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Abstract

In a recent work [11], we have introduced a pressure-robust Hybrid High-Order method
for the numerical solution of the incompressible Navier—Stokes equations on matching simplicial
meshes. Pressure-robust methods are characterized by error estimates for the velocity that are fully
independent of the pressure. A crucial question was left open in that work, namely whether the
proposed construction could be extended to general polytopal meshes. In this paper we provide
a positive answer to this question. Specifically, we introduce a novel divergence-preserving
velocity reconstruction that hinges on the solution inside each element of a mixed problem on
a subtriangulation, then use it to design discretizations of the body force and convective terms
that lead to pressure robustness. An in-depth theoretical study of the properties of this velocity
reconstruction, and their reverberation on the scheme, is carried out for arbitrary polynomial
degrees k > 0 and meshes composed of general polytopes. The theoretical convergence estimates
and the pressure robustness of the method are confirmed by an extensive panel of numerical
examples.

Key words: Hybrid High-Order methods, incompressible Navier-Stokes equations, general
meshes, pressure robustness

MSC 2010: 65N08, 65N30, 65N12, 35Q30, 76D05

1 Introduction

This paper focuses on numerical approximations of the Navier—Stokes equations robust with respect to
large irrotational body forces. Specifically, we address a nontrivial question left open in the previous
work [11], namely whether robustness can be achieved on general polyhedral meshes such as the ones
supported by the Hybrid High-Order (HHO) method [16, 22].

Let Q c R’ denote an open, bounded, simply connected polyhedral domain with Lipschitz

boundary dQ. Let v > 0 be the kinematic viscosity of the fluid and f € L?(Q)3 a given vector
field representing a body force. Setting U = H& (Q)3and P := L%(Q) = {q e LX(Q): fg q= O}, we

*danielcq.mathematics @ gmail.com
Tdaniele.di-pietro@umontpellier.fr

R#1 and R#2
remark: The
proposed
method now
works for
arbitrary k > 0
and general
meshes


mailto:danielcq.mathematics@gmail.com
mailto:daniele.di-pietro@umontpellier.fr

consider the Navier—Stokes problem: Find (u, p) € U X P such that

V/Vu:Vv+/((V><u)><u)-v—/(V-v)p:/f-v Vv e U, (1a)
Q Q Q Q
/(V ‘u)g =0 Vg € L*(Q). (1b)
Q

Above, V- and Vx denote, respectively, the divergence and curl operators, while X is the cross product
of two vectors. The convective term in (1a) is expressed in rotational form, so p is here the Bernoulli
pressure, which is related to the kinematic pressure pyi, by the equation p = pyi, + %lu 2.

The domain Q being simply connected, we have the following Hodge decomposition of the body
force (see, e.g., [2, Section 4.3]):

f=g+AVy, 2

where g is the curl of a function in H (curl; Q) the tangent trace of which vanishes on 0Q, y € H!(Q)
is such that [|V¢/||;2(q)> = 1, and 4 € R". It is well-known that, at the continuous level, the velocity
field is entirely determined by the first component in the decomposition (2). This property, however,
does not carry out automatically to the discrete level. The development of numerical methods that
possess this property, and which are sometimes referred to in the literature as pressure-robust, has
been an active field of research over the last few years; see, e.g., [1, 26, 33, 41, 42] concerning finite
element methods on standard meshes.

Recently, the mathematical community have become interested in the development of arbitrary-
order approximation methods that support more general meshes than standard finite elements and
which can include, e.g., polyhedral elements and non-matching interfaces. A representative but by
far non exhaustive list of references concerning incompressible flow problems includes [4, 5, 8, 18,
19, 23, 29, 52]; see also the recent works [10, 12] concerning non-Newtonian fluids. Pressure-robust
variations of the HHO method on matching simplicial meshes for the Stokes and Navier—Stokes
problem have been proposed, respectively, in [11, 20].

The development of pressure-robust methods on polyhedral meshes is, however, a challenging
task. Some of the first genuinely pressure-robust polyhedral methods for the Stokes equations
have been proposed in [43, 51, 53]. These methods handle the lowest order case using a velocity
reconstruction in H(div; Q) introduced in [13] and relying on Wachspress (generalized barycentric)
coordinates. This approach has two shortcomings: first, the faces of each (convex) polyhedral element
must be either triangles or parallelograms; second, error estimates for the approximated velocity
would require gradient bounds for the Wachspress coordinates on an arbitrary convex polyhedron, the
derivation of which remains, to the best of our knowledge, an open problem. Regarding arbitrary-order
methods on general meshes, a pressure-robust Virtual Element method has been recently proposed in
[27] for the Stokes equations. The extension of this method to the Navier—Stokes equations remains,
to the best of our knowledge, an open problem. A pressure-robust discretization scheme for the full
Navier—Stokes equations has been proposed in [35] based on the staggered Discontinuous Garlekin
method. This method solves for three unknowns (the pressure, the velocity, and its gradient), thus
leading to larger algebraic systems. Recently, a novel HHO method for which pressure-robustness
has been numerically demonstrated has been proposed in [9]. This method uses a larger pressure
space than the one considered in the present work, and the derivation of rigorous pressure-robust
error estimates is still to be done. An entirely different approach to pressure-robustness on polyhedral
meshes has also been recently pursued in [49], hinging on the compatibility features of Discrete de
Rham [15, 17] and Virtual Element methods. While this approach leads to a fully pressure-robust,
arbitrary-order method, it is based on a curl-curl formulation of the viscous term, which does not lend
itself naturally to the treatment of certain standard boundary conditions.



In the present work, we propose a novel fully pressure-robust HHO method for the Navier—Stokes
problem (1) that works in space dimension two and three and supports general meshes composed of
polytopal elements. The cornerstone of the method is a local divergence-preserving reconstruction
of the velocity built inside each mesh element 7" by solving a mixed problem inspired by [38—40] on a
subtriangulation of T'; see also [50]. The assumptions made in Section 2.1 for each element 7" enable
us to derive the required continuity and approximation bounds for this reconstruction. Robustness
with respect to large irrotational body forces is achieved by leveraging the divergence-preserving
velocity reconstruction in the discretisation of both the convective term and the body force, so that
similar properties as the ones discussed in [11, Section 4.3 and Lemma 7] are obtained for these
terms.

The rest of the paper is organised as follows. In Section 2 we introduce the discrete setting,
including mesh assumptions, notation, and the novel divergence-preserving velocity reconstruction.
Section 3 contains the discrete problem and the main results of the analysis, with particular focus
on the definition and properties of the discrete convective trilinear form. A complete panel of two-
dimensional numerical tests on a variety of polygonal meshes is provided in Section 4, including a
comparison with the standard HHO scheme of [8].

