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Abstract
Our understanding of the nature of crustal formation in the Eoarchean is limited by the scarcity and poor preservation of the 
oldest rocks and variable and imperfect preservation of protolith magmatic signatures. These limitations hamper our ability to 
place quantitative constraints on thermomechanical models for early crustal genesis and hence on the operative geodynamic 
regimes at that time. The recently discovered ca. 3.75 Ga Ukaliq supracrustal enclave (northern Québec) is mainly composed 
of variably deformed and compositionally diverse serpentinized ultramafic rocks and amphibolitized mafic schists whose 
metamorphic peak, inferred from phase equilibria modeling, was below 720 °C. Inferred protoliths to the Ukaliq ultramafic 
rocks include cumulative dunites, pyroxenites, and gabbros, whereas the mafic rocks were probably picrites, basalts, and 
basaltic andesites. The bulk-rock and mineral chemistry documents the partial preservation of cumulative pyroxenes and 
probably amphiboles and demonstrates the occurrence of a clinopyroxene-dominated, tholeiitic suite and an orthopyroxene-
dominated, boninite-like suite. Together with the presence of negative μ142Nd anomalies in the boninitic basalts, two liquid 
lines of descent are inferred: (i) a damp tholeiitic sequence resulting from the fractionation of a basaltic liquid produced by 
mantle decompression; and (ii) a boninitic suite documenting the evolution of an initially primitive basaltic andesite liquid 
produced by flux melting. Petrographic observations, thermodynamic modeling, bulk-rock and mineral chemistry, and 142Nd 
isotopic compositions identify the Ukaliq supracrustal belt as the remnant of an Eoarchean arc crust produced by the recycling 
of Hadean crust in a similar way as modern-style subduction.
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Introduction

Plate tectonics has long governed the mode of crust for-
mation and cooling on our planet, including the long-term 
operation of the geochemical cycles and, hence, the evolu-
tion of the atmosphere, hydrosphere, and biosphere in what 
has been termed “biogeodynamics” (e.g., Stern 2002; Von 
Huene and Scholl 1991; Zerkle 2018). Within this biogeo-
dynamic framework, subduction zones generate continental 
crust through partial melting of the mantle wedge, magmatic 
accretion beneath island arcs, and refinement via additional 
remelting and density sorting (e.g., Cawood et al. 2013; 
Hacker et al. 2011; Ringwood 1974; Schmidt and Jagoutz 
2017; Taylor and McLennan 1985). The record of Hf iso-
topes in zircon is interpreted to show that > 70% of crustal 
growth occurred in the Archean, or before about 2.5 Ga 
(e.g., Belousova et al. 2010; McCulloch and Bennett 1994). 
Based mostly on geochemical and mechanical–structural 
constraints, the prevailing process associated with Archean 

Communicated by Timothy L. Grove.

 *	 Thomas Grocolas 
	 thomas.grocolas@unil.ch

1	 Université de Lorraine, CNRS, CRPG, 54000 Nancy, France
2	 Institute of Earth Sciences, University of Lausanne, 

Géopolis, 1015 Lausanne, Switzerland
3	 Origins Research Institute, Research Centre for Astronomy 

and Earth Sciences, 15–17 Konkoly Thege Miklós Road, 
Budapest 1121, Hungary

4	 Department of Lithospheric Research, University of Vienna, 
UZA2, Althanstraße 14, 1090 Vienna, Austria

5	 Department of Geological Sciences, University of Colorado, 
Boulder, CO 80309‑0399, USA

http://orcid.org/0000-0001-6756-9929
http://orcid.org/0000-0002-2647-3864
http://orcid.org/0000-0002-1220-900X
http://orcid.org/0000-0003-0000-125X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00410-022-01904-x&domain=pdf


	 Contributions to Mineralogy and Petrology          (2022) 177:39 

1 3

   39   Page 2 of 27

crustal growth asserts that continental drift without sub-
duction as we know it molded the Hadean–Archean Earth’s 
crust (e.g., Bédard et al. 2003; Shirey and Richardson 2011). 
Considering a mantle potential temperature ~ 300 °C greater 
than that of today, mantle melting ought to have occurred 
at a greater depth to produce a relatively thick and buoy-
ant crust (Johnson et al. 2014; Korenaga 2006; McKenzie 
and Bickle 1988; Sleep 2005). Arguably, the thermal and 
mechanical properties of such thick crust inhibited subduc-
tion processes to instead favor emplacement of a long-lived 
lithosphere susceptible to reworking via what may have 
been catastrophic vertical transfer events (e.g., Bédard 2006, 
2018; Fischer and Gerya 2016a; O’Neill and Debaille 2014; 
Van Thienen et al. 2004). At odds with these interpretations 
are recent numerical models showing that subduction can 
proceed even under the thermal boundary conditions of very 
thick and buoyant crust (Maunder et al. 2016; Weller et al. 
2019), although other models demonstrate that subduction 
is inhibited even with a mantle 30 °C hotter in the Protero-
zoic (e.g., Davies 1992). Polat et al. (2002) present petro-
logical and geochemical constraints from Eoarchean rocks 
that are compatible with subduction initiation at approxi-
mately 3.8 Ga. Similarly, the heavy Si isotope signature of 
tonalites–trondhjemites–granodiorites (TTG), interpreted 
to reflect a recycled sedimentary component, lends support 
to the idea that the onset of plate tectonics occurred at the 
Hadean–Eoarchean transition around 4 Ga ago rather than 
sometime later (Deng et al. 2019; Trail et al. 2018). Melt 
inclusions captured in Hadean zircons analyzed by Hop-
kins et al. (2008, 2010) are also used to argue for plate-
boundary processing of crust before 4 Ga. A competing 
study of silicate and sulfide inclusions captured in ancient 
diamonds (Shirey and Richardson 2011), as well as recent 
studies based on O and B isotopic composition of Paleo-
archean to Mesoarchean TTG (Smit et al. 2019; Smithies 
et al. 2021), instead argues in favor of the initiation of plate 
tectonics after about 3 Ga, whereas studies of ophiolites and 
high-pressure metamorphic terranes (Stern 2005) suggest 
that this process only began as recently as Neoproterozoic 
time. Therefore, the petrogenetic process associated with 
the crustal growth trajectory of the Archean Earth remains 
widely debated because of the poor preservation of crustal 
material from these early times that could provide direct 
information on the processes involved in crustal genesis. 
Hence, resolving these conflicting conclusions about Earth’s 
history of plate tectonics requires analysis of the oldest rocks 
in addition to numerical modeling. However, this approach 
is only effective if the oldest preserved rocks can be shown 
to contain petrological and geochemical characteristics that 
allow for distinguishing between the competing Archean 
petrogenetic models cited above.

One such early Archean crustal fragment is the ~ 12,000 
km2 Archean Inukjuak domain in the northeast Superior 

Province of Québec, Canada (Greer et al. 2020). Briefly, the 
Eoarchean supracrustal enclaves of the Ukaliq (and nearby 
Nuvvuagittuq) locality are part of the Innuksuac complex 
(Simard et al. 2003), an association of scattered and variably 
deformed supracrustal rafts which range in size from < 1 m 
to > 1 km and are in turn intruded by granitoid gneisses of 
the Inukjuak domain. As described by Caro et al. (2017), 
the Ukaliq rocks comprise a series of mafic schists inter-
preted to have volcanic protoliths chemically similar to those 
found in a modern forearc environment such as tholeiitic and 
boninitic lavas. These are also associated with calc-alkaline 
andesites, the identification of which challenges the exclu-
sivity of a vertical tectonic model for the entirety of the 
Archean (e.g., Turner et al. 2014), although a subduction-
less hypothesis has also been advocated by Barnes and Van 
Kranendonk (2014). We wish to emphasize that rocks from 
the Innuksuac complex display similar geochemical signa-
tures to rocks documented in the 3.81–3.70 Ga Isua suprac-
rustal belt (ISB; southern West Greenland; Szilas et al. 2015 
and references therein) as well as in younger Archean com-
plexes (e.g., Cawood et al. 2006). Yet, as opposed to the 
ISB rocks which have well documented higher 142Nd/144Nd 
values (Caro et al. 2003) relative to bulk silicate Earth (BSE) 
and reported in the conventional μ142Nd notation as posi-
tive anomalies, the numerous lithologies of the Innuksuac 
complex preserve variably negative μ142Nd anomalies (Caro 
et al. 2017; O’Neil et al. 2008; Roth et al. 2013). Because 
of the short half-life of 146Sm (t1/2 = 103 Ma), such negative 
142Nd anomalies can only be produced in low Sm/Nd (crus-
tal) protoliths differentiated prior to ~ 4 Ga (e.g., Caro 2011).

There are two ways to explain these divergent μ142Nd 
values for what otherwise appears to be synchronous Eoar-
chean terranes: (i) the negative μ142Nd were produced by 
in situ decay of 146Sm after emplacement of the rocks, in 
which case the Nuvvuagittuq belt is of Hadean age (O’Neil 
et al. 2008, 2019); or (ii) the negative μ142Nd signature is 
inherited from a now-vanished Hadean lithosphere and 
the μ142Nd–Sm/Nd correlation interpreted by O'Neil et al. 
(2008) as an isochron instead represents a mixing line with-
out geochronological significance (Caro et al. 2017; Guit-
reau et al. 2013). Such an inherited signal can be duplicated 
by assimilation of a Hadean 142Nd anomaly-bearing crust or 
foundering of Hadean lithosphere leading to the transfer of 
a crustal isotopic signature to the overlying mantle wedge.

Two key observations can, however, weaken the assimi-
lation argument. The first of these is that, despite the ubiq-
uitous Hadean crustal signatures, there are no inherited 
or detrital zircons of Hadean age in rocks of the Innuk-
suac complex. This is despite thousands of U–Pb zircon 
analyses performed on samples of igneous and detrital 
sedimentary protoliths collected from throughout the 
terrane (Cates et al. 2013; Chowdhury et al. 2020; Greer 
et al. 2020 and references therein). A second argument 
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lies in the absence of crustal (felsic) contaminants with 
sufficiently unradiogenic 142Nd signature to account for 
the μ142Nd values found in mafic rocks of the Nuvvuagit-
tuq and Ukaliq supracrustal belts (Caro et al. 2017). Col-
lectively, these observations suggest that the Innuksuac 
complex inherited the geochemical signature of Earth’s 
primordial crust without significant reworking of Hadean 
felsic protoliths. To account for these observations, which 
appear to conflict with the assimilation scenario to explain 
the variably negative μ142Nd anomalies, we propose that 
crustal recycling through subduction was operative, at 
least intermittently, in the Eoarchean. We further show 
how this scenario neatly explains the typical forearc 
sequence preserved in the Innuksuac supracrustals and the 
trace element concentrations and the enriched 142Nd and 
143Nd signatures contained therein.

In this work, we focus our attention on the ultra-
mafic–mafic supracrustal enclave at the Ukaliq locality 
to describe (1) preserved Eoarchean magmatic features, 
(2) the cumulate–liquid relationship between the ultra-
mafic and mafic rocks, and (3) the cumulate assemblages 
that formed during the ascent of differentiating magmas. 
Based on these observations, we provide an explanation 
for the chemical evolution of the supracrustal rocks that 
requires a transition from a damp tholeiitic regime to a wet 
boninitic sequence. In a modern tectonic setting, such an 
evolution is most often observed in subduction initiation 
environments.

