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Degraded Mode-benefited I/O Scheduling to Ensure I/O Responsiveness in
RAID-enabled SSDs

ZHIBING SHA, JUN LI, ZHIGANG CAI, MIN HUANG, and JIANWEI LIAO, Southwest University of

China, China

FRANCOIS TRAHAY, Télécom SudParis, France

RAID-enabled SSDs commonly have unbalanced I/O workloads on their components (e.g. SSD channels), as the data/parity chunks in
the same stripe may have varied access frequency, which greatly impacts I/O responsiveness. This paper proposes a I/O scheduling
scheme by resorting to the degraded read mode and the read-modify-write mode, to reduce the long-tail latency of I/O requests
in RAID-enabled SSDs. The basic idea is to avoid scheduling read or update requests to the heavily congested but targeted RAID
components. Such requests are satisfied by accessing other relevant RAID components by certain XOR computations (we call the
degraded modes). Specially, we build a queuing overhead assessment model on the top of factors of data redundancy and the current
blocked I/O traffics on SSD channels, to precisely dispatch incoming I/O requests to be fulfilled with the degraded mode or not. The
trace-driven experiments illustrate that the proposed scheme can reduce the long-tail latency of read requests by 23.1% on average at
the 99.99th percentile, in contrast to state-of-the-art scheduling methods.
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1 INTRODUCTION

The NAND-based solid-state drivers (SSDs) have been widely employed in consumer devices and high performance
computing platforms, thanks to their features of random access, lower power consumption, and collectively massive
parallelism [1, 2]. Though early SSDs were prohibitively expensive, the emergence of Multi-Level Cell (MLC), Triple-
Level Cell (TLC) , and even Quad-Level cell (QLC) technologies has significantly driven down the per-unit price of
SSDs with keeping multiple bits in a NAND cell [3–5]. Such high density SSD devices, however, are severely impacted
by read/write disturb, data retention and low disturbance endurance that directly increase the raw bit error rate (RBER)
[3, 6]. Therefore, efficiently dealing with such noises to ensure the reliability of flash memory-based SSDs becomes a
challenging issue [2, 7, 8]. It is true that advanced Error Correction Code (ECC) schemes, such as Low Density Parity
Check Code (LDPC) can easily cover RBERs at the cost of the latencies from read retries [2, 9], but they cannot correct
chip/channel-level failures in SSDs[10, 11].

Device-level redundancy is the first line of defense to confront storage hardware failures. The approach of parity-
based redundant array of inexpensive disks (e.g. RAID-3/RAID-5) is utilized inside SSDs to cope with chip/channel level
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failures, to offer high reliable end data service in compact SSDs [3, 6, 12]. An SSD consists of multiple channels with
each one having one or multiple chips, and each channel can work in parallel just like an independent disk does. That is
to say, the multi-channel structure offers opportunity to implement RAID into a single SSD to form a channel-RAID [13].
Generally, a (data/parity) chunk is normally referred to a page in RAID-enabled SSDs, and all chunks belonging to the
same data stripe will be distributed across all associated chips/channels. In case either of chips/channels is broken, we
can restore all the lost data/parity chunks by reading other relevant RAID components accompanying with certain XOR
computations. In this paper, we make use of the channel-level RAID implementation as the default case for illustration.

On the one hand, due to the natures of out-of-place update and round-robin parity placement at the flash
level of SSDs, conventional RAID implementations may result in uneven data workloads across all channels of SSDs [6].
In other words, certain SSD channels maintain hot read/write data chunks, so they must service more I/O requests and
then endure more garbage collections (GCs). Consequently, I/O requests that target at hot channels are delayed, which
exacerbates long-tail latency of I/O requests and then greatly affects I/O responsiveness in RAID-enabled SSDs [14].

On the other side, users anticipate fast and stable latencies [15], but SSDs do not always deliver the expected real-time
I/O services and thus some even suggest that flash storage “may not save the world” because of the tail latency problem
[16]. The main reason for tail latency in RAID-enabled SSDs is that different RAID components (e.g. SSD channels)
have uneven busyness on I/Os and GCs while running user applications [17]. Especially with respect to the issue of
mitigating the negative effects of garbage collection that is the heaviest operation in SSDs, I/O requests on the GC
target channels will be fulfilled by reading the data on other channels of the same stripe with certain XOR computations
[14, 18, 19].

In order to essentially balance I/O access workloads over all channels of RAID-enabled SSDs and then ensure I/O
responsiveness from the source, this paper proposes degraded mode-benefited I/O scheduling. Specifically, it intends
to satisfy a part of I/O requests on the most congested SSD channels through accessing other relevant SSD channels
(termed as the degraded mode). In brief, this paper makes following three contributions:

- We introduce degraded mode-based I/O scheduling that balances I/O access workloads over all channels in RAID-
enabled SSDs. To speedup reading/updating the data chunk on a congested channel that may have intensive I/O
requests or GC operations, a degraded mode operation is issued to fetch the remainder (data/parity) chunks of
the same stripe for regenerating the expected chunk data with certain XOR computations.

- We build a queuing overhead assessment model that takes the factors of data redundancy and blocked I/O traffics
on SSD channels into account. Then, this model can help deciding whether the current I/O request should be
fulfilled with the degraded mode or not during I/O scheduling.

- We conduct preliminary evaluation on several block I/O traces of real-world applications. As measurements
indicate, our proposal can afford a better performance improvement on the metrics of overall I/O response time,
I/O long-tail latency and I/O workload balance.