2 Discrete setting

The following exposition focuses on the three-dimensional case d = 3, the two-dimensional case
d = 2 being a special instance of the latter as detailed in Remark 13 below.

2.1 Mesh

Following [16, Definition 1.4], we consider a polyhedral mesh defined as a couple My, = (75, 1),
where 7}, is a finite collection of polyhedral elements which we additionally assume to be convex (see
Remark 5 below on how to relax this assumption), while ¥y is a finite collection of planar faces F.
For any mesh element or face X € 7, U ¥, we denote by |X| its Hausdorff measure and by Ay its
diameter, so that the meshsize satisfies 4 = maxreg;, hr. Boundary faces lying on 02 and internal
faces contained in Q are collected in the sets 7—“;’ and 7’2, respectively. For each mesh element 7" € 7j,,
we denote by F7 the set collecting the faces that lie on the boundary 0T of T and, for all F € Fr, we
denote by nrr the (constant) unit vector normal to F' and pointing out of 7'.

It is assumed that M, belongs to a regular mesh sequence (My,), in the sense of [16, Definition
1.9]. This assumption entails the existence of a matching simplicial submesh My, := (T, Fn) of My,
with the following properties: T, is a finite collection of simplicial elements; for any simplex 7 € I,
, there is a unique mesh element 7' € 7;, such that 7 C T; for any simplicial face o € & and any
mesh face F € ¥, ,eitherc N F =@ or o C F. For T € Ty, we define Ty as the set of all simplices
of T, contained in T (see Figure la) and FT as the set of faces of & that lie in the interior of 7.
For F € F,, &r denotes the set of simplicial faces o for which o C F, and we let n, := npp, and
Ny = i, for the unique element v € Tr, T € Ty, which contains 0. Additional notations for mesh
elements and faces are introduced at the beginning of Section 2.5 and illustrated in Figure 1b. For
future use, we notice that, by [16, Lemma 1.12], mesh regularity implies the existence of an integer
N > 0 depending only on the mesh regularity parameter such that

max max card(Tr) < N and max max card(¥7) < N. 3)
h TeT, h TeT,

We additionally make the assumption that, for all element T € 7}, its submesh Tt is constructed
in such way that all simplices in T7 have at least one common vertex (see Remarks 4 and 16 for the
technical details of this assumption) . This vertex will be denoted xr. In particular, when x7 lies in
the interior of T, we call T a pyramidal submesh. The Figure 2 shows two examples of submeshes
that satisfy the current assumption.
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(a) The elements of T and Fr. (b) A closer look to the bottom part: The face;s
01,072,073 are interior faces, i.e., {o1,02,03} C &
For the set {0y, 05}, we have o4 = Fj and 05 = F».

Figure 1: An illustration of the sets T, ¥r and i}‘T for a given element T € 7}, in RZ.

(a) Pyramidal submesh. (b) Non-pyramidal submesh.

Figure 2: Two examples of submeshes T7 in R? that satisfy the assumptions of the Section 2.1 . The
red dot represents the vertex x7.

In order to prevent the proliferation of generic constants we write, whenever possible, a < b in
place of a < Cb with C > 0 independent of v, A, h and, for local inequalities, also on the mesh
element or face. The dependencies of the hidden constant will be further specified when relevant.
Moreover, we write a ~ b, when both a < b and b < a hold.

2.2 Local and broken spaces and projectors

Let X denote a mesh element or face and, for an integer [ > 0, denote by P!(X) the space spanned
by the restrictions to X of polynomials in the space variables of total degree < I. The L>-orthogonal
projector né( : L'(X) — PY(X) is such that, for all € L'(X),

/(g ~rkOw=0  VwePI(X). 4)
X

Vector and matrix versions of the L2-orthogonal projector are obtained by applying ﬁé( component-
wise, and are both denoted with the bold symbol né( in what follows. Optimal approximation
properties for the L?-orthogonal projector are proved in [21, Appendix A.2]; see also [16, Chapter 1],
where these estimates are extended to non-star shaped elements. Specifically, let s € {0, ...,/ + 1}

4



and r € [1,+oc0]. Then, it holds, with hidden constant only depending on /, s, r, and the mesh
regularity parameter: For all T € 7, all £ € WS- (T), and all m € {0, ..., s},

& = 73 Llwmrry S h ™ lwsr (1), (52)

and,ifs > landm <s-—1,

1 -
hill = mhllwmr (/) S By L lwsr (1), (5b)

where W"™" (Fr) is the space spanned by functions in L"(dT) that are in W™ (F) for all F € 7,
endowed with the corresponding broken norm.

At the global level, the space of broken polynomial functions on 7;, of total degree < [ is
denoted by P! (75,), and ﬁil is the corresponding L?-orthogonal projector such that, for all / € L'(Q),
(ﬂilg T = ang jr for all T € 7;,. Regularity requirements in error estimates will be expressed in
terms of the broken Sobolev spaces W*" (7;,) spanned by functions in L" (Q) the restriction of which
to every T € Ty, is in W (T). We additionally set, as usual, H*(7) = W*2(75).

2.3 Discrete spaces and norms
Let a polynomial degree k£ > 0 be fixed. We define the HHO space as usual, setting
Q;‘l = {Kh = ((v7)res,, VF)Fes,) VT € PK(T)3 forall T € 75 and vy € P¥(F)> forall F € 7—7,} .

The restrictions of U’ fl andy, eU fl to a generic mesh element 7' € 7, are respectively denoted by U ;
and v, = (vr, (VF)Fres). The vector of polynomials corresponding to a smooth function over Q is
obtained via the global interpolation operator I ’;l CHY (Q)P - U 1;1 such that, for all v € H'(Q)?,

Liv = ((m5v|1)req,, (T5v|F)Fes;,)- (6)

Its restriction to a generic mesh element 7' € 7, collecting the components on 7" and its faces, is
denoted by I ; We furnish U ’;l with the discrete H'-like seminorm such that, for all v n€U fl,

]/2
. 2
v llan o= (Z ||zT||1,T) ,

TeTy,
where, for all T € 73,
1/2

1/2
. 2 2 : . -1 2
“KTHI,T = (“VVTHLz(T)axs + |KT|1,6T) with |KT|1,6’T = ( § he llve - VT”Lz(F)3 . (N
FeFr

The discrete spaces for the velocity and the pressure, respectively accounting for the wall boundary
condition and the zero-average condition, are

Q’Z,O ={v, = (01)ren, VF)res;) €UL :vp =0 VF € 7P}, P = PX(Th) N P.