Geological setting

The variably deformed Eoarchean supracrustal enclaves of 
the dominantly Neoarchean Inukjuak domain (Minto block, 
northeast Superior Province, Canada) principally comprise 
plutonic and volcano-sedimentary schists; these range in age 
from 3.8 to 3.5 Ga and were metamorphosed at amphibolite 
facies conditions (0.4 GPa, 640 °C; Cates and Mojzsis 2009; 
Greer et al. 2020) with local retrogressions. Although less 
well known than cognate Eoarchean rocks of the ISB, the ca. 
3.75 Ga Nuvvuagittuq supracrustal belt (NSB) was the first 
to show evidence of anomalous depletions in 142Nd/144Nd 
relative to BSE (negative μ142Nd) that seem to correlate 
to Sm/Nd (O’Neil et al. 2008). The subject of our study 
is another neighboring body of metamorphosed volcano-
sedimentary rocks also displaying this characteristic 142Nd 
signature: the Ukaliq supracrustal belt (USB; Caro et al. 
2017). The largest USB enclave is a poly-metamorphosed 
and intensely deformed NNW-trending flat, ellipsoidal body 
of about 100 m × 7 km (Fig. 1) a few kilometers north from 
the NSB. The USB is composed of three main lithologies: 
(i) a massive amphibolite composed of hornblende- or cum-
mingtonite-rich rocks inferred to have volcanic protoliths; 
(ii) ultramafic boudins and enclaves, mainly serpentinized; 
and (iii) intercalated siliceous units comprising layered and 
strongly tectonized quartz + magnetite ± amphibole ± pyrox-
ene ± olivine rocks interpreted as banded-iron formations 
(BIF), and quartz + biotite schists and massive to banded 

58°18.65'58°18.65'

58°18.55'58°18.55' 58°18.60'58°18.60'

-7
7°
41

.6
0'

-7
7°
41

.6
0'

-7
7°
41

.5
5'

-7
7°
41

.5
5'

-7
7°
41

.5
0'

-7
7°
41

.5
0'

-7
7°
41

.4
5'

-7
7°
41

.4
5'

Voizel and Boizard Suites Voizel and Boizard Suites 
(inferred)(inferred)

QuébecQuébec

USAUSA

O
nt
ar
io

O
nt
ar
io

LabradorLabrador

AniutarvikAniutarvik 2 km2 km

Boizard suiteBoizard suite Voizel suiteVoizel suite

Central tonaliteCentral tonalite

2720 Ma2720 Ma

2706 Ma2706 Ma 3598 Ma3598 Ma

3652 Ma
3652 Ma

2626
1313

2525

2424
2323

88

3838

99

1212
1111

1616
1515

77

66

2121

2222
2020

3636
3434
1919

1818

55

3535

3333

3232
3131 33

44

22

11

3030
2929

2828

1717

11 IN16 samplesIN16 samples
11 IN14 samplesIN14 samples
11 IN12 samplesIN12 samples

U–Pb zircon datesU–Pb zircon dates

11 146,147146,147Sm–Sm–142,143142,143NdNd

4747

4848

FoliationFoliation

20 m20 m

AmphibolitesAmphibolites

Ultramafic rocksUltramafic rocks

Banded-iron formationsBanded-iron formations

QuartzitesQuartzites

TTG gneisses (Voizel and Boizard suites)TTG gneisses (Voizel and Boizard suites)
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quartzite (± fuchsite) of detrital origin (Caro et al. 2017; 
Greer et al. 2020).

Two forms of ultramafic rocks can be distinguished: (i) 
a thick layer (~ 30 m) parallel to the massive NNW-dipping 
foliation; and (ii) lenses (1–5 m) included within the amphi-
bolites (Fig. 2a). The contact between ultramafic and mafic 
rocks is sharp (Fig. 2b) and concordant with the foliation. 
Several thin (~ 10 cm) BIF layers occur within the mafic 
rocks and are parallel to the regional structural trend of the 
USB enclave. The quartzites are mainly located near the 
eastern contact between USB rocks and the Voizel suite 
granitoids (3550 Ma; Greer et al. 2020; Fig. 1). Ultramafic 
rocks range from pure serpentinite on the eastern side to a 
more pyroxene-rich composition in the west. The NSB dif-
fers from the USB in the occurrence of the Ca-poor amphi-
bole cummingtonite; this lithology is rare at Ukaliq, where 
the amphibole is hornblende as opposed to the NSB where 
cummingtonite can be the dominant amphibole in amphi-
bolite. Earlier U–Pb thermal ionization mass spectrom-
etry (TIMS) geochronology on detrital zircons recovered 
from micaschists in the NSB yields an age of 3825 ± 18 Ma 
(Darling et al. 2013; David et al. 2002), whereas zircons 

extracted from intrusive trondhjemitic orthogneisses lead 
to a minimum emplacement age of 3751 ± 10 Ma (Cates 
and Mojzsis 2007; Greer et al. 2020). Elsewhere in the 
NSB, detrital zircons from detrital fuchsitic quartzites and 
micaschists interpreted to be quartz-pebble conglomerates 
provide a maximum age of emplacement for the various vol-
canic protoliths of ca. 3.78 Ga (Cates et al. 2013; Darling 
et al. 2013). For a review of the geology of the wider region 
and a debate over the interpretation of the geochronology, 
we refer the reader to the synthesis provided in Greer et al. 
(2020).

Methods

This study uses 35 samples from Caro et al. (2017) and 22 
collected in the USB in 2016. The latter were cut into small 
blocks and only fresh material was further used for bulk-
rock analysis. The blocks were crushed in a hydraulic press 
and ground to a fine powder in an agate mill. Bulk-rock 
major and trace element compositions for the 22 samples 
were performed at the Service d’Analyse des Roches et des 

Fig. 2   Ultramafic and mafic rock associations within the Uka-
liq supracrustal belt. a Ultramafic rocks and amphibolites exhibit-
ing a subvertical contact and an enclave relationship (N58°18.542ʹ, 
W77°41.487ʹ). b Sharp contact between amphibolite and ultramafic 
rocks showing an orange to brownish alteration color. c Serpentinized 

ultramafic rock sample (IN14023) displaying a dark greenish color 
and composed of antigorite + chlorite + magnetite (N58°18.559ʹ, 
W77°41.490ʹ). d Photograph of the fine-grained amphibolite exhib-
iting the typical amph + plag + quartz paragenesis (IN14004; 
N58°18.682ʹ, W77°41.547ʹ)
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Minéraux (SARM, CRPG) facility using the inductively 
coupled plasma optical emission spectrometer (ICP-OES) 
iCap6500 and the inductively coupled plasma mass spec-
trometer (ICP-MS) iCapQ, respectively. The detection limits 
and standard deviations are reported in the Electronic Sup-
plementary Material ESM 1.

In situ major element compositions of minerals from a 
subset of 16 samples (8 ultramafic rocks and 8 amphibolites) 
were determined using the Cameca SX100 electron micro-
probe at GeoRessources laboratory (Université de Lorraine). 
Measurements were corrected with the PRZF method (Arm-
strong 1995). The acceleration voltage was 15 keV and beam 
current 12 nA. Counting times were 30 s on the peak and 
15 s on the background. Trace element analyses were also 
performed for 6 samples using an Agilent 7500 sector field 
ICP-MS coupled with a Geolas platform hosting a 193 nm 
excimer laser housed at GeoRessources laboratory. Prior to 
the session, the instrument was tuned in linear scan mode 
on SRM-612 silicate glass. Oxide generation was mitigated 
to be < 0.07% for 248ThO+/232Th+. SRM-612 was also meas-
ured during the analytical session twice every 16 analyses 
to correct for instrumental drift. A 10 Hz repetition rate was 
used for sample analysis, and laser output energy density 
was 6 J cm−2. The ablation spot size was 60–80 μm for clino-
pyroxenes (cpx) and amphiboles (amph), and 120–150 μm 
for orthopyroxenes (opx). The acquisition time for back-
ground was 80 s and laser ablation 35 s. The raw data were 
processed and transformed into elemental contents using the 
LAMTRACE software (Jackson 2008). The detection limits 
and standard deviations are reported in the Electronic Sup-
plementary Material ESM 1.

Structure and petrography

Three main lithologies were identified within the main USB 
body (see Caro et al. 2017): (i) ultramafic rocks (pyroxene-
rich to pure serpentinite) present as enclaves or as decame-
ter-sized layers; (ii) hornblende- or cummingtonite-bearing 
amphibolites; and (iii) quartzitic and micaceous rocks of 
sedimentary protolith with foliation parallel to that expressed 
in the amphibolites. Therefore, contacts between these lith-
ologies are transposed as the foliation never transects layer 
contacts, even in highly folded areas, such as the southeast-
ern contact between quartzites and amphibolites (Fig. 1).

Ultramafic rocks

The dark green serpentine-bearing ultramafic rocks (Fig. 2c) 
are located in the center of the Ukaliq supracrustal belt and 
display an average foliation striking N70° ± 10° (Fig. 1). 
These serpentinites are mainly composed of antigorite and 
chlorite, as well as magnetite in the groundmass. At the 

microscopic scale, a cpx-bearing series and a cpx-absent, 
opx-bearing series are identified. Only one ultramafic sam-
ple is composed of cpx (IN16098b); it is located in a single, 
separate ultramafic lens and contains > 90 area% of antigor-
ite and chlorite. This sample contains limited amounts (< 1 
area%) of submillimeter-sized, fractured cpx in inclusion 
within magnesio-hornblende (Mg-hbl) or in the antigor-
ite + chlorite groundmass (Fig. 3d). These anhedral Mg-hbl 
form millimeter-sized porphyroblasts preferentially altered 
along their cleavage planes, separating them into several 
subgrains. They are systematically surrounded by a tremolite 
rim typical of disequilibrium between serpentine and amphi-
bole. Magnetite is ubiquitous in the cpx-bearing ultramafic 
rock and is in equilibrium with antigorite and chlorite.

The cpx-absent ultramafic rocks are also dominated by 
the antigorite + chlorite + magnetite + tremolite paragen-
esis, but centimeter-sized plates of subhedral to euhedral 
opx may represent > 60 area% of a thin section. These opx 
can be in contact with or surrounded by Mg-hbl (Fig. 3b), 
surrounded by antigorite and chlorite (Fig. 3c), or com-
pletely transformed into serpentine (Fig. 3a). Antigorite 
pseudomorph lamellae following opx cleavage can occur 
and separate opx into several, optically continuous subgrains 
originally forming large, centimeter-sized opx (Fig. 3c). We 
interpret these large, partially altered opx as the remnants of 
an altered cumulative texture (Campbell 1968), while opx-
associated antigorite probably forms through fluid circula-
tion along cleavage planes. The Mg-hbl from these samples 
are similar to those described in the cpx-bearing ultramafic 
rock. In these cpx-absent ultramafic samples, dark, subhedral 
to euhedral spinels (spl) occur as inclusion within opx and 
hbl (Fig. 3b), reminiscent of a typical magmatic relationship 
(e.g., Bouilhol et al. 2015). Brownish to greenish hercynitic 
spl are only present in cpx-absent samples and are locally 
surrounded by magnetite (Fig. 3c), which is typical of dis-
equilibrium between hercynite and serpentine. Finally, talc 
is locally observed overgrowing antigorite.