The remainder of paper is organized as follows: Section 2 depicts background knowledge, relatedwork andmotivations.
The approach of degraded mode-based I/O dispatching in RAID-enabled SSDs is specifically presented in Section 3.
Section 4 describes the evaluation experiments and relevant discussions. Finally, the paper is concluded in Section 5.
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Fig. 1. I/O processing in channel-level RAID-enabled SSDs (for simplicity of illustration, each stripe includes two data chunks and
one parity chunk).

2 RELATEDWORK ANDMOTIVATION

2.1 Background and Related Work

As discussed, SSD devices have a functionality of ECC to guarantee data integrity when reading a data page [2, 9]. If
errors are detected and the number or span of errors is beyond the ECC capability, then the read operation is deemed a
failure and the SSD device is notified. In such cases, RAID is used to regenerate the data and write a new copy onto a
free data page of SSD. As one of standard RAID levels, RAID-5 consists of block-level striping with distributed parity,
and has advantages in load-balancing and I/O parallelism, so it has been commonly applied in SSDs targeting at either
chip-level [6] or channel-level, for the purpose of reliability [20]. Figure 1 shows our example of I/O processing in
channel-level RAID implementation. For simplicity of illustration, we use four channels (𝐶𝐻0-𝐶𝐻3) and each data stripe
has two data chunks and one parity chunk.

According to the nature of RAID-5, whenever a data chunk is updated, both the original data chunk and the
corresponding parity chunk in the same stripe are marked as invalid first, and then the new data chunk and the parity
chunk are flushed onto the same channels. As seen in Figure 1, the stripe (𝐷0, 𝐷1, 𝑃01) is updated to (𝐷′

0, 𝐷1, 𝑃 ′01), after
completing the request of𝑊𝐷0 that intends to modify the data chunk of 𝐷0 saved on 𝐶𝐻0. Note that the updated data
chunks or parity chunk should be placed on the same channel in RAID-enabled SSDs, by keeping the stripe structure.
Specially, each update request has to read the old chunk, and then merge it with the coming new data to form the new
data chunk, which is also called Read-Modify-Write [12].

The SSD channel having hot updated data chunks may induce a large number of read and write requests, as well as
more garbage collections. As a result, the problem of long-tail latency on such channels becomes even worse. In order
to reduce the number of parity writes, Kim et al. [12] proposed a method to dynamically reconstruct stripes with a
flexible size, for placing the data evenly on all RAID components (i.e. SSD chips in their context). But this method brings
about complicated data structures of mapping table, and cannot balance I/O workloads over all RAID components from
the source.

Furthermore, the degraded mode-like optimization strategies are employed to mitigate the negative effects of garbage
collection [14, 18, 19] and read disturb [21] in RAID-enabled SSDs or SSD-based RAID storage. Specifically, Yan et al.
[14] designed Tiny-tail flash that aims to service GC-blocked I/Os by exploiting parity-based redundancy to proactively
generate required contents. Then, it can yield (nearly) GC-free I/O latency. Cui et al. [21] introduced a disturb-aware
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Fig. 2. CDF of I/O latency on the most congested channel and the remainder channels of the same stripes in conventional RAID-
enabled SSDs. The number of blocked requests on channels is shown in the legend.

read redirection scheme. It also makes use of parity-based redundancy to regenerate data contents, to avoid reading the
target data chunk that may cause read disturb errors.

Existing work commonly makes use of empirical rules to decide if parity-based redundancy should be used for
regenerating the expected data chunks. For example, Tiny-tail Flash checks whether the relevant RAID components
(i.e. SSD channels) are currently enduring a GC operation or not, to decide whether triggering an optimization read
operation or not [14]. We argue that it is better to have a common model to direct triggering degraded modes for
satisfying read or update requests for eventually yielding I/O workload balance among all SSD channels, by considering
not only whether channels are busy on GC operations or not, but also the levels of busyness of involved SSD channels
caused by serving normal I/O requests.

2.2 Motivations

To assess how the factor of channel busyness affects the response latency to I/O requests, we measured the I/O response
time for different channels of the same stripes. We recorded that average number of blocked requests and the cumulative
distribution function (CDF) of the I/O latency on different SSD channels after replaying the selected three block traces on
our experimental platform. See Section 4.1 for the details on the benchmarks and the experimental platform. Specially,
we used additional-01-2016021615-LUN0 (labeled as lun1-0), and additional-03-2016021715-LUN2 (lun3-0), from the
LUN trace collection [30].

Figure 2 shows the relevant results. In the figure, the horizontal axis represents the different disk traces of real world
applications, and the vertical axis indicates the CDF value of I/O latency. Clearly, varied SSD channels in the same
stripe have different long-tail latency on the channels. Besides, we measured the average numbers of blocked requests
in I/O queues of channels, and disclosed that a large tail latency generally corresponds to a large number of blocked I/O
requests on the channel. More importantly, we observed that except for the most congested channel that has the worst
long-tail latency, other channels in the same stripe have less long-tail latency with a similar tendency.

Such observations motivate us to propose a novel I/O scheduling mechanism for achieving an I/O workload balance
across all channels of RAID-enabled SSDs, to better ensure I/O responsiveness of user applications.
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Fig. 3. High Level Overview of Degraded Read Mode (a) and Degraded Read-Modify-Write Mode (b) in RAID-enabled SSDs.

3 DEGRADED MODE-BASED SCHEDULING

3.1 Architectural Overview

The basic principle of degraded mode-based scheduling is to avoid dispatching read requests or update requests to the
most congested but targeted SSD channels. Then, such requests will be serviced with the degraded mode by accessing
other SSD channels in the same data stripe. Figure 3 illustrates a high-level overview of both degraded read and
read-modify-write (i.e. update) modes, for possibly satisfying certain read/update requests.

