 0
F2(u, v) = 0

⇐⇒
{

γ(1 − u)u− βv = 0
γ(1 − v)v − βu = 0

The first equation gives that v = g(1 − u)u, and by substitution, the second
equations leads to:

g3z3 − g3z2 + g2z − 1 = 0,

where z = 1 − u. We factorize the last expression by the solution z = 1
g , that

gives:

g2
(
z − 1

g

)(
gz2 − (g − 1)z + g−1

)
= 0. (18)

Note that this solution is symmetric, if u = 1 − 1
g then v = 1 − 1

g from first

equation of the system. Focus now on the second degree equation gz2 − (g −
1)z + g−1 = 0. Let us compute its discriminant ∆:

∆ = (g + 1)(g − 3).

Then depending on the value of g, different solutions occur for equation (18) on
the interval ]0, 1[:

• if 0 < g < 1, then there is no solution for equation (18) on the interval
]0, 1[,

• if 1 ≤ g < 3, there exists a unique solution z∗ = 1
g ,

• else if g > 3, there are three different solutions:

z∗ =
1

g
, z∗0 =

g − 1 −
√

(g + 1)(g − 3)

2g
, and

z∗1 =
g − 1 +

√
(g + 1)(g − 3)

2g
.

We now study the stability of the symmetric equilibria u∗ = v∗ = 1 − 1
g when

g > 1.
F : (u, v) ∈]0, 1[2−→ F (u, v) ∈]0, 1[2 is of the form D(u, v).F̄ (u, v), where D =[
d1(u, v) 0

0 d2(u, v)

]
=

[
u

(u+v)2 0

0 v
(u+v)2

]
is a diagonal matrix and

F̄ (u, v) =

[
γ(1 − u)u −βv

−βu γ(1 − v)v

]
.

19



Whence

∂F = (∂D).F̄ + D.(∂F̄ )

Because we study the derivative only at equilibrium, we get F = F̄ = 0. The
first term in the product derivative thus vanishes. It is left to compute the second

one. First, ∂F̄(u,v) =

[
γ(1 − 2u) −β

−β γ(1 − 2v)

]
. Then, compute the spectrum of

the normalized (divided by β) linearization:

χ(λ) = det

(
1

β
D.(∂F̄ ) − λI2×2

)
for λ ∈ R,

= det(D) × det

(
1

β
∂F̄ −D−1λ

)
= det(D) ×

∣∣∣∣g(1 − 2u) − λ
d1

−1

−1 g(1 − 2v) − λ
d2

∣∣∣∣ ,
∝
(
g(1 − 2u) − λ

d1

)(
g(1 − 2v) − λ

d2

)
− 1,

∝ 1

d1d2
λ2 − g

{
(1 − 2v)

d1
+

(1 − 2u)

d2

}
λ

+ g2(1 − 2u)(1 − 2v) − 1.

Taking χ(λ) = 0 is equivalent to

λ2 − g {(1 − 2v)d2 + (1 − 2u)d1}λ
+ g2(1 − 2u)(1 − 2v)d1d2 − d1d2

= λ2 − g(A + B)λ + g2AB − d1d1 = 0, where

A = (1 − 2v)d2, B = (1 − 2u)d1 and

∆ = g2(A−B)2 + 4d1d2 > 0.

Then, the eigenvalues λ− and λ+ are:

λ− =
g(A + B) −

√
g2(A−B)2 + 4d1d2

2

and

λ+ =
g(A + B) +

√
g2(A−B)2 + 4d1d2

2
.

For the symmetric equilibrium to be attractive, the eigenvalues must be negative,
meaning that λ+ < 0. It gives the two conditions:

g(A + B) +
√
g2(A−B)2 + 4d1d2 < 0 ⇐⇒

A + B < 0 and (A + B)2 > (A−B)2 +
4d1d2
g2
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The first condition gives:

A + B < 0 ⇐⇒ (1 − 2v)d2 + (1 − 2u)d1 < 0.

But, as we are looking at the symmetric equilibrium point u = v = 1 − 1
g , then

d1 = d2. Thus,
A + B < 0 ⇐⇒ g > 2.

The second condition is more restrictive:

(A + B)2 > (A−B)2 +
4d1d2
g2

⇐⇒ AB >
d1d2
g2

⇐⇒ (1 − 2(1 − 1

g
))2 >

1

g2
.

Here there are two cases: either 1 − 2(1 − 1
g ) > 1

g ; after simple computations,
it leads to g < 1 which is not admissible because of the last inequality. Only
remains the other possibility: 1 − 2(1 − 1

g ) < − 1
g , leading to g > 3.

To conclude, when g > 3 then the symmetric equilibrium u = v = 1 − 1
g is a

stable equilibrium of the approximated dynamics.
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