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Abstract

In a recent work [11], we have introduced a pressure-robust Hybrid High-Order method
for the numerical solution of the incompressible Navier–Stokes equations on matching simplicial
meshes. Pressure-robust methods are characterized by error estimates for the velocity that are fully
independent of the pressure. A crucial question was left open in that work, namely whether the
proposed construction could be extended to general polytopal meshes. In this paper we provide
a positive answer to this question. Specifically, we introduce a novel divergence-preserving
velocity reconstruction that hinges on the solution inside each element of a mixed problem on
a subtriangulation, then use it to design discretizations of the body force and convective terms
that lead to pressure robustness. R#1 and R#2

remark: The
proposed
method now
works for
arbitrary 𝑘 ≥ 0
and general
meshes

An in-depth theoretical study of the properties of this velocity
reconstruction, and their reverberation on the scheme, is carried out for arbitrary polynomial
degrees 𝑘 ≥ 0 and meshes composed of general polytopes. The theoretical convergence estimates
and the pressure robustness of the method are confirmed by an extensive panel of numerical
examples.

Key words: Hybrid High-Order methods, incompressible Navier–Stokes equations, general
meshes, pressure robustness

MSC 2010: 65N08, 65N30, 65N12, 35Q30, 76D05

1 Introduction
This paper focuses on numerical approximations of the Navier–Stokes equations robust with respect to
large irrotational body forces. Specifically, we address a nontrivial question left open in the previous
work [11], namely whether robustness can be achieved on general polyhedral meshes such as the ones
supported by the Hybrid High-Order (HHO) method [16, 22].

Let Ω ⊂ R3 denote an open, bounded, simply connected polyhedral domain with Lipschitz
boundary 𝜕Ω. Let a > 0 be the kinematic viscosity of the fluid and 𝒇 ∈ 𝐿2(Ω)3 a given vector
field representing a body force. Setting 𝑼 ≔ 𝐻1

0 (Ω)
3 and 𝑃 ≔ 𝐿2

0(Ω) =
{
𝑞 ∈ 𝐿2(Ω) :

∫
Ω
𝑞 = 0

}
, we
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consider the Navier–Stokes problem: Find (𝒖, 𝑝) ∈ 𝑼 × 𝑃 such that

a

∫
Ω

∇𝒖 : ∇𝒗 +
∫
Ω

((∇ × 𝒖) × 𝒖) · 𝒗 −
∫
Ω

(∇ · 𝒗)𝑝 =

∫
Ω

𝒇 · 𝒗 ∀𝒗 ∈ 𝑼, (1a)∫
Ω

(∇ · 𝒖)𝑞 = 0 ∀𝑞 ∈ 𝐿2(Ω). (1b)

Above, ∇· and ∇× denote, respectively, the divergence and curl operators, while × is the cross product
of two vectors. The convective term in (1a) is expressed in rotational form, so 𝑝 is here the Bernoulli
pressure, which is related to the kinematic pressure 𝑝kin by the equation 𝑝 = 𝑝kin + 1

2 |𝒖 |
2.

The domain Ω being simply connected, we have the following Hodge decomposition of the body
force (see, e.g., [2, Section 4.3]):

𝒇 = 𝒈 + _∇𝜓, (2)

where 𝒈 is the curl of a function in 𝑯(curl;Ω) the tangent trace of which vanishes on 𝜕Ω, 𝜓 ∈ 𝐻1(Ω)
is such that ∥∇𝜓∥𝐿2 (Ω)3 = 1, and _ ∈ R+. It is well-known that, at the continuous level, the velocity
field is entirely determined by the first component in the decomposition (2). This property, however,
does not carry out automatically to the discrete level. The development of numerical methods that
possess this property, and which are sometimes referred to in the literature as pressure-robust, has
been an active field of research over the last few years; see, e.g., [1, 26, 33, 41, 42] concerning finite
element methods on standard meshes.

Recently, the mathematical community have become interested in the development of arbitrary-
order approximation methods that support more general meshes than standard finite elements and
which can include, e.g., polyhedral elements and non-matching interfaces. A representative but by
far non exhaustive list of references concerning incompressible flow problems includes [4, 5, 8, 18,
19, 23, 29, 52]; see also the recent works [10, 12] concerning non-Newtonian fluids. Pressure-robust
variations of the HHO method on matching simplicial meshes for the Stokes and Navier–Stokes
problem have been proposed, respectively, in [11, 20].

The development of pressure-robust methods on polyhedral meshes is, however, a challenging
task. Some of the first genuinely pressure-robust polyhedral methods for the Stokes equations
have been proposed in [43, 51, 53]. These methods handle the lowest order case using a velocity
reconstruction in 𝑯(div;Ω) introduced in [13] and relying on Wachspress (generalized barycentric)
coordinates. This approach has two shortcomings: first, the faces of each (convex) polyhedral element
must be either triangles or parallelograms; second, error estimates for the approximated velocity
would require gradient bounds for the Wachspress coordinates on an arbitrary convex polyhedron, the
derivation of which remains, to the best of our knowledge, an open problem. Regarding arbitrary-order
methods on general meshes, a pressure-robust Virtual Element method has been recently proposed in
[27] for the Stokes equations. The extension of this method to the Navier–Stokes equations remains,
to the best of our knowledge, an open problem. A pressure-robust discretization scheme for the full
Navier–Stokes equations has been proposed in [35] based on the staggered Discontinuous Garlekin
method. This method solves for three unknowns (the pressure, the velocity, and its gradient), thus
leading to larger algebraic systems. Recently, a novel HHO method for which pressure-robustness
has been numerically demonstrated has been proposed in [9]. This method uses a larger pressure
space than the one considered in the present work, and the derivation of rigorous pressure-robust
error estimates is still to be done. An entirely different approach to pressure-robustness on polyhedral
meshes has also been recently pursued in [49], hinging on the compatibility features of Discrete de
Rham [15, 17] and Virtual Element methods. While this approach leads to a fully pressure-robust,
arbitrary-order method, it is based on a curl-curl formulation of the viscous term, which does not lend
itself naturally to the treatment of certain standard boundary conditions.
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In the present work, we propose a novel fully pressure-robust HHO method for the Navier–Stokes
problem (1) that works in space dimension two and three and supports general meshes composed of
polytopal elements. The cornerstone of the method is a local divergence-preserving reconstruction
of the velocity built inside each mesh element 𝑇 by solving a mixed problem inspired by [38–40] R#1 major

point:
checking and
citing related
work

on a
subtriangulation of 𝑇 ; see also [50]. The assumptions made in Section 2.1 for each element 𝑇 enable
us to derive the required continuity and approximation bounds for this reconstruction. Robustness
with respect to large irrotational body forces is achieved by leveraging the divergence-preserving
velocity reconstruction in the discretisation of both the convective term and the body force, so that
similar properties as the ones discussed in [11, Section 4.3 and Lemma 7] are obtained for these
terms.

The rest of the paper is organised as follows. In Section 2 we introduce the discrete setting,
including mesh assumptions, notation, and the novel divergence-preserving velocity reconstruction.
Section 3 contains the discrete problem and the main results of the analysis, with particular focus
on the definition and properties of the discrete convective trilinear form. A complete panel of two-
dimensional numerical tests on a variety of polygonal meshes is provided in Section 4, including a
comparison with the standard HHO scheme of [8].

2 Discrete setting
The following exposition focuses on the three-dimensional case 𝑑 = 3, the two-dimensional case
𝑑 = 2 being a special instance of the latter as detailed in Remark 13 below.
2.1 Mesh

Following [16, Definition 1.4], we consider a polyhedral mesh defined as a couple Mℎ ≔ (Tℎ, Fℎ),
where Tℎ is a finite collection of polyhedral elements which we additionally assume to be convex R#1 & R#2

points: Where
the convexity
enters and
non-convex
elements

(see
Remark 5 below on how to relax this assumption), while Fℎ is a finite collection of planar faces 𝐹.
For any mesh element or face 𝑋 ∈ Tℎ ∪ Fℎ, we denote by |𝑋 | its Hausdorff measure and by ℎ𝑋 its
diameter, so that the meshsize satisfies ℎ = max𝑇∈Tℎ ℎ𝑇 . Boundary faces lying on 𝜕Ω and internal
faces contained in Ω are collected in the sets F b

ℎ
and F i

ℎ
, respectively. For each mesh element 𝑇 ∈ Tℎ,

we denote by F𝑇 the set collecting the faces that lie on the boundary 𝜕𝑇 of 𝑇 and, for all 𝐹 ∈ F𝑇 , we
denote by 𝒏𝑇𝐹 the (constant) unit vector normal to 𝐹 and pointing out of 𝑇 .

It is assumed that Mℎ belongs to a regular mesh sequence (Mℎ)ℎ in the sense of [16, Definition
1.9]. This assumption entails the existence of a matching simplicial submesh 𝔐ℎ ≔ (𝔗ℎ,𝔉ℎ) of Mℎ

with the following properties: 𝔗ℎ is a finite collection of simplicial elements; for any simplex 𝜏 ∈ 𝔗ℎ

, there is a unique mesh element 𝑇 ∈ Tℎ such that 𝜏 ⊂ 𝑇 ; for any simplicial face 𝜎 ∈ 𝔉ℎ and any
mesh face 𝐹 ∈ Fℎ , either 𝜎 ∩ 𝐹 = ∅ or 𝜎 ⊂ 𝐹. For 𝑇 ∈ Tℎ, we define 𝔗𝑇 as the set of all simplices
of 𝔗ℎ contained in 𝑇 (see Figure 1a) and 𝔉i

𝑇
as the set of faces of 𝔉ℎ that lie in the interior of 𝑇 .

For 𝐹 ∈ Fℎ, 𝔉𝐹 denotes the set of simplicial faces 𝜎 for which 𝜎 ⊂ 𝐹, and we let 𝒏𝜎 ≔ 𝒏𝑇𝐹 , and
𝒏𝜏𝜎 ≔ 𝒏𝜎 for the unique element 𝜏 ∈ 𝔗𝑇 , 𝑇 ∈ Tℎ, which contains 𝜎. R#1 minor

point:
Explaining Fig.
1(b),
Justification of
(3)

Additional notations for mesh
elements and faces are introduced at the beginning of Section 2.5 and illustrated in Figure 1b. For
future use, we notice that, by [16, Lemma 1.12], mesh regularity implies the existence of an integer
𝑁 ≥ 0 depending only on the mesh regularity parameter such that

max
ℎ

max
𝑇∈Tℎ

card(𝔗𝑇 ) ≤ 𝑁 and max
ℎ

max
𝑇∈Tℎ

card(F𝑇 ) ≤ 𝑁. (3)

Referees #1
and #2
remark: For
the general
case 𝑘 ≥ 2,
we need to
make an
additional
assumption

We additionally make the assumption that, for all element 𝑇 ∈ Tℎ, its submesh 𝔗𝑇 is constructed
in such way that all simplices in 𝔗𝑇 have at least one common vertex (see Remarks 4 and 16 for the
technical details of this assumption) . This vertex will be denoted 𝒙𝑇 . In particular, when 𝒙𝑇 lies in
the interior of 𝑇 , we call 𝔗𝑇 a pyramidal submesh. The Figure 2 shows two examples of submeshes
that satisfy the current assumption.
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𝐹1 𝐹2

𝐹3

𝐹4𝐹5

𝐹6 𝜏1

𝜏2

𝜏3𝜏4

𝜏5

𝜏6

(a) The elements of 𝔗𝑇 and F𝑇 .

𝜏1

𝜎2
𝜎1 𝜎3

𝜎4 𝜎5
𝐹1 𝐹2

n𝜎2

𝜏6
n𝜎3

n𝜎1

n𝑇𝐹2n𝑇𝐹1

(b) A closer look to the bottom part: The faces
𝜎1, 𝜎2, 𝜎3 are interior faces, i.e., {𝜎1, 𝜎2, 𝜎3} ⊂ 𝔉i

𝑇
.

For the set {𝜎4, 𝜎5}, we have 𝜎4 = 𝐹1 and 𝜎5 = 𝐹2.

Figure 1: An illustration of the sets 𝔗𝑇 , F𝑇 and 𝔉i
𝑇

for a given element 𝑇 ∈ Tℎ in R2.

𝒙𝑇

(a) Pyramidal submesh.
𝒙𝑇

(b) Non-pyramidal submesh.

Figure 2: Two examples of submeshes 𝔗𝑇 in R2 that satisfy the assumptions of the Section 2.1 . The
red dot represents the vertex 𝒙𝑇 .

In order to prevent the proliferation of generic constants we write, whenever possible, 𝑎 ≲ 𝑏 in
place of 𝑎 ≤ 𝐶𝑏 with 𝐶 > 0 independent of a, _, ℎ and, for local inequalities, also on the mesh
element or face. The dependencies of the hidden constant will be further specified when relevant.
Moreover, we write 𝑎 ≃ 𝑏, when both 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎 hold.

2.2 Local and broken spaces and projectors

Let 𝑋 denote a mesh element or face and, for an integer 𝑙 ≥ 0, denote by P𝑙 (𝑋) the space spanned
by the restrictions to 𝑋 of polynomials in the space variables of total degree ≤ 𝑙. The 𝐿2-orthogonal
projector 𝜋𝑙

𝑋
: 𝐿1(𝑋) → P𝑙 (𝑋) is such that, for all Z ∈ 𝐿1(𝑋),∫

𝑋

(Z − 𝜋𝑙𝑋Z)𝑤 = 0 ∀𝑤 ∈ P𝑙 (𝑋). (4)

Vector and matrix versions of the 𝐿2-orthogonal projector are obtained by applying 𝜋𝑙
𝑋

component-
wise, and are both denoted with the bold symbol 𝝅𝑙

𝑋
in what follows. Optimal approximation

properties for the 𝐿2-orthogonal projector are proved in [21, Appendix A.2]; see also [16, Chapter 1],
where these estimates are extended to non-star shaped elements. Specifically, let 𝑠 ∈ {0, . . . , 𝑙 + 1}
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and 𝑟 ∈ [1, +∞]. Then, it holds, with hidden constant only depending on 𝑙, 𝑠, 𝑟 , and the mesh
regularity parameter: For all 𝑇 ∈ Tℎ, all Z ∈ 𝑊 𝑠,𝑟 (𝑇), and all 𝑚 ∈ {0, . . . , 𝑠},

|Z − 𝜋𝑙𝑇 Z |𝑊𝑚,𝑟 (𝑇 ) ≲ ℎ𝑠−𝑚𝑇 |Z |𝑊𝑠,𝑟 (𝑇 ) , (5a)

and, if 𝑠 ≥ 1 and 𝑚 ≤ 𝑠 − 1,

ℎ
1
𝑟

𝑇
|Z − 𝜋𝑙𝑇 Z |𝑊𝑚,𝑟 (F𝑇 ) ≲ ℎ𝑠−𝑚𝑇 |Z |𝑊𝑠,𝑟 (𝑇 ) , (5b)

where 𝑊𝑚,𝑟 (F𝑇 ) is the space spanned by functions in 𝐿𝑟 (𝜕𝑇) that are in 𝑊𝑚,𝑟 (𝐹) for all 𝐹 ∈ F𝑇 ,
endowed with the corresponding broken norm.

At the global level, the space of broken polynomial functions on Tℎ of total degree ≤ 𝑙 is
denoted by P𝑙 (Tℎ), and 𝜋𝑙

ℎ
is the corresponding 𝐿2-orthogonal projector such that, for all Z ∈ 𝐿1(Ω),

(𝜋𝑙
ℎ
Z) |𝑇 ≔ 𝜋𝑙

𝑇
Z |𝑇 for all 𝑇 ∈ Tℎ. Regularity requirements in error estimates will be expressed in

terms of the broken Sobolev spaces 𝑊 𝑠,𝑟 (Tℎ) spanned by functions in 𝐿𝑟 (Ω) the restriction of which
to every 𝑇 ∈ Tℎ is in 𝑊 𝑠,𝑟 (𝑇). We additionally set, as usual, 𝐻𝑠 (Tℎ) ≔ 𝑊 𝑠,2(Tℎ).
2.3 Discrete spaces and norms

Let a polynomial degree 𝑘 ≥ 0 be fixed. We define the HHO space as usual, setting

𝑼𝑘
ℎ
≔

{
𝒗
ℎ
= ((𝒗𝑇 )𝑇∈Tℎ , (𝒗𝐹)𝐹∈Fℎ

) : 𝒗𝑇 ∈ P𝑘 (𝑇)3 for all 𝑇 ∈ Tℎ and 𝒗𝐹 ∈ P𝑘 (𝐹)3 for all 𝐹 ∈ Fℎ

}
.