Figure 3(a) describes the degraded read mode. As seen, the read request of 𝑅𝐷0 should be dispatched into the queue
of 𝐶𝐻0 which is very busy, according to the read/write rules in RAID-enabled SSDs. But in our context, the queuing
overhead assessment model (described in Section 3.2) detects that𝐶𝐻0 would take too much time to satisfy this request.
Thus, we combine 𝐷1 on 𝐶𝐻1 and 𝑃01 on 𝐶𝐻2 with a XOR operation for regenerating the contents of 𝐷0, to eventually
avoid worsening of the congestion state of I/O queue on 𝐶𝐻0. The semantics of the degraded read function (defined as
Degraded_read()) consist of two read operations and one XOR operation, which are also illustrated in Figure 3(a).

Figure 3(b) shows how the degraded update mode satisfies an update request of𝑊𝐷0 (i.e. a read-modify-write request),
which originally targets at 𝐶𝐻0, the most congested channel. Then, it first obtains the obsolete data chunk of 𝐷0 by
employing a degraded read operation. Next, it generates the new data chunk by merging the old data chunk with the
new coming data. After that, it tries to adaptively organize the stripe by flushing the new data chunk onto a not busy
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Table 1. Symbols and Explanations in theQueuing Overhead Assessment Model

Symbol Explanation Symbol Explanation
𝐶𝐻𝑖 the 𝑖th channel 𝑓𝑖 arriving req.

𝑅𝑖 read on 𝐶𝐻𝑖 freq. on 𝐶𝐻𝑖

𝑊𝑖 write on 𝐶𝐻𝑖 𝑡𝑟𝑑 read latency

𝑛𝑖 enqueue req. on 𝐶𝐻𝑖 𝑡𝑤𝑟 write latency

𝑛𝑖𝑟 enqueue reads on 𝐶𝐻𝑖 𝑡𝑔𝑐 GC latency

𝑛𝑖𝑤 enqueue writes on 𝐶𝐻𝑖 𝑡𝑥𝑜𝑟 XOR latency

𝑡𝑤𝑟_𝑝 write latency on parity

channel (i.e. 𝐶𝐻3), for the purpose of balancing data access workloads across all channels in SSDs. At last, the parity
chunk are re-computed and then updated in the same channel (𝐶𝐻2), as this channel is not the busiest one at that
time. The detailed semantics of the degraded read-modify-update function (defined as Degraded_update()) have been
shown in Figure 3(b).

3.2 Queuing Overhead Assessment Model

To precisely guide whether dispatching I/O requests to be serviced with the degraded mode or not, we build a queuing
overhead assessment model. Table 1 summarizes the notations and the corresponding definitions used in our model.

Note that our approach adopts stripe structures that do not fully span all channels. In fact, early SSDs usually have a
limited number of channels, such as 4, so that it is common to make the stripe size matching the number of channels.
Nowadays high density SSDs, however, usually have more channels [22, 23]. For example, the SM8266 controller enables
16 NAND flash channels, and is designed to support the latest 3D TLC and QLC NAND flash technologies [24]. Then,
building a stripe structure by using only a part of channels (or chips in chip-level RAID implementations) has been
used in practice, to avoid write amplification due to the over-large stripe structure [25]. In our context, supposing the
RAID-enabled SSD has𝑚 channels of 𝐶𝐻0, 𝐶𝐻1, ... and 𝐶𝐻𝑚−1, and the first 𝑘 channels are organized as the stripe
structure. That is, each data stripe includes 𝑘 − 1 data chunks and 1 parity chunk (2 < 𝑘 < 𝑚).

To simplify descriptions on modeling, we assume the read request of 𝑅𝐷0 arrives to fetch the data chunk managed
by 𝐶𝐻0, and 𝐷0, 𝐷1, and 𝑃01 form a data stripe (size 𝑘 = 3). There are two ways to service this request. One selection is
to normally enlist 𝑅𝐷0 to the waiting queue of 𝐶𝐻0, and another is to read the remainder chunks in the same stripe (i.e.
𝐶𝐻1 and 𝐶ℎ2) to regenerate the expected data with certain XOR computations.

From the perspective of satisfying the current request of 𝑅𝐷0, the relevant waiting overhead consists of two parts of
𝑇𝑤𝑎𝑖𝑡 and 𝑇𝑑𝑒𝑙𝑎𝑦 if we use the normal read mode (see Figure 4(a)). Specifically, 𝑇𝑤𝑎𝑖𝑡_𝑎 is the waiting time of 𝑅𝐷0 that
is caused by completing the en-queued requests on the same channel, and defined in Equation 1.

𝑇𝑤𝑎𝑖𝑡_𝑎 = 𝑛0𝑟 · 𝑡𝑟𝑑 + 𝑛0𝑤 · 𝑡𝑤𝑟 + 𝑐 · 𝑡𝑔𝑐 (1)

where 𝑐 could be 0, 1, 2, ..., and indicates the number of GCs during the period of completing I/O requests on 𝐶𝐻0. This
parameter can be estimated by the current available space and the amount of write data induced by the en-queued
write requests.
Manuscript submitted to ACM



Degraded Mode-benefited I/O Scheduling to Ensure I/O Responsiveness 7

RD0 

Incoming  
Read 

(a) Normal Model for Read 

In	

Out	

RD0 

I/O Queue on CH0         CH1                          CH2               CHm-1 

RD0 

Incoming  
Read 

(b) Degraded Model for Read 

In	

Out	 RD1 Rp12 

D0=D1 XOR P01 
En-queued req. Incoming req. Current req. 