Amphibolites

Volumetrically, the USB is dominated by a dark, massive 
unit and many other smaller deformed enclaves of amphi-
bolites and paragneisses scattered throughout the complex 
(Chowdhury et al. 2020; Greer et al. 2020). At the centim-
eter scale, the mafic rocks display a fine-grained (< 0.5 mm) 
texture (Fig. 2d) with a typically metamorphic amph + pla-
gioclase (plag) + quartz ± cpx paragenesis. Light gray to 
beige amphibolite corresponds to the cummingtonite-rich 
amphibolite much more widespread throughout the neigh-
boring NSB (David et al. 2002). The typical feature of these 
cummingtonite-bearing amphibolites is the absence of cpx; 
they will be hereafter referred to as cpx-absent amphibo-
lites. At the microscopic scale, amphibolites exhibit a typical 
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isogranular texture with a foliation marked by millimeter-
sized cpx and amph (Fig. 3e, f), which may be green (Mg-
hbl, tremolite, cummingtonite) to bluish green (pargasite). 
Except for their colors, Mg-hbl and pargasite share the same 
textural features. Tremolite often surrounds and grows on 

top of Mg-hbl, pargasite, and cpx. These overgrowths and 
the presence of cummingtonite may be attributed to the 
metamorphic history of the massif. Most of the Mg-hbl and 
pargasite are in equilibrium with (1) millimeter-sized, par-
tially sericitized plag, (2) quartz with undulose extinction 

Fig. 3   Photomicrographs in cross-polarized light (a, b, d, and f) and 
plane-polarized light (c and e) illustrating mineralogy and textural 
features of USB rocks. a Ultramafic sample exhibiting an opx pseu-
domorph metamorphosed into antigorite containing an inclusion of 
hbl. b Subhedral to euhedral Cr–Al spl inclusion within millimeter-
sized opx displaying a sharp contact with hbl in an ultramafic rock. 
Euhedral, millimeter-sized hbl also occur as inclusion within opx. c 
Centimeter-sized opx crystal altered to serpentine along cleavage 
planes within an ultramafic rock. The brownish to greenish hercynitic 
spl are located in the antigorite groundmass and systematically have 

a magnetite rim. d Submillimetric cpx inclusions in hbl being sur-
rounded by antigorite and chlorite (> 90% of ultramafic rocks modal 
abundance) within the cpx-bearing ultramafic sample (IN16098b). e 
Amphibolite exhibiting a granoblastic texture associated with plag + 
amph + cpx + quartz + oxides paragenesis. f Fractured millimetric cpx 
in contact with amph + quartz within an amphibolite. The foliation is 
marked by elongated cpx and hbl. The subgrain boundaries of quartz 
are typical of metamorphic recrystallization. atg antigorite; chl chlo-
rite; hrc hercynitic spl; mgt magnetite; qtz quartz. Other abbreviations 
as in the text



Contributions to Mineralogy and Petrology          (2022) 177:39 	

1 3

Page 7 of 27     39 

and subgrain boundaries that are features characteristic of 
plastic deformation, and (3) cpx having higher relief than 
amph (Fig. 3e, f). Subhedral titanite and ilmenite are present 
at grain boundaries (< 0.1 mm). The texture and the mineral 
relationships suggest that amph cores and cpx cores sur-
rounded by tremolite may be relics of a relatively high-grade 
metamorphic event alongside plag and cummingtonite, 
whereas tremolite probably formed as a result of retrograde 
metamorphic re-equilibration.

Rocks of sedimentary protolith

Banded-iron formations are mainly composed of alternating 
bands of Fe-oxides and silicates, which renders them a char-
acteristic reddish color at weathering. Silicate layers record 
an NNW-striking mineral foliation parallel to the USB main 
structural grain. At the microscale, the Fe-oxides are associ-
ated with Fe-olivine, Fe-pyroxene, and Fe-amphibole, inter-
preted to form through the isochemical transformation of Fe-
oxides and quartz during amphibolite facies metamorphism 
(e.g., Klein 2005).

Micaschists of probable detrital origin share the com-
mon NNW-striking foliation. They exhibit a grano-porphy-
roblastic texture with numerous aluminous phases such as 
garnet and biotite that can be used as a geothermometer. 
Porphyroblastic garnet (~ 2 mm) containing biotite and 
quartz inclusions is surrounded by often chloritized, pris-
matic, millimeter-sized biotite. Millimeter-sized plag and 
quartz with undulose extinction, as well as small amounts 
of ilmenite and magnetite, also occur.

Bulk‑rock chemistry

Major and trace element concentrations allow us to distin-
guish between five different protoliths of magmatic origin in 
the USB (Table 1). The ultramafic rocks can be divided into 
two different groups according to their mineral assemblage 
and bulk-rock chemistry, whereas the amphibolites can be 
separated into three groups based on their bulk-rock chem-
istry and isotopic signature.

Ultramafic rocks

Ultramafic rocks can be subdivided into two groups accord-
ing to their Al2O3/TiO2 ratio and trace element concentra-
tions (Figs. 4 and 5). The low Al2O3/TiO2 (7–18) ultramafic 
rocks systematically lack opx while the high Al2O3/TiO2 
(20–70) group includes the cpx-absent, opx-bearing ultra-
mafic sample (Fig. 4d). In the following, we use the min-
eralogical classification (i.e., cpx-bearing and cpx-absent) 
for clarity, although cpx and opx can be absent from the 
paragenesis. The cpx-bearing ultramafic rocks have high 

Mg# [100 × Mg/(Mg + Fetot); 86.3–91.7 mol.%] and low 
SiO2 (37–49 wt.%) contents except for three samples with 
lower Mg# (65.7–76.2 mol.%; Fig. 4c). Their relatively high 
NiO contents (0.06–0.20 wt.%) is consistent with the initial 
presence of olivine. Chondrite-normalized rare earth ele-
ment (REE) patterns exhibit enriched light REE (LREE; 
1.22 < LaN/SmN < 12.38) segments, slightly fractionated 
middle REE (MREE; 1.13 < SmN/DyN < 1.80) segments, 
and rather flat heavy REE (HREE;.08 < DyN/YbN < 1.23) 
segments except for two samples that are LREE-depleted 
(0.60 < LaN/SmN < 0.85) and one sample with a HREE-
depleted (DyN/YbN = 0.60) segment (Fig. 5a). These sam-
ples have a variable Eu anomaly [Eu* = EuN/(SmN × GdN)1/2] 
ranging from 0.60 to 3.16. Normalized to primitive mantle, 
cpx-bearing ultramafic rocks display a wide range of nega-
tive Nb anomalies [Nb* = NbN/(KN × LaN)1/2; 0.18–0.86; 
Fig. 5b). 

The cpx-absent ultramafic rocks have Mg# (72.6–91.7 
mol.%) and SiO2 (39–47 wt.%) concentrations in the same 
range as the cpx-bearing samples (Fig. 4c). Bulk NiO con-
tent ranges from 0 to 0.15 wt.% suggesting the presence 
of moderate amounts of olivine in the protolith. Chondrite-
normalized REE patterns show relatively enriched LREE 
(0.86 < LaN/SmN < 2.46) and HREE (0.59 < DyN/YbN < 0.82) 
segments resulting in U-shaped REE patterns (Fig. 5a). Most 
samples present a negative Eu anomaly (0.13–3.12). Nor-
malized to primitive mantle, cpx-absent ultramafic rocks dis-
play slight U and Th combined with a pronounced negative 
Nb anomaly (0.06–0.31; Fig. 5b). A few samples may exhibit 
negative Zr and Hf anomalies [Zr* = ZrN/(SmN × NdN)1/2], 
but most have no Zr anomaly.

Amphibolites

Major and trace elements allow the distinction of three main 
groups of amphibolites in the USB. The first group, one of 
the two bearing cpx, has an average SiO2 content of about 
49 wt.% (46.5–53.3 wt.%) negatively correlated with Mg# 
(38.2–58.3 mol.%; Fig. 4c). These rocks have high TiO2 
contents (0.77–1.49 wt.%) resulting in low Al2O3/TiO2 
ratios (9–16; Fig. 4d) and high FeO (10.55–16.34 wt.%) 
contents typical of a tholeiitic signature (Fig. 4b). Chon-
drite-normalized REE patterns show flat HREE (0.97 < DyN/
YbN < 1.23) and MREE (0.97 < SmN/DyN < 1.47) segments 
and slightly fractionated LREE (0.74 < LaN/SmN < 1.62) 
segments that highly resemble those of Archean tholei-
ites (Fig. 5c). Moreover, a slight positive Eu anomaly may 
occur in a few samples. These rocks display a negative Nb 
anomaly (Nb* = 0.15–0.86) and no Zr anomaly (Fig. 5d). 
Furthermore, these amphibolites present slightly negative to 
no μ142Nd anomaly (–3.4 < μ142Nd < 0.6; Caro et al. 2017). 
Overall, these amphibolites have major and trace element 
concentrations characteristics of tholeiitic basalts (Figs. 4b 
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Table 1   Representative bulk-
rock major and trace-element 
analyses of Ukaliq samples

The complete dataset is available in Electronic Supplementary Material (Table S1)
b.d. below detection

Ultramafic rocks Amphibolites

Tholeiitic Boninitic Tholeiitic Transitional Boninitic Calc-alkaline

Major elements (wt.%)
 SiO2 41.46 46.82 42.51 44.20 48.88 50.08 50.26 52.24
 TiO2 0.06 0.61 0.11 0.46 1.12 0.90 0.59 0.61
 Al2O3 0.63 6.96 5.93 11.43 14.41 14.29 14.12 16.58
 MgO 34.57 15.91 30.38 20.85 7.15 8.07 9.61 5.82
 Fe2O3 8.25 12.92 8.36 14.30 14.01 12.13 11.85 10.42
 MnO 0.13 0.22 0.13 0.18 0.24 0.22 0.24 0.20
 CaO 3.96 11.83 2.53 3.42 9.50 8.61 8.09 8.40
 Na2O 0.04 0.70 0.25 0.87 1.86 2.37 1.65 2.97
 K2O 0.03 0.35 0.41 0.43 1.34 1.06 1.63 1.14
 P2O5 0.05 b.d b.d b.d 0.08 0.06 0.05 b.d
 LOI 11.45 2.49 8.37 3.62 1.10 1.78 1.76 1.44
 Total 99.24 98.80 99.00 99.76 99.67 99.54 99.81 99.82