Forally, e U ﬁ we denote by v;, € Pk (7;,)? the vector-valued broken polynomial function obtained
patching element-based unkowns, that is (vj,)|7 := vy for all T € 7}. The following discrete Sobolev
embeddings in Qﬁ,o have been proved in [21, Proposition 5.4]: For all r € [1, 6] it holds, for all

k
v, €U,
Wl @3 < lvglln. (®)

where the hidden constant is independent of both 4 and vy, , but possibly depends on L, k, r, and the
mesh regularity parameter. It follows from (8) that the map ||-||1,, defines a norm on U ﬁ’o. Classically,

the corresponding dual norm of a linear form £, : U fl o — Ris given by

N Lrll1,n, = sup | L1 (v,)|. 9

Yu EQE,()’ ||Kh ” 1 ,hzl

5



2.4 Divergence-preserving local velocity reconstruction

Following [22], for any element T € 7}, we define the discrete divergence operator D’; U ’} — PK(T)
such that, for all y,. € Q§ and all ¢ € PX(T),

/D§KTQ=—/VT‘V6]+ Z /(VF'nTF)CI- (10)
T T F

Fe¥r

Crucially, the operator D’; satisfies the following commutation property (see [16, Eq. (8.21)]):
DiIky =nk(V-v) W eH'(T). (11)

To achieve pressure robustness in the sense made precise by Remark 15 below, we reconstruct
divergence-preserving velocity test functions, which are used for the discretization of the body force
and the nonlinear term. Let an element T € 7}, be fixed and, for 7 € T, denote by R Tk(r) =
Pk(1)? + xPk (1) the local Raviart-Thomas—Nédélec space of degree k [45, 47]. We recall that a
function in RT* () is uniquely determined by its polynomial moments of degree up to (k — 1) inside
7 and the polynomial moments of degree k of its normal component on each face o € §, (with §,
denoting the subset of &, collecting the simplicial faces of 7). We additionally note the following
local norm equivalence uniform in 4:

1012, 0 = 75 02, o+ D bl neglls,,  VweRTHD).  (12)

oEFr
We introduce the Raviart-Thomas—Nédélec space of degree k on the matching simplicial submesh
T of T defined as follows:
RT*(Tr) = {w € Hgi(T) : w; € RT*(7) forall 7 € Ty },

where Hyiy(T) = {w € L*(T)? : V-w € L3(T)}. We also introduce the subspace of RT*(Tr)
spanned by functions with zero normal trace on the boundary of 7"

R‘TS(‘IT) = {m e RT*(Tr) :w-n, =0forallo € Fpandall F € TT}

Recall from Section 2.1 that, for a given element T € 7, we denote by x7 the common vertex of
all simplices in . With this in mind, we additionally introduce the following space generated by
the Koszul operator ([2, Section 7.2]):

GOK(T) = (x —x7) xPEN(TY fork > 1,

and define G 1(T) := G“°(T) := {0}. Observe that we have the following decomposition for
Pk(T)3 (see [2, Corollary 7.4]):

PH(T)? = VP U(T) @ G<H(T), (13)

where the direct sum above is not orthogonal in general. Additionally, we define the L2-orthogonal

projector on the space GS*(T) as ncg’kT. Then, the divergence-preserving velocity reconstruction

R§ : Q; — RT*(Ir) is defined, for all vy el ’}, as the first component of the solution of the
following mixed problem: Find (R§KT’ W, ) € RTH(T) x PX(Tr) x G&*~1(T) such that

(RYy)\o Mo = (VF - nrF)e Yo € Fr, VF € Fr, (14a)

[-Repo= [0hepe  voertan. (14b)

/T Riv, €= /T vy - € v € YN, (14c)

/R§3T-w+/(v.w)¢+/w-;=/vT-w Vw e RTH (7). (14d)
T T T T



Remark 1 (Allowing more than pyramidal meshes). A similar divergence-preserving operator has
been proposed in [40, Section 4.2] in the context of finite elements pairs with continuous pressures.
However, adapting it to the current HHO framework will restrict the submesh T to be only a
pyramidal submesh (or a vertex patch in the terminology of [40]). Specifically, using the methodology
introduced in [40, Proof of Theorem 12], to prove the equation (17) below, it will be necessary to
construct the Lagrange hat function of x7 (a polynomial function ¢ € P'(Z ) such that g(x7) = 1
and vanishes at the other vertices of T7) and use its properties with the crucial restriction that this
hat function must vanish at the boundary of 7. This is only possible when T7 is pyramidal. In the
current manuscript, we avoid this restriction using Lemma 3 below.

Lemma 2 (Properties of RY). It holds:

(i) Well-posedness. For a given vy, € U ’}, there exists a unique solution to problem (14), and it
holds that

v = Rivlli2crys S hrlvgliar. (15)
(ii) Approximation. For all v € H**\(T)3, it holds

v = RE (L)l 2y < 15T W i (7). (16)

(iii) Consistency. Fora giveny, € Q’}, it holds, for k > 1,

mh  (Rby,) = ok (vr). 17)

The proof makes use of the following Lemma, whose proof is given in Appendix A.

Lemma 3 (Raviart-Thomas lifting of the projection in G&*~'(T)). Let T € 75 and a function
v € L>(T)3 be given. Then, for k > 2, there exists ﬁ]}(v) € R’T‘g(fIT) such that

SR 0) = 55, (18a)
V- Re(v) =0, (18b)
Ryv) ne=0 Voeg, (18¢)
IRF 2 < W12y (184)

Remark 4 (The common vertex assumption for k € {0, 1}). The common vertex assumption described
in Section 2.1 is not necessary for k € {0, 1} since, for those cases, G*~! becomes the trivial space,
and Lemma (3) is not needed.

Proof. (i) Well-posedness. We prove this item in three parts starting with the existence and uniqueness
k

of Ry ,.

(i.A) Existence, uniqueness, and decomposition of R’;KT. The existence and uniqueness of a solution

to problem (14) follows from the classical theory of mixed problems given the compatibility of the
selected spaces; see, e.g., [14, Section 14] and Lemma 3 below. In order to prove the a priori estimate
(15), we decompose R?gT as follows:

Riy, =0+, (19)

where:
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« v € RT*(I7) is a lifting of the boundary values defined by prescribing its DOFs as follows:

V1 eI, /o’ ‘w =0, vw e P*1(1)3, (20a)
Vo € F, / (v -ny)p=0 Yo € Pr (o), (20b)
VF € fr, Vo € §F, v, e =(VF NTF)|0; (20c)

* Letting Pé‘(IT) = {¢ e PK(Tp): fT ¢ = 0}, vy is the first component of the unique solution
to the following mixed problem: Find (vg, ¥, {) € RTS(ST) X SD(;‘ (T1) x G&*1(T) such that
[ wme= [k, -v-v00  veerian.  ew

T T
[oneg=[vrg Vg€ 6T, (21b)

T T
/no-w+/(V-m)zp+/w-§:/(vT—o’)-w Vwe RTE(Tr),  (2lc)

T T T T

where we have used equation (20a) along with the fact that G&*~1(T) ¢ P*~1(T1)3 in the
right hand side of (14c) to write v instead of vy — v’.