I/O Queue on CH0         CH1                       CH2                CHm-1 

… … 

RD1 and Rp12 are 
inserted as heads 
of queues 
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Meanwhile, there will be certain future incoming requests enter into the I/O queue of 𝐶𝐻0 before servicing 𝑅𝐷0. We
label the number of incoming requests as 𝑁0, that is related to the arriving request frequency and the time interval of
𝑇𝑤𝑎𝑖𝑡_𝑎 :

𝑁0 = 𝑓0 ·𝑇𝑤𝑎𝑖𝑡_𝑎 (2)

Then, each of these incoming requests must be delayed by one more read latency caused by servicing 𝑅𝐷0 (i.e. 𝑡𝑟𝑑 ),
and we label this part of time cost as 𝑇𝑑𝑒𝑙𝑎𝑦_𝑎 . Then, we define the overall waiting cost of dispatching the request of
𝑅𝐷0 with the normal mode onto the target channel in Equation 3.

𝑇𝐴 = 𝑇𝑤𝑎𝑖𝑡_𝑎 +𝑇𝑑𝑒𝑎𝑙𝑦_𝑎
= 𝑇𝑤𝑎𝑖𝑡_𝑎 + 𝑡𝑟𝑑 · 𝑁0

= 𝑇𝑤𝑎𝑖𝑡_𝑎 + 𝑡𝑟𝑑 · (𝑓0 ·𝑇𝑤𝑎𝑖𝑡_𝑎)

= (𝑛0𝑟 · 𝑡𝑟𝑑 + 𝑛0𝑤 · 𝑡𝑤𝑟 + 𝑐 · 𝑡𝑔𝑐 ) · (1 + 𝑡𝑟𝑑 · 𝑓0)

(3)

On the other side, if 𝑅𝐷0 is completed with the degraded read mode (see Figure 4(b)), two associated read requests
will be additionally inserted into the heads of queues of 𝐶𝐻1 and 𝐶𝐻2 for fetching the remainder chunks of the same
stripe. After that, an XOR operation will be used to regenerate the expected data for 𝑅𝐷0. Because two newly inserted
read requests will be serviced immediately, we argue that they will not have the waiting time cost. Then, these inserted
read requests only bring about impacts on the currently en-queued requests on the involved channels. Considering
we intend to yield a minimum of overall queuing time of all channels, the overhead of responding the data with the
degraded read mode is defined Equation 4.

𝑇𝐵 = 𝑡𝑥𝑜𝑟 +𝑇𝑤𝑎𝑖𝑡_𝑏 +𝑇𝑑𝑒𝑙𝑎𝑦_𝑏
= 𝑡𝑥𝑜𝑟 +𝑇𝑑𝑒𝑙𝑎𝑦_𝑏

= 𝑡𝑥𝑜𝑟 +
𝑘−1∑︁
𝑖=1

𝑇𝑑𝑒𝑙𝑎𝑦_𝑏_𝑖

= 𝑡𝑥𝑜𝑟 +
𝑘−1∑︁
𝑖=1

𝑡𝑟𝑑 · 𝑛𝑖

= 𝑡𝑥𝑜𝑟 + 𝑡𝑟𝑑 ·
𝑘−1∑︁
𝑖=1

𝑛𝑖

(4)

where𝑇𝑑𝑒𝑙𝑎𝑦_𝑏_𝑖 is the total increased waiting overhead on the 𝑖th channel, caused by inserting a read request (i.e. with
the degraded read mode) into the channel.
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As seen, the model needs to obtain the total waiting time on all relevant channels caused by the degraded read
operation for eventually yielding an I/O workload balance, though SSD channels can work in a parallel manner. Then,
it can compare 𝑇𝐴 with 𝑇𝐵 when scheduling the read request of 𝑅0, and then select the degraded read mode if 𝑇𝐵 is the
smaller one. Otherwise, the read request of 𝑅0 keeps waiting on the target channel of 𝐶𝐻0.

With respect to servicing the update request of𝑊0 that modifies the original data chunk managed by 𝐶𝐻0, we
first estimate the overhead of using the degraded mode and the normal mode. Similarly to the case of read requests,
Equations 5 defines the waiting overhead of completing the update request on 𝐶𝐻0.

𝑇 ′
𝐴 = 𝑇𝑤𝑎𝑖𝑡_𝑎 +𝑇 ′

𝑑𝑒𝑎𝑙𝑦_𝑎 + 𝑡𝑤𝑟_𝑝

= (𝑛0𝑟 · 𝑡𝑟𝑑 + 𝑛0𝑤 · 𝑡𝑤𝑟 + 𝑐 · 𝑡𝑔𝑐 ) · (1 + 𝑡𝑤𝑟 · 𝑓0) + 𝑡𝑤𝑟_𝑝
(5)

where 𝑡𝑤𝑟_𝑝 means the time of writing the parity channel, which is equal to 𝑡𝑤𝑟 .
Equation 6 defines the waiting overhead of satisfying the request with the degraded update mode.

𝑇 ′
𝐵 = 𝑡𝑥𝑜𝑟 + 𝑡𝑟𝑑 ·

𝑘−1∑︁
𝑖=1

𝑛𝑖 + 𝑡𝑤𝑟 · 𝑛𝑥 + 𝑡𝑤𝑟_𝑝 (6)

where 𝑛𝑥 is the number of waiting requests on the 𝑥th channel that is the most idle but not associated with the𝑊0’s
stripe.

If 𝑇 ′
𝐵
is smaller than 𝑇 ′

𝐴
, we select the degraded read-modify-write mode to complete the write request. That is, the

updated chunk is placed on a slack channel that was not a part of the stripe, to achieve not only a quick write completion
but also a balanced I/O workload distribution. If not, the request of 𝑅0 keeps waiting on the target channel of 𝐶𝐻0.