The restrictions of 𝑼𝑘
ℎ

and 𝒗
ℎ
∈ 𝑼𝑘

ℎ
to a generic mesh element 𝑇 ∈ Tℎ are respectively denoted by 𝑼𝑘

𝑇

and 𝒗
𝑇
= (𝒗𝑇 , (𝒗𝐹)𝐹∈F𝑇 ). The vector of polynomials corresponding to a smooth function over Ω is

obtained via the global interpolation operator 𝑰𝑘
ℎ

: 𝐻1(Ω)3 → 𝑼𝑘
ℎ

such that, for all 𝒗 ∈ 𝐻1(Ω)3,

𝑰𝑘ℎ𝒗 ≔ ((𝝅𝑘
𝑇𝒗 |𝑇 )𝑇∈Tℎ , (𝝅𝑘

𝐹𝒗 |𝐹)𝐹∈Fℎ
). (6)

Its restriction to a generic mesh element 𝑇 ∈ Tℎ, collecting the components on 𝑇 and its faces, is
denoted by 𝑰𝑘

𝑇
. We furnish 𝑼𝑘

ℎ
with the discrete 𝐻1-like seminorm such that, for all 𝒗

ℎ
∈ 𝑼𝑘

ℎ
,

∥𝒗
ℎ
∥1,ℎ ≔

( ∑︁
𝑇∈Tℎ

∥𝒗
𝑇
∥2

1,𝑇

)1/2

,

where, for all 𝑇 ∈ Tℎ,

∥𝒗
𝑇
∥1,𝑇 ≔

(
∥∇𝒗𝑇 ∥2

𝐿2 (𝑇 )3×3 + |𝒗
𝑇
|21,𝜕𝑇

)1/2
with |𝒗

𝑇
|1,𝜕𝑇 ≔

( ∑︁
𝐹∈F𝑇

ℎ−1
𝐹 ∥𝒗𝐹 − 𝒗𝑇 ∥2

𝐿2 (𝐹 )3

)1/2

. (7)

The discrete spaces for the velocity and the pressure, respectively accounting for the wall boundary
condition and the zero-average condition, are

𝑼𝑘
ℎ,0 ≔

{
𝒗
ℎ
= ((𝒗𝑇 )𝑇∈Tℎ , (𝒗𝐹)𝐹∈Fℎ

) ∈ 𝑼𝑘
ℎ

: 𝒗𝐹 = 0 ∀𝐹 ∈ F b
ℎ

}
, 𝑃𝑘

ℎ ≔ P𝑘 (Tℎ) ∩ 𝑃.

For all 𝒗
ℎ
∈ 𝑼𝑘

ℎ
, we denote by 𝒗ℎ ∈ P𝑘 (Tℎ)3 the vector-valued broken polynomial function obtained

patching element-based unkowns, that is (𝒗ℎ) |𝑇 ≔ 𝒗𝑇 for all 𝑇 ∈ Tℎ. The following discrete Sobolev
embeddings in 𝑼𝑘

ℎ,0 have been proved in [21, Proposition 5.4]: For all 𝑟 ∈ [1, 6] it holds, for all
𝒗
ℎ
∈ 𝑼𝑘

ℎ,0,

∥𝒗ℎ∥𝐿𝑟 (Ω)3 ≲ ∥𝒗
ℎ
∥1,ℎ . (8)

where the hidden constant is independent of both ℎ and 𝒗
ℎ
, but possibly depends on Ω, 𝑘 , 𝑟, and the

mesh regularity parameter. It follows from (8) that the map ∥·∥1,ℎ defines a norm on𝑼𝑘
ℎ,0. Classically,

the corresponding dual norm of a linear form Lℎ : 𝑼𝑘
ℎ,0 → R is given by

∥Lℎ∥1,ℎ,∗ ≔ sup
𝒗
ℎ
∈𝑼𝑘

ℎ,0,∥𝒗ℎ ∥1,ℎ=1

��Lℎ (𝒗ℎ)
�� . (9)

5



2.4 Divergence-preserving local velocity reconstruction

Following [22], for any element𝑇 ∈ Tℎ we define the discrete divergence operator 𝐷𝑘
𝑇

: 𝑼𝑘
𝑇
→ P𝑘 (𝑇)

such that, for all 𝒗
𝑇
∈ 𝑼𝑘

𝑇
and all 𝑞 ∈ P𝑘 (𝑇),∫
𝑇

𝐷𝑘
𝑇𝒗𝑇𝑞 = −

∫
𝑇

𝒗𝑇 · ∇𝑞 +
∑︁
𝐹∈F𝑇

∫
𝐹

(𝒗𝐹 · 𝒏𝑇𝐹)𝑞. (10)

Crucially, the operator 𝐷𝑘
𝑇

satisfies the following commutation property (see [16, Eq. (8.21)]):

𝐷𝑘
𝑇 𝑰

𝑘
𝑇𝒗 = 𝜋𝑘

𝑇 (∇ · 𝒗) ∀𝒗 ∈ 𝐻1(𝑇)3. (11)

To achieve pressure robustness in the sense made precise by Remark 15 below, we reconstruct
divergence-preserving velocity test functions, which are used for the discretization of the body force
and the nonlinear term. Let an element 𝑇 ∈ Tℎ be fixed and, for 𝜏 ∈ 𝔗𝑇 , denote by RT

𝑘 (𝜏) ≔

P𝑘 (𝜏)3 + 𝒙P𝑘 (𝜏) the local Raviart–Thomas–Nédélec space of degree 𝑘 [45, 47]. We recall that a
function in RT

𝑘 (𝜏) is uniquely determined by its polynomial moments of degree up to (𝑘 −1) inside
𝜏 and the polynomial moments of degree 𝑘 of its normal component on each face 𝜎 ∈ 𝔉𝜏 (with 𝔉𝜏

denoting the subset of 𝔉ℎ collecting the simplicial faces of 𝜏). We additionally note the following
local norm equivalence uniform in ℎ:

∥𝖜∥2
𝐿2 (𝜏 )3 ≃ ∥𝝅𝑘−1

𝜏 𝖜∥2
𝐿2 (𝜏 )3 +

∑︁
𝜎∈𝔉𝜏

ℎ𝜎 ∥𝖜 · 𝒏𝜏𝜎 ∥2
𝐿2 (𝜎) ∀𝖜 ∈ RT

𝑘 (𝜏). (12)

We introduce the Raviart–Thomas–Nédélec space of degree 𝑘 on the matching simplicial submesh
𝔗𝑇 of 𝑇 defined as follows:

RT
𝑘 (𝔗𝑇 ) ≔

{
𝖜 ∈ 𝑯div(𝑇) : 𝖜 |𝜏 ∈ RT

𝑘 (𝜏) for all 𝜏 ∈ 𝔗𝑇

}
,

where 𝑯div(𝑇) ≔ {𝖜 ∈ 𝐿2(𝑇)3 : ∇ · 𝖜 ∈ 𝐿2(𝑇)}. We also introduce the subspace of RT
𝑘 (𝔗𝑇 )

spanned by functions with zero normal trace on the boundary of 𝑇 :

RT
𝑘
0 (𝔗𝑇 ) ≔

{
𝖜 ∈ RT

𝑘 (𝔗𝑇 ) : 𝖜 · 𝒏𝜎 = 0 for all 𝜎 ∈ 𝔉𝐹 and all 𝐹 ∈ F𝑇

}
.

Recall from Section 2.1 that, for a given element 𝑇 ∈ Tℎ, we denote by 𝒙𝑇 the common vertex of
all simplices in 𝔗𝑇 . With this in mind, we additionally introduce the following space generated by
the Koszul operator ([2, Section 7.2]):

G
c,𝑘 (𝑇) ≔ (𝒙 − 𝒙𝑇 ) × P𝑘−1(𝑇)3 for 𝑘 ≥ 1,

and define G
c,−1(𝑇) ≔ G

c,0(𝑇) ≔ {0}. Observe that we have the following decomposition for
P𝑘 (𝑇)3 (see [2, Corollary 7.4]):

P𝑘 (𝑇)3 = ∇P𝑘+1(𝑇) ⊕ G
c,𝑘 (𝑇), (13)

where the direct sum above is not orthogonal in general. Additionally, we define the 𝐿2-orthogonal
projector on the space G

c,𝑘 (𝑇) as 𝝅c,𝑘
G ,𝑇

. Then, the divergence-preserving velocity reconstruction
𝑹𝑘
𝑇

: 𝑼𝑘
𝑇
→ RT

𝑘 (𝔗𝑇 ) is defined, for all 𝒗
𝑇
∈ 𝑼𝑘

𝑇
, as the first component of the solution of the

following mixed problem: Find (𝑹𝑘
𝑇
𝒗
𝑇
, 𝜓, 𝜻) ∈ RT

𝑘 (𝔗𝑇 ) × P𝑘 (𝔗𝑇 ) × G
c,𝑘−1(𝑇) such that

(𝑹𝑘
𝑇𝒗𝑇 ) |𝜎 · 𝒏𝜎 = (𝒗𝐹 · 𝒏𝑇𝐹) |𝜎 ∀𝜎 ∈ 𝔉𝐹 , ∀𝐹 ∈ F𝑇 , (14a)∫

𝑇

(∇ · 𝑹𝑘
𝑇𝒗𝑇 )𝜙 =

∫
𝑇

(𝐷𝑘
𝑇𝒗𝑇 )𝜙 ∀𝜙 ∈ P𝑘 (𝔗𝑇 ), (14b)∫

𝑇

𝑹𝑘
𝑇𝒗𝑇 · 𝝃 =

∫
𝑇

𝒗𝑇 · 𝝃 ∀𝝃 ∈ G
c,𝑘−1(𝑇), (14c)∫

𝑇

𝑹𝑘
𝑇𝒗𝑇 · 𝖜 +

∫
𝑇

(∇ · 𝖜)𝜓 +
∫
𝑇

𝖜 · 𝜻 =

∫
𝑇

𝒗𝑇 · 𝖜 ∀𝖜 ∈ RT
𝑘
0 (𝔗𝑇 ). (14d)
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Remark 1 (Allowing more than pyramidal meshes). A similar divergence-preserving operator has
been proposed in R#2 major

point:
checking and
citing related
work

[40, Section 4.2] in the context of finite elements pairs with continuous pressures.
However, adapting it to the current HHO framework will restrict the submesh 𝔗𝑇 to be only a
pyramidal submesh (or a vertex patch in the terminology of [40]). Specifically, using the methodology
introduced in [40, Proof of Theorem 12], to prove the equation (17) below, it will be necessary to
construct the Lagrange hat function of 𝒙𝑇 (a polynomial function 𝑞 ∈ P1(𝔗𝑇 ) such that 𝑞(𝒙𝑇 ) = 1
and vanishes at the other vertices of 𝔗𝑇 ) and use its properties with the crucial restriction that this
hat function must vanish at the boundary of 𝑇 . This is only possible when 𝔗𝑇 is pyramidal. In the
current manuscript, we avoid this restriction using Lemma 3 below.

Lemma 2 (Properties of 𝑹𝑘
𝑇

). It holds:

(i) Well-posedness. For a given 𝒗
𝑇
∈ 𝑼𝑘

𝑇
, there exists a unique solution to problem (14), and it

holds that

∥𝒗𝑇 − 𝑹𝑘
𝑇𝒗𝑇 ∥𝐿2 (𝑇 )3 ≲ ℎ𝑇 |𝒗𝑇 |1,𝜕𝑇 . (15)

(ii) Approximation. For all 𝒗 ∈ 𝑯𝑘+1(𝑇)3, it holds

∥𝒗 − 𝑹𝑘
𝑇 (𝑰𝑘𝑇𝒗)∥𝐿2 (𝑇 )3 ≲ ℎ𝑘+1

𝑇 |𝒗 |𝐻𝑘+1 (𝑇 )3 . (16)

Referees #1
and #2 remark:
Now we have
consistency for
arbitrary 𝑘 ≥ 1

(iii) Consistency. For a given 𝒗
𝑇
∈ 𝑼𝑘

𝑇
, it holds, for 𝑘 ≥ 1,

𝝅𝑘−1
𝑇 (𝑹𝑘

𝑇𝒗𝑇 ) = 𝝅𝑘−1
𝑇 (𝒗𝑇 ). (17)

The proof makes use of the following Lemma, whose proof is given in Appendix A.

Lemma 3 (Raviart–Thomas lifting of the projection in G
c,𝑘−1(𝑇)). Let 𝑇 ∈ Tℎ and a function

𝒗 ∈ 𝐿2(𝑇)3 be given. Then, for 𝑘 ≥ 2, there exists �̃�
𝑘

𝑇 (𝒗) ∈ RT
𝑘
0 (𝔗𝑇 ) such that

𝝅c,𝑘−1
G ,𝑇

�̃�
𝑘

𝑇 (𝒗) = 𝝅c,𝑘−1
G ,𝑇

𝒗, (18a)

∇ · �̃�𝑘

𝑇 (𝒗) = 0, (18b)

�̃�
𝑘

𝑇 (𝒗) · 𝒏𝜎 = 0 ∀𝜎 ∈ 𝔉i
𝑇 , (18c)

∥ �̃�𝑘

𝑇 (𝒗)∥𝐿2 (𝑇 )3 ≲ ∥𝒗∥𝐿2 (𝑇 )3 (18d)

Remark 4 (The common vertex assumption for 𝑘 ∈ {0, 1}). The common vertex assumption described
in Section 2.1 is not necessary for 𝑘 ∈ {0, 1} since, for those cases, Gc,𝑘−1 becomes the trivial space,
and Lemma (3) is not needed.

Proof. (i) Well-posedness. We prove this item in three parts starting with the existence and uniqueness
of 𝑹𝑘

𝑇
𝒗
𝑇

.
(i.A) Existence, uniqueness, and decomposition of 𝑹𝑘

𝑇
𝒗
𝑇

. The existence and uniqueness of a solution
to problem (14) follows from the classical theory of mixed problems given the compatibility of the
selected spaces; see, e.g., [14, Section 14] and Lemma 3 below. In order to prove the a priori estimate
(15), we decompose 𝑹𝑘

𝑇
𝒗
𝑇

as follows:

𝑹𝑘
𝑇𝒗𝑇 = 𝖛′ + 𝖛0, (19)

where:
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• 𝖛′ ∈ RT
𝑘 (𝔗𝑇 ) is a lifting of the boundary values defined by prescribing its DOFs as follows:

∀𝜏 ∈ 𝔗𝑇 ,

∫
𝜏

𝖛′ · 𝖜 = 0, ∀𝖜 ∈ P𝑘−1(𝜏)3, (20a)

∀𝜎 ∈ 𝔉i
𝑇 ,

∫
𝜎

(𝖛′ · 𝒏𝜎)𝜙 = 0 ∀𝜙 ∈ P𝑘 (𝜎), (20b)

∀𝐹 ∈ F𝑇 , ∀𝜎 ∈ 𝔉𝐹 , 𝖛′|𝜎 · 𝒏𝜎 = (𝒗𝐹 · 𝒏𝑇𝐹) |𝜎; (20c)

• Letting P𝑘
0 (𝔗𝑇 ) ≔

{
𝜙 ∈ P𝑘 (𝔗𝑇 ) :

∫
𝑇
𝜙 = 0

}
, 𝖛0 is the first component of the unique solution

to the following mixed problem: Find (𝖛0, 𝜓, 𝜻) ∈ RT
𝑘
0 (𝔗𝑇 ) ×P𝑘

0 (𝔗𝑇 ) ×G
c,𝑘−1(𝑇) such that

∫
𝑇

(∇ · 𝖛0)𝜙 =

∫
𝑇

(𝐷𝑘
𝑇𝒗𝑇 − ∇ · 𝖛′)𝜙 ∀𝜙 ∈ P𝑘

0 (𝔗𝑇 ), (21a)∫
𝑇

𝖛0 · 𝝃 =

∫
𝑇

𝒗𝑇 · 𝝃 ∀𝝃 ∈ G
c,𝑘−1(𝑇), (21b)∫

𝑇

𝖛0 · 𝖜 +
∫
𝑇

(∇ · 𝖜)𝜓 +
∫
𝑇

𝖜 · 𝜻 =

∫
𝑇

(𝒗𝑇 − 𝖛′) · 𝖜 ∀𝖜 ∈ RT
𝑘
0 (𝔗𝑇 ), (21c)

where we have used equation (20a) along with the fact that Gc,𝑘−1(𝑇) ⊂ P𝑘−1(𝔗𝑇 )3 in the
right hand side of (14c) to write 𝒗𝑇 instead of 𝒗𝑇 − 𝖛′.