(i.B) Boundedness. We begin by proving the following estimate:

1
IRF vl 2rys < Wrllizerys + hrllvpllir + Z hplvell 2 rys- (22)
Fesr

Let L(z)(T) = {§ e LX(T) : fT &= 0} and denote by € H'(T) N L(z)(T) the solution of the equation

/w) V¢ = /(D?KT -V-v)¢  VEe HY(T) N LY(T). (23)
T T
We recall that (23) is the weak form of the following strong Neumann problem
~A8 = (Dky, -V -v) inT, (24a)
06
— =0 on 0T . (24b)
on

Since /T(D§KT —V-v’) = 0by (10) with ¢ = 1 and using integration by parts for the integral having
V - v’ along with (20c), the compatibility condition for problem (24) is satisfied, yielding existence
and uniqueness of #. Moreover, since T is a convex polyhedron and the forcing term is in L(T), then
0 € H*(T) N L3(T) (see [31, Section 8.2]) with

012y < ||DI;KT =Vl 201y (25)

where it can be checked following the argument in the reference that the hidden constant does not
depend on T. Setting & = 6 in (23) and using the Cauchy—Schwarz inequality followed by the
Poincaré-Wirtinger inequality [|{|| 27y < h7T|§|H1(T) valid forall £ € H'(T) n L%(Q) (see [3, 46]),
we estimate

0151 (1) S hrlD5vy =V -0 [l 21, (26)



Let now z := —V6 € H'(T)?. Defining 2 € ‘R’Tg(fIT) as the interpolate of zo onto RT*(Tr), and

using the commutation property V - Zg = ﬂéT(V - o) with ﬂéT denoting the L2-orthogonal projector

onto PX(T7) (see, e.g., [6, Section 2.5.2)), it is inferred that V - 2o = zr (V Z0) = (D vp=V-v'),
where we have used (24a) in the last step. Therefore, by (21a), V - (vg — zo) 0. Now, using Lemma
3, let3; = I?;(VT - %) € R‘TS(IT), and set Z := 2o + 2;. Using (18b), we get V- (vy — 2) = 0;
moreover, using (18a) and (21b), we have 7r° k- 1(1)0 Z) = 0. Taking then w = vy — Z as a test
function in (21c), we obtain

/no (9 -2) = /(vT—v/) (09— 2). @7)
T T
Thus, it is readily seen that
190207y = [ 0=2)- (00 -2)
= [or-v-2- -2
T
< (Ivr = 2llz2crys + 1912y ) 19 = 22
< (Ivr = Zollzacrye + W21l 2y + 192y ) 190 = 2l 22y
< (Iv7 = 2oll2crye + 11123 ) 190 = 2ll 2y
< (”VT = zollz2¢rys + 120 = Zoll 273 + ||U'||L2(T)3) 100 — 2l L2¢7)3
= (T1+ Lo+ T3)lIvo — Zll 2135 (28)

where we have used equation (27) in the second step, Cauchy—Schwarz and triangle inequalities in the
third step, the definition of Z for the first term in the parentheses and a triangle inequality in the fourth
step, the definition of Z; along with the bound (18d) in the fifth step, and again a triangle inequality
after inserting +z¢ into the first norm in the sixth step.

To estimate ¥, we begin using the triangle inequality to obtain

Ty < vrllzy +lzoll 2y S Wrllzerys + hrllDjvy = V-0l 2y
< Ivrllzacry + hr (15wl 2y + 19 - llacr)) (29)

where we have used (26) to bound the second term in the second step, and a triangle inequality in the
last step. For the first term in parentheses, integrating by parts the right-hand side of (10), applying
Cauchy—Schwarz and discrete trace inequalities, and taking the supremum over g € P*(T), we obtain

||DTKT||L2(T) v, lli7. (30)

To bound the second term in parentheses, we use a discrete inverse inequality to write

(A A N L PPy e D [ N e [ A (31)

TG%T TG,TT

where the fact that 4~ 1hT < 1 for regular mesh sequences (see [16, Eq. (1.4)]) has been used in the
last step. Now, to estimate |[0’[| 273, we combine (12) and (20) to obtain

122> Y helvenrella,, < D BEIVEI (32)
oceFr. . FeFr Fe¥fr



where we have used the fact that o C F, the inequality h, < hp valid for any o € & and any
F € Fr, and the Holder inequality with exponents (2, c0) along with |[n7F|[ .~ )3 = 1 for the third
step. Therefore plugging (32) into (31), we obtain

2 -1 2
IV -9 32 S FZ; [l L7 e
€Sr

where we have used the equivalence hp ~ hy valid for regular mesh sequences (see [16, Eq. (1.6)]).
Now, using the following bound valid for non-negative real numbers a;

2
Sa?< (Z al-) , (33)

i

for the previous inequality, and then plugging the result along with (30) into (29), it is inferred that

1
T < rlleacry + hrllvglhr + ) BV el ey (34)
Fe¥Fr

To bound the term T, in (28), we use standard interpolation estimates for Zg (see, e.g., [6, Proposition
2.5.4]) followed by (25) to write

1
Ty S hrlblery S hrlDFvy = V-9l S hrllygllr + Z hplvellzrys,  (35)
Fe¥r

where we have used a triangle inequality followed by (30), (31), and (32) to conclude. Plugging (34)
and (35) into (28), using (32) to estimate ¥ 3, and simplifying, we obtain

1
190 = 2ll 273 S IV 7llzary + brllvglliz + ) B2V el 2y, (36)
F€7:T

Using the decomposition (19) followed by triangle inequalities, we finally get

vy = Ry rll2rys < Ivr =212 crys + 12 = Boll 2 rys + 107123
S v = 2oll2crys + 121l 2rys + 112 = ol 27y + 1971 27y
S vr = Zoll2¢rys + 112 = ol 27z + 101l L2173
S vr = zollr2erys + 1zo = 2oll 273 + 12 = Dol 2 ()3 + 1071l 121)3

1
< rllzeery + hrllezllir+ > hElvellzageys,
Fefr

where we have used the definition of Z; along with the bound (18d) in the third step, a triangle
inequality in the fourth step, and the bounds (32), and (34)—(36) in the last step. Inserting +vr into
the left-hand side of (22) and using a triangle inequality followed by the above estimate, (22) follows.