3.3 Implementation Issues

ALGORITHM 1: Cost assessment model-based scheduling
Input: args of 𝑛 𝑗𝑟 , 𝑛 𝑗𝑤 , 𝑓𝑗 on stripe-involved 𝑘 channels (e.g.𝐶𝐻0 to𝐶𝐻𝑘−1 for algorithm illustration);
Output: the degraded mode or not for 𝑅𝑒𝑞𝑖 on𝐶𝐻𝑖 ;

1 /*Initializing the overhead of both scheduling routines*/
2 𝑇𝐴 = 𝑇𝐵 = 0;
3 if 𝑅𝑒𝑞𝑖 𝑖𝑠 Read then
4 𝑇𝐴 = (𝑛𝑖𝑟 · 𝑡𝑟𝑒𝑎𝑑 + 𝑛𝑖𝑤 · 𝑡𝑤𝑟𝑖𝑡𝑒 + 𝑡𝑔𝑐 ) · (1 + 𝑡𝑟𝑒𝑎𝑑 × 𝑓𝑖 ) ;
5 𝑇𝐵 = 𝑡𝑥𝑜𝑟 + 𝑡𝑟𝑒𝑎𝑑 · ∑𝑘−1

𝑗=0, 𝑗≠𝑖 (𝑛 𝑗𝑟 + 𝑛 𝑗𝑤 ) ;
6 if 𝑇𝐴 > 𝑇𝐵 then
7 degraded_read(𝑅𝑒𝑞𝑖 ); //degraded read

8 else
9 common_read(𝑅𝑒𝑞𝑖 ); //keep waiting on𝐶𝐻𝑖

10 else
11 𝑇𝐴 = (𝑛𝑖𝑟 · 𝑡𝑟𝑒𝑎𝑑 + 𝑛𝑖𝑤 · 𝑡𝑤𝑟𝑖𝑡𝑒 + 𝑡𝑔𝑐 ) · (1 + 𝑡𝑤𝑟𝑖𝑡𝑒 × 𝑓𝑖 ) + 𝑡𝑤𝑟_𝑝 ;
12 /*No. 𝑥 channel has the least number of requests and not involved in the target stripe.*/
13 𝑇𝐵 = 𝑡𝑥𝑜𝑟 + 𝑡𝑟𝑒𝑎𝑑 · ∑𝑘−1

𝑗=0, 𝑗≠𝑖 (𝑛 𝑗𝑟 + 𝑛 𝑗𝑤 ) + 𝑡𝑤𝑟𝑖𝑡𝑒 · 𝑛𝑥 + 𝑡𝑤𝑟_𝑝 ;
14 if 𝑇𝐴 > 𝑇𝐵 then
15 degraded_update(𝑅𝑒𝑞𝑖 ); //degraded update

16 else
17 common_update(𝑅𝑒𝑞𝑖 ); //keep waiting on𝐶𝐻𝑖
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Table 2. Experimental settings of SSDsim

Parameters Values Parameters Values
Channel Size 8/16 Read latency 0.045ms

Chip Size 4 Write latency 0.7ms

Plane Size 4 Erase latency 3.5ms

Block per plane 256 XOR latency 0.019ms

Page per block 128 GC Threshold 10%

Page Size 8KB RAID Level 5

FTL Scheme Page ECC LDPC (7 levels)

Wear-leveling Static Stripe Struct. 3 Data + 1 Parity

Algorithm 1 shows the implementation details on the proposed I/O dispatching scheme with the queuing overhead
assessment model. As read, Lines 3-9 cope with a read request. Specifically, it computes the overhead of two scheduling
routines (i.e. degraded read and common read) by referring to the model, and then selects the one having less overhead.
Similarly, Lines 11-17 present the details of dealing with an update request.

4 EXPERIMENTS AND EVALUATION

This section first describes the experimental setup. Then, evaluation results and relevant discussions are presented, to
show the feasibility and applicability of degraded mode-benefited I/O scheduling. At last, we make a brief summary
about the findings obtained from the evaluation experiments.

4.1 Experimental Setup

The SSD controller has limited computation power and memory capacity [26], we then carried out tests on a local
ARM-based machine. It has an ARM Cortex A7 Dual-Core with 800MHz, 128MB of memory and 32-bit Linux (kernel
ver 3.1). We have performed trace-driven simulation by replaying block I/O traces of real-world application with SSDsim

(ver2.1). Because SSDsim has a diverse set of configurations, it has been widely employed in many studies for measuring
SSD performance through running simulation tests [27]. Table 2 demonstrates our settings of SSDsim in experiments,
which have been also used in prior studies [28, 29]. In the evaluation tests, we did emulate a DRAM-less SSD device
(64GB and 128GB) that does not hold a specific cache for buffering the write data.

Specially, we recommend computing the frequency of I/O requests (i.e. 𝑓𝑖 in the model) by referring to recent 128
requests on the channel by default, after certain preliminary tests on our platform. the GC time (i.e. the parameter of
𝑡𝑔𝑐 in the model) consists of the time required for completing page moves and the time of erase. Although the number
of page moves in each GC is not many and relatively stable, we set the value of this parameter being changeable, by
following Equation 7.