Trace elements (μg g−1)
 Sc 5 25 24 38 43 40 44 49
 V 20 141 87 184 285 252 229 221
 Cr 930 2095 4251 1121 208 449 795 219
 Ni 2195 765 1280 547 199 240 185 88
 Cu 101 106 28 15 75 59 32 40
 Zn 45 162 109 74 96 98 107 91
 Cs 0.38 0.28 3.53 2.03 1.00 0.57 0.67 1.17
 Rb 1.8 5.0 26.8 20.2 57.7 42.6 86.2 45.8
 Sr 9.69 24.12 8.20 13.29 151 116 104 96
 Y 2.197 12.41 3.927 10.42 24.4 20.6 14.6 18.4
 Zr 4.78 49 5.78 33 65 66 37 63
 Nb 0.254 2.82 0.210 1.50 2.68 2.51 1.42 2.93
 Ba 4.41 36.3 8.08 67.7 181 82.8 122 104
 La 1.58 5.20 0.371 1.68 4.41 5.04 3.21 8.83
 Ce 2.8 11.1 0.84 3.5 10.9 11.4 7.1 18.4
 Pr 0.316 1.53 0.111 0.505 1.66 1.63 0.984 2.25
 Nd 1.26 6.83 0.491 2.41 8.28 7.81 4.58 9.22
 Sm 0.313 1.80 0.166 0.845 2.66 2.43 1.41 2.21
 Eu 0.102 0.625 0.047 0.255 0.998 0.855 0.513 0.733
 Gd 0.345 1.95 0.274 1.15 3.26 2.91 1.75 2.42
 Tb 0.056 0.333 0.061 0.231 0.598 0.524 0.329 0.440
 Dy 0.361 2.16 0.522 1.69 4.10 3.53 2.32 2.87
 Ho 0.078 0.472 0.138 0.408 0.926 0.785 0.536 0.614
 Er 0.209 1.29 0.433 1.14 2.58 2.17 1.51 1.80
 Tm 0.031 0.190 0.072 0.182 0.394 0.331 0.236 0.288
 Yb 0.205 1.22 0.525 1.21 2.65 2.18 1.61 2.00
 Lu 0.033 0.182 0.087 0.194 0.412 0.338 0.253 0.319
 Hf 0.132 1.26 0.199 0.965 1.90 1.91 1.10 1.71
 Ta 0.020 0.232 0.021 0.132 0.238 0.229 0.123 0.256
 Pb 2.43 4.77 1.71 2.72 6.37 5.80 7.32 8.00
 Th 0.109 0.788 0.126 0.674 0.431 1.23 0.536 2.12
 U 0.097 0.347 0.079 0.174 0.149 0.313 0.158 0.511
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and 5c) and will, therefore, be referred to as tholeiitic amphi-
bolites. The cpx-bearing ultramafic samples have similar 
bulk-rock features and, together with the tholeiitic amphi-
bolites, define a differentiation trend (Fig. 4d). Hence, these 
will be referred to as tholeiitic ultramafic rocks.

The second group of amphibolites, characterized by 
the absence of cpx, can be distinguished chemically 
from the tholeiitic amphibolites by their higher Mg# 
(52.5–68.1 mol.%), MgO (8.0–12.7 wt.%) and SiO2 con-
centrations (48.5–52.5 wt.%), and lower TiO2 (0.49–0.67 
wt.%) contents resulting in high Al2O3/TiO2 ratios rang-
ing from 23 to 30 (Fig. 4). A peculiarity of these samples 
lies in their low concentrations in incompatible elements 
(∑REE = 15.9–22.5 ppm) compared to tholeiitic amphi-
bolites (∑REE = 25.1–68.7 ppm). Chondrite-normalized 
REE diagram exhibits a slight U-shaped pattern with LREE 
(1.14 < LaN/SmN < 1.81) and HREE (0.85 < DyN/YbN < 0.98) 
enrichments relative to MREE (Fig. 5g). These rocks dis-
play a strongly negative Nb–Ta anomaly (Nb* = 0.11–0.17) 
and no Zr anomaly (Zr* = 0.85–1.17) except for one sample 

(Zr* = 2.81; Fig. 5h). Overall, amphibolites from this group 
resemble boninites from modern subduction settings (e.g., 
Reagan et al. 2010). Boninites are defined as volcanic rocks 
with high SiO2 (Si8.0 > 52 wt.%) and MgO (> 8 wt.%) con-
tents, and low TiO2 (Ti8.0 < 0.50 wt.%) contents (Fig. 4a). 
They usually display a U-shaped REE pattern interpreted to 
reflect the addition of LREE-rich fluids to a highly depleted 
mantle source (Pearce and Reagan 2019). Compared to mod-
ern boninites, our samples are less depleted in REE and their 
bulk SiO2 and TiO2 contents do not satisfy all the conditions 
to qualify these samples as boninites sensu stricto (Fig. 4a). 
However, these rocks exhibit geochemical signatures resem-
bling modern boninites (high MgO contents, low TiO2 con-
tents, and U-shaped REE pattern; Reagan et al. 2010; Taylor 
et al. 1994) and will thus be referred to as boninitic amphi-
bolites. These boninite-like geochemical signatures are also 
found in the NSB and ISB (O’Neil et al. 2011; Szilas et al. 
2015) and in recent ophiolitic complexes (e.g., Pearce and 
Robinson 2010). In addition, the cpx-absent ultramafic rocks 
display similar characteristics as the boninitic amphibolites 
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Fig. 4   Major element bulk-rock data of USB rocks. a Si8.0 (wt.%) vs. 
Ti8.0 (wt.%) boninite classification diagram from Pearce and Reagan 
(2019). b AFM (Alkalis–FeOt–MgO) diagram discriminating tholei-
itic compositions from calc-alkaline compositions (Irvine and Bara-

gar 1971). c SiO2 (wt.%) vs. Mg# (mol.%). d Mg# (mol.%) vs. Al2O3/
TiO2. MORB (Gale et al. 2013) and Archean tholeiites (Georoc 2021) 
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Fig. 5   Bulk-rock chondrite-normalized REE contents and primi-
tive mantle-normalized trace element contents. a, b Tholeiitic and 
boninitic ultramafic rocks. c, d Tholeiitic amphibolites compared to 
N-MORB and the average boninitic amphibolite composition. e, f 
Transitional amphibolites compared to N-MORB and the average 
boninitic amphibolite composition. g, h Boninitic and calc-alkaline 

amphibolites. N-MORB (Sun and McDonough 1989), Archean 
tholeiites (Georoc 2021), and Izu–Bonin boninites (Reagan et  al. 
2010) compositions are shown for comparison. Detection limits are 
also shown when possible. Normalized values are from Sun and 
McDonough (1989)
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(low Al2O3/TiO2 ratio, U-shaped REE pattern). As a result, 
they will be referred to as boninitic ultramafic rocks. The 
boninitic amphibolites can be further distinguished from the 
tholeiitic amphibolites by the presence of negative μ142Nd 
anomalies (–5.4 < μ142Nd < –3.7; Caro et al. 2017).

The third group corresponds to transitional amphi-
bolites with intermediate composition between tholeiitic 
amphibolites and boninitic amphibolites. Their SiO2 con-
tents (48.8–51.7 wt.%) and Mg# (48.1–64.1 mol.%) are 
similar to other amphibolite types, whereas their Al2O3/
TiO2 ratio (12.9–20.9) forms a continuum between the 
two categories mentioned above (Fig. 4). Their REE dia-
grams (Fig. 5e) exhibit flat HREE (0.98 < DyN/YbN < 1.15) 
segments coupled with a flat to negative LREE slope 
(0.93 < LaN/SmN < 2.31). Furthermore, REE concentra-
tions are also intermediate between the tholeiitic and 
boninitic endmembers (∑REE = 25–41 ppm). Primitive 
mantle normalized, transitional amphibolites display no 
Zr anomaly (Zr* = 0.83–1.20) and a negative Nb anomaly 
(Nb* = 0.17–0.32; Fig. 5f). In addition, their μ142Nd sig-
nature is negative and similar to boninitic amphibolites 
(–5.2 < μ142Nd < –3.2; Caro et al. 2017). These amphibolites 
will thus be referred to as transitional amphibolites.

Apart from these three groups, one sample (IN12032) 
has an atypical chemistry that differs markedly from the 
other amphibolites. Although its SiO2 content (52.2 wt.%) 
and Mg# (52.5 mol.%) are similar compared to previously 
described rocks (Fig. 4c), the TiO2 content (0.61 wt.%) is 
as low as in boninitic amphibolites. However, this sample is 
different from the boninitic amphibolites by having higher 
REE concentrations (∑REE = 52.1 ppm) typified by a strong 
LREE enrichment (LaN/SmN = 4.0) and a HREE depletion 
compared to N-MORB. When normalized to primitive 
mantle, this sample is shown to be enriched in large ion 
lithophile elements (LILE; ThN + UN > 30) and exhibits 
depletion in high field strength elements (HFSE) with a 
negative Nb–Ta anomaly (Nb* = 0.19; Fig. 5h). The major 
and trace element concentrations of this sample are charac-
teristic of calc-alkaline basalts (Fig. 4b) and will, therefore, 
be referred to as calc-alkaline amphibolite. In addition, this 
calc-alkaline sample carries the most negative 142Nd signa-
ture (μ142Nd = –9.4; Caro et al. 2017).

Mineral chemistry

The representative major and trace element analyses of cpx, 
opx, and amph from the ultramafic and mafic rocks are pre-
sented in Table 2. The complete dataset can be found in 
Electronic Supplementary Material 1 (Table S2).

Ultramafic rocks

The clinopyroxenes from the tholeiitic ultramafic rocks in 
our study do not present chemical zoning and belong to the 
diopside–hedenbergite solid-solution. They show homoge-
neous Mg# (93.7–94.7 mol.%) and variable AlIV (0.01–0.06 
a.p.f.u.) contents (Fig. 6a) positively correlated with TiO2 
(0.11–0.58 wt.%). The high TiO2 and AlIV grains have the 
highest Cr2O3 (~ 0.15 wt.%) contents, whereas the low TiO2 
and AlIV grains have no chromium. Chondrite-normalized 
REE patterns show slightly fractionated HREE (1.28 < DyN/
YbN < 1.64) and MREE (0.97 < SmN/DyN < 1.47) segments, 
and moderately fractionated LREE (0.59 < LaN/SmN < 0.89) 
segments (Fig. 6b) with little to no Eu anomaly. When primi-
tive mantle normalized, cpx present Zr–Hf anomalies rang-
ing from slightly negative (Zr* ≈ 0.7) to largely positive 
(Zr* > 1.8).