(i.C) Proof of the bound (15). Recalling that 1 § is obtained restricting the global interpolator (6) to
an element 7T, letting © := R’}(! §vT), and using the triangle inequality, we get that

”VT - RI;"KT||L2(T)3 < ||VT - ﬁ||L2(T)3 + ||f) - RIIC"KT”Lz(T)} = 11 + 32. (37)

By condition (14b), we have that V- = D?(!’;VT) e PX(T) c PX(Ir). But, since vy € PX(T),
the commutation property (11) gives D’}(lﬁvr) = ﬂ%(V -vy)=V-vp,sothat V- (0 —vy) =0. In

10



Cg’k;] (® —vr) = 0, and then observing that ® — vy € R‘T’S(ST), and

taking w = ® — v7 in (14d), it is inferred that || — leliz(T)3 =0, hence T = 0.

Let us now estimate the term T,. By linearity of RX,, we can write T, = ||R’;(!§vr —vollr2(r)s-
Hence, using the bound (22), the fact that (lﬁvr —v,)r =0and (!’}vr —v,)F = (v —vp) for all
F € Fr, and recalling the definition (7), we can write

addition, by (14c) we have &

1
T < hrlllvr —vpllir+ . hilvr =vellage
FETT

_1
= hrlvphor+ ) hehp?Ivr =vell 2 <hrlvzlor,
FETT

where we have used the inequality 2r < hr in the last step. Plugging this last bound along with
T = 0into (37), the conclusion follows.

(ii) Approximation. To prove the approximation estimate (16), let T € 7j, and denote, for the sake of
brevity, by ¥, =1 iv the interpolate of v on U ’} We begin using the triangle inequality to write

v = RE G2y < IV =Prllzry + 1197 = RE( )23

S v - WI}V||L2(T)3 +hrPrler = T+ T, (33)

where in the last step we have used the definition of I ; and the bound (15) for the first and second
terms, respectively. To bound T | we use (5a) with ({,m,r,s) = (k,0,2,k + 1), so we get

Ti S A g (3 (39)

Now to bound T, we first take the square, use the definition (7) of the boundary seminorm and the
equivalence hr ~ hp (valid for regular meshes) to obtain

2 2 114 s 12 k 2 k112
(T2 =13 Y hE 19 =01l € 3 B (1w =¥ s+ v = 75w 22 )
Fe¥Fr Fe¥fr

where in the last step we have used the Young inequality. Now using a triangle inequality and standard
properties of the L2-projectors 7r1’§ and n’} on F, we have

k., 2 _ : _ 2 ky, 2
||7ro VHLZ(F)} - weé’r’zt(‘Fﬁ ||W v”Lz(F)3 S ||71'TV v||L2(F)3' (40)

Thus using this for F € Fr, the bound (33), and then taking the square root, it is inferred that

1
T < Z 21y = 7wl 2 .
FG'}‘T
Finally, using (5b) with (I,m,r,s) = (k,0,2,k + 1) to bound T, along with (39), and plugging the
result into (38), we conclude.
(iii) Consistency. To simplify the notation let us define the space G*~1(T) := VPX(T)3, and let n’é‘}

its L2-orthogonal projector. In addition, let g := n?‘l (R§KT —vr). As mentioned before, the decom-
position (13) is not necessarily orthogonal; nevertheless, by [15, Lemma 1] there exists a recovery

operator Rg. go : G*1(T) x G“*"1(T) — P*1(T)3 such that ¢ = mg,gc(”g}q’”cg’];lq)’ and
lgll2(r)s = ||7rg_,lr‘1“L2(T)3 + ||7r°g’{‘T_1q||Lz(T)3. Using this last equation and the linearity of n’;‘l, it

is enough to show that ||7r’g;q||Lz(T)3 = ||7T;{<;1q||L2(T)3 = 0. Since G*~! c P*1(T)3, we have
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c k-1 c,k—1
Ter ~Tgr
along with an integration by parts and the boundary condition (14a), we infer that, for all ¢ € P*(T),

Y O e ER W e nn

where in the last step we have used the definition (10) of Dk This shows that 7rk ! (R vr—vr)=0

’é ; o 7r§ ! we obtain ||7t’é‘}q||Lz(T)3 =0, and (17) follows. |

o 7rT , and by the equation (14c), we infer that ||7rg T q||L2(T)3 = 0. Using (14b)

Finally, using 71' =r

Remark 5 (Convexity assumption). The convexity assumption introduced in Section 2.1 can be relaxed
if instead we make the following assumptions for 7" € 7:

1. There exist a point X7 € T such that T is a star-shaped with respect to it.
2. There exists T € Ty such that contains the ball B(x7,r,) where r, denotes the inradius of .

Then instead of solving the problems (23)—(24), invoke the Lemma IIL.3.1 of [28] to obtain
20 € Hé(T)3 such that V - zy = D’;KT = Vv’ with ||[zol[g1(7)3 S ||D];KT =V o[ 2(p), and use
[28, Eq. (II.5.5)] to get a Poincaré-like inequality ||Z()||L2(T)3 < hrlzolg ()3 and use it in (29) in the
proof of item (i) of Lemma 2.

Let RT* (T ) denote the global (H giy (£2)-conforming) Raviart—-Thomas—Nédélec space on T,.
We define the global velocity reconstruction Rﬁ U ’Z — RT*(T;) patching the local contributions:
Forally, € Qi’

(Rjv,)ir = Rkv, VT €T,

Note that R’;l v, is well-defined, since its normal components across each mesh interface are continuous
as a consequence of (14a) combined with the single-valuedness of interface unknowns.

Proposition 6 (Sobolev inequalities for the velocity reconstruction). It holds, for all r € [1,6] and

k
allvh € UhO’

IR, < 11yl (41)

where the hidden constant is independent of both h and v, but possibly depends on €, k, r, and the
mesh regularity parameter.