𝑡𝑔𝑐 = (Read latency +Write latency) ×𝐴𝑣𝑔 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑎𝑔𝑒 𝑚𝑜𝑣𝑒𝑠 + Erase latency (7)

where 𝐴𝑣𝑔 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑎𝑔𝑒 𝑚𝑜𝑣𝑒𝑠 means the average number of page moves in recent 8 GC operations on the channel.
Moreover, we argue that the proposed degraded update mode works for the contexts in which the number of channels

is larger than the size of stripe (discussed in Section 3). To check the effectiveness of our proposal in modern high
density SSDs, we conduct evaluation tests with SSD configurations of 8 and 16 channels respectively.
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Table 3. Specifications on I/O Traces (ordered by Wr Ratio)

Traces Req # Wr Ratio Avg Req SZ Max/Avg INT
hm_1 609311 4.6% 15.1KB 144.0/9.8ms

ads_0 1532120 9.50% 29.1KB 224.1/5.6ms

lun0 3316282 47.6% 16.5KB 158.1/1.1 ms

lun1 2667824 52.1% 16.5KB 164.0/1.3 ms

wdev_0 1143261 79.9% 6.6KB 525.6/5.3ms

src2_0 1557814 88.7% 6.3KB 7822.1/4.5ms
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Fig. 5. Overall I/O time of running the benchmarks with configurations of 8 and 16 SSD channels.

In order to diversify the benchmarks and make long runs of simulation, we have selected a number of block I/O
traces of real applications from different research groups, and repeated them twice in our tests. Table 3 reports the
specifications of the selected traces. Among them, two merged block I/O traces are recently collected from a part
of an enterprise VDI (Virtual Desktop Infrastructure) [30, 31]. Specifically, we have merged four consecutive traces
starting from additional-01-2016021616-LUN0 to form lun0, and four consecutive traces starting from additional-
01-2016021617-LUN0 to form lun1 in our tests. Three traces (hm_1, src2_0 and wdev_0) are from Microsoft Research
and afforded by multiple enterprise servers for different real-world applications [32]. The trace ads_0 comes from [33]
the set of Microsoft Production Server Traces.

Besides our proposal, another two schemes were also used as comparison counterparts in evaluation tests:
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Table 4. Number of degraded operations (XOR operations)

Block traces
GC-tolerate Read The Degraded scheme

read # update # read # update
#

hm_1 (8 CH.) 0 - 3300 176

ads_0 22 - 36610 912

lun0 10696 - 64457 59690

lun1 8880 - 42790 68737

wdev_0 981 - 50682 15947

src2_0 1343 - 87205 32191

hm_1 (16 CH.) 0 - 4757 191

ads_0 0 - 30221 3876

lun0 9212 - 22916 4462

lun1 6285 - 27369 61666

wdev_0 868 - 60729 16707

src2_0 1633 - 86541 23120

Note: GC-tolerate Read does not support the degraded update mode.

- Baseline, which implies that RAID-enabled SSDs only support conventional I/O scheduling. In other words,
both read and update requests have to be dispatched onto the target channels, regardless their congestion status.

- GC-tolerate Read, which can fulfill read requests targeting at the GC-blocked channel, by exploiting parity-based
redundancy to proactively generate the required contents [14]. We argue that it is the most related work to our
proposal, as it can speedup responding to the read requests on GC-blocked channels though it does not intend to
yield a balanced I/O workload distribution among all SSD channels.

- Degraded, which is the proposed I/O scheduling approach. It has a queuing overhead assessment model to
precisely satisfy a part of read and update requests on hot channels by using degraded modes in RAID-enabled
SSDs, for the purposes of reducing the long-tail latency and achieving I/O workload balance.

4.2 Results and Discussions

To evaluate the validity of the proposed scheduling approach for RAID-enabled SSDs, we take advantage of the metrics
of overall I/O time and long-tail latency to reflect the I/O responsiveness while running the benchmarks. After that, we
analyze GC statistics and workload balance over SSD channels, as well as the space and computation overhead.

4.2.1 Overall I/O Time. We have measured the time required for replaying the block I/O traces by using the chosen
scheduling methods. Figures 5(a) and 5(b) present the results of overall I/O time that consists of the read time and the
write time, while the SSD device has 8 and 16 channels respectively. In contrast to Baseline, both GC-tolerate Read

and Degraded can noticeably reduce the overall I/O latency of all traces, as Baseline does not support I/O redirection
optimization, even though a part of channels are heavily congested with I/Os or GC operations.

More exactly, Degraded noticeably improves the overall I/O time by 38.7% on average in all traces, compared
with the most related work of GC-tolerate Read. This is because GC-tolerate Read only fulfills read requests with the
degraded mode if the target channel is busy on GC. But, the proposed queuing overhead assessment model takes both
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12 Zhibing Sha, Jun Li, Zhigang Cai, Min Huang, Jianwei Liao, and Francois Trahay

GC operations and the workload of each channel into account, while servicing both read and update requests. Thus,
our Degraded strategy triggers more degraded operations, which improves I/O performance. As reported in Table
4, it triggers 20.1 times more degraded operations on average, compared with GC-tolerate Read after running the
benchmarks. Although the degraded I/O scheduling method redirects a write request from the original channel to
another idle channel, it does not affect the endurance span of SSDs since no more write operations are introduced.

Besides, we see the overall I/O time keeps decreasing when the number of SSD channels changes from 8 to 16, this is
due to the I/O contention is reduced to some extent if the SSD device has more channels for further supporting parallel
I/O accesses. Another important clue illustrated in the figure is that Degraded can scale well in the configurations with
more SSD channels, but GC-tolerate Read does not noticeably work better than Baseline in the case of 16 channels. This
is because GC-tolerate Read can only speedup the processing on the blocked I/O requests caused by GC operations
through accessing other relevant SSD channels. But, the 16-channel SSD has more capacity and endures less GC
operations comparing with the 8-channel SSD (refer to Section 4.2.3 for details), so that the benefits of GC-tolerate Read
are confined.

In brief, the I/O improvements brought about by GC-tolerate Read are tightly related to the number of GC operations.
But ourDegraded proposal can achieve the same level of I/O enhancements in awide range of SSD capacity configurations,
through evening I/O workloads over all SSD channels.