(i.B) Boundedness. We begin by proving the following estimate:

∥𝑹𝑘
𝑇𝒗𝑇 ∥𝐿2 (𝑇 )3 ≲ ∥𝒗𝑇 ∥𝐿2 (𝑇 )3 + ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 +

∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝒗𝐹 ∥𝐿2 (𝐹 )3 . (22)

Let 𝐿2
0(𝑇) ≔

{
b ∈ 𝐿2(𝑇) :

∫
𝑇
b = 0

}
and denote by \ ∈ 𝐻1(𝑇) ∩ 𝐿2

0(𝑇) the solution of the equation∫
𝑇

∇\ · ∇b =

∫
𝑇

(𝐷𝑘
𝑇𝒗𝑇 − ∇ · 𝖛′)b ∀b ∈ 𝐻1(𝑇) ∩ 𝐿2

0(𝑇). (23)

We recall that (23) is the weak form of the following strong Neumann problem

−Δ\ = (𝐷𝑘
𝑇𝒗𝑇 − ∇ · 𝖛′) in 𝑇, (24a)

𝜕\

𝜕𝑛
= 0 on 𝜕𝑇. (24b)

Since
∫
𝑇
(𝐷𝑘

𝑇
𝒗
𝑇
−∇ · 𝖛′) = 0 by (10) with 𝑞 = 1 and using integration by parts for the integral having

∇ · 𝖛′ along with (20c), the compatibility condition for problem (24) is satisfied, yielding existence
and uniqueness of \. Moreover, since 𝑇 is a convex polyhedron and the forcing term is in 𝐿2(𝑇), then
\ ∈ 𝐻2(𝑇) ∩ 𝐿2

0(𝑇) (see [31, Section 8.2]) with

|\ |𝐻2 (𝑇 ) ≲ ∥𝐷𝑘
𝑇𝒗𝑇 − ∇ · 𝖛′∥𝐿2 (𝑇 ) , (25)

where it can be checked following the argument in the reference that the hidden constant does not
depend on 𝑇 . Setting b = \ in (23) and using the Cauchy–Schwarz inequality followed by the
Poincaré–Wirtinger inequality ∥Z ∥𝐿2 (𝑇 ) ≤ ℎ𝑇

𝜋
|Z |𝐻1 (𝑇 ) valid for all Z ∈ 𝐻1(𝑇) ∩ 𝐿2

0(Ω) (see [3, 46]),
we estimate

|\ |𝐻1 (𝑇 ) ≲ ℎ𝑇 ∥𝐷𝑘
𝑇𝒗𝑇 − ∇ · 𝖛′∥𝐿2 (𝑇 ) . (26)
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Let now 𝒛0 ≔ −∇\ ∈ 𝐻1(𝑇)3. Defining �̂�0 ∈ RT
𝑘
0 (𝔗𝑇 ) as the interpolate of 𝒛0 onto RT

𝑘 (𝔗𝑇 ), and
using the commutation property ∇ · �̂�0 = 𝜋𝑘

𝔗𝑇
(∇ · 𝒛0) with 𝜋𝑘

𝔗𝑇
denoting the 𝐿2-orthogonal projector

onto P𝑘 (𝔗𝑇 ) (see, e.g., [6, Section 2.5.2]), it is inferred that ∇ · �̂�0 = 𝜋𝑘
𝔗𝑇

(∇ · 𝒛0) = (𝐷𝑘
𝑇
𝒗
𝑇
− ∇ · 𝖛′),

where we have used (24a) in the last step. Therefore, by (21a), ∇ · (𝖛0 − �̂�0) = 0. Now, using Lemma
3, let �̂�1 ≔ �̃�

𝑘

𝑇 (𝒗𝑇 − �̂�0) ∈ RT
𝑘
0 (𝔗𝑇 ), and set �̂� ≔ �̂�0 + �̂�1. Using (18b), we get ∇ · (𝖛0 − �̂�) = 0;

moreover, using (18a) and (21b), we have 𝝅c,𝑘−1
G,𝑇

(𝖛0 − �̂�) = 0. Taking then 𝖜 = 𝖛0 − �̂� as a test
function in (21c), we obtain ∫

𝑇

𝖛0 · (𝖛0 − �̂�) =
∫
𝑇

(𝒗𝑇 − 𝖛′) · (𝖛0 − �̂�). (27)

Thus, it is readily seen that

∥𝖛0 − �̂�∥2
𝐿2 (𝑇 )3 =

∫
𝑇

(𝖛0 − �̂�) · (𝖛0 − �̂�)

=

∫
𝑇

(𝒗𝑇 − 𝖛′ − �̂�) · (𝖛0 − �̂�)

≤
(
∥𝒗𝑇 − �̂�∥𝐿2 (𝑇 )3 + ∥𝖛′∥𝐿2 (𝑇 )3

)
∥𝖛0 − �̂�∥𝐿2 (𝑇 )3

≤
(
∥𝒗𝑇 − �̂�0∥𝐿2 (𝑇 )3 + ∥ �̂�1∥𝐿2 (𝑇 )3 + ∥𝖛′∥𝐿2 (𝑇 )3

)
∥𝖛0 − �̂�∥𝐿2 (𝑇 )3

≲
(
∥𝒗𝑇 − �̂�0∥𝐿2 (𝑇 )3 + ∥𝖛′∥𝐿2 (𝑇 )3

)
∥𝖛0 − �̂�∥𝐿2 (𝑇 )3

≤
(
∥𝒗𝑇 − 𝒛0∥𝐿2 (𝑇 )3 + ∥𝒛0 − �̂�0∥𝐿2 (𝑇 )3 + ∥𝖛′∥𝐿2 (𝑇 )3

)
∥𝖛0 − �̂�∥𝐿2 (𝑇 )3

≕ (𝔗1 + 𝔗2 + 𝔗3)∥𝖛0 − �̂�∥𝐿2 (𝑇 )3 , (28)

where we have used equation (27) in the second step, Cauchy–Schwarz and triangle inequalities in the
third step, the definition of �̂� for the first term in the parentheses and a triangle inequality in the fourth
step, the definition of �̂�1 along with the bound (18d) in the fifth step, and again a triangle inequality
after inserting ±𝒛0 into the first norm in the sixth step.
To estimate 𝔗1, we begin using the triangle inequality to obtain

𝔗1 ≤ ∥𝒗𝑇 ∥𝐿2 (𝑇 )3 + ∥𝒛0∥𝐿2 (𝑇 )3 ≲ ∥𝒗𝑇 ∥𝐿2 (𝑇 )3 + ℎ𝑇 ∥𝐷𝑘
𝑇𝒗𝑇 − ∇ · 𝖛′∥𝐿2 (𝑇 )

≲ ∥𝒗𝑇 ∥𝐿2 (𝑇 )3 + ℎ𝑇

(
∥𝐷𝑘

𝑇𝒗𝑇 ∥𝐿2 (𝑇 ) + ∥∇ · 𝖛′∥𝐿2 (𝑇 )

)
, (29)

where we have used (26) to bound the second term in the second step, and a triangle inequality in the
last step. For the first term in parentheses, integrating by parts the right-hand side of (10), applying
Cauchy–Schwarz and discrete trace inequalities, and taking the supremum over 𝑞 ∈ P𝑘 (𝑇), we obtain

∥𝐷𝑘
𝑇𝒗𝑇 ∥𝐿2 (𝑇 ) ≲ ∥𝒗

𝑇
∥1,𝑇 . (30)

To bound the second term in parentheses, we use a discrete inverse inequality to write

∥∇ · 𝖛′∥2
𝐿2 (𝑇 ) ≲

∑︁
𝜏∈𝔗𝑇

|𝖛′ |2
𝐻1 (𝜏 )3 ≲ ℎ−2

𝜏

∑︁
𝜏∈𝔗𝑇

∥𝖛′∥2
𝐿2 (𝜏 )3 ≲ ℎ−2

𝑇 ∥𝖛′∥2
𝐿2 (𝑇 )3 , (31)

where the fact that ℎ−1
𝜏 ℎ𝑇 ≲ 1 for regular mesh sequences (see [16, Eq. (1.4)]) has been used in the

last step. Now, to estimate ∥𝖛′∥𝐿2 (𝑇 )3 , we combine (12) and (20) to obtain

∥𝖛′∥2
𝐿2 (𝑇 )3 ≃

∑︁
𝜎∈𝔉𝐹 ,𝐹∈F𝑇

ℎ𝜎 ∥𝒗𝐹 · 𝒏𝑇𝐹 ∥2
𝐿2 (𝜎) ≤

∑︁
𝐹∈F𝑇

ℎ𝐹 ∥𝒗𝐹 ∥2
𝐿2 (𝐹 )3 , (32)
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where we have used the fact that 𝜎 ⊂ 𝐹, the inequality ℎ𝜎 ≤ ℎ𝐹 valid for any 𝜎 ∈ 𝔉𝐹 and any
𝐹 ∈ F𝑇 , and the Hölder inequality with exponents (2,∞) along with ∥𝒏𝑇𝐹 ∥𝐿∞ (𝐹 )3 = 1 for the third
step. Therefore plugging (32) into (31), we obtain

∥∇ · 𝖛′∥2
𝐿2 (𝑇 ) ≲

∑︁
𝐹∈F𝑇

ℎ−1
𝐹 ∥𝒗𝐹 ∥2

𝐿2 (𝐹 )3 ,

where we have used the equivalence ℎ𝐹 ≃ ℎ𝑇 valid for regular mesh sequences (see [16, Eq. (1.6)]).
Now, using the following bound valid for non-negative real numbers 𝑎𝑖∑︁

𝑖

𝑎2
𝑖 ≤

(∑︁
𝑖

𝑎𝑖

)2

, (33)

for the previous inequality, and then plugging the result along with (30) into (29), it is inferred that

𝔗1 ≲ ∥𝒗𝑇 ∥𝐿2 (𝑇 )3 + ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 +
∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝒗𝐹 ∥𝐿2 (𝐹 )3 . (34)

To bound the term 𝔗2 in (28), we use standard interpolation estimates for �̂�0 (see, e.g., [6, Proposition
2.5.4]) followed by (25) to write

𝔗2 ≲ ℎ𝑇 |\ |𝐻2 (𝑇 ) ≲ ℎ𝑇 ∥𝐷𝑘
𝑇𝒗𝑇 − ∇ · 𝖛′∥𝐿2 (𝑇 )3 ≲ ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 +

∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝒗𝐹 ∥𝐿2 (𝐹 )3 , (35)

where we have used a triangle inequality followed by (30), (31), and (32) to conclude. Plugging (34)
and (35) into (28), using (32) to estimate 𝔗3, and simplifying, we obtain

∥𝖛0 − �̂�∥𝐿2 (𝑇 )3 ≲ ∥𝒗𝑇 ∥𝐿2 (𝑇 )3 + ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 +
∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝒗𝐹 ∥𝐿2 (𝐹 )3 . (36)

Using the decomposition (19) followed by triangle inequalities, we finally get

∥𝒗𝑇 − 𝑹𝑘
𝑇𝒗𝑇 ∥𝐿2 (𝑇 )3 ≤ ∥𝒗𝑇 − �̂�∥𝐿2 (𝑇 )3 + ∥ �̂� − 𝖛0∥𝐿2 (𝑇 )3 + ∥𝖛′∥𝐿2 (𝑇 )3

≲ ∥𝒗𝑇 − �̂�0∥𝐿2 (𝑇 )3 + ∥ �̂�1∥𝐿2 (𝑇 )3 + ∥ �̂� − 𝖛0∥𝐿2 (𝑇 )3 + ∥𝖛′∥𝐿2 (𝑇 )3

≲ ∥𝒗𝑇 − �̂�0∥𝐿2 (𝑇 )3 + ∥ �̂� − 𝖛0∥𝐿2 (𝑇 )3 + ∥𝖛′∥𝐿2 (𝑇 )3

≲ ∥𝒗𝑇 − 𝒛0∥𝐿2 (𝑇 )3 + ∥𝒛0 − �̂�0∥𝐿2 (𝑇 )3 + ∥ �̂� − 𝖛0∥𝐿2 (𝑇 )3 + ∥𝖛′∥𝐿2 (𝑇 )3

≲ ∥𝒗𝑇 ∥𝐿2 (𝑇 )3 + ℎ𝑇 ∥𝒗𝑇 ∥1,𝑇 +
∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝒗𝐹 ∥𝐿2 (𝐹 )3 ,

where we have used the definition of �̂�1 along with the bound (18d) in the third step, a triangle
inequality in the fourth step, and the bounds (32), and (34)–(36) in the last step. Inserting ±𝒗𝑇 into
the left-hand side of (22) and using a triangle inequality followed by the above estimate, (22) follows.

(i.C) Proof of the bound (15). Recalling that 𝑰𝑘
𝑇

is obtained restricting the global interpolator (6) to
an element 𝑇 , letting �̂� ≔ 𝑹𝑘

𝑇
(𝑰𝑘

𝑇
𝒗𝑇 ), and using the triangle inequality, we get that

∥𝒗𝑇 − 𝑹𝑘
𝑇𝒗𝑇 ∥𝐿2 (𝑇 )3 ≤ ∥𝒗𝑇 − �̂�∥𝐿2 (𝑇 )3 + ∥�̂� − 𝑹𝑘

𝑇𝒗𝑇 ∥𝐿2 (𝑇 )3 ≕ 𝔗1 + 𝔗2. (37)

By condition (14b), we have that ∇· �̂� = 𝐷𝑘
𝑇
(𝑰𝑘

𝑇
𝒗𝑇 ) ∈ P𝑘 (𝑇) ⊂ P𝑘 (𝔗𝑇 ). But, since 𝒗𝑇 ∈ P𝑘 (𝑇),

the commutation property (11) gives 𝐷𝑘
𝑇
(𝑰𝑘

𝑇
𝒗𝑇 ) = 𝜋𝑘

𝑇
(∇ · 𝒗𝑇 ) = ∇ · 𝒗𝑇 , so that ∇ · (�̂� − 𝒗𝑇 ) = 0. In
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addition, by (14c) we have 𝝅c,𝑘−1
G ,𝑇

(�̂� − 𝒗𝑇 ) = 0, and then observing that �̂� − 𝒗𝑇 ∈ RT
𝑘
0 (𝔗𝑇 ), and

taking 𝖜 = �̂� − 𝒗𝑇 in (14d), it is inferred that ∥�̂� − 𝒗𝑇 ∥2
𝐿2 (𝑇 )3 = 0, hence 𝔗1 = 0.

Let us now estimate the term 𝔗2. By linearity of 𝑹𝑘
𝑇

, we can write 𝔗2 = ∥𝑹𝑘
𝑇
(𝑰𝑘

𝑇
𝒗𝑇 − 𝒗

𝑇
)∥𝐿2 (𝑇 )3 .

Hence, using the bound (22), the fact that (𝑰𝑘
𝑇
𝒗𝑇 − 𝒗

𝑇
)𝑇 = 0 and (𝑰𝑘

𝑇
𝒗𝑇 − 𝒗

𝑇
)𝐹 = (𝒗𝑇 − 𝒗𝐹) for all

𝐹 ∈ F𝑇 , and recalling the definition (7), we can write

𝔗2 ≲ ℎ𝑇 ∥𝑰𝑘𝑇𝒗𝑇 − 𝒗
𝑇
∥1,𝑇 +

∑︁
𝐹∈F𝑇

ℎ
1
2
𝐹
∥𝒗𝑇 − 𝒗𝐹 ∥𝐿2 (𝐹 )3

= ℎ𝑇 |𝒗𝑇 |1,𝜕𝑇 +
∑︁
𝐹∈F𝑇

ℎ𝐹ℎ
− 1

2
𝐹

∥𝒗𝑇 − 𝒗𝐹 ∥𝐿2 (𝐹 )3≲ R#2 point:
Typo

ℎ𝑇 |𝒗𝑇 |1,𝜕𝑇 ,

where we have used the inequality ℎ𝐹 ≤ ℎ𝑇 in the last step. Plugging this last bound along with
𝔗1 = 0 into (37), the conclusion follows.