Proof. Let a mesh element 7 € 7, be fixed. Inserting +v7 into the norm and using a triangle
inequality, we can write

k k
||RTKT”LV(T)3 < ||RTKT - VT||Lr(T)3 + ||VT||Lr(T)3
1

; (42)
Z RSy, — Vol s | 7l (s

TEQZT

From the discrete Lebesgue embeddings proved in [16, Lemma 1.25], it follows that, for all (@, B) €
[1,+c0],all X € 7, U Ty, and all £ € P(X) forl > 0,

3.3
1ZllLex) < by “lZlisx)s (43)
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with hidden constant independent of 4, X, and £, but possibly depending on [, @, §, and the mesh
regularity parameter. Since (R§KT - V1)t € Pr1(1)3, we use (43) for (X, 1, @, 8) = (t,k+1,7,2)
in the term in parentheses of (42) to write

F(2-3
SRSy, —vrla s S BT IR < vrlrs s
T€EXIT T€IT (44)

r(2-3) oy e
< W DR w —vr s s < BP0

where we have used 7 € T and i, < hp for all T € T along with the uniform bound (3) on card(T 1)
in the second step, and the estimate (15) to conclude. Plugging (44) into (42), raising the resulting
inequality to the r-th power, using the inequality (a + )" < a” + b” valid for any nonnegative real
numbers a and b, and summing over T € 7, we get

6-r
" 6-r
IR 7115, 0 S D B 0rlf or + I0ally, -

TeT,
The proof now continues as that of [11, Proposition 3]. The details are omitted for the sake of
conciseness. O

2.5 Gradient reconstruction on a submesh

LetanelementT € 7}, be fixed. For every face o € %iT, we introduce an arbitrary but fixed ordering of
the elements 71 and 7, such that o C 1y NI, andletn, = n, o = —n o, Where nq, o, i € {1,2},
denotes the unit vector normal to o pointing out of 7; (see Figure 1b). With this convention, for every
scalar-valued function ¢ admitting a possibly two-valued trace on o, we define the jump of  across
o as

[[{]]o— = {|T1 _§|T2' (45)
When applied to vector- or tensor-valued functions, the jump operator acts component-wise.
For any polyomial degree [ > 0, we then define the local gradient reconstruction Gle U ; —
PLZ1)3*3 such that, for all v, € Q? and all T € PI(T7)¥3,

/GIITKT T = /VVT T+ Z (vgp—vr)-TRTF (46a)
T T Fe¥fr F
=—/VT-(V'T)+ Z vr - [tlone + Z /vF~TnTF, (46b)
T cem U7 Ferr Y F

where we have used an integration by parts to pass to the second line. The above definition is an
extension of the operator GZT : Ql; — PLT)> introduced in [11, 23], which is defined using
PLHT)> instead of P(T7)3* as a test space, and thus we have ”ZTGlzT = GZT. The gradient

reconstruction G’} will be used in the viscous term, while the enriched gradient reconstruction
G%’f“) will be used in the convective term (see Section 3.3).

Lemma 7 (Properties of G%T). The operator Gle has the following properties:
1. Boundedness. Forally, € Q’;, it holds
I1G%, v rll2ryws < gl (47)
2. Consistency. For allv € H*'(T)3 and all | > k, it holds,

||GlzT!];V =Wy S A |v| e (T3 (48)

13



Proof. (i) Boundedness. The proof is the same as that of [23, Proposition 1].

(ii) Consistency. Letv € H*'(T)3. For all T € 7, using !iv = (ﬂiv, (ﬂ’;v|F)F€¢T) into (46b) for
the first term and an integration by parts for the second term, we obtain, for all T € P*(T7)3*3,

‘/(GIIT!];"V_VV) :TZ_/(ﬂ]]("v_v)'(V'T)"' /(ﬂFV_V) TATF
g r Fe¥r

(49)
+ Z /(”TV—V) [tlons = T1 + Ty + T3,

O'E%T

We now proceed to bound the terms in the right-hand side. Using Cauchy—Schwarz and discrete in-
verse inequalities along with the approximation properties (5a) of 71"; with (I,r,m,s) = (k,2,0,k + 1)
we obtain, for the first term,

1T1] S W5 gan (s Tl L2 ryss (50)
For the second term, we use a Holder inequality with exponents (2, 2, co) along with ||r7F || ey = 1

to write

k
1Tl < D llwky = vl iz
FGTT

1/2

—1

< hp /2( Z |75y — V||iz(F)3) ITll2 ()3 < hl;|V|Hk+1(T)3||T||L2(T)3x3, (51)
FGTT

where we have used the inequality (40) together with a discrete trace inequality in the second step
and the trace approximation properties (5b) of 71'? with (I,r,m,s) = (k,2,0,k + 1) to conclude.

Let us now consider the third term in (49). Recalling the definition (45) of the jump operator, we
bound each integral over o € ‘[s-‘T as follows:

/(NTV_V) [[T]]O'na-
(T :
2
Z 75y = vl 2 (o Il 2oy

/(JTTV -v) (T hri0)

IA

Ml\) W

P k
< ( o 17y =vllL2 (s + 177y = Vg (4,3 ) 7l L2 ()3

N
—_—~
=

-1 k k

Pk = vl + 75y = vl iy ) el 2y
k

< hT|V|Hk+1(T)3”T”L2(T)3><3,

where we have started with a triangle inequality, used Cauchy—Schwarz and Holder inequalities (the
latter with exponents (2, 00)) along with ||[f+,||1~(s)3 = | in the second step, local continuous
and discrete trace inequalities on the submesh for the first and second factor, respectively, in the
third step, and the fact that 7; T for i € {1,2} along with the first geometric bound in (3) and
hy! < h;l (consequence of mesh regularity) in the fourth step. The conclusion follows using the
approximation properties (5a) of 7r§ with (I,r,m, s) = (k, 2,0, k + 1) for the first term in parenthesis
and (I,r,m,s) = (k,2,1, k+1) for the second one. Gathering the above estimates and observing that
card(‘&iT) < 4card(Tr) < 1 by (3), we obtain

|z3|$]’l§~|V|Hk+l(T)3||T||L2(T)3><3. (52)
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Setting 7 = G&, Ijv -z, Vv in (49), using the bounds (50)—(52), and simplifying yields
HGZZT!IT{V - ﬂngVVHLZ(T)bG < hl](~|V|Hk+l(T)3.

Therefore, using a triangle inequality and the approximation properties (5a), valid as well for x’,
with (I,r,m,s) = (k,2,0, k + 1) along with h, < hr, we infer

l k l k [ l k
”GzT!TV_VV”LZ(T)N < ||G‘IT!TV_7T$TVV”L2(T)3X3+||7T‘ITVV_VV||L2(T)3X3 < hT|V|Hk+1(T)3. O

3 Discrete problem

3.1 Viscous term and pressure-velocity coupling

The viscous term and the pressure-velocity coupling are the same as in the standard HHO method;
see, e.2., [8, 23]. We briefly recall them here to make the exposition self-contained.