Amphiboles from the tholeiitic ultramafic rock are 
dominantly Mg-hbl and tremolite, the latter forming rims 
around Mg-hbl. The transition from hbl core to tremo-
lite rim is sharp, with Si increasing from 7.15 to 7.95 
a.p.f.u., while (Na + K)A and AlIV decrease from 0.25 to 0 
a.p.f.u. and from 0.75 to 0 a.p.f.u., respectively (Fig. 7). 
Mg-hbl delineate two distinctive trends of increasing TiO2 
(0–0.89 wt.%) contents with decreasing Mg# (Fig. 7c), 
probably representing two generations of amph. In both 
Mg# groups, high TiO2 (> 0.1 wt.%) amphiboles also have 
high Cr2O3 (> 0.2 wt.%) contents, contrasting with the low 
Cr2O3 contents of tremolite. When chondrite normalized, 
Mg-hbl exhibit a smooth, nearly parallel pattern compared 
to cpx except for HREE being less fractionated (DyN/YbN 
≈ 1.20) and a small positive Eu anomaly (Fig. 7d). When 
primitive mantle normalized, Mg-hbl display slight U–Th 
enrichment and little to no HFSE depletion. Amphiboles 
from the boninitic ultramafic rocks are Mg-hbl and dis-
play increasing TiO2 concentration with decreasing Mg# 
(Fig. 7c), which is negatively correlated with Cr2O3, trend-
ing from 1.0 to 0.2 wt.% with decreasing Mg#. Chondrite 
normalized, these hbl have the same U-shaped REE pat-
tern as their host rock typified by their low (Dy/Yb)N val-
ues in the range of 0.68–0.69 and a small negative Eu 
anomaly (Fig. 7d). Normalized to primitive mantle, they 
display strong Nb, Ta, and Sr negative anomalies and U 
and Pb enrichments.

Millimeter- to centimeter-sized opx display a trend of 
increasing AlIV (0.03–0.08 a.p.f.u.) contents with decreas-
ing Mg# (88.6–85.8 mol.%). These major element values are 
in the range of opx derived from fractionation experiments 
at 0.5 GPa (Krawczynski et al. 2012) and opx from ultra-
mafic arc and forearc cumulates (Fig. 8a). A second group 
of opx exhibits lower Mg# (74.9–76.7 mol.%) that are uncor-
related with AlIV. Chondrite-normalized REE patterns for 
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Table 2   Representative major 
and trace element analyses of 
minerals from Ukaliq samples

The complete dataset is available in Electronic Supplementary Material (Table S2)
b.d. below detection

Ultramafic rocks Amphibolite

Tholeiitic Boninitic Tholeiitic Transitional

Cpx Amph Opx Amph Cpx Amph Cpx Amph

Major elements (wt.%)
 SiO2 54.32 50.64 56.45 49.63 51.04 46.62 52.62 44.56
 TiO2 0.31 0.56 0.05 0.35 0.11 0.77 0.08 1.06
 Al2O3 1.23 7.30 1.85 9.58 0.84 7.71 0.73 9.87
 Cr2O3 0.08 0.43 0.09 0.46 0.01 0.05 0.07 0.36
 FeO 1.84 6.03 9.02 4.49 16.33 22.25 12.28 18.74
 MnO 0.07 0.09 0.18 0.09 0.38 0.33 0.54 0.35
 MgO 17.24 19.13 32.98 19.68 9.01 10.70 11.48 9.49
 CaO 25.86 12.40 0.13 12.14 22.62 8.38 22.86 11.79
 Na2O 0.02 1.07 0.01 1.41 0.24 0.92 0.26 1.03
 K2O 0.00 0.17 0.00 0.25 0.00 0.34 0.00 1.08
 Total 100.99 97.86 100.78 98.15 100.60 98.08 100.95 98.37

Trace elements (μg g−1)
 Li 2.7 0.9 3.1 1.5 11.5 4.8 12.6 1.9
 B 3.0 6.3 2.8 2.4 1.3 1.4 1.2 1.6
 Sc 20.5 59.0 19.5 44.2 64.2 77.3 31.1 67.7
 V 62.5 218 64 191 249 717 108 379
 Cr 666 3516 484 3446 102 493 481 3718
 Mn 543 421 1383 645 2971 1928 5369 3254
 Co 13.8 28.1 52.8 29.8 42.2 54.7 66.1 94.4
 Ni 158 510 490 787 65 144 162 392
 Cu 0.099 0.728 0.698 0.422 1.17 0.707 0.226 0.504
 Zn 8.6 15.9 22.0 6.4 106 190 129 205
 Rb 0.04 0.91 0.26 0.37 0.12 5.02 0.04 5.26
 Sr 6.92 41.7 0.28 6.99 19.5 43.3 11.6 25.2
 Y 3.03 18.49 0.11 7.56 12.99 65.40 4.07 31.14
 Zr 16.6 63.4 0.401 9.4 8.6 20.3 5.5 36.0
 Nb 0.175 4.87 0.172 0.305 0.024 5.97 0.004 2.74
 Mo 0.021 0.036 0.098 0.032 0.084 0.104 0.184 0.208
 Cs 0.108 0.034 0.147 0.024 0.022 0.156 0.022 b.d
 Ba 0.078 0.66 0.15 0.49 0.38 44.9 0.17 38.8
 La 0.640 6.62 0.009 1.24 0.883 7.48 0.421 3.39
 Ce 1.86 15.3 0.044 2.92 3.86 26.3 1.31 9.70
 Pr 0.277 1.96 0.010 0.325 0.744 4.37 0.202 1.45
 Nd 1.49 9.92 0.006 1.39 4.31 23.7 1.08 7.93
 Sm 0.506 2.98 0.001 0.424 1.57 7.89 0.380 2.77
 Eu 0.211 1.47 0.010 0.136 0.359 2.10 0.107 0.733
 Gd 0.573 3.35 0.010 0.651 1.92 10.04 0.479 3.88
 Tb 0.095 0.519 0.006 0.133 0.343 1.71 0.088 0.672
 Dy 0.610 3.47 0.013 1.13 2.45 11.98 0.675 5.12
 Ho 0.117 0.698 0.005 0.275 0.511 2.53 0.154 1.13
 Er 0.314 2.00 0.021 0.918 1.51 7.33 0.474 3.38
 Tm 0.043 0.289 0.013 0.151 0.239 1.05 0.074 0.491
 Yb 0.282 1.94 0.071 1.07 1.84 6.67 0.567 3.15
 Lu 0.041 0.320 0.016 0.158 0.347 0.900 0.099 0.453
 Hf 0.456 1.66 0.023 0.260 0.469 1.41 0.150 1.29
 Ta 0.030 0.233 0.800 0.017 0.003 0.568 0.002 0.166
 Pb 0.208 2.69 0.167 1.18 1.14 7.27 1.23 3.24
 Th 0.043 0.613 0.008 0.109 0.010 0.110 0.025 0.312
 U 0.039 0.318 0.078 0.176 0.009 0.086 0.008 0.074
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opx display a highly fractionated MREE to HREE pattern, 
with (Sm/Yb)N varying from 0.003 to 0.09 and a contrasting 
negative LREE slope (Fig. 8b).

Dark spl (Electronic Supplementary Material ESM 
2) define a correlation of increasing Cr# [100 × Cr/
(Cr + Al + Fe3+); 19.9–49.4 mol.%] with decreasing Mg# 
(65.1–40.7 mol.%). A chemical zoning is observed with a 
decrease of Cr2O3 content from core to rim. This trend of 
increasing Cr# with decreasing Mg# (Cr–Al trend of Barnes 
and Roeder 2001) is interpreted to reflect equilibrium with 
a ferromagnesian phase such as pyroxene or olivine (Irvine 
1967). Hercynitic spl display low Cr# (5.2–8.8 mol.%) 
and high Mg# (48.3–70.8 mol.%), which cannot be used 
to decipher between magmatic and metamorphic composi-
tions. Magnetites from boninitic ultramafic rocks are pure 
magnetite, whereas magnetites from tholeiitic samples are 
Cr-magnetite with Cr3+ > 0.6 a.p.f.u.

Antigorite from the cpx-bearing group has high Mg# 
(89.5–90.9 mol.%), low Al2O3 (0.84–1.20 wt.%) concentra-
tions, and NiO content ranging from 0 to 0.11 wt.%. Then 
again, antigorite from the cpx-absent group has slightly 
lower Mg# (87.3–88.3 mol.%), and higher Al2O3 (2.44–3.36 
wt.%) and NiO (0.14–0.15 wt.%) content values. We inter-
pret the high-NiO antigorite as most likely olivine pseudo-
morphs, whereas the high-Al2O3 antigorite possibly reflects 
an opx-rich protolith.

Amphibolites

Clinopyroxenes from tholeiitic and transitional amphi-
bolites have a wide range of Mg# (46.2–73.1 mol.%) and 
display rough trends of decreasing Mg# with increasing 

AlIV concentrations (Fig.  6a). Chondrite-normalized 
REE patterns show flat HREE (0.80 < DyN/YbN < 0.95) 
and MREE (0.89 < SmN/DyN < 1.12) segments, whereas 
LREE (0.14 < LaN/SmN < 0.70) are moderately fractionated 
(Fig. 6b). The cpx display a negative Eu anomaly ranging 
from 0.58 to 0.96.

Amphiboles from tholeiitic and transitional amphibolites 
range from Mg-hbl to pargasite and are often surrounded 
by retrogression tremolite (Fig. 7a). The Mg-hbl and par-
gasite display a broad range of Mg# from 36.1 to 69.2 mol.% 
uncorrelated to TiO2 (Fig. 7c). Chondrite normalized, Mg-
hbl exhibit a nearly parallel pattern compared to cpx from 
mafic rocks, but with higher concentrations. Pargasites were 
not analyzed for their trace elements. Amphiboles from 
boninitic amphibolites are cummingtonite, corresponding 
to CaO-poor (0.40–1.17 wt.%) amph. Overall, cpx and amph 
from amphibolites are chemically zoned with Al2O3-, TiO2- 
and Cr2O3-rich cores that differ from tremolite rims which 
usually display depletion in the aforementioned elements.

Plagioclase from tholeiitic amphibolites have compo-
sitions ranging from labradorite to andesine with high Ca 
(0.23–0.71 a.p.f.u.) and Na (0.29–0.73 a.p.f.u.) contents 
(An24–71), whereas K concentrations (0.00–0.01 a.p.f.u.) 
are low. The plag from boninitic amphibolites were not 
analyzed.

Pressure–temperature constraints

In this section, we use phase equilibria modeling and geo-
thermometers to assess the equilibrium conditions of the 
USB rock phases. This allows distinguishing between 
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medium-to-high temperature metamorphism and higher 
temperatures, magmatism-related phase crystallization. The 
mineral assemblage of the micaschists allows the determi-
nation of pressure and temperature conditions of the last 
metamorphic peak experienced by the Innuksuac com-
plex. The paragenesis of sample IN16164 is biotite + gar-
net + plag + quartz + chlorite + ilmenite + magnetite and 
contains 7–9 vol.% garnet with an almandine-rich compo-
sition (Alm71, Prp15, Grss10, Spss4). Pseudosections were 
calculated by Gibbs energy minimization using Perple_X 
(version 6.9.1; Connolly 2005) and the self-consistent ther-
modynamic database of Holland and Powell (2011) in the 
system NCKFMASHTO. The selected solution models and 
the chosen H2O and O2 contents are discussed in the Elec-
tronic Supplementary Material ESM 2. The pressure–tem-
perature equilibrium phase diagram calculated for sample 
IN16164 reveals that the observed assemblage is stable from 
3 to 7 kbar and 580–630 °C (Fig. 9). Garnet isopleths and 
isochores further narrow the domain of equilibrium of our 
sample to 4–5.5 kbar and 615 ± 10 °C. To strengthen the 
thermodynamically inferred temperatures, paired analyses 
on garnet and biotite have been performed on the same sam-
ple. Temperatures are calculated based on the garnet–biotite 
thermometer of Ferry and Spear (1978) and are consistent 

within error (593 ± 35 °C) with the modeled pseudosec-
tion. Similar garnet–biotite temperatures (580 ± 20 °C) are 
reported in the NSB (Cates and Mojzsis 2009).