(ii) Approximation. To prove the approximation estimate (16), let 𝑇 ∈ Tℎ and denote, for the sake of
brevity, by �̂�

𝑇
≔ 𝑰𝑘

𝑇
𝒗 the interpolate of 𝒗 on 𝑼𝑘

𝑇
. We begin using the triangle inequality to write

∥𝒗 − 𝑹𝑘
𝑇 (�̂�𝑇 )∥𝐿2 (𝑇 )3 ≤ ∥𝒗 − �̂�𝑇 ∥𝐿2 (𝑇 )3 + ∥ �̂�𝑇 − 𝑹𝑘

𝑇 (�̂�𝑇 )∥𝐿2 (𝑇 )3

≲ ∥𝒗 − 𝝅𝑘
𝑇𝒗∥𝐿2 (𝑇 )3 + ℎ𝑇 |�̂�𝑇 |1,𝜕𝑇 ≕ 𝔗1 + 𝔗2, (38)

where in the last step we have used the definition of 𝑰𝑘
𝑇

and the bound (15) for the first and second
terms, respectively. To bound 𝔗1 we use (5a) with (𝑙, 𝑚, 𝑟, 𝑠) = (𝑘, 0, 2, 𝑘 + 1), so we get

𝔗1 ≲ ℎ𝑘+1
𝑇 |𝒗 |𝐻𝑘+1 (𝑇 )3 . (39)

Now to bound 𝔗2 we first take the square, use the definition (7) of the boundary seminorm and the
equivalence ℎ𝑇 ≃ ℎ𝐹 (valid for regular meshes) to obtain

(𝔗2)2 = ℎ2
𝑇

∑︁
𝐹∈F𝑇

ℎ−1
𝐹 ∥ �̂�𝐹 − �̂�𝑇 ∥2

𝐿2 (𝐹 )3 ≲
∑︁
𝐹∈F𝑇

ℎ𝑇

(
∥𝝅𝑘

𝐹𝒗 − 𝒗∥2
𝐿2 (𝐹 )3 + ∥𝒗 − 𝝅𝑘

𝑇𝒗∥2
𝐿2 (𝐹 )3

)
,

where in the last step we have used the Young inequality. Now using a triangle inequality and standard
properties of the 𝐿2-projectors 𝝅𝑘

𝐹
and 𝝅𝑘

𝑇
on 𝐹, we have

∥𝝅𝑘
𝐹𝒗 − 𝒗∥2

𝐿2 (𝐹 )3 = inf
𝒘∈P𝑘 (𝐹 )3

∥𝒘 − 𝒗∥2
𝐿2 (𝐹 )3 ≤ ∥𝝅𝑘

𝑇𝒗 − 𝒗∥2
𝐿2 (𝐹 )3 . (40)

Thus using this for 𝐹 ∈ F𝑇 , the bound (33), and then taking the square root, it is inferred that

𝔗2 ≲
∑︁
𝐹∈F𝑇

ℎ
1
2
𝑇
∥𝒗 − 𝝅𝑘

𝑇𝒗∥𝐿2 (𝐹 )3 .

Finally, using (5b) with (𝑙, 𝑚, 𝑟, 𝑠) = (𝑘, 0, 2, 𝑘 + 1) to bound 𝔗2 along with (39), and plugging the
result into (38), we conclude.

(iii) Consistency. To simplify the notation let us define the space G
𝑘−1(𝑇) ≔ ∇P𝑘 (𝑇)3, and let 𝝅𝑘−1

G ,𝑇

its 𝐿2-orthogonal projector. In addition, let 𝒒 ≔ 𝝅𝑘−1
𝑇

(𝑹𝑘
𝑇
𝒗
𝑇
−𝒗𝑇 ). As mentioned before, the decom-

position (13) is not necessarily orthogonal; nevertheless, by [15, Lemma 1] there exists a recovery
operator 𝕽G ,Gc : G

𝑘−1(𝑇) × G
c,𝑘−1(𝑇) → P𝑘−1(𝑇)3 such that 𝒒 = 𝕽G ,Gc (𝝅𝑘−1

G ,𝑇
𝒒, 𝝅c,𝑘−1

G,𝑇
𝒒), and

∥𝒒∥𝐿2 (𝑇 )3 ≃ ∥𝝅𝑘−1
G ,𝑇

𝒒∥𝐿2 (𝑇 )3 + ∥𝝅c,𝑘−1
G,𝑇

𝒒∥𝐿2 (𝑇 )3 . Using this last equation and the linearity of 𝝅𝑘−1
𝑇

, it
is enough to show that ∥𝝅𝑘−1

G ,𝑇
𝒒∥𝐿2 (𝑇 )3 = ∥𝝅c,𝑘−1

G,𝑇
𝒒∥𝐿2 (𝑇 )3 = 0. Since G

c,𝑘−1 ⊂ P𝑘−1(𝑇)3, we have
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𝝅c,𝑘−1
G,𝑇

= 𝝅c,𝑘−1
G,𝑇

◦ 𝝅𝑘−1
𝑇

, and by the equation (14c), we infer that ∥𝝅c,𝑘−1
G,𝑇

𝒒∥𝐿2 (𝑇 )3 = 0. Using (14b)
along with an integration by parts and the boundary condition (14a), we infer that, for all 𝜙 ∈ P𝑘 (𝑇),

−
∫
𝑇

𝑹𝑘
𝑇𝒗𝑇 · ∇𝜙 +

����������∑︁
𝐹∈T𝑇

∫
𝐹

(𝒗𝐹 · 𝒏𝑇𝐹)𝜙 =

∫
𝑇

(𝐷𝑘
𝑇𝒗𝑇 )𝜙 = −

∫
𝑇

𝒗𝑇 · ∇𝜙 +
����������∑︁
𝐹∈F𝑇

∫
𝐹

(𝒗𝐹 · 𝒏𝑇𝐹)𝜙,

where in the last step we have used the definition (10) of 𝐷𝑘
𝑇

. This shows that 𝝅𝑘−1
G ,𝑇

(𝑹𝑘
𝑇
𝒗
𝑇
− 𝒗𝑇 ) = 0.

Finally, using 𝝅𝑘−1
G ,𝑇

= 𝝅𝑘−1
G ,𝑇

◦ 𝝅𝑘−1
𝑇

, we obtain ∥𝝅𝑘−1
G ,𝑇

𝒒∥𝐿2 (𝑇 )3 = 0, and (17) follows. □

Remark 5 (Convexity assumption). Referees #1 &
#2 remarks:
Where the
convexity
enters and
non-convex
elements

The convexity assumption introduced in Section 2.1 can be relaxed
if instead we make the following assumptions for 𝑇 ∈ Tℎ:

1. There exist a point �̃�𝑇 ∈ 𝑇 such that 𝑇 is a star-shaped with respect to it.

2. There exists 𝜏 ∈ 𝔗𝑇 such that contains the ball B(�̃�𝑇 , 𝑟𝜏) where 𝑟𝜏 denotes the inradius of 𝜏.

Then instead of solving the problems (23)–(24), invoke the Lemma III.3.1 of [28] to obtain
𝑧0 ∈ 𝐻1

0 (𝑇)
3 such that ∇ · 𝒛0 = 𝐷𝑘

𝑇
𝒗
𝑇
− ∇ · 𝖛′ with ∥𝒛0∥𝐻1 (𝑇 )3 ≲ ∥𝐷𝑘

𝑇
𝒗
𝑇
− ∇ · 𝖛′∥𝐿2 (𝑇 ) , and use

[28, Eq. (II.5.5)] to get a Poincaré-like inequality ∥𝒛0∥𝐿2 (𝑇 )3 ≲ ℎ𝑇 |𝒛0 |𝐻1 (𝑇 )3 and use it in (29) in the
proof of item (i) of Lemma 2.

Let RT
𝑘 (𝔗ℎ) denote the global (𝑯div(Ω)-conforming) Raviart–Thomas–Nédélec space on 𝔗ℎ.

We define the global velocity reconstruction 𝑹𝑘
ℎ

: 𝑼𝑘
ℎ
→ RT

𝑘 (𝔗ℎ) patching the local contributions:
For all 𝒗

ℎ
∈ 𝑼𝑘

ℎ
,

(𝑹𝑘
ℎ𝒗ℎ) |𝑇 ≔ 𝑹𝑘

𝑇𝒗𝑇 ∀𝑇 ∈ Tℎ .

Note that 𝑹𝑘
ℎ
𝒗
ℎ

is well-defined, since its normal components across each mesh interface are continuous
as a consequence of (14a) combined with the single-valuedness of interface unknowns.

Proposition 6 (Sobolev inequalities for the velocity reconstruction). It holds, for all 𝑟 ∈ [1, 6] and
all 𝒗

ℎ
∈ 𝑼𝑘

ℎ,0,
∥𝑹𝑘

ℎ𝒗ℎ∥𝐿𝑟 (Ω)3 ≲ ∥𝒗
ℎ
∥1,ℎ, (41)

where the hidden constant is independent of both ℎ and 𝒗
ℎ
, but possibly depends on Ω, 𝑘 , 𝑟 , and the

mesh regularity parameter.

Proof. Let a mesh element 𝑇 ∈ Tℎ be fixed. Inserting ±𝒗𝑇 into the norm and using a triangle
inequality, we can write

∥𝑹𝑘
𝑇𝒗𝑇 ∥𝐿𝑟 (𝑇 )3 ≤ ∥𝑹𝑘

𝑇𝒗𝑇 − 𝒗𝑇 ∥𝐿𝑟 (𝑇 )3 + ∥𝒗𝑇 ∥𝐿𝑟 (𝑇 )3

=

( ∑︁
𝜏∈𝔗𝑇

∥𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑟𝐿𝑟 (𝜏 )3

) 1
𝑟

+ ∥𝒗𝑇 ∥𝐿𝑟 (𝑇 )3 .
(42)

From the discrete Lebesgue embeddings proved in [16, Lemma 1.25], it follows that, for all (𝛼, 𝛽) ∈
[1, +∞], all 𝑋 ∈ Tℎ ∪ 𝔗ℎ, and all Z ∈ P𝑙 (𝑋) for 𝑙 ≥ 0,

∥Z ∥𝐿𝛼 (𝑋) ≲ ℎ
3
𝛼
− 3

𝛽

𝑋
∥Z ∥𝐿𝛽 (𝑋) , (43)
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with hidden constant independent of ℎ, 𝑋 , and Z , but possibly depending on 𝑙, 𝛼, 𝛽, and the mesh
regularity parameter. Since (𝑹𝑘

𝑇
𝒗
𝑇
− 𝒗𝑇 ) |𝜏 ∈ P𝑘+1(𝜏)3, we use (43) for (𝑋, 𝑙, 𝛼, 𝛽) = (𝜏, 𝑘 + 1, 𝑟, 2)

in the term in parentheses of (42) to write∑︁
𝜏∈𝔗𝑇

∥𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑟𝐿2 (𝜏 )𝑟 ≲

∑︁
𝜏∈𝔗𝑇

ℎ
𝑟 ( 3

𝑟
− 3

2 )
𝜏 ∥𝑹𝑘

𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑟𝐿2 (𝜏 )3

≲ ℎ
𝑟 ( 3

𝑟
− 3

2 )
𝑇

∥𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ∥𝑟𝐿2 (𝑇 )3 ≲ ℎ

𝑟 ( 3
𝑟
− 1

2 )
𝑇

|𝒗
𝑇
|𝑟1,𝜕𝑇 ,

(44)

where we have used 𝜏 ⊂ 𝑇 and ℎ𝜏 ≤ ℎ𝑇 for all 𝜏 ∈ 𝔗𝑇 along with the uniform bound (3) on card(𝔗𝑇 )
in the second step, and the estimate (15) to conclude. Plugging (44) into (42), raising the resulting
inequality to the 𝑟-th power, using the inequality (𝑎 + 𝑏)𝑟 ≲ 𝑎𝑟 + 𝑏𝑟 valid for any nonnegative real
numbers 𝑎 and 𝑏, and summing over 𝑇 ∈ Tℎ, we get

∥𝑹𝑘
𝑇𝒗𝑇 ∥

𝑟

𝐿𝑟 (Ω)3 ≲
∑︁
𝑇∈Tℎ

ℎ
6−𝑟

2
𝑇

|𝒗
𝑇
|𝑟1,𝜕𝑇 + ∥𝒗ℎ∥𝑟𝐿𝑟 (Ω)3 .

The proof now continues as that of [11, Proposition 3]. The details are omitted for the sake of
conciseness. □

2.5 Gradient reconstruction on a submesh

Let an element𝑇 ∈ Tℎ be fixed. For every face 𝜎 ∈ 𝔉i
𝑇

, we introduce an arbitrary but fixed ordering of
the elements 𝜏1 and 𝜏2 such that 𝜎 ⊂ 𝜕𝜏1 ∩ 𝜕𝜏2, and let 𝒏𝜎 ≔ 𝒏𝜏1𝜎 = −𝒏𝜏2𝜎 , where 𝒏𝜏𝑖𝜎 , 𝑖 ∈ {1, 2},
denotes the unit vector normal to 𝜎 pointing out of 𝜏𝑖 (see Figure 1b). With this convention, for every
scalar-valued function Z admitting a possibly two-valued trace on 𝜎, we define the jump of Z across
𝜎 as

JZK𝜎 ≔ Z |𝜏1 − Z |𝜏2 . (45)

When applied to vector- or tensor-valued functions, the jump operator acts component-wise.
For any polyomial degree 𝑙 ≥ 0, we then define the local gradient reconstruction 𝑮𝑙

𝔗𝑇
: 𝑼𝑘

𝑇
→

P𝑙 (𝔗𝑇 )3×3 such that, for all 𝒗
𝑇
∈ 𝑼𝑘

𝑇
and all 𝝉 ∈ P𝑙 (𝔗𝑇 )3×3,∫

𝑇

𝑮𝑙
𝔗𝑇

𝒗
𝑇

: 𝝉 =

∫
𝑇

∇𝒗𝑇 : 𝝉 +
∑︁
𝐹∈F𝑇

∫
𝐹

(𝒗𝐹 − 𝒗𝑇 ) · 𝝉𝒏𝑇𝐹 (46a)

= −
∫
𝑇

𝒗𝑇 · (∇ · 𝝉) +
∑︁
𝜎∈𝔉i

𝑇

∫
𝜎

𝒗𝑇 · J𝝉K𝜎𝒏𝜎 +
∑︁
𝐹∈F𝑇

∫
𝐹

𝒗𝐹 · 𝝉𝒏𝑇𝐹 , (46b)

where we have used an integration by parts to pass to the second line. The above definition is an
extension of the operator 𝑮𝑙

𝑇 : 𝑼𝑘
𝑇

→ P𝑙 (𝑇)3×3 introduced in [11, 23], which is defined using
P𝑙 (𝑇)3×3 instead of P𝑙 (𝔗𝑇 )3×3 as a test space, and thus we have 𝝅𝑙

𝑇
𝑮𝑙

𝔗𝑇
= 𝑮𝑙

𝑇 . The gradient
reconstruction 𝑮𝑘

𝑇 will be used in the viscous term, while the enriched gradient reconstruction
𝑮2(𝑘+1)

𝔗𝑇
will be used in the convective term (see Section 3.3).

Lemma 7 (Properties of 𝑮𝑙
𝔗𝑇

). The operator 𝑮𝑙
𝔗𝑇

has the following properties:

1. Boundedness. For all 𝒗
𝑇
∈ 𝑼𝑘

𝑇
, it holds

∥𝑮𝑙
𝔗𝑇

𝒗
𝑇
∥𝐿2 (𝑇 )3×3 ≲ ∥𝒗

𝑇
∥1,𝑇 . (47)

2. Consistency. For all 𝒗 ∈ 𝐻𝑘+1(𝑇)3 and all 𝑙 > 𝑘 , it holds,

∥𝑮𝑙
𝔗𝑇

𝑰𝑘𝑇𝒗 − ∇𝒗∥𝐿2 (𝑇 )3×3 ≲ ℎ𝑘𝑇 |𝒗 |𝐻𝑘+1 (𝑇 )3 . (48)
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Proof. (i) Boundedness. The proof is the same as that of [23, Proposition 1].