The viscous bilinear form ay: Q;‘l X Qﬁ — R is such that, forallw,,v,, € Qﬁ,

. k .k
an(W,,v,) = Z (/ Grwy Gy +sr(wevy) |,
TeT,

where, for any T € Ty, st : Q; X Q; — R denotes a local stabilization bilinear form designed
according to the principles of [16, Assumption 2.4], so that, in particular, there exists C, > 0
independent of % (and, clearly, also of v and A1) such that, for all y R €U i‘l,

2 -1 2
Ca“Kh”l,h < ah(Kh,Kh) <C(, “KhHI,h' (53)

Recalling the definition (10) of the local divergence D';, the global pressure-velocity coupling
bilinear form by, : Q;(z,o X P*(75) — R is such that, for all (v,,-qn) € Qi,o X P*(Th),

ba(vy qn) == ) /DizT qr,
T

TeT,

where g7 = g, 7. The properties of by, relevant for the analysis can be found in [16, Lemma 8.12].
3.2 Body force

The discretization of the body force leverages the new divergence-preserving velocity reconstruction
introduced in Section 2.4. Specifically, we introduce the bilinear form ¢, : L*(Q)* X Uf — R such
that, for any ¢ € L?(Q)? and any v, € Q],;,

h(®,v),) :=/Q¢-R'Zzh-

Lemma 8 (Properties of £,). The bilinear form €, has the following properties:

(i) Velocity invariance. Recalling the Hodge decomposition (2) of f, it holds
Ch(g + AV, v,) = br(g.v,) + bu(v,. Anfy) Vv, €Uk, (54)

Referees #1
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(ii) Consistency. For all ¢ € L*>(Q)> N H*(7,)3,

1Ee.n(d: Mline S K@i (5090 (55)
where the linear form E¢ (P -) : Qﬁ — R, representing the body force consistency error, is
such that
. — _ k
8[,h(¢,2h) = fh(¢’Kh) - / o-vp= Z ¢ (RTKT -vr). (56)
Q TEE T

Proof. (i) Velocity invariance. The proof is the same as in [11, Section 4.3], using the fact that
(V- R}v,)ir = DXy, € P¥(T), which is enforced by (14b).

(ii) Consistency. We prove the cases k = 0 and k > 1 separately.

(ii.A) The case k = 0. Taking absolute values in (56) and using Cauchy—Schwarz inequalities along
with (15) and Ay < hforall T € 7, we can write |85,h(¢;3h)| < hll@ll 123 Iy ll1,n- Passing to the
supremum over y, € Qfl such that ||y, [|1,, = 1, we obtain (55).

(ii.B) The case k > 1. Using (17) in (56) and continuing with Cauchy—Schwarz inequalities, we obtain

> /T (¢ -7719) - (REvy —vp)| < D7 N6 =7 Bl 2 IR vy = vl 2.

TeT, TeTn

|Een(d;v,)| =

Using then the approximation properties (5a) of the L2-projector with (I, m, r, s) = (k—1,0,2, k) for
the first factor and the bound (15) for the second, applying discrete Cauchy—Schwarz inequalities to
the sums, and passing to the supremum over y, € U ’}i such that ||y, [[1,, = 1, (55) follows. O

3.3 Convective term

. . . . o 3
To discretize the convective term, we introduce the global trilinear form ¢}, : [Q ﬁ] — R such that

(W Ve 2),) = Z tr(Wps Vs 27)s (57a)
TeT,

where, forany T € 7y, tr : [Q;F — R is defined as
2(k+1 2(k+1
r(Wys Yy 2q) = ‘/Gg(T+ )KTRI}KT : RI;ET - / Gz(T+ )ETRI;ET : RI;"KT' (57b)
T T
Remark 9 (Reformulation of #;,). In practice, it is not necessary to compute the piecewise gradient

reconstruction operators Gzz(;m) to evaluate t7 and 7;,. As a matter of fact, expanding the piecewise
gradient operator in (57) according to its definition (46a), we have that

AN SEDY / VwrRyvy - Ryz, — / VYwrRTz, - Ry,
T T

TeT,
k k
30 0 v —wn Rz Rbvy )
TeT, Ferr * F
k k
- Z Z /(WF -wr) - Rpy(R7z, - nrF).
TeT, Ferr * F

The properties of 5, relevant for the analysis are contained in the following lemma.

16



Lemma 10 (Properties of t5). The trilinear form ty, has the following properties:

1. Non-dissipativity. Forallw,,v, € U ﬁ it holds that
(W) vp) = 0. (58)

2. Boundedness. There exists a real number C; > 0 independent of h (and, clearly, also of v and
A) such that, for all WiV, € Q;‘l,

(W, v, 2,01 < Cellwy lally llellz, s (59)
3. Consistency. It holds, for all w € U N W**L4(73)3 such that V- w = 0 a.e. in Q,

1Ee.n (W3 M1 hs S K Wlyrera g 31w lwis s (60)

where the linear form &, j,(w;-) : U ]h‘ — R representing the consistency error is such that, for
all z, € Qfl,
Ernwiz,) =CG((Vxw)xw,z,) = ta(Liw. I;w.z,).

Proof. (i) Non-dissipativity. Immediate consequence of the definition (57) of #;,.

(ii) Boundedness. The proof is similar to that of [11, Lemma 7.ii] using the Holder inequalities with
exponent (2,4,4), the bound (47), and the discrete Sobolev embedding (41) with r = 4. The details
are omitted for the sake of conciseness.

(iii) Consistency. Let w, = !’;lw. Proceeding as in [11, Lemma 7.iii], we obtain the following
decomposition:

En(wsiz,) = Z /(Gz(k”)ﬁT—Vw)R 2w Z /(Vw G )w - Riz,

TeT, TeTn

T
G2+, G2+,
+ Z/ Dy (w — REw.) - Rfz, +Z/ terh W Rz - (RyWy —w).

TeT, TeT,

13 14
(61)
We next proceed to estimate the terms ¢, -, 4.

(iii.A) Estimate of . Following similar steps as in [11, Lemma 7.iii.A] using the approximation

properties (48) of Gé(fﬂ) and its definition (46), we get that

[T SH W e g5 W s )3 llz,, 11,5 (62)
(iii.B) Estimate of T,. For the term T ; in (61), inserting iyr(%w into the second factor, we get

T, = Z /(V 2(k+1)AT)(w 7l'TW) RTzT+ Z /(V 2(k+1)AT)7TTw RTZT

TeT, TeT,
= zz’l + 12,2.