Amphibole compositions have been shown to be tempera-
ture and/or pressure dependent (e.g., Holland and Blundy 
1994). However, AlVI and Ti contents from USB amph dis-
play no correlation with AlIV, indicating that the pressure-
dependent Al-Tschermak and temperature-dependent Ti-
Tschermak exchanges only played a minor role. As shown in 
Fig. 7b, the dominant vector controlling amph chemistry is 
the temperature-dependent edenite exchange, suggesting that 
the evolution in (Na + K)A is controlled by cooling at con-
stant pressure. As such, Ti-dependent amph thermometers 
(e.g., Putirka 2016) cannot be used to constrain the crystal-
lization temperature of amph from the USB ultramafic rocks. 
We thus applied the edenite exchange-based amph–plag 
thermometer of Holland and Blundy (1994) which gives 
temperatures of 704 ± 47 °C for the amphibolites, slightly 
higher than the amph–plag temperatures (≤ 680 °C) reported 
for the NSB (Cates and Mojzsis 2009).

To determine the equilibrium conditions of opx from the 
boninitic ultramafic rocks, we used the Ca-in-opx thermom-
eter of Brey and Köhler (1990). Assuming that the opx from 
USB equilibrated at 0.5 GPa, we obtain temperatures rang-
ing from 820 to 980 °C. Despite its pressure dependency, 
the Ca-in-opx thermometer is almost insensitive to pressure 
changes, with an increase of 10 °C for a pressure of 0.8 GPa. 
The two-pyroxene thermometers are not employed as cpx 
and opx are never found in equilibrium in USB rocks.

Discussion

In this section, we use phase relationships, bulk-rock and 
mineral chemistry, and thermometry to unravel the meta-
morphic signal from the original magmatic signal and recon-
struct the cumulate sequence followed by tholeiitic and boni-
nitic melts by characterizing the most primitive magmas and 
their associated liquid lines of descent.

Magmatic signal preservation

It is evident from the mineralogy and pseudosection mod-
eling that the USB underwent at least one metamorphic 
episode that reached amphibolite facies conditions. In 
detail, the Innuksuac complex experienced at least two 
metamorphic episodes (3622 ± 46 Ma and 2738 ± 25 Ma) 
at the amphibolite facies (Cates and Mojzsis 2007, 2009). 
These episodes probably correspond to magmatic intru-
sions of the Voizel and Boizard suites, respectively (e.g., 
Greer et al. 2020). These metamorphic events also likely 
modified the most fluid-mobile element concentrations of 
the USB rock suites. To assess the degree of preservation 
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of the original magmatic signal, we used the correlation-
based method of Cann (1970). This method relies on the 
degree of correlation of any given element with Zr, consid-
ered fluid-immobile (e.g., Fraser et al. 1997). A theoretical 
crystallization vector can be drawn for each plot and each 
lithological unit, allowing the identification of uncorrelated, 
altered samples (Pearce 2014b). It is important to note that 
ultramafic rocks cannot be considered in the crystallization 
vector because they do not have a liquid composition (see 
below). Nevertheless, an identification of the altered samples 
will be attempted. As shown in Fig. 10a, a good correlation 
is found between Zr and Th, except for 2 tholeiitic amphi-
bolites characterized by slightly lower Th contents. Overall, 
the REE also present a good correlation with Zr except for 
3 tholeiitic ultramafic rocks that are La-rich and Yb-poor 
(Fig. 10b, c). The Nb vs. Zr diagram also shows a good cor-
relation for every unit (Fig. 10d). Similar conclusions can 
be drawn for SiO2 and MgO. In contrast, fluid-mobile ele-
ments (not plotted) display poor correlations with Zr, which 
can be interpreted as a magmatic signal, reflecting variable 
fluid-mediated LILE enrichments in the source or as a late 
metasomatic overprint. These processes are not mutually 

exclusive but cannot be distinguished based on trace and 
major element chemistry alone. As such, only REE, HFSE, 
Y, and Th concentrations will now be considered representa-
tive of the magmatic signal and used further. These conclu-
sions are consistent with the expected immobility of Th, Y, 
REE, and HFSE, and mobility of LILE during fluid circula-
tion (Pearce 2014a, b).

Interpretation of mineral textures and chemistry

Mineral textures and chemistry and thermometric constraints 
described in the previous sections allow us to infer the meta-
morphic peak and discuss the origin (metamorphic vs. mag-
matic) of the different minerals constituting the USB rocks.

For the ultramafic rocks, the equilibrium paragenesis 
consisting of antigorite + chlorite + magnetite + tremolite is 
typical of greenschist to lower amphibolite facies conditions 
(< 600 °C), witnessing the retrogression of the ultramafic 
rocks. At the pressure–temperature conditions calculated 
using thermodynamic modeling (Fig. 9) and garnet–biotite 
and amph–plag thermometers, secondary olivine and opx 
could be present (Spear 1993). As such, the origin of the 
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observed opx must be addressed. The large size (> 5 mm) 
and optical continuity of opx, the inclusion of Cr-spl, and 
their calculated equilibrium temperatures (~ 980 °C) much 
above the metamorphic overprint point to a magmatic origin. 
In addition, the opx from the fractionation experiments of 
Krawczynski et al. (2012) at 0.5 GPa have similar compo-
sitions and crystallize in the same range of temperatures 
(950–1000 °C) as the opx from USB. As such, we interpret 
the opx to be of magmatic origin and their trace element 
concentrations representative of the liquid from which it 
crystallized. The trace element concentrations observed here 
are also similar to those found in modern arc to forearc envi-
ronments (e.g., Jagoutz et al. 2007), strengthening the mag-
matic origin for the opx. Furthermore, the original magmatic 
signal is probably preserved for the slow-diffusing elements 
present in tetrahedrally coordinated sites (e.g., Cr, Al, Ti, 
and REE; Cherniak and Liang 2012; Ganguly et al. 2007). 
Indeed, the Cr diffusion closure temperature in opx has been 
defined at 870 °C for an initial temperature of 900 °C (Gan-
guly et al. 2007).

The origin of cpx and Mg-hbl in the ultramafic rocks is 
more challenging to assess because of the lack of inferred 
equilibrium temperatures. The cpx major element composi-
tions show a wide range of Al2O3, Cr2O3, and TiO2 con-
tents for a near-constant Mg#. Low TiO2 and Cr2O3 cpx are 
greenschist facies re-equilibrated cpx, but the high-TiO2 
grains point towards a magmatic origin. Indeed, if they 
were metamorphic, temperatures above 800 °C would be 
needed to stabilize cpx (Spear 1993), which is much higher 
than the peak temperature recorded here. The cpx major 
element compositions are relatively common in cumula-
tive rocks, and elemental variations at a constant Mg# can 
reflect a reactional origin of the grains (melt–rock reaction) 
whereby the Mg# is buffered by the percolated rock, and, for 
example, the high TiO2 contents reflect the reacting melt. If 
correct, then the trace element concentrations can be used 
to evaluate the liquid in equilibrium with the cpx. Interest-
ingly, the observed cpx compositions are similar to those 
found in cumulative reactional pathways of magmatic arc 
systems that have drained damp tholeiitic melts (e.g., Chilas 
complex, Kohistan; Jagoutz et al. 2007).

Two types of amph can be observed in the ultramafic 
rocks, whereby Mg-hbl almost systematically show a ret-
rogression to tremolite. These Mg-hbl are often found as 
inclusion or intimately related to the pyroxenes (Fig. 3) 
and have magmatic characteristics, such as high Cr2O3 and 
TiO2 contents showing trends correlated with Mg#. Their 
major element compositions are often found in arc cumu-
lates (Bouilhol et al. 2015; Cooper et al. 2016; Jagoutz et al. 
2007) and experimental studies (Feig et al. 2006; Krawczyn-
ski et al. 2012; Nandedkar et al. 2014). Interestingly, Mg-hbl 
have near-parallel REE patterns and similar concentrations 
to the opx in the boninitic ultramafic rocks and the cpx in the 

tholeiitic ultramafic rocks. Such feature is symptomatic of 
a co-magmatic origin for Mg-hbl and the pyroxenes (Adam 
and Green 2006; Bouilhol et al. 2015; Tribuzio et al. 2000). 
On the other hand, the slight positive Eu anomaly of Mg-
hbl from the tholeiitic ultramafic samples could reflect a 
metamorphic origin whereby Mg-hbl replace plag resulting 
in high Eu contents and a negative REE slope (Helmy et al. 
2008). In all cases, the lack of calculated equilibrium tem-
peratures for these Mg-hbl hampers our ability to constrain 
their origin unambiguously.

The amphibolites display a granoblastic texture associ-
ated with amph–plag temperatures of ~ 700 °C, which is 
typical for mafic rocks that underwent amphibolite facies 
metamorphism. Further, both cpx and Mg-hbl show nega-
tive Eu and Sr anomalies, relatively flat HREE segments, 
and have nearly parallel REE patterns, with Mg-hbl being 
more enriched than cpx by an order of magnitude. Together 
with a well-equilibrated microtexture, these features call 
for a global chemical equilibrium between the amphibolite-
bearing phases.

Overall, opx, cpx, and probably Mg-hbl from ultramafic 
rocks most likely represent the only primary igneous crystals 
in the USB rocks that can further be used to infer a crys-
tallization sequence. Finally, the upper bound of the meta-
morphic peak experienced by the USB might be placed at 
720 °C, which corresponds to the onset of partial melting 
of the metasediments, a feature not observed throughout the 
Innuksuac complex.