(ii) Consistency. Let 𝒗 ∈ 𝐻𝑘+1(𝑇)3. For all 𝑇 ∈ Tℎ, using 𝑰𝑘
𝑇
𝒗 = (𝝅𝑘

𝑇
𝒗, (𝝅𝑘

𝐹
𝒗 |𝐹)𝐹∈F𝑇 ) into (46b) for

the first term and an integration by parts for the second term, we obtain, for all 𝝉 ∈ P𝑘 (𝔗𝑇 )3×3,∫
𝑇

(𝑮𝑙
𝔗𝑇

𝑰𝑘𝑇𝒗 − ∇𝒗) : 𝝉 = −
∫
𝑇

(𝝅𝑘
𝑇𝒗 − 𝒗) · (∇ · 𝝉) +

∑︁
𝐹∈F𝑇

∫
𝐹

(𝝅𝑘
𝐹𝒗 − 𝒗) · 𝝉𝒏𝑇𝐹

+
∑︁
𝜎∈𝔉i

𝑇

∫
𝜎

(𝝅𝑘
𝑇𝒗 − 𝒗) · J𝝉K𝜎𝒏𝜎 ≕ 𝔗1 + 𝔗2 + 𝔗3.

(49)

We now proceed to bound the terms in the right-hand side. Using Cauchy–Schwarz and discrete in-
verse inequalities along with the approximation properties (5a) of 𝝅𝑘

𝑇
with (𝑙, 𝑟, 𝑚, 𝑠) = (𝑘, 2, 0, 𝑘 + 1)

we obtain, for the first term,
|𝔗1 | ≲ ℎ𝑘𝑇 |𝒗 |𝐻𝑘+1 (𝑇 )3 ∥𝝉∥𝐿2 (𝑇 )3×3 . (50)

For the second term, we use a Hölder inequality with exponents (2, 2,∞) along with ∥𝒏𝑇𝐹 ∥𝐿∞ (𝐹 )3 = 1
to write

|𝔗2 | ≤
∑︁
𝐹∈F𝑇

∥𝝅𝑘
𝐹𝒗 − 𝒗∥𝐿2 (𝐹 )3 ∥𝝉∥𝐿2 (𝐹 )3×3

≲ ℎ
−1/2
𝑇

( ∑︁
𝐹∈F𝑇

∥𝝅𝑘
𝑇𝒗 − 𝒗∥2

𝐿2 (𝐹 )3

)1/2

∥𝝉∥𝐿2 (𝑇 )3×3 ≲ ℎ𝑘𝑇 |𝒗 |𝐻𝑘+1 (𝑇 )3 ∥𝝉∥𝐿2 (𝑇 )3×3 , (51)

where we have used the inequality (40) together with a discrete trace inequality in the second step
and the trace approximation properties (5b) of 𝝅𝑘

𝑇
with (𝑙, 𝑟, 𝑚, 𝑠) = (𝑘, 2, 0, 𝑘 + 1) to conclude.

Let us now consider the third term in (49). Recalling the definition (45) of the jump operator, we
bound each integral over 𝜎 ∈ 𝔉i

𝑇
as follows:����∫

𝜎

(𝝅𝑘
𝑇𝒗 − 𝒗) · J𝝉K𝜎𝒏𝜎

���� ≤ 2∑︁
𝑖=1

����∫
𝜎

(𝝅𝑘
𝑇𝒗 − 𝒗) ·

(
𝝉 |𝜏𝑖𝒏𝜏𝑖𝜎

) ����
≤

2∑︁
𝑖=1

∥𝝅𝑘
𝑇𝒗 − 𝒗∥𝐿2 (𝜎)3 ∥𝝉 |𝜏𝑖 ∥𝐿2 (𝜎)3×3

≲
2∑︁
𝑖=1

(
ℎ−1
𝜎 ∥𝝅𝑘

𝑇𝒗 − 𝒗∥𝐿2 (𝜏𝑖 )3 + |𝝅𝑘
𝑇𝒗 − 𝒗 |𝐻1 (𝜏𝑖 )3

)
∥𝝉∥𝐿2 (𝜏𝑖 )3×3

≲
(
ℎ−1
𝑇 ∥𝝅𝑘

𝑇𝒗 − 𝒗∥𝐿2 (𝑇 )3 + |𝝅𝑘
𝑇𝒗 − 𝒗 |𝐻1 (𝑇 )3

)
∥𝝉∥𝐿2 (𝑇 )3×3

≲ ℎ𝑘𝑇 |𝒗 |𝐻𝑘+1 (𝑇 )3 ∥𝝉∥𝐿2 (𝑇 )3×3 ,

where we have started with a triangle inequality, used Cauchy–Schwarz and Hölder inequalities (the
latter with exponents (2,∞)) along with ∥𝒏𝜏𝑖𝜎 ∥𝐿∞ (𝜎)3 = 1 in the second step, local continuous
and discrete trace inequalities on the submesh for the first and second factor, respectively, in the
third step, and the fact that 𝜏𝑖 ⊂ 𝑇 for 𝑖 ∈ {1, 2} along with the first geometric bound in (3) and
ℎ−1
𝜎 ≲ ℎ−1

𝑇
(consequence of mesh regularity) in the fourth step. The conclusion follows using the

approximation properties (5a) of 𝝅𝑘
𝑇

with (𝑙, 𝑟, 𝑚, 𝑠) = (𝑘, 2, 0, 𝑘 + 1) for the first term in parenthesis
and (𝑙, 𝑟, 𝑚, 𝑠) = (𝑘, 2, 1, 𝑘 + 1) for the second one. Gathering the above estimates and observing that
card(𝔉i

𝑇
) ≤ 4 card(𝔗𝑇 ) ≲ 1 by (3), we obtain

|𝔗3 |≲ℎ𝑘𝑇 |𝒗 |𝐻𝑘+1 (𝑇 )3 ∥𝝉∥𝐿2 (𝑇 )3×3 . R#1 minor
point: Typo

(52)
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Setting 𝝉 = 𝑮𝑙
𝔗𝑇

𝑰𝑘
𝑇
𝒗 − 𝝅𝑙

𝔗𝑇
∇𝒗 in (49), using the bounds (50)–(52), and simplifying yields

∥𝑮𝑙
𝔗𝑇

𝑰𝑘𝑇𝒗 − 𝝅𝑙
𝔗𝑇

∇𝒗∥𝐿2 (𝑇 )3×3 ≲ ℎ𝑘𝑇 |𝒗 |𝐻𝑘+1 (𝑇 )3 .

Therefore, using a triangle inequality and the approximation properties (5a), valid as well for 𝝅𝑙
𝜏 ,

with (𝑙, 𝑟, 𝑚, 𝑠) = (𝑘, 2, 0, 𝑘 + 1) along with ℎ𝜏 ≤ ℎ𝑇 , we infer

∥𝑮𝑙
𝔗𝑇

𝑰𝑘𝑇𝒗−∇𝒗∥𝐿2 (𝑇 )3×3 ≤ ∥𝑮𝑙
𝔗𝑇

𝑰𝑘𝑇𝒗−𝝅
𝑙
𝔗𝑇

∇𝒗∥𝐿2 (𝑇 )3×3+∥𝝅𝑙
𝔗𝑇

∇𝒗−∇𝒗∥𝐿2 (𝑇 )3×3 ≲ ℎ𝑘𝑇 |𝒗 |𝐻𝑘+1 (𝑇 )3 . □

3 Discrete problem
3.1 Viscous term and pressure-velocity coupling

The viscous term and the pressure-velocity coupling are the same as in the standard HHO method;
see, e.g., [8, 23]. We briefly recall them here to make the exposition self-contained.

The viscous bilinear form 𝑎ℎ: 𝑼𝑘
ℎ
×𝑼𝑘

ℎ
→ R is such that, for all 𝒘

ℎ
, 𝒗

ℎ
, ∈ 𝑼𝑘

ℎ
,

𝑎ℎ (𝒘ℎ
, 𝒗

ℎ
) ≔

∑︁
𝑇∈Tℎ

(∫
𝑇

𝑮𝑘
𝑇𝒘𝑇

: 𝑮𝑘
𝑇𝒗𝑇 + 𝑠𝑇 (𝒘𝑇

, 𝒗
𝑇
)
)
,

where, for any 𝑇 ∈ Tℎ, 𝑠𝑇 : 𝑼𝑘
𝑇
× 𝑼𝑘

𝑇
→ R denotes a local stabilization bilinear form designed

according to the principles of [16, Assumption 2.4], so that, in particular, there exists 𝐶𝑎 > 0
independent of ℎ (and, clearly, also of a and _) such that, for all 𝒗

ℎ
∈ 𝑼𝑘

ℎ
,

𝐶𝑎∥𝒗ℎ∥
2
1,ℎ ≤ 𝑎ℎ (𝒗ℎ, 𝒗ℎ) ≤ 𝐶−1

𝑎 ∥𝒗
ℎ
∥2

1,ℎ . (53)

Recalling the definition (10) of the local divergence 𝐷𝑘
𝑇

, the global pressure-velocity coupling
bilinear form 𝑏ℎ : 𝑼𝑘

ℎ,0 × P𝑘 (Tℎ) → R is such that, for all (𝒗
ℎ
, 𝑞ℎ) ∈ 𝑼𝑘

ℎ,0 × P𝑘 (Tℎ),

𝑏ℎ (𝒗ℎ, 𝑞ℎ) := −
∑︁
𝑇∈Tℎ

∫
𝑇

𝐷𝑘
𝑇𝒗𝑇 𝑞𝑇 ,

where 𝑞𝑇 ≔ 𝑞ℎ |𝑇 . The properties of 𝑏ℎ relevant for the analysis can be found in [16, Lemma 8.12].

3.2 Body force

The discretization of the body force leverages the new divergence-preserving velocity reconstruction
introduced in Section 2.4. Specifically, we introduce the bilinear form ℓℎ : 𝐿2(Ω)3 ×𝑼𝑘

ℎ
→ R such

that, for any 𝝓 ∈ 𝐿2(Ω)3 and any 𝒗
ℎ
∈ 𝑼𝑘

ℎ
,

ℓℎ (𝝓, 𝒗ℎ) ≔
∫
Ω

𝝓 · 𝑹𝑘
ℎ𝒗ℎ .

Lemma 8 (Properties of ℓℎ). The bilinear form ℓℎ has the following properties:

(i) Velocity invariance. Recalling the Hodge decomposition (2) of 𝒇 , it holds

ℓℎ (𝒈 + _∇𝜓, 𝒗
ℎ
) = ℓℎ (𝒈, 𝒗ℎ) + 𝑏ℎ (𝒗ℎ, _𝜋

𝑘
ℎ𝜓) ∀𝒗

ℎ
∈ 𝑼𝑘

ℎ,0. (54)

Referees #1
and #2 remark:
Now we have
a body force
consistency
error for
arbitrary 𝑘 ≥ 0
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(ii) Consistency. For all 𝝓 ∈ 𝐿2(Ω)3 ∩ 𝐻𝑘 (Tℎ)3,

∥Eℓ,ℎ (𝝓; ·)∥1,ℎ,∗ ≲ ℎ𝑘+1 |𝝓 |𝐻𝑘 (Tℎ )3 , (55)

where the linear form Eℓ,ℎ (𝝓; ·) : 𝑼𝑘
ℎ
→ R, representing the body force consistency error, is

such that

Eℓ,ℎ (𝝓; 𝒗
ℎ
) ≔ ℓℎ (𝝓, 𝒗ℎ) −

∫
Ω

𝝓 · 𝒗ℎ =
∑︁
𝑇∈Tℎ

∫
𝑇

𝝓 · (𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ). (56)

Proof. (i) Velocity invariance. The proof is the same as in [11, Section 4.3], using the fact that
(∇ · 𝑹𝑘

ℎ
𝒗
ℎ
) |𝑇 = 𝐷𝑘

𝑇
𝒗
𝑇
∈ P𝑘 (𝑇), which is enforced by (14b).

(ii) Consistency. We prove the cases 𝑘 = 0 and 𝑘 ≥ 1 separately.

(ii.A) The case 𝑘 = 0. Taking absolute values in (56) and using Cauchy–Schwarz inequalities along
with (15) and ℎ𝑇 ≤ ℎ for all 𝑇 ∈ Tℎ, we can write

��Eℓ,ℎ (𝝓; 𝒗
ℎ
)
�� ≤ ℎ∥𝝓∥𝐿2 (Ω)3 ∥𝒗𝑇 ∥1,ℎ. Passing to the

supremum over 𝒗
ℎ
∈ 𝑼𝑘

ℎ
such that ∥𝒗

ℎ
∥1,ℎ = 1, we obtain (55).

(ii.B) The case 𝑘 ≥ 1. Using (17) in (56) and continuing with Cauchy–Schwarz inequalities, we obtain

��Eℓ,ℎ (𝝓; 𝒗
ℎ
)
�� = ����� ∑︁

𝑇∈Tℎ

∫
𝑇

(𝝓 − 𝝅𝑘−1𝝓) · (𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝑇 )

����� ≤ ∑︁
𝑇∈Tℎ

∥𝝓 − 𝝅𝑘−1𝝓∥𝐿2 (𝑇 )3 ∥𝑹𝑘
𝑇𝒗𝑇 − 𝒗𝑇 ∥𝐿2 (𝑇 )3 .

Using then the approximation properties (5a) of the 𝐿2-projector with (𝑙, 𝑚, 𝑟, 𝑠) = (𝑘 − 1, 0, 2, 𝑘) for
the first factor and the bound (15) for the second, applying discrete Cauchy–Schwarz inequalities to
the sums, and passing to the supremum over 𝒗

ℎ
∈ 𝑼𝑘

ℎ
such that ∥𝒗

ℎ
∥1,ℎ = 1, (55) follows. □

3.3 Convective term

To discretize the convective term, we introduce the global trilinear form 𝑡ℎ :
[
𝑼𝑘

ℎ

]3 → R such that

𝑡ℎ (𝒘ℎ
, 𝒗

ℎ
, 𝒛

ℎ
) ≔

∑︁
𝑇∈Tℎ

𝑡𝑇 (𝒘𝑇
, 𝒗

𝑇
, 𝒛

𝑇
), (57a)

where, for any 𝑇 ∈ Tℎ, 𝑡𝑇 :
[
𝑼𝑘

𝑇

]3 → R is defined as

𝑡𝑇 (𝒘𝑇
, 𝒗

𝑇
, 𝒛

𝑇
) ≔

∫
𝑇

𝑮2(𝑘+1)
𝔗𝑇

𝒘
𝑇
𝑹𝑘
𝑇𝒗𝑇 · 𝑹𝑘

𝑇 𝒛𝑇 −
∫
𝑇

𝑮2(𝑘+1)
𝔗𝑇

𝒘
𝑇
𝑹𝑘
𝑇 𝒛𝑇 · 𝑹𝑘

𝑇𝒗𝑇 . (57b)

Remark 9 (Reformulation of 𝑡ℎ). In practice, it is not necessary to compute the piecewise gradient
reconstruction operators 𝑮2(𝑘+1)

𝔗𝑇
to evaluate 𝑡𝑇 and 𝑡ℎ. As a matter of fact, expanding the piecewise

gradient operator in (57) according to its definition (46a), we have that

𝑡ℎ (𝒘ℎ
, 𝒗

ℎ
, 𝒛

ℎ
) =

∑︁
𝑇∈Tℎ

[∫
𝑇

∇𝒘𝑇𝑹
𝑘
𝑇𝒗𝑇 · 𝑹𝑘

𝑇 𝒛𝑇 −
∫
𝑇

∇𝒘𝑇𝑹
𝑘
𝑇 𝒛𝑇 · 𝑹𝑘

𝑇𝒗𝑇

]
+

∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

∫
𝐹

(𝒘𝐹 − 𝒘𝑇 ) · 𝑹𝑘
𝑇 𝒛𝑇 (𝑹

𝑘
𝑇𝒗𝑇 · 𝒏𝑇𝐹)

−
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

∫
𝐹

(𝒘𝐹 − 𝒘𝑇 ) · 𝑹𝑘
𝑇𝒗𝑇 (𝑹

𝑘
𝑇 𝒛𝑇 · 𝒏𝑇𝐹).