4.2.2 Long-tail Latency. As discussed in our motivations, imbalanced I/O workloads on RAID-enabled SSD channels
must postpone some I/O requests and then worsen the tail latency problem. Considering write requests generally do
not expect as much response latency as read requests [35], we only collect the Cumulative Distribution Function (CDF)
of read latency after running all benchmarks. Figures 6 and 7 illustrate the CDF results of read latency when using the
selected scheduling methods, with configurations of 8 and 16 SSD channels respectively.

Clearly, the lines of Baseline are almost the lowest ones since it does not adopt any optimization strategies to decrease
the long-tail latency. Our proposed Degraded method exhibits better long-tail latency than that using other comparison
schemes. More exactly, our proposal can cut down the long-tail latency by up to 98.9% (i.e. 23.1% on average) at the
99.99th percentile compared with GC-tolerate Read. This fact proves that avoiding scheduling read or update requests to
the heavily congested SSD channels can efficiently cut down the long-tail latency.

It is worth to mention that our proposed Degraded scheme slightly perform worse than Baseline and GC-tolerate Read
when replaying hm_1. This is because hm_1 is a read-intensive application and has an even I/O workloads across all
channels, we cannot benefit from the degraded read/write mode offered by the Degraded approach. In fact, we reported
that Degraded causes a small increase in the overall I/O time after running the hm_1 trace, refer to Section 4.2.1.

4.2.3 GC Statistics and Analysis. Both proposed Degraded method and GC-tolerate Read take the GC processes into
account when issuing degraded operations. Therefore, we record the number of GC operations after replaying the
selected block traces with varied scheduling methods, and the results are demonstrated in Figure 8.

As seen in the figure, the proposed Degraded scheme can slightly cut down the number of GC operations by 349.1

on average comparing with Baseline and GC-tolerate Read, after running a major part of traces. On the one hand, both
Baseline and GC-tolerate Read place the updated data chunks in the same channels, which must result in more GC
operations on the channels that have hot write chunks. According to our measurements of coefficient of variation (cv)
for GC counts of all SSD channels, we see the value of cv varies from 0.3 to 2.3 after replaying all the traces with
Baseline and GC-tolerate Read. That is to say, the GC count on varied channels differs from each other greatly, so that
we obtain a relative large GC count in total.
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Fig. 6. Long-tail latency of read requests with 8 channels (unit: ms).

On the other hand, Degraded basically places the update data onto the non-busy channels and causes not much
differences on the free space of channels. More exactly, the value of cv of GC count ranges from 0.01 to 0.3 after
replaying all the traces when using Degraded. As a result, Degraded brings about a relative small GC count after
replaying the selected traces.

In addition, we understand that GC-tolerate Read brings about less than 21.9% of GCs in the configuration of 16
channels, comparing with the configuration of 8 channels. The GC operations are triggered when the free space of
SSDs is smaller than a predefined threshold and 16 SSD channels indicate more storage capacity, so that the number of
GC operations may be consequently cut down with the same amount of write data after running the traces. As a result,
GC-tolerate Read achieves better I/O performance in a small size of SSD capacity, and we can conclude GC-tolerate Read
is GC-dependent and the number of GC operations greatly affect I/O improvements.
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Fig. 7. Long-tail latency of read requests with 16 channels (unit: ms).

4.2.4 Model Verification. To better verify how our proposed model yields evenly distributed I/O workloads among all
channels of RAID-enabled SSDs, we carry out workload and congestion analysis by recording the average completed
requests and the average blocked requests per channel. Specifically, the average number of blocked requests is defined
as the number of blocked requests (i.e. we count the blocked requests per request processing and then make a sum),
divided by the number of completed requests on a specific channel.

Figure 9 shows the average completed requests per channel after replaying all selected I/O traces with the configura-
tions of 8 and 16 channels. From both sub-figures, we see that the absolute number of completed requests per channel
keeps decreasing when the number of SSD channels becomes larger, but the comparison trend of three scheduling
approaches is similar. More specifically, compared with Baseline, GC-tolerate Read and Degraded cope with more requests
by 0.1% and 0.5% on average. This is because the degraded mode may issue multiple requests onto other related
Manuscript submitted to ACM
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Fig. 8. The results of GC statistics.

channels for servicing one read/update request. Another important information is that, our proposal of Degraded yields
the best workload balance among all channels, as it has the smallest standard deviation. In other words, the proposed
queuing overhead assessment model in Degraded can noticeably contribute to the balanced workloads (read/write/GC)
among all SSD channels.

Figure 10 presents the results of average blocked requests per channel. Degraded achieves the least number of blocked
requests per channel in all cases. This is because our method uses the degraded read/update mode to mitigate the
congestion status of hot channels. Consequently, the I/O requests are evenly distributed across all channels, as shown
by our proposal that has the least standard deviation of blocked requests per channels.

Our model empirically uses Equation 7 to estimate the critical parameter of the GC time for guiding I/O scheduling.
Figure 11 presents the comparison of the estimated GC time and the real GC time after replaying the traces. Note
that Degraded does not introduce any GC operations when running the read-intensive traces of hm_1 and ads_0. As
illustrated, the estimated GC time does not noticeably differ from the time needed in the real GC process. This is because
a GC operation consists of a fixed Erase and a small indeterminate number of Page Moves (i.e. on average, 5.5 page
moves/GC in our tests), and the Erase operation takes a major part of time overhead in a GC process.