Protoliths of Ukaliq mafic and ultramafic rocks

Ukaliq ultramafic rocks display major element concentra-
tions typical of dunite (SiO2 = 40–42 wt.%), pyroxenite 
(SiO2 = 48–52 wt.%) and (hbl-)gabbro (SiO2 = 46–48 wt.%, 
Mg# ≈ 70 mol.%). More specifically, the tholeiitic ultramafic 
rocks have SiO2/MgO (1.0–3.8) and Al2O3/CaO (0–0.7) 
ratios, as well as Al2O3 contents (0–6.8 wt.%) indicative of 
the former presence of olivine, cpx, plag, and amph in the 
protolith (Fig. 11). In detail, one sample has high SiO2/MgO 
and Al2O3 contents, and most likely crystallized plag, and 
two samples located between the cpx and amph fields prob-
ably formed limited amounts of amph. On the other hand, 
the boninitic ultramafic rocks span a wide range of Al2O3/
CaO values (1.0–11.1) and Al2O3 contents (4.1–15.9 wt.%) 
and have lower SiO2/MgO values (1.2–2.4) rather pointing 
to large amounts of olivine, opx, and spl in their protoliths 
(Fig. 11). The former presence of olivine in both tholeiitic 
and boninitic ultramafic samples is further evidenced by the 
high bulk-rock and antigorite NiO contents. Such observa-
tions agree well with the observed opx–cpx dichotomy in 
the ultramafic rocks and characterize these ultramafic rocks 
as former dunite, wehrlite, orthopyroxenite, and (hbl-)gab-
bro. The presence of opx phenocrysts in ultramafic rocks 
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and the occurrence of dunite-, pyroxenite-, and gabbro-type 
rocks are usually related to cumulates during melt evolu-
tion. This cumulative origin is well demonstrated by the 
bulk-rock Mg# of the ultramafic rocks that range from 72 to 
90 mol.%, whereas the mantle has higher Mg# (e.g., Bodi-
nier and Godard 2014). The compatible element contents, 
such as Ni, Cr, and V, also indicate a cumulate origin for the 
ultramafic rocks. Indeed, refractory mantle rocks have Ni 
contents up to 3000 ppm, whereas pyroxenitic cumulates 
have concentrations ranging from 200 to 1400 ppm (e.g., 
Bodinier and Godard 2014; Bouilhol et al. 2009, 2015). 
As with the bulk-rock chemistry, the mineral compositions 
also point to a cumulative origin rather than a mantle origin. 
Clinopyroxenes from the tholeiitic ultramafic rock have REE 
concentrations up to ten times the chondrite values, while 
cpx from the sub-arc mantle and from abyssal peridotites 
have LREE content values ten to a hundred times lower than 
chondrite (Bodinier and Godard 2014; Bouilhol et al. 2009). 
Consequently, the two identified ultramafic groups are now 
considered as two cumulate suites.

Amphibolite samples have basaltic to basaltic andesite 
major element compositions with Mg# ranging from 
38.2 to 68.1 mol.%, which cannot be used to distinguish 
between an intermediate cumulate and a lava. Gabbroic 
rocks usually display a cumulate signal, either cpx-dom-
inated or plag-dominated, leading to a REE pattern with 
LREE depletion and variable Eu anomaly (e.g., Pallister 
and Knight 1981). Such a signature is not observed in the 

USB amphibolites. Although the presence of melt-like 
gabbros cannot be completely ruled out, these observa-
tions, together with the alternation of amphibolites and 
metasediments, point to a volcanic rather than a cumulate 
protolith for USB amphibolites. Specifically, we interpret 
the protoliths of the tholeiitic amphibolites as tholeiitic 
basalts, the boninitic amphibolites as boninitic basalts to 
basaltic andesites, and the transitional amphibolites as 
transitional basalts.

Relationship between ultramafic cumulates 
and lavas

Mineralogical and geochemical features suggest that the 
ultramafic cumulates and the basaltic melts are cogenetic. 
Indeed, tholeiitic suites are characterized by extensive cpx 
crystallization, whereas boninitic melts are usually opx-
normative, which is directly observed within the ultramafic 
rocks. Geochemically, the tholeiitic and boninitic samples 
constitute two distinct trends (Fig. 4d) that can be inter-
preted as differentiation trends and exhibit two distinct 
REE pattern types (Fig. 5). To further test the cogenetic 
character of the tholeiitic cumulates and tholeiitic lavas on 
one hand, and the boninitic cumulates and boninitic lavas 
on the other, we calculated the REE concentrations of the 
melts in equilibrium with cpx and opx in the two different 
cumulate series. The parental melt calculated for cpx from 
tholeiitic cumulates using partition coefficients from Wood 
and Blundy (1997) exhibits a REE pattern parallel to that 
observed in transitional basalts, albeit with slightly lower 
HREE concentrations (Fig. 12a). Such a discrepancy is 
probably caused by the non-primary character of the most 
primitive USB tholeiitic lava and could be alleviated by 
fractionation of olivine and/or cpx. The same approach has 
been applied to the transition metals using partition coef-
ficients from Bédard (2014) and yields the same results 
(Electronic Supplementary Material ESM 2). Given that, 
the cumulative cpx, and thus the tholeiitic cumulates, rep-
resent a cumulative phase of the tholeiitic-to-transitional 
suite (Fig. 12a).

The calculated liquid in equilibrium with magmatic opx 
from boninitic ultramafic cumulates using partition coeffi-
cients of Bédard (2007) reproduces the typical U-shaped 
pattern observed in boninitic melts (Fig. 12b). Compared to 
USB boninitic amphibolites, the calculated melt has a pro-
nounced REE depletion. Once again, the most primitive USB 
boninitic melt has probably crystallized a certain amount of 
olivine and/or opx prior to extraction, which would explain 
its REE enrichment compared to the calculated REE com-
position. The same modeling for the transition metals results 
in similar compositions between the liquid in equilibrium 
with opx and the boninitic lavas (Electronic Supplementary 
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Material ESM 2). We, therefore, interpret the boninitic ultra-
mafic rocks as cumulates of the boninitic basalts.

Primitive melts and liquid lines of descent

As previously discussed, most amphibolites from the 
USB have characteristics of liquids, and some of them 
have chemical attributes of primitive liquids that can be 
primary melts in equilibrium with mantle olivine with an 
Mg# of 87–91 mol.% and a Ni content of 1800–4500 ppm 
(Electronic Supplementary Material ESM 2). However, 
the REE modeling showed that these melts cannot be 
considered primary magmas but rather as parental melts. 

This is confirmed by the calculated melt Mg# from cpx 
compositions, following the method described by Wood 
and Blundy (1997), being higher (> 75  mol.%) than 
Mg# from the amphibolites. The most primitive tholei-
itic melt (IN14009) has SiO2 = 46.5 wt.%, MgO = 9.4 
wt.%, Mg# = 60 mol.%, Ni = 394 ppm, and Cr = 356 ppm 
(Fig. 13). The most primitive boninitic melt (IN12034) 
has SiO2 = 50.4 wt.%, MgO = 12.4 wt.%, Mg# = 68 mol.%, 
Ni = 162 ppm, and Cr = 807 ppm (Fig. 13). These parental 
melts can be used to model the evolution of these two 
series.

Tholeiitic(-to-transitional) and boninitic liquids SiO2, 
Mg#, Al2O3/TiO2, and (Dy/Yb)N variations are modeled 
following the method of Jagoutz (2010) using a rearrange-
ment of the mass balance equation. The model assumes 
fixed cumulate compositions subtraction, although com-
positions may vary with fractionation, rather than min-
eral–liquid partition coefficients to allow major element 
modeling. The proportions of removed phases are adjusted 
to match the major and trace-element data (Fig. 13).

Tholeiitic(‑to‑transitional) suite

Sample IN16098b represents the only cpx-bearing ultra-
mafic rock in our sample collection. Nevertheless, and as 
discussed in previous sections, the primitive parental melt 
probably crystallized olivine as the liquidus phase, fol-
lowed by cpx leading to the formation of dunite, wehrlite 
and (olivine-)clinopyroxenite. This observation contrasts 
with the ISB cumulates sequence where no cpx has been 
observed nor inferred from the bulk-rock compositions 
(Szilas et al. 2015). Olivine and cpx fractionation induced 
enrichment of SiO2, Al2O3, TiO2, and REE coupled with 
a rapid Mg# decrease and slow Al2O3/TiO2 and (Dy/Yb)N 
decrease in the residual melt (Fig. 13). A similar evolution 
is observed within the crystallizing cpx. The inferred crys-
tallization of limited amounts of plag and amph then leads 
to the formation of plag- and hbl-bearing pyroxenite and 
hbl-gabbro (Mg# ≈ 65 mol.%, SiO2 ≈ 46 wt.%) and drives 
the melt towards higher SiO2 values, and to lower Mg#, 
Al2O3/TiO2 and (Dy/Yb)N values (Fig. 13). The relatively 
high SiO2/MgO and Al2O3 contents coupled with the posi-
tive Eu anomaly of several tholeiitic cumulates corrobo-
rate the appearance of plag in the cumulate assemblage 
of the tholeiitic suite. The rather delayed onset of plag 
crystallization allows the melt to evolve towards higher 
SiO2 values early during its differentiation. Finally, the 
most evolved andesitic compositions of the tholeiitic suite 
can be reproduced from a primitive melt undergoing > 60 
wt.% crystallization of olivine + cpx + plag ± hbl. Such a 
cumulate line of descent is symptomatic of damp tholei-
itic systems and is consistent with the mineral assemblage 
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derived from Feig et al. (2006) experiments performed at 
0.5 GPa using a water-undersaturated tholeiitic magma.

Boninite‑like suite

Boninitic cumulates are well represented in the collected 
samples, but no olivine has been observed in these sam-
ples. Nonetheless, as previously discussed, olivine probably 
appears as the liquidus phase. The primitive parental liquid 
thus probably formed dunite, websterite and orthopyrox-
enite whose fractionation led to a rapid Mg# (< 60 mol.%) 
and Al2O3/TiO2 decrease at constant SiO2 content (SiO2 ≈ 
50 wt.%) in the residual liquid (Fig. 13). In addition, oli-
vine and opx fractionation enhanced the REE, and espe-
cially the LREE, concentration in the melt resulting in a 
(Dy/Yb)N increase (Fig. 13c). With increasing differentia-
tion, opx become Al- and Ti-rich, reflecting the progres-
sive enrichment of these elements in the melt. Subsequent 
plag and amph fractionation is documented by the gabbroic 
composition of the most evolved boninitic cumulates and 
leads to (hbl-)norite crystallization after ~ 30% fractiona-
tion, which is characteristic of silica-rich primitive melts 
(e.g., Grove et al. 2002). Although the exact onset of plag 
and hbl crystallization is uncertain, their role in the final 
differentiation of the boninitic melts remains limited, with 
a slight decrease in Al2O3/TiO2 and (Dy/Yb)N. This obser-
vation agrees with the low bulk-rock SiO2/MgO ratios of 
the boninitic cumulates (Fig. 11). Interestingly, the range of 
boninitic melt compositions is probably controlled by the 
composition of the primitive liquids. Indeed, some sam-
ples display SiO2 contents ranging from 48 to 52 wt.% at 
a constant Mg# of ~ 60 mol.%, which, in a differentiation 
sequence dominated by olivine + opx, can only be explained 
by primary melt compositions with a large spectrum of 
SiO2 contents. Finally, boninitic melt compositions are best 
explained by 40–50 wt.% fractionation of subsequent oli-
vine + opx ± plag ± amph. The experiments of Van der Laan 
(1989) reproduce the olivine + opx liquidus assemblage in a 
boninitic system at 0.3–0.4 GPa, 1200–1260 °C, and initial 
H2O contents of 1.0–3.1 wt.%.