The properties of 𝑡ℎ relevant for the analysis are contained in the following lemma.
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Lemma 10 (Properties of 𝑡ℎ). The trilinear form 𝑡ℎ has the following properties:

1. Non-dissipativity. For all 𝒘
ℎ
, 𝒗

ℎ
∈ 𝑼𝑘

ℎ
, it holds that

𝑡ℎ (𝒘ℎ
, 𝒗

ℎ
, 𝒗

ℎ
) = 0. (58)

2. Boundedness. There exists a real number 𝐶𝑡 > 0 independent of ℎ (and, clearly, also of a and
_) such that, for all 𝒘

ℎ
, 𝒗

ℎ
, 𝒛

ℎ
∈ 𝑼𝑘

ℎ
,

|𝑡ℎ (𝒘ℎ
, 𝒗

ℎ
, 𝒛

ℎ
) | ≤ 𝐶𝑡 ∥𝒘ℎ

∥1,ℎ∥𝒗ℎ∥1,ℎ∥𝒛ℎ∥1,ℎ . (59)

3. Consistency. It holds, for all 𝒘 ∈ 𝑼 ∩𝑊 𝑘+1,4(Tℎ)3 such that ∇ · 𝒘 = 0 a.e. in Ω,

∥E𝑡 ,ℎ (𝒘; ·)∥1,ℎ,∗ ≲ ℎ𝑘+1 |𝒘 |𝑊𝑘+1,4 (Tℎ )3 ∥𝒘∥𝑊1,4 (Ω)3 , (60)

where the linear form E𝑡 ,ℎ (𝒘; ·) : 𝑼𝑘
ℎ
→ R representing the consistency error is such that, for

all 𝒛
ℎ
∈ 𝑼𝑘

ℎ
,

E𝑡 ,ℎ (𝒘; 𝒛
ℎ
) ≔ ℓℎ ((∇ × 𝒘) × 𝒘, 𝒛

ℎ
) − 𝑡ℎ (𝑰𝑘ℎ𝒘, 𝑰

𝑘
ℎ𝒘, 𝒛ℎ).

Proof. (i) Non-dissipativity. Immediate consequence of the definition (57) of 𝑡ℎ.

(ii) Boundedness. The proof is similar to that of [11, Lemma 7.ii] using the Hölder inequalities with
exponent (2,4,4), the bound (47), and the discrete Sobolev embedding (41) with 𝑟 = 4. The details
are omitted for the sake of conciseness.

(iii) Consistency. Let �̂�
ℎ
≔ 𝑰𝑘

ℎ
𝒘. Proceeding as in [11, Lemma 7.iii], we obtain the following

decomposition:

E𝑡 ,ℎ (𝒘; 𝒛
ℎ
) =

∑︁
𝑇∈Tℎ

∫
𝑇

(𝑮2(𝑘+1)
𝔗𝑇

�̂�
𝑇
− ∇𝒘)𝑹𝑘

𝑇 𝒛𝑇 · 𝒘︸                                          ︷︷                                          ︸
𝔗1

+
∑︁
𝑇∈Tℎ

∫
𝑇

(∇𝒘 − 𝑮2(𝑘+1)
𝔗𝑇

�̂�
𝑇
)𝒘 · 𝑹𝑘

𝑇 𝒛𝑇︸                                          ︷︷                                          ︸
𝔗2

+
∑︁
𝑇∈Tℎ

∫
𝑇

𝑮2(𝑘+1)
𝔗𝑇

�̂�
𝑇
(𝒘 − 𝑹𝑘

𝑇 �̂�𝑇
) · 𝑹𝑘

𝑇 𝒛𝑇︸                                               ︷︷                                               ︸
𝔗3

+
∑︁
𝑇∈Tℎ

∫
𝑇

𝑮2(𝑘+1)
𝔗𝑇

�̂�
𝑇
𝑹𝑘
𝑇 𝒛𝑇 · (𝑹𝑘

𝑇 �̂�𝑇
− 𝒘).︸                                                ︷︷                                                ︸

𝔗4
(61)

We next proceed to estimate the terms 𝔗1, · · · ,𝔗4.

(iii.A) Estimate of 𝔗1. Following similar steps as in [11, Lemma 7.iii.A] using the approximation
properties (48) of 𝑮2(𝑘+1)

𝔗𝑇
and its definition (46), we get that

|𝔗1 |≲ R#2 point:
Typo

ℎ𝑘+1 |𝒘 |𝐻𝑘+1 (Tℎ )3 ∥𝒘∥𝑊1,4 (Ω)3 ∥𝒛
ℎ
∥1,ℎ . (62)

(iii.B) Estimate of 𝔗2. For the term 𝔗2 in (61), inserting ±𝝅0
𝑇
𝒘 into the second factor, we get

𝔗2 =
∑︁
𝑇∈Tℎ

∫
𝑇

(∇𝒘 − 𝑮2(𝑘+1)
𝔗𝑇

�̂�
𝑇
) (𝒘 − 𝝅0

𝑇𝒘) · 𝑹
𝑘
𝑇 𝒛𝑇 +

∑︁
𝑇∈Tℎ

∫
𝑇

(∇𝒘 − 𝑮2(𝑘+1)
𝔗𝑇

�̂�
𝑇
)𝝅0

𝑇𝒘 · 𝑹𝑘
𝑇 𝒛𝑇

≕ 𝔗2,1 + 𝔗2,2.
(63)
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We bound 𝔗2,1 using Hölder inequalities with exponents (2, 4, 4), then the approximation properties
(48) of 𝑮2(𝑘+1)

𝔗𝑇
and (5a) of 𝝅0

𝑇
with (𝑙, 𝑚, 𝑟, 𝑠) = (0, 0, 4, 1), and the bound (41) with 𝑟 = 4:

|𝔗2,1 | ≲ ℎ𝑘+1 |𝒘 |𝐻𝑘+1 (Tℎ )3 |𝒘 |𝑊1,4 (Ω)3 ∥𝒛
𝑇
∥1,ℎ . (64)

To estimate 𝔗2,2 in (63), we integrate by parts the term involving ∇𝒘 and we use, for each element
𝑇 ∈ Tℎ, the definition (46b) of 𝑮2(𝑘+1)

𝔗𝑇
with (𝒗

𝑇
, 𝝉) = (�̂�

𝑇
, 𝑹𝑘

𝑇
𝒛
𝑇
⊗ 𝝅0

𝑇
𝒘) (notice that 𝑹𝑘

𝑇
𝒛
𝑇
⊗ 𝝅0

𝑇
𝒘 ∈

P𝑘+1(𝔗𝑇 )3×3 ⊂ P2(𝑘+1) (𝔗𝑇 )3×3) to write

𝔗2,2 = −
∑︁
𝑇∈Tℎ

∑︁
𝜏∈𝔗𝑇

∫
𝜏

(𝒘 − 𝝅𝑘
𝑇𝒘) · ∇ · (𝑹𝑘

𝑇 𝒛𝑇 ⊗ 𝝅0
𝑇𝒘)

+
∑︁
𝑇∈Tℎ

∑︁
𝜏∈𝔗𝑇

∑︁
𝜎∈𝔉i

𝑇

∫
𝜎

(𝒘 − 𝝅𝑘
𝑇𝒘) · J𝑹𝑘

𝑇 𝒛𝑇 ⊗ 𝝅0
𝑇𝒘K𝜎𝒏𝜎

+
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

∫
𝐹

(𝒘 − 𝝅𝑘
𝐹𝒘) · (𝑹𝑘

𝑇 𝒛𝑇 ⊗ 𝝅0
𝑇𝒘)𝒏𝑇𝐹 ,

≕ 𝔗2,2,1 + 𝔗2,2,2 + 𝔗2,2,3.

(65)

For 𝔗2,2,1, we first observe that ∇ · (𝑹𝑘
𝑇
𝒛
𝑇
⊗ 𝝅0

𝑇
𝒘) = ∇𝑹𝑘

𝑇
𝒛
𝑇
𝝅0
𝑇
𝒘 + ((((((((

𝑹𝑘
𝑇
𝒛
𝑇
(∇ · 𝝅0

𝑇
𝒘) ∈ P𝑘 (𝔗𝑇 )3.

Hence, using Hölder inequalities with exponents (4, 2, 4), we infer that

|𝔗2,2,1 | ≤
∑︁
𝑇∈Tℎ

∑︁
𝜏∈𝔗𝑇

∥𝒘 − 𝝅𝑘
𝑇𝒘∥𝐿4 (𝜏 )3 ∥∇𝑹𝑘

𝑇 𝒛𝑇 ∥𝐿2 (𝜏 )3×3 ∥𝝅0
𝑇𝒘∥𝐿4 (𝜏 )3

≤
∑︁
𝑇∈Tℎ

∥𝒘 − 𝝅𝑘
𝑇𝒘∥𝐿4 (𝑇 )3 ∥𝝅0

𝑇𝒘∥𝐿4 (𝑇 )3

∑︁
𝜏∈𝔗𝑇

∥∇𝑹𝑘
𝑇 𝒛𝑇 ∥𝐿2 (𝜏 )3×3

≲
∑︁
𝑇∈Tℎ

ℎ𝑘+1
𝑇 |𝒘 |𝑊𝑘+1,4 (𝑇 )3 ∥𝒘∥𝑊1,4 (𝑇 )3

∑︁
𝜏∈𝔗𝑇

∥∇𝑹𝑘
𝑇 𝒛𝑇 ∥𝐿2 (𝜏 )3×3 , (66)

where, in the second step, we have used the fact that 𝜏 ⊂ 𝑇 for all 𝜏 ∈ 𝔗𝑇 , while, in the third step,
we have used the approximation properties (5a) of the 𝐿2-orthogonal projector with (𝑙, 𝑚, 𝑟, 𝑠) =

(𝑘, 0, 4, 𝑘+1) for the first factor and its boundedness for the second factor. To bound ∥∇𝑹𝑘
𝑇
𝒛
𝑇
∥𝐿2 (𝜏 )3×3 ,

we first observe that (𝑹𝑘
𝑇
𝒛
𝑇
) |𝜏 is in the space P𝑘+1(𝜏)3, and it holds that

∥∇𝑹𝑘
𝑇 𝒛𝑇 ∥𝐿2 (𝜏 )3×3 ≤ ∥∇(𝑹𝑘

𝑇 𝒛𝑇 − 𝒛𝑇 )∥𝐿2 (𝜏 )3 + ∥∇𝒛𝑇 ∥𝐿2 (𝜏 )3

≲ ℎ−1
𝜏 ∥𝑹𝑘

𝑇 𝒛𝑇 − 𝒛𝑇 ∥𝐿2 (𝜏 )3 + ∥∇𝒛𝑇 ∥𝐿2 (𝜏 )3

≲ ℎ−1
𝜏 ∥𝑹𝑘

𝑇 𝒛𝑇 − 𝒛𝑇 ∥𝐿2 (𝑇 )3 + ∥∇𝒛𝑇 ∥𝐿2 (𝑇 )3

≲ ℎ−1
𝜏 ℎ𝑇 |𝒛𝑇 |1,𝜕𝑇 + ∥∇𝒛𝑇 ∥𝐿2 (𝑇 )3 ≲ ∥𝒛

𝑇
∥1,𝑇 ,

where we have started with a triangle inequality after inserting ±∇𝒛𝑇 , used a local discrete inverse
inequality on 𝜏 in the second step, the fact that 𝜏 ⊂ 𝑇 for all 𝜏 ∈ 𝔗𝑇 in the third step, the bound
(15) in the fourth step, and the inequality ℎ−1

𝜏 ℎ𝑇 ≲ 1 valid for regular mesh sequences (see [16, Eq.
(1.4)]), along with the definition (7) of the ∥·∥1,𝑇 -norm to conclude. Plugging this last inequality into
(66) and using the geometric bound (3) on 𝔗𝑇 along with a discrete Hölder inequality, we arrive at

|𝔗2,2,1 | ≲ ℎ𝑘+1 |𝒘 |𝑊𝑘+1,4 (Tℎ )3 ∥𝒘∥𝑊1,4 (Ω)3 ∥𝒛
ℎ
∥1,ℎ . (67)
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To estimate 𝔗2,2,2 in (65), we insert ±𝒛𝑇 into the first factor inside the jump operator to write

𝔗2,2,2 =
∑︁
𝑇∈Tℎ

∑︁
𝜏∈𝔗𝑇

∑︁
𝜎∈𝔉i

𝑇

∫
𝜎

(𝒘 − 𝝅𝑘
𝑇𝒘) · J(𝑹𝑘

𝑇 𝒛𝑇 − 𝒛𝑇 ) ⊗ 𝝅0
𝑇𝒘K𝜎𝒏𝜎

−
∑︁
𝑇∈Tℎ

∑︁
𝜏∈𝔗𝑇

∑︁
𝜎∈𝔉i

𝑇

∫
𝜎 ((((((((((((((

(𝒘 − 𝝅𝑘
𝑇𝒘) · J𝒛𝑇 ⊗ 𝝅0

𝑇𝒘K𝜎𝒏𝜎 ,

where the second addend cancels since 𝒛𝑇 ⊗ 𝝅0
𝑇
𝒘 is continuous across the interior faces of 𝔗𝑇 .

Setting 𝔉i
ℎ
≔ {𝜎 ∈ 𝔉i

𝑇
: 𝑇 ∈ Tℎ} and exchanging the order of the sums, we can now express 𝔗2,2,2

in the following equivalent form:

𝔗2,2,2 =
∑︁
𝜎∈𝔉i

ℎ

2∑︁
𝑖=1

∫
𝜎

(𝒘 − 𝝅𝑘
𝑇𝜎

𝒘) ·
[
(𝑹𝑘

𝑇𝜎
𝒛
𝑇𝜎

− 𝒛𝑇𝜎
) ⊗ 𝝅0

𝑇𝜎
𝒘
]
|𝜏𝑖

𝒏𝜏𝑖𝜎 , (68)

where, for a given 𝜎 ∈ 𝔉i
ℎ
, 𝑇𝜎 ∈ Tℎ is the element in which 𝜎 is contained, while 𝜏1 and 𝜏2 denote the

simplices in 𝔗𝑇𝜎
sharing 𝜎. To bound the right-hand side of the above expression, we apply Hölder

inequalities with exponents (4, 2, 4,∞) along with ∥𝒏𝜏𝑖𝜎 ∥𝐿∞ (𝜎)3 = 1 to write

|𝔗2,2,2 | ≤
∑︁
𝜎∈𝔉i

ℎ

2∑︁
𝑖=1

∥𝒘 − 𝝅𝑘
𝑇𝜎

𝒘∥𝐿4 (𝜎)3 ∥(𝑹𝑘
𝑇𝜎

𝒛
𝑇𝜎

) |𝜏𝑖 − 𝒛𝑇𝜎
∥𝐿2 (𝜎)3 ∥𝝅0

𝑇𝜎
𝒘∥𝐿4 (𝜎)3

≲
∑︁
𝜎∈𝔉i

ℎ

2∑︁
𝑖=1

∥𝒘 − 𝝅𝑘
𝑇𝜎

𝒘∥𝐿4 (𝜎)3ℎ
− 1

2
𝜏𝑖 ∥𝑹𝑘

𝑇𝜎
𝒛
𝑇𝜎

− 𝒛𝑇𝜎
∥𝐿2 (𝜏𝑖 )3ℎ

− 1
4

𝜏𝑖 ∥𝝅0
𝑇𝜎

𝒘∥𝐿4 (𝜏𝑖 )3

≲
∑︁
𝜎∈𝔉i

ℎ

(
ℎ

1
4
𝑇𝜎

∥𝒘 − 𝝅𝑘
𝑇𝜎

𝒘∥𝐿4 (𝜎)3

)
∥𝒛

𝑇𝜎
∥1,𝑇𝜎

∥𝒘∥𝑊1,4 (𝑇𝜎 )3 ,

(69)

where, in the second step, we have used local trace inequalities on the submesh for the second and
third factors while, in the third step, we have used 𝜏𝑖 ⊂ 𝑇𝜎 along with (15), (7), and ℎ−1

𝜏𝑖
ℎ𝑇𝜎
≲ 1

(consequence of mesh regularity) for the second factor while, for the third factor, we have used again
𝜏𝑖 ⊂ 𝑇𝜎 along with the boundedness of the 𝐿2-orthogonal projector. Using trace inequalities on the
submesh along with the approximation properties of the 𝐿2-orthogonal projector, we infer ℎ

1
4
𝑇𝜎

∥𝒘 −
𝝅𝑘
𝑇𝜎

𝒘∥𝐿4 (𝜎)3 ≲ ℎ𝑘+1
𝑇𝜎

|𝒘 |𝑊𝑘+1,4 (𝑇𝜎 )3 which, plugged into (69) and combined with the geometric bound
(3), gives

|𝔗2,2,2 | ≲ ℎ𝑘+1 |𝒘 |𝑊𝑘+1,4 (Tℎ )3 ∥𝒘∥𝑊1,4 (Ω)3 ∥𝒛
ℎ
∥1,ℎ . (70)

To bound the term 𝔗2,2,3 in (65), we first insert ±𝒛𝑇 into its second factor to write