4.2.5 Overhead Analysis. Themain space overhead is caused by holding themapping table, and recording the parameters
used by the queuing cost assessment model. On the one hand, the degraded mode needs recording the locations of
channels that hold chunks associating with the given stripe. Thus, it requires more memory space for keeping the 2-level
mapping table, by additionally recording the channel location for each (data/parity) chunk. More exactly, our approach
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Fig. 9. The number of completed requests. Note that the error bar indicates the standard deviation among all SSD channels.

needs up to 132MB = (128×1024×32) chunks × ((8B) stripe No. +(0.5B) channel No. + (8B) offset). Comparing with
Baseline and GC-tolerate Read, which need 128MB space in the configuration of 16 channel, our method requires more
space overhead by 3.1%.

On the other hand, the queuing cost assessment model records the timestamps of 128 recent requests and the blocked
read and write counts, for each channel. Thus, it needs up to 16.2KB = 16 channels × (128 timestamps × 8B + 2 counts
× 4B). In brief, our proposal demands a reasonable amount of memory space in SSDs.

As previously reported in Table 4, both degraded modes considerably amplify the number of reads and writes to RAID
components, and these amplified reads and writes all need to go through the error correction codes (ECC) component of
SSD for fighting against read disturb [34]. Then, the computation overhead of our approach consists of the time needed
for performing extra ECCs on amplified I/O operations caused by degraded modes, the time expected for completing
XOR operations, and the time required for estimating the queuing overhead for an incoming request.

Though the related work of GC-tolerate Read does have certain amplified read requests caused by degraded read
operations, these requests do not result in additional time caused by higher-level ECC corrections. On the other side, our
Degraded proposal may cause extra time for higher-level ECC corrections after running the benchmarks of lun1-2 and
lun1-1. Figures 12(a) and 12(b) present the results of computation overhead of our proposed method in the configurations
of 8 and 16 channels respectively.

As shown in Figure 12(a) with the case of 8 channels, Degraded causes time overhead between 0.7 and 8.8 seconds
after replaying the selected traces. This corresponds an average of 4.9`s per I/O request, or less than 0.4% of the
overall I/O time. In the case of 16 channels reported in Figure 12(b), we see its computation overhead is greatly less than
Manuscript submitted to ACM
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Fig. 10. The number of blocked requests per SSD channel. Note that the error bar indicates the standard deviation among all SSD
channels.

the configuration of 8 channels. This is because the amplified reads and writes issued by degrade modes are distributed
onto all 16 channels, which do not introduce higher-level ECC corrections in SSD blocks for reliability enhancement,
compared with Baseline. Then, we conclude that Degraded has less time overhead in the configurations of more SSD
channels, since the amplified read/write requests can be dispatched onto more SSD channels for relieving the side-effect
of read disturb.

In summary, we consider that the time overhead caused by degraded mode-based I/O scheduling is acceptable, even
though our tests are conducted on an ARM-based platform. Note that the computation overhead does bring about
impacts on I/O response time by postponing dispatch on incoming I/O requests. The results of overall I/O time, the SCB
score, and the long-tail latency reported in Sections 4.2.1 to 4.2.2 have considered the impact of computation overhead.

4.3 Sensitive Analysis on Stripe Size

This case study checks the sensitivity of our approach on the stripe size, and we span the stripe structure with 3+1, 5+1,
and 7+1 channels. Figure 13 shows the results of I/O latency after running the benchmarks under different size of stripe
structure, in the configuration of 16 SSD channels.

The proposed Demand scheme can save I/O latency by more than 7.4%, in contrast to other comparison counterparts.
This verifies that our approach can scale well on the different size of stripe structure, as our proposal supports both
degraded read and write scheduling. In general, a large size of stripe structure can contribute to the reduction of
parity updates while the workloads have many big write requests (e.g. lun0 and lun1), but it increases the number of
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Fig. 11. Verification of the accuracy of estimated GC time.

parity updates while the majority of write requests are small ones (e.g. wdev_0 and src2_0). Furthermore, a large stripe
structure implies more associate read requests are supposed to be generated to fulfill a read request with the degraded
read mode.

Another interesting result is that the related work GC-tolerate Read does not noticeably outperform Baseline, and
it even performs worse when running lun0. We think that this is because the 16-channel configuration of SSDs has
Manuscript submitted to ACM
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Fig. 12. Time overhead of Degraded after running benchmarks.

128GB capacity, which does not require many GC operations to reclaim space and thus limits the room for performance
improvement of GC-tolerate Read. In addition, GC-tolerate Read needs to issue much more associate read requests for
serving a read request with the degraded mode, when the stripe structure becomes larger.

4.4 Summary

With respect to comparing conventional I/O scheduling approaches in RAID-enabled SSDs and the proposed scheduling
scheme, we emphasize the following two key observations. First, with the proposed queuing overhead assessment
model, we can ideally migrate I/O requests from busy channels to idle channels, for balancing I/O workloads across all
RAID components and for a better I/O performance. Second, with the supports of degraded read and read-modify-write
modes, the migrated I/O requests can be fulfilled by accessing on slack channels, so that the long-tail latency of I/O
requests in RAID-enabled SSDs can be significantly cut down. More importantly, Degraded is not GC-triggered and can
also yield noticeable I/O improvements in the cases of not many GC operations.

5 CONCLUSION

This paper proposes an I/O scheduling approach for RAID-enabled SSDs to yield a balanced I/O workload distribution
and then to ensure their I/O responsiveness, via using degraded modes to selectively fulfill read/update requests. To
this end, it first builds a mathematical queuing cost assessment model by referring to the data redundancy and the
blocked I/O traffics on the different RAID components. Then, it can determine whether the I/O requests are supposed to
be serviced with the degraded modes or not.
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Experimental results show that our proposal can noticeably cut down the long-tail latency of read requests by 23.1%
at the 99.99th percentile, and the overall I/O time by 38.7% on average, in contrast to state-of-the-art methods.
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