Implications for Hadean–Eoarchean geodynamics

Age and origin of the inherited Hadean component 
of the Innuksuac complex

We demonstrated that magmatic rocks of the USB formed 
following two liquid lines of descent, one from a damp 
basaltic primitive melt and the other from a wet boninitic 
primitive melt that are ubiquitous and best produced dur-
ing low-pressure mantle melting in subduction systems. 
As shown in Fig. 14, boninitic lavas are chemically more 
depleted than tholeiitic lavas and carry an isotopically 
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enriched isotopic signature (μ142Nd ≈ –5), while tholeiitic 
lavas have μ142Nd values within error of the modern mantle 
(Fig. 14d). Previous studies also showed that 142Nd/144Nd 
and Sm/Nd ratios measured in the diverse amphibolite 
groups of the NSB and USB are positively correlated, 
reflecting either a mixing or an isochronous relationship 
(O'Neil et al. 2008; Roth et al. 2013; Caro et al. 2017). 
However, our results show that the μ142Nd–Sm/Nd array 
is defined by at least two non-cogenetic series which, con-
sidered separately, have homogeneous μ142Nd regardless 
of their Sm/Nd ratio (Caro et al. 2017). Chemical sedi-
ments (BIFs) interleaved within the Ukaliq and Nuvvuag-
ittuq mafic–ultramafic sequences also have homogeneous 
μ142Nd despite a wide range in Sm/Nd, which conflicts 
with a Hadean deposition age. These observations sug-
gest that the μ142Nd–Sm/Nd array reflects contamination 
of Eoarchean mantle domains or mantle-derived melts by 
a Hadean crustal component. The differentiation age of 
this Hadean reservoir cannot be derived from the slope of 
the μ142Nd–Sm/Nd array but can be estimated at ~ 4.4 Ga 
using coupled 146,147Sm–142,143Nd chronometry (Caro 
et al. 2017). This result demonstrates that the presence of 

negative 142Nd anomalies coupled with LREE enrichment 
in amphibolites of the Innuksuac complex reflects geo-
chemical inheritance from a crustal reservoir differenti-
ated during or shortly after crystallization of the terrestrial 
magma ocean (Morino et al. 2017, 2018).

The presence of unradiogenic 142,143Nd signatures in boni-
nitic lavas may thus result from direct assimilation of 4.4 Ga 
crust by tholeiitic melts or from melting of a metasomatized 
mantle source triggered by the recycling of Hadean litho-
sphere into the mantle. As shown in Fig. 14a, boninitic melts 
are more depleted in incompatible elements than tholeiitic 
melts, which rules out a simple crustal assimilation scenario. 
Their hydrous character, typified by high Th, LREE, and Th/
Yb (0.2–2.0) contents at constant Nb/Yb (1–2) provide fur-
ther evidence in favor of fluid-induced melting of chemically 
depleted mantle domains (Fig. 14c). These combined petro-
logical, geochemical, and isotopic observations suggest that 
tholeiitic melts were produced by decompression melting of 
near-primitive mantle domains. In contrast, melts displaying 
boninitic affinities were extracted from a more refractory 
mantle overprinted by a LREE-enriched fluid component 
carrying a crustal 142,143Nd signature.
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As mentioned in the bulk-rock chemistry section, our col-
lection includes a unique sample (IN12032) characterized by 
a marked LREE enrichment and a strongly negative μ142Nd. 
Given the low solubility of Nd in aqueous fluids (Brenan 
et al. 1995), these features are unlikely to result solely from 
fluid fluxing and point towards the addition of an enriched 
silicate melt component to the USB mantle source. In mod-
ern arc settings, the unradiogenic 143Nd- and LREE-enriched 
compositions of calc-alkaline lavas result primarily from 
partial melting of subducted sediments in the mantle wedge 
(e.g., Class et al. 2000; Yogodzinski et al. 2010). This stems 
from the fact that subducted sediments have unradiogenic 
143Nd/144Nd values that contrast with the radiogenic com-
position of the depleted mantle (e.g., Plank and Langmuir 
1998). In contrast, the oceanic crust is isotopically simi-
lar to the depleted mantle and has a low propensity to melt 
during subduction. As shown by Class et al. (2000) in the 
context of the Aleutian arc, partial melting of recycled sedi-
ments produces correlated Th/Nd–ε143Nd variations in arc 
lavas, which are similar to the Th/La–μ142Nd array reported 
by Caro et al. (2017) in USB amphibolites. The recycling 
of Hadean sediments may, therefore, provide a plausible 
mechanism for transferring unradiogenic 142,143Nd- and 
LREE-enriched signatures to the mantle source of Ukaliq 
and Nuvvuagittuq calc-alkaline lavas. This scenario would 
imply accumulation of erosion products of ~ 4.4 Ga proto-
continents on the Hadean seafloor and the development of 
differentiated felsic crust shortly after magma ocean crys-
tallization. Alternatively, higher lithospheric buoyancy may 
have favored long-term preservation of Earth’s primordial 
lithosphere (e.g., Korenaga 2006), allowing the development 
of unradiogenic 142,143Nd compositions even in a predomi-
nantly mafic crustal reservoir. The elevated temperature of 
the Eoarchean mantle would then provide the necessary con-
ditions for partial melting of this recycled Hadean crust and 
the production of high Th/La- and LREE-enriched melts 
capable of generating the isotopic and trace element signa-
ture of calc-alkaline amphibolites of the Innuksuac complex.

The question of Eoarchean subduction

The petrological, geochemical, and isotopic characteristics 
summarized in Fig. 14 provide a unique view of a mag-
matic system associated with the recycling of the Hadean 
lithosphere in the mantle. The petrogenetic history inferred 
from these observations can, therefore, shed some light on 
Eoarchean geodynamics, which otherwise strongly rely on 
thermomechanical and analog modeling studies (e.g., Sizova 
et al. 2010; Fischer and Gerya 2016a, b; Van Hunen and Van 
den Berg 2008; Piccolo et al. 2019). Based on these models, 
two contrasting views are provided, nevertheless supported 
by the incomplete geological record of the Archean Earth 
(e.g., Bédard 2018; Van Kranendonk 2010). They are: (i) 

the active-lid model, in which crustal recycling occurs by 
subduction (e.g., Fischer and Gerya 2016b; Van Hunen and 
Moyen 2012); and (ii) the stagnant-lid model, where crustal 
recycling proceeds via dripping of eclogitized lower crust 
(e.g., Fischer and Gerya 2016a; Moore and Webb 2013; Pic-
colo et al. 2019). These processes are not mutually exclu-
sive, and transitional regimes involving episodic or plume-
induced subduction in a predominantly stagnant-lid regime 
have also been suggested for the Archean Earth (e.g., O'Neill 
et al. 2007; Gerya et al. 2015). In the subduction model, 
slab-induced corner flow leads to H2O-assisted decompres-
sion melting, generating tholeiitic melts. Harzburgitic resi-
due can further melt in a forearc position at low pressure in 
fluid-saturated conditions to yield boninitic melts (Grove 
et al. 2002; Schmidt and Jagoutz 2017). These two melting 
regimes can be juxtaposed in a forearc sequence and are 
thought to represent subduction initiation (see Stern et al. 
2012), as was proposed for the nearby Nuvvuagittuq suprac-
rustal belt (Turner et al. 2014). In the stagnant-lid model, 
the dripping of hydrothermally altered mafic crust induces 
the production of TTG-like melts and recycling of refrac-
tory eclogitic residues in the mantle (Piccolo et al. 2019). 
Asthenospheric uplift triggered by lower crustal dripping 
can, in turn, produce tholeiitic melts by decompression 
melting. Although recycled eclogitic residues are expected 
to be relatively dry, providing limited opportunity for fur-
ther dehydration and fluid-induced melting of the mantle, 
hydrated material may be dragged along lower crustal drips 
(Piccolo et al. 2019) and potentially create petrogenetic envi-
ronments similar to those observed in subduction settings. In 
contrast to subduction, however, dripping would only occur 
due to crustal overthickening and, therefore, does not pro-
vide a direct pathway to producing low-pressure boninitic 
melts. Lower crustal dripping would also favor hybridization 
of newly formed TTG and tholeiitic melts with preexist-
ing (Hadean) crustal components (e.g., Fischer and Gerya 
2016a; Piccolo et al. 2019), which conflicts with the lack 
of geochemical relationship reflecting direct assimilation of 
Hadean crust, and the absence of inherited Hadean zircons 
in the Innuksuac complex. Therefore, the most parsimonious 
way to explain the ubiquitous presence of Hadean geochemi-
cal crustal signatures in the absence of relict Hadean crustal 
components is to recycle this ancient lithosphere through 
subduction.

In contrast to modern arcs, the USB is dominated by 
tholeiitic lavas and includes only minor boninitic and calc-
alkaline components. This difference may reflect the inher-
ently short-lived nature of subduction systems in a hotter 
mantle, as modeled by Van Hunen and Van den Berg (2008). 
Alternatively, Fischer and Gerya (2016b) showed that with 
increasing mantle potential temperatures, magmatic activity 
in the mantle wedge would become dominated by decom-
pression melting of dry asthenospheric mantle rather than 
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fluid-fluxed melting characterizing modern arcs. Therefore, 
the dominant tholeiitic and subordinate boninitic and calc-
alkaline compositions of the USB may reflect the prevail-
ing magmatic expression of subduction in a hotter mantle 
rather than the embryonic stages of arc development. Going 
beyond these different scenarios, our results suggest that 
subduction systems were operative, at least intermittently, 
as early as 3.8 Ga and thus contributed to the genesis of 
Earth’s oldest crust. Conflicting evidence for stagnant-lid or 
subduction-associated tectonic processes in the Archean can 
be reconciled by hybrid models involving either concomitant 
(e.g., Gerya et al. 2015) or alternating (O'Neill et al. 2007) 
plume and subduction-induced magmatism.

Conclusions

The Eoarchean (ca. 3.78–3.75 Ga) Ukaliq supracrustal belt 
is part of the Innuksuac complex within the ca. 12,000 km2 
Inukjuak domain (Québec, Canada). The Ukaliq supracrus-
tals host mafic and ultramafic rocks which can be subdivided 
into five categories according to their phase relationships 
and bulk-rock chemistry: (i) tholeiitic basalts; (ii) boninitic 
basalts to andesites exhibiting TiO2 depletion and U-shaped 
REE pattern; (iii) transitional basalts representing a con-
tinuum between the two categories above; (iv) cpx-bearing, 
tholeiitic(-to-transitional) cumulates; and (v) cpx-absent, 
boninitic cumulates. We show through bulk-rock and min-
eral analyses coupled with melt composition calculations 
that the ultramafic rocks represent cumulate products of the 
mafic lavas and used these data to model a damp tholeiitic 
liquid line of descent consisting of olivine + cpx + plag ± hbl 
fractionation, and a wet boninitic differentiation sequence 
that crystallized olivine + opx ± plag ± hbl. The liquid lines 
of descent inferred from both bulk-rock and mineral chem-
istry suggest that the Eoarchean Ukaliq supracrustal belt 
originated in an environment capable of reproducing today’s 
subduction zone petrological processes. Such environment 
produces covariation between 142Nd/144Nd and Sm/Nd ratios 
in amphibolites of the Innuksuac complex through intake 
of a 142Nd anomaly-bearing Hadean slab that imprinted 
the mantle wedge and its melt derivatives via fluids and/or 
melts carrying the 142,143Nd- and HFSE-depleted and LREE-
enriched signatures. This suite of interpretations would not 
be possible without the identification of primary magmatic 
signatures preserved in the Eoarchean rocks of the Ukaliq 
locality.
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