𝔗2,2,3 =
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

∫
𝐹

(𝒘 − 𝝅𝑘
𝐹𝒘) ·

[
(𝑹𝑘

𝑇 𝒛𝑇 − 𝒛𝑇 ) ⊗ 𝝅0
𝑇𝒘

]
𝒏𝑇𝐹

+
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

∫
𝐹 ((((((((((((((

(𝒘 − 𝝅𝑘
𝐹𝒘) · (𝒛𝑇 ⊗ 𝝅0

𝑇𝒘)𝒏𝑇𝐹 ,

where the second addend cancels by the definition (4) of the 𝐿2-orthogonal projector 𝝅𝑘
𝐹

since
(𝒛𝑇 ⊗ 𝝅0

𝑇
) |𝐹𝒏𝑇𝐹 ∈ P𝑘 (𝐹)3. Now, we rewrite the equation above as

𝔗2,2,3 =
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

∑︁
𝜎∈𝔉𝐹

∫
𝜎

(𝒘 − 𝝅𝑘
𝐹𝒘) ·

[
(𝑹𝑘

𝑇 𝒛𝑇 − 𝒛𝑇 ) ⊗ 𝝅0
𝑇𝒘

]
𝒏𝑇𝐹 ,
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thus, using a similar procedure as for (68)–(69), but for 𝜎 ∈ 𝔉𝐹 and 𝜏𝑖 = 𝜏𝜎 where 𝜏𝜎 ∈ 𝔗𝑇 is the
simplicial subelement containing 𝜎, we infer that

|𝔗2,2,3 | ≲
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

∑︁
𝜎∈𝔉𝐹

(
ℎ

1
4
𝑇
∥𝒘 − 𝝅𝑘

𝐹𝒘∥𝐿4 (𝜎)3

)
∥𝒛

𝑇
∥1,𝑇 ∥𝒘∥𝑊1,4 (𝑇 )3 ,

in addition, using the fact that

∥𝒘 − 𝝅𝑘
𝐹𝒘∥𝐿4 (𝜎)3 ≤ ∥𝒘 − 𝝅𝑘

𝐹𝒘∥𝐿4 (𝐹 )3

≤ ∥𝝅𝑘
𝑇𝒘 − 𝝅𝑘

𝐹𝒘∥𝐿4 (𝐹 )3 + ∥𝒘 − 𝝅𝑘
𝑇𝒘∥𝐿4 (𝐹 )3

≤ ∥𝝅𝑘
𝐹 (𝝅𝑘

𝑇𝒘 − 𝒘)∥𝐿4 (𝐹 )3 + ∥𝒘 − 𝝅𝑘
𝑇𝒘∥𝐿4 (𝐹 )3 ≲ ∥𝒘 − 𝝅𝑘

𝑇𝒘∥𝐿4 (𝐹 )3 ,

the approximation properties (5b) of the 𝐿2-orthogonal projector with (𝑙, 𝑚, 𝑟, 𝑠) = (𝑘, 0, 4, 𝑘 + 1),
and the bound (3), we obtain

|𝔗2,2,3 | ≲ ℎ𝑘+1 |𝒘 |𝑊𝑘+1,4 (Tℎ )3 ∥𝒘∥𝑊1,4 (Ω)3 ∥𝒛
ℎ
∥1,ℎ . (71)

Plugging the estimates (67), (70), and (71) into (65), and, combining the resulting estimate with
(64), we finally obtain

|𝔗2 | ≲ ℎ𝑘+1 |𝒘 |𝑊𝑘+1,4 (Tℎ )3 ∥𝒘∥𝑊1,4 (Ω)3 ∥𝒛
ℎ
∥1,ℎ . (72)

(iii.C) Estimate of 𝔗3 and 𝔗4. To bound 𝔗3, we follow the same steps as in [11, Lemma 7.iii.C] along
with the boundedness (47) of 𝑮2(𝑘+1)

𝔗𝑇
to obtain

|𝔗3 | ≲ |𝒘 |𝐻1 (Ω)3

( ∑︁
𝑇∈Tℎ

∥𝒘 − 𝑹𝑘
𝑇 �̂�𝑇

∥4
𝐿4 (𝑇 )3

) 1
4

∥𝒛
ℎ
∥1,ℎ .

To estimate each addend in the second factor, we first insert ±𝝅𝑘
𝑇
𝒘 and then use a triangle inequality

to write
∥𝒘 − 𝑹𝑘

𝑇 �̂�𝑇
∥𝐿4 (𝑇 )3 ≤ ∥𝒘 − 𝝅𝑘

𝑇𝒘∥𝐿4 (𝑇 )3 + ∥𝝅𝑘
𝑇𝒘 − 𝑹𝑘

𝑇 �̂�𝑇
∥𝐿4 (𝑇 )3

≲ ℎ𝑘+1
𝑇 |𝒘 |𝑊𝑘+1,4 (𝑇 )3 + ∥𝝅𝑘

𝑇𝒘 − 𝑹𝑘
𝑇 �̂�𝑇

∥𝐿4 (𝑇 )3 ,
(73)

where we have used the approximation properties (5a) of 𝝅𝑘
𝑇

with (𝑙, 𝑚, 𝑟, 𝑠) = (𝑘, 0, 4, 𝑘 + 1) to
conclude. To estimate the second term in the right-hand side of (73), we proceed as follows:

∥𝝅𝑘
𝑇𝒘 − 𝑹𝑘

𝑇 �̂�𝑇
∥4
𝐿4 (𝑇 )3 =

∑︁
𝜏∈𝔗𝑇

∥𝝅𝑘
𝑇𝒘 − 𝑹𝑘

𝑇 �̂�𝑇
∥4
𝐿4 (𝜏 )3

≲
∑︁
𝜏∈𝔗𝑇

(
ℎ
− 3

4
𝜏 ∥𝝅𝑘

𝑇𝒘 − 𝑹𝑘
𝑇 �̂�𝑇

∥𝐿2 (𝜏 )3

)4

≤
∑︁
𝜏∈𝔗𝑇

ℎ−3
𝜏

(
∥𝝅𝑘

𝑇𝒘 − 𝒘∥𝐿2 (𝑇 )3 + ∥𝒘 − 𝑹𝑘
𝑇 �̂�𝑇

∥𝐿2 (𝑇 )3

)4

≲
∑︁
𝜏∈𝔗𝑇

ℎ−3
𝜏 ℎ

4(𝑘+1)
𝑇

|𝒘 |4
𝐻𝑘+1 (𝑇 )3 ≲ ℎ

4(𝑘+1)
𝑇

|𝒘 |4
𝑊𝑘+1,4 (𝑇 )3 ,

where: to pass to the second line we have used the reverse Lebesgue embedding (43) for (𝑋, 𝛼, 𝛽) =
(𝑇, 4, 2); to pass to the third line, we have inserted ±𝒘 and used a triangle inequality along with
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𝜏 ⊂ 𝑇 ; to pass to the fourth line, we have used the approximation properties (5a) of the 𝐿2-orthogonal
projector with (𝑙, 𝑚, 𝑟, 𝑠) = (𝑘, 0, 2, 𝑘 + 1) for the first addend and the approximation property (16)
for the second addend; the conclusion follows from ℎ−1

𝜏 ℎ𝑇 ≲ 1 (consequence of mesh regularity), the
bound (3) on card(𝔗𝑇 ), and the Lebesgue embedding ∥Z ∥𝐿2 (𝑇 ) ≲ ℎ

3
4
𝑇
∥Z ∥𝐿4 (𝑇 ) valid for all Z ∈ 𝐿4(𝑇).

Plugging the above bound into (73), we get

∥𝒘 − 𝑹𝑘
𝑇 �̂�𝑇

∥𝐿4 (𝑇 )3 ≲ ℎ𝑘+1
𝑇 |𝒘 |𝑊𝑘+1,4 (𝑇 )3 .

In conclusion, we have that

|𝔗3 | ≲ ℎ𝑘+1 |𝒘 |𝐻1 (Ω)3 |𝒘 |𝑊𝑘+1,4 (Tℎ )3 ∥𝒛
ℎ
∥1,ℎ . (74)

Using similar arguments as for 𝔗3, we have for the last term

|𝔗4 | ≲ ℎ𝑘+1 |𝒘 |𝐻1 (Ω)3 |𝒘 |𝑊𝑘+1,4 (Tℎ )3 ∥𝒛
ℎ
∥1,ℎ . (75)

(iv.D) Conclusion. Taking absolute values in (61), recalling the definition (9) of the dual norm, and
using the estimates (62), (72), (74), and (75), and additionally noticing that |𝒘 |𝐻1 (Ω)3 ≲ |𝒘 |𝑊1,4 (Ω)3 ,
the conclusion follows. □

3.4 Discrete problem and main results

The HHO discretization of problem (1) reads: Find (𝒖
ℎ
, 𝑝ℎ) ∈ 𝑼𝑘

ℎ,0 × 𝑃𝑘
ℎ

such that

a𝑎ℎ (𝒖ℎ
, 𝒗

ℎ
) + 𝑡ℎ (𝒖ℎ

, 𝒖
ℎ
, 𝒗

ℎ
) + 𝑏ℎ (𝒗ℎ, 𝑝ℎ) = ℓℎ ( 𝒇 , 𝒗ℎ) ∀𝒗

ℎ
∈ 𝑼𝑘

ℎ,0, R#1 minor
point: Typo

(76a)
−𝑏ℎ (𝒖ℎ

, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ P𝑘 (Tℎ). (76b)

The existence of a solution to (76) for any 𝒇 ∈ 𝐿2(Ω)3 can be proved using a topological degree
argument as in [23, Theorem 1]. Similarly, uniqueness can be proved along the lines of Theorem 2
therein under a smallness condition on 𝒇 .

Recalling the Hodge decomposition (2) and denoting by 𝐶𝑃 a Poincaré constant in Ω, Proposition
11 below is the discrete equivalent of the following a priori continuous bound (see [11, Section 2.3])

|𝒖 |𝐻1 (Ω)3 ≤ a−1𝐶P∥𝒈∥𝐿2 (Ω)3 . (77)

Proposition 11 (Uniform a priori bound on the discrete velocity). Let (𝒖
ℎ
, 𝑝ℎ) ∈ 𝑼𝑘

ℎ,0 × 𝑃𝑘
ℎ

be a
solution to (76). Then, given the Hodge decomposition (2) of 𝒇 , we have the following uniform a
priori bound for the velocity:

∥𝒖
ℎ
∥1,ℎ ≲ a−1∥𝒈∥𝐿2 (Ω)3 .

Proof. The proof follows the same reasoning as [11, Proposition 8] with Lemmas 8 and 10 replacing,
respectively, [11, Eqs. (41)–(42) and Lemma 7]. □

Remark 12 (Efficient implementation). When solving the algebraic problem corresponding to (76)
by a first order iterative algorithm, all element-based velocity unknowns and all but one pressure
unknowns per element can be statically condensed at each iteration in the spirit of [20, Section 6.2]
; see [7] for a study of the effect of static condensation strategies on the multigrid resolution of the
global algebraic systems arising from HHO discretizations of incompressible flow problems.
Remark 13 (The two-dimensional case). The two-dimensional version of the method (76) will be
considered numerically in Section 4. Denoting by 𝑢𝑖 , 𝑖 = 1, . . . , 3, the component of the velocity
field along the Cartesian axis 𝑥𝑖 , the two-dimensional plane velocity problem can be recovered from
(1) setting 𝑢3 = 0 and assuming that 𝑢1 and 𝑢2 do not depend on 𝑥3.
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We next consider the discretization error defined as the difference between the solution to the
HHO scheme and the interpolate of the exact solution.

Theorem 14 (Error estimate for small data). Recalling the Hodge decomposition (2) of the forcing
term 𝒇 , we assume that it holds, for some 𝛼 ∈ (0, 1),

∥𝒈∥𝐿2 (Ω)3 ≤ 𝛼
a2𝐶𝑎

𝐶𝑡𝐶𝐼𝐶𝑃

,

where 𝐶𝑎 and 𝐶𝑡 are defined in (53) and (59), while 𝐶𝐼 denotes the continuity constant of the HHO
interpolator in the discrete 𝐻1-like norm (see [16, Proposition 2.2]) and 𝐶𝑃 is the Poincaré constant
in (77). Referees #1

and #2
remark: The
error estimate
is valid now for
arbitrary 𝑘 ≥ 0

Let 𝑘 ≥ 0 and let (𝒖, 𝑝) ∈ 𝑼 × 𝑃 and (𝒖
ℎ
, 𝑝ℎ) ∈ 𝑼𝑘

ℎ
× 𝑃𝑘

ℎ
solve (1) and (76), respectively.

Assuming the additional regularity 𝒖 ∈ 𝐻𝑘+2(Tℎ)3 and 𝑝 ∈ 𝐻1(Ω) ∩ 𝐻𝑘+1(Tℎ), it holds:

∥𝒖
ℎ
− 𝑰𝑘ℎ𝒖∥1,ℎ + a−1∥𝑝ℎ − 𝜋𝑘

ℎ𝑝∥𝐿2 (Ω)

≲ ℎ𝑘+1(1 − 𝛼)−1
(
|𝒖 |𝐻𝑘+2 (Tℎ )3 + a−1∥𝒖∥𝑊1,4 (Ω)3 |𝒖 |𝑊𝑘+1,4 (Tℎ )3

)
. (78)

where the hidden constant is independent of a, _, ℎ, as well as (𝒖, 𝑝).

Proof. Analogous to that of [11, Theorem 11]. □

Remark 15 (Pressure robustness). The error estimate (78) is pressure-robust since the right-hand side
does not depend on _ in (2) nor on the pressure.

4 Numerical tests
In this section we verify numerically the proposed method for general meshes with convex elements
for Ω ⊂ R2. For each element 𝑇 ∈ Tℎ, we construct its simplicial submesh 𝔗𝑇 R#2 point:

Explaining
how 𝔗𝑇 is
constructed

using an ear clipping
algorithm, i.e., we construct 𝔗𝑇 in such a way that no additional internal nodes are introduced and that
𝔉𝑇 = F𝑇 (this construction fulfills the assumptions made in Section 2.1). For the sake of completeness,
we also include comparisons with the original HHO method of [8]. Our implementation is based
on the HArDCore library1 and makes extensive use of the linear algebra Eigen open-source library
[32]. All the steady-state computations presented hereafter are done by means of the pseudo-transient-
continuation algorithm analyzed by [34] employing the Selective Evolution Relaxation (SER) strategy
[44] for evolving the pseudo-time step according to the Newton’s equations residual. Convergence to
steady-state is attained when the Euclidean norm of the residual for the momentum equation drops
below 10−11. At each pseudo-time step, the linearized equations are exactly solved by means of the
direct solver Pardiso [48]. Accordingly, the Euclidean norm of the residual for the continuity equation
is comparable to the machine epsilon at all pseudo-time steps.

4.1 Kovasznay flow

We start by assessing the convergence properties of the method using the well known analytical
solution of Kovasznay [36] with a = 0.025; see, e.g., [16, Section 6.1] for the expression of the
velocity and pressure fields. We consider computations over three ℎ-refined mesh families (Cartesian,
hexagonal and Kershaw type). Figure 3 shows the coarsest mesh for each family. We monitor the
following quantities in Table 3: 𝑁dof and 𝑁nz denoting, respectively, the number of discrete unknowns
and nonzero entries of the statically condensed linearized problem; ∥𝒆

ℎ
∥a,ℎ ≔

[
aaℎ (𝒆ℎ, 𝒆ℎ)

] 1/2, the
energy norm of the error 𝒆

ℎ
≔ 𝒖

ℎ
− 𝑰𝑘

ℎ
𝒖 on the velocity (using the global norm equivalence (53),

an estimate in ℎ𝑘+1 for this quantity is readily inferred from (78)); ∥𝒆ℎ∥𝐿2 (Ω)2 and ∥𝜖ℎ∥𝐿2 (Ω) , the
𝐿2-errors on the velocity and the pressure, respectively. Each error measure is accompanied by the

1https://github.com/jdroniou/HArDCore
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(a) Cartesian. (b) Hexagonal. (c) Kershaw.

Figure 3: Coarsest meshes used in Section 4.1.

corresponding Estimated Order of Convergence (EOC) computed using successive refinement steps.
The results collected in Table 3 show that both the energy norm of the error on the velocity and the
𝐿2-norm of error on the pressure converge as ℎ𝑘+1 as expected. Additionally, the 𝐿2-norm of the
error of the velocity converges with rates close to ℎ𝑘+2.