(63)
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We bound T, ;| using Holder inequalities with exponents (2, 4, 4), then the approximation properties
, g q p pp prop:
(48) of Gé‘r"*” and (5a) of 7). with (1, m, r,s) = (0,0,4, 1), and the bound (41) with r = 4:

k+1
1T2.1] B W e (5,3 W lwra s Izl ne (64)
To estimate T, , in (63), we integrate by parts the term involving Vw and we use, for each element

T € 7. the definition (46b) of G3 **!) with (v, 7) = (4, Rkz, ® 74w) (notice that Rkz, @ 79w €
pk+l (zT)3><3 c Pz(k+l)(zT)3><3) to write

Top=- Z Z (w—nhw) . V. (R%T ® TIW)
TeT, T€XT T

+Z Z Z /(W—ﬂ];w)-[[RggT@)n%w]]o_no_

TeT, T€Ir g—e%‘T g (65)

+ Z Z /(W —hw) - (Rl}gT@ﬂ(%w)nTF,

TE(];, Fe TT
=21+ To02+3T223.

For ¥, 5.1, we first observe that V - (Rl;gT ® ﬂ(%w) = VRl;gTﬂ(%w + W e PH(Ir)’.
Hence, using Holder inequalities with exponents (4, 2,4), we infer that

k k 0
Topal < D D Iw=mhwllpsopIVREZ I 2oy [aGwl s o

TeT, €1
k 0 k
< 0w =mhwllpspladwlisgy D IVREZ N2y
TeT, T€XIT
k+1 k
< Z hT+ |w|Wk+1,4(T)3||w||W|,4(T)3 Z ||VRT§T||L2(T)3X3’ (66)
TeT, T€XIT

where, in the second step, we have used the fact that T c T for all 7 € T, while, in the third step,
we have used the approximation properties (5a) of the L?-orthogonal projector with (I,m,r,s) =
(k, 0,4, k+1) for the first factor and its boundedness for the second factor. To bound || VR ’}gTH L2(1)%
we first observe that (R§§T)|T is in the space P**!()3, and it holds that

IVRIZ Nl 2ry0 < IV(RTZy = 202y + 192l 2y
S hr IRT 2y = 2rlli2ce + V27l 2 (o3
< W IR 2y — 2zl 2y + V2l 2y
s B hrlzphar + 1V2rll 2 ey $ llzglhrs
where we have started with a triangle inequality after inserting +Vz7, used a local discrete inverse
inequality on 7 in the second step, the fact that 7 c T for all 7 € T7 in the third step, the bound
(15) in the fourth step, and the inequality 4 'h7 < 1 valid for regular mesh sequences (see [16, Eq.

(1.4)]), along with the definition (7) of the ||-||;,7-norm to conclude. Plugging this last inequality into
(66) and using the geometric bound (3) on T1 along with a discrete Holder inequality, we arrive at

1
[T2.2,1] h* |W|Wk+1v4(7;,)3||w”W1v4(Q)3“§h||l,h' (67)
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To estimate T5 5 7 in (65), we insert +z7 into the first factor inside the jump operator to write

Tooo = Z Z Z /(w - 7t§w) . [[(R?gT —-27) ® n(%w]](rna

TeTy €31 reF. g

YD WY U

TeT, eI ‘Teg'ir

where the second addend cancels since z7 ® n(}w is continuous across the interior faces of Tr.
Setting §,, = {0 € & : T € T} and exchanging the order of the sums, we can now express T2 >
in the following equivalent form:

2
Tron = Z Z/ (w— Jr’}(rw) . (R%TgTo -271,) ® ﬂ(}aw . Rz, o, (68)

L o
O'E%‘h i=1

where, for a given o € “8}1, T, € 75, is the element in which o is contained, while 7; and 7, denote the
simplices in T, sharing o. To bound the right-hand side of the above expression, we apply Holder
inequalities with exponents (4, 2, 4, o) along with |[n ;o ||~ ()3 = 1 to write

2
k k 0
Ta0al < D D W =ak wllpaiopll(RE, 2, )ies = 22, 2o I, wll oy

o-e‘{g-}1 i=1

A

2
_1 _1
Do D MW =k il IRY, 2 =z, lpaceyiha I7g, wlipaeys  (69)

G-G‘I};Il i=1

A

1

3 k
E (h%(fllw—ﬂr(rwllyt(a)s Iz iz, Iwliwiscr, s
0'6‘;}}1

where, in the second step, we have used local trace inequalities on the submesh for the second and
third factors while, in the third step, we have used 7; C T, along with (15), (7), and h;[l hr, <1
(consequence of mesh regularity) for the second factor while, for the third factor, we have used again
7; C T, along with the boundedness of the L>-orthogonal projector. Using trace inequalities on the

1
. . . . 2 . . a1
submesh along with the approximation properties of the L“-orthogonal projector, we infer h;ﬁ lw —

ﬂiaw l4(orys S h’;;l |W|wk+i4(r,)3 which, plugged into (69) and combined with the geometric bound
(3), gives

|T2,0,0] < A [Wlwesra (s Iwllwis @)z llz, [1,n- (70)

To bound the term T 5 3 in (65), we first insert +z7 into its second factor to write

o3 = Z Z /F(W - ﬂéw) : [(R%T -27) ® n(}w] nrr

TeT, FEFr

k
+ Z Z /(w—n . T W)RTE,
Ted, Ferr Y F

where the second addend cancels by the definition (4) of the L’-orthogonal projector 71";_ since
(zr ® nOT)| rirE € PX(F)3. Now, we rewrite the equation above as

o3 = Z Z Z (w—mhw) - [(RI;ET -27) ® ”OTW] nrr,

TeT, FeFr ocr Y7
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thus, using a similar procedure as for (68)-(69), but for o € §F and 7; = 7, where 7, € Tr is the
simplicial subelement containing o, we infer that

1
i k
Ta23ls D) D) D) (h;nw = 75wl oy | gl rlwllws s,
TE(];, FETT (TET‘;F
in addition, using the fact that
k k
lw —7ewllps(oys < W —apwllpepy
k k k
S lmwpw —mwpwllpapys + 1w — wpwllpa(pys

k k k k
< ||np(mpw — w)”L“(F)3 + 1w - 71'Tw||L4(F)3 < lw - ”TW||L4(F)3’

the approximation properties (5b) of the L?-orthogonal projector with (I,m,r,s) = (k,0,4,k + 1),
and the bound (3), we obtain

%2231 € W Wl g3 W w112, - (71)

Plugging the estimates (67), (70), and (71) into (65), and, combining the resulting estimate with