4.2 Robustness of the velocity error estimate

The second numerical example, inspired by [41, Benchmark 3.3], is meant to demonstrate the robust-
ness of the proposed method for large irrotational body forces. Specifically, we verify numerically
the fact that the approximation of the velocity is independent of both _ and 𝑝. Letting Ω = (0, 1)2 and
_ ≥ 0, we solve the Dirichlet problem corresponding to the exact solution (𝒖, 𝑝) in (1) with velocity

components given by 𝒖(𝒙) ≔
(
−𝑥2
𝑥1

)
and pressure given by 𝑝(𝒙) ≔ _𝑥3

1 +
𝑥2

1+𝑥
2
2

2 − 1
4 . We set a = 1,

then observe that the force in (1a) is purely irrotational, i.e., 𝒇 (𝒙) =
(
3_𝑥2

1
0

)
. In the computations,

we take _ = 106 and consider a sequence of uniformly ℎ-refined meshes equivalent (by scaling and
translation) to the three mesh families used in the previous section, see Figure 3. Table 1 collects
the results for the Cartesian and hexagonal mesh families, and Table 2 for the Kershaw mesh family.
For the sake of comparison, we also report in these tables the corresponding results obtained using
the original HHO method of [8]. It can be noticed that the solution is exactly reproduced by the
present method with 𝑘 = 1 on all the meshes, while a quick convergence is observed for 𝑘 = 0 on the
hexagonal and Kershaw meshes, most likely due to the quadratic nature of the pressure. By contrast,
the HHO method of [8] shows large errors on the velocity due to the lack of pressure-robustness.

4.3 Two-dimensional lid-driven cavity flow

The final numerical test is the classical two-dimensional lid-driven cavity problem. The computational
domain is the unit square Ω = (0, 1)2 and we initially set 𝒇 = 0. Homogeneous (wall) boundary
conditions are enforced at all but the top horizontal wall (at 𝑥2 = 1), where we enforce a unit tangential
velocity 𝒖 = (1, 0) instead. In Figure 4 we report the horizontal component 𝑢1 of the velocity along
the vertical centerline 𝑥1 = 1

2 and the vertical component 𝑢2 of the velocity along the horizontal
centerline 𝑥2 = 1

2 for a global Reynolds number Re ≔ 1
a
= 1000. The computation is carried out

setting 𝑘 = 1 for the finest meshes of the Cartesian, hexagonal, and Kershaw sequences used in the
previous section. Reference solutions from the literature [25, 30] are also included for the sake of
comparison. The numerical solution obtained using the proposed method is in agreement with the
reference results for the selected value of the Reynolds number.

To check the robustness of the method with respect to irrotational body forces, we then run the
same test case but with 𝒇 = _∇𝜓 where 𝜓 = 1

3 (𝑥
3 + 𝑦3). This body force is completely irrotational,
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Figure 4: Two-dimensional lid-driven cavity flow, horizontal component 𝑢1 of the velocity along the
vertical centerline 𝑥1 = 1

2 and the vertical component 𝑢2 of the velocity along the horizontal centerline
𝑥2 = 1

2 for Re = 1,000.

so the velocity approximation obtained using the proposed method (76) should not be affected (and,
therefore, should not depend on _). To verify this, we report in Figure 5 computations for _ = 106,
using 𝑘 = 1 and the same meshes as before. As expected, the velocity profiles are not affected by
the value of _. The same plot also contains the results obtained with the original HHO formulation
of [8], but only for the Cartesian mesh and _ = 103 (convergence was not achieved for _ = 106). It
can be checked that the non-pressure-robust version of the method converges to a complete different
solution.
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A Proof of Lemma 3
Proof. For this proof we take inspiration mainly from [37, Section 3]. R#1 major

point:
checking and
citing related
work

First of all, let us introduce a
few new definitions. We denote by 𝜏 the reference tetrahedron. From the assumptions of Section 2.1,
there exists 𝒙𝑇 ∈ R3 which is a common vertex for all simplices in 𝔗𝑇 . Then, for each 𝜏 ∈ 𝔗𝑇 , it is
possible to construct a one-to-one affine map 𝑭𝜏 : 𝜏 → 𝜏 such that

𝑭𝜏 = J𝜏 �̂� + 𝒙𝑇 , (79)

where J𝜏 is an invertible real matrix of size 3 × 3. Now, given 𝜏 ∈ 𝔗𝑇 and �̂�, �̂� ∈ P𝑙 (𝜏)3 where
𝑙 ≥ 0 we introduce, respectively, the contravariant and covariant Piola’s transformations (see [24]) as
follows,

𝝍𝑑,𝜏 (�̂�) ≔ | det J𝜏 |−1
J𝜏 (�̂� ◦ 𝑭−1

𝜏 ) and 𝝍𝑐,𝜏 (�̂�) ≔ J−T
𝜏 (�̂� ◦ 𝑭−1

𝜏 ), (80)

which crucially satisfy ∫
𝜏

𝝍𝑑,𝜏 (�̂�) · 𝝍𝑐,𝜏 (�̂�) =
∫
�̂�

�̂� · �̂�. (81)

We now introduce the space G
c,𝑘−1(𝜏) ≔ �̂� × P𝑘−2(𝜏)3, and the operator �̂�

𝑘−1
�̂� : 𝐿2(𝜏)3 →

G
c,𝑘−1(𝜏) such that, for all �̂� ∈ 𝐿2(𝜏)3 and all �̂� ∈ G

c,𝑘−1(𝜏),∫
�̂�

_̂2∇̂×�̂�𝑘−1
�̂� (�̂�) · ∇̂×�̂� =

∫
�̂�

�̂� · �̂�, (82)

where _̂ is defined as the product of all the barycentric coordinates of �̂� in 𝜏, i.e., _̂ =
∏4

𝑖=1 _̂𝑖 .
The fact that (82) defines �̂�

𝑘−1
�̂� (�̂�) uniquely follows from the Riesz representation theorem after

observing that ∇̂× : G
c,𝑘−1(𝜏) → P𝑘−2(𝜏)3 is an isomorphism. We then define the operator

𝑬𝑘−1
𝜏 : 𝐿2(𝜏)3 → P𝑘+5(𝜏)3 ∩ 𝐻1

0 (𝜏)
3 as follows (see [37, Eq. (45)])

𝑬𝑘−1
𝜏 (𝒘) ≔ 𝝍𝑑,𝜏

(
∇̂×

[
_̂2∇̂ × �̂�

𝑘−1
�̂� (𝝍−1

𝑑,𝜏 (𝒘))
] )

. (83)

Using standard properties of the contravariant transformation 𝝍𝑑,𝜏 (·), we infer ∇ · 𝑬𝑘−1
𝜏 (𝒘) = 0;

moreover, it is proved in [37, Proof of Proposition 17] that ∥𝑬𝑘−1
𝜏 (𝒘)∥𝐿2 (𝜏 )3 ≲ ∥𝒘∥𝐿2 (𝜏 )3 . Then, for

given a function 𝒗 ∈ 𝐿2(𝑇)3, we define 𝖛0,𝜏 as the interpolate of 𝑬𝑘−1
𝜏 (𝒗) onto the space RT

𝑘 (𝜏),
thus we have ∇ · 𝖛0,𝜏 = 0. Additionally, since 𝑬𝑘−1

𝜏 (𝒗) ∈ 𝐻1
0 (𝜏)

3, 𝖛0,𝜏 has zero normal trace at
the boundary of 𝜏 and, using standard interpolation estimates for 𝖛0,𝜏 (see, e.g., [6, Proposition
2.5.1]), the bound ∥𝑬𝑘−1

𝜏 (𝒗)∥𝐿2 (𝜏 )3 ≲ ∥𝒗∥𝐿2 (𝜏 )3 , and a discrete inverse inequality (this is valid since
𝑬𝑘−1

𝜏 (𝒗) is a polynomial function), it is inferred that ∥𝖛0,𝜏 ∥𝐿2 (𝜏 )3 ≲ ∥𝒗∥𝐿2 (𝜏 )3 . We now define
�̃�

𝑘

𝑇 (𝒗) ∈ RT
𝑘
0 (𝔗𝑇 ) as

�̃�
𝑘

𝑇 (𝒗) |𝜏 ≔ 𝖛0,𝜏 ∀𝜏 ∈ 𝔗𝑇 , (84)
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and observe that �̃�𝑘

𝑇 (𝒗) clearly satisfies the properties (18b–18d) from the above discussion.
To prove (18a), we introduce the space

G
c,𝑘−1(𝔗𝑇 ) ≔ (𝒙 − 𝒙𝑇 ) × P𝑘−2(𝔗𝑇 )3, (85)

and denote the 𝐿2-orthogonal projector onto this space by 𝝅c,𝑘−1
G ,𝔗𝑇

. Observe that G
c,𝑘−1(𝑇) ⊂

G
c,𝑘−1(𝔗𝑇 ), thus

𝝅c,𝑘−1
G ,𝑇

(𝝅c,𝑘−1
G ,𝔗𝑇

𝒘) = 𝝅c,𝑘−1
G ,𝑇

𝒘 ∀𝒘 ∈ 𝐿2(𝑇),
then (18a) holds a fortiori if we prove that

𝝅c,𝑘−1
G ,𝔗𝑇

�̃�
𝑘

𝑇 (𝒗) = 𝝅c,𝑘−1
G ,𝔗𝑇

𝒗. (86)

To prove it, let 𝒈 ∈ G
c,𝑘−1(𝔗𝑇 ) and 𝜏 ∈ 𝔗𝑇 . Then, using the definition (84) of �̃�𝑘

𝑇 (𝒗), we obtain, for
all 𝜏 ∈ 𝔗𝑇 ,∫

𝜏

�̃�
𝑘

𝑇 (𝒗) · 𝒈 =

∫
𝜏

𝖛0,𝜏 · 𝒈 =

∫
𝜏

𝑬𝑘−1
𝜏 (𝒗) · 𝒈 =

∫
�̂�

𝝍−1
𝑑,𝜏 (𝑬

𝑘−1
𝜏 (𝒗)) · 𝝍−1

𝑐,𝜏 (𝒈) ≕ 𝔗, (87)

where in the second step we have used the interpolation properties of 𝖛0,𝜏 and the fact that 𝒈 |𝜏 ∈
P𝑘−1(𝜏)3 along with the definition of the Raviart–Thomas interpolator, and in the last step the
definitions (80) of the Piola transformations and the identity (81). By definition (85), we have that
𝒈 |𝜏 = (𝒙 − 𝒙𝑇 ) × 𝒒𝒈 where 𝒒𝒈 ∈ P𝑘−2(𝜏)3. With this mind, and using (79), we get that

𝝍−1
𝑐,𝜏 (𝒈) (�̂�) = (J−1

𝜏 )−T
(
J𝜏 �̂� × 𝒒𝑔 (𝑭𝜏 (�̂�))

)
= �̂� × det(J𝜏)J−1

𝜏 𝒒𝑔 (𝑭𝜏 (�̂�)), (88)

where in the last step we have used the matrix-cross-product identity (see [24, Ex.9.5]) A−T(𝒚 × 𝒛) =
det(A)−1

A𝒚 × A𝒛 valid for any 𝒚, 𝒛 ∈ R3 and any invertible real matrix A of size 3 × 3. Now, define
�̃�𝑔 ≔ det(J𝜏)J−1

𝜏 𝒒𝑔 (𝑭𝜏 (�̂�)) ∈ P𝑘−2(𝜏)3. Then, using the definition (83), we compute 𝔗 in (87) as
follows:

𝔗 =

∫
�̂�

∇̂×
(
_̂2∇̂×�̂�𝑘−1

�̂� (𝝍−1
𝑑,𝜏 (𝒗))

)
· (�̂� × �̃�𝑔)

=

∫
�̂�

_̂2∇̂×�̂�𝑘−1
�̂� (𝝍−1

𝑑,𝜏 (𝒗)) · ∇̂×(�̂� × �̃�𝑔)

=

∫
�̂�

𝝍−1
𝑑,𝜏 (𝒗) · (�̂� × �̃�𝑔) =

∫
𝜏

J
−1
𝜏 𝒗 · JT

𝜏 ((𝒙 − 𝒙𝑇 ) × 𝒒𝑔) =
∫
𝜏

𝒗 · 𝒈,

where, in the second line, we have used integration by parts, along with the fact that _̂2∇̂×�̂�𝑘−1(·)
vanishes at the boundary of 𝜏, in the third line first the definition (82), then a change of coordinates
using (79) along with the definitions (80) and the same matrix-cross-product identity as before, and
finally some standard properties of the transpose. Thus, using the last equation above and (87), we
have that ∫

𝑇

�̃�
𝑘

𝑇 (𝒗) · 𝒈 =
∑︁
𝜏∈𝔗𝑇

∫
𝜏

�̃�
𝑘

𝑇 (𝒗) · 𝒈 =
∑︁
𝜏∈𝔗𝑇

∫
𝜏

𝒗 · 𝒈 =

∫
𝑇

𝒗 · 𝒈. (89)

Since 𝒈 is an arbitrary element of Gc,𝑘−1(𝔗𝑇 ), it implies (86), and we conclude. □

Remark 16 (The common vertex assumption). In the proof of Lemma 3, the fact that 𝒙𝑇 is a common
vertex for all simpex 𝜏 ∈ 𝔗𝑇 allows to express the affine transformation 𝑭𝜏 : 𝜏 → 𝜏 as (79) implying
the key property that the covariant transformation 𝝍𝑐,𝜏 : Gc,𝑘−1(𝜏) → (𝒙 − 𝒙𝑇 ) × P𝑘−2(𝜏)3, defined
in (80), is an isomorphism. This is required for (88) and (89), and then making possible to prove
(18a) and (18d).
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𝑁dof ∥𝒆
ℎ
∥a,ℎ EOC ∥𝒆ℎ∥𝐿2 (Ω)2 EOC ∥𝜖ℎ∥𝐿2 (Ω) EOC

Cartesian, 𝑘 = 0

540 5.92E-01 – 1.11E-01 – 2.54E-01 –
2080 3.35E-01 0.822 3.54E-02 1.644 8.58E-02 1.565
8160 1.78E-01 0.911 9.92E-03 1.835 2.46E-02 1.800
32320 9.10E-02 0.969 2.59E-03 1.938 6.50E-03 1.923

Cartesian, 𝑘 = 1

980 2.04E-01 – 1.97E-02 – 4.91E-02 –
3760 5.73E-02 1.831 2.28E-03 3.114 5.86E-03 3.067
14720 1.51E-02 1.926 2.91E-04 2.970 7.75E-04 2.918
58240 3.85E-03 1.96 3.75E-05 2.957 1.08E-04 2.845

Hexagonal, 𝑘 = 0

3241 8.26E-01 – 5.46E-02 – 1.53E-01 –
12081 4.42E-01 0.901 1.71E-02 1.674 4.21E-02 1.861
46561 2.27E-01 0.964 4.78E-03 1.838 1.10E-02 1.929

182721 1.14E-01 0.986 1.25E-03 1.931 2.85E-03 1.954

Hexagonal, 𝑘 = 1

6041 4.80E-01 – 3.04E-02 – 1.03E-01 –
22481 8.40E-02 2.515 1.42E-03 4.421 4.53E-03 4.507
86561 1.78E-02 2.237 1.23E-04 3.529 4.20E-04 3.432

339521 4.20E-03 2.085 1.37E-05 3.164 6.84E-05 2.618

Kershaw, 𝑘 = 0

5577 5.76E-01 – 1.78E-01 – 2.10E-01 –
22044 2.46E-01 1.231 6.36E-02 1.488 8.74E-02 1.269
49401 1.50E-01 1.230 2.93E-02 1.921 4.27E-02 1.774
87648 1.08E-01 1.142 1.66E-02 1.983 2.47E-02 1.908

136785 8.46E-02 1.092 1.06E-02 1.995 1.60E-02 1.951

Kershaw, 𝑘 = 1

10065 4.51E-01 – 5.88E-02 – 1.50E-01 –
39732 7.00E-02 2.701 2.35E-03 4.672 5.12E-03 4.897
89001 3.02E-02 2.080 5.08E-04 3.785 1.09E-03 3.830

157872 1.64E-02 2.131 1.78E-04 3.653 4.23E-04 3.299
246345 1.04E-02 2.032 7.80E-05 3.703 2.11E-04 3.112

Table 3: Convergence rates for the numerical test of Section 4.1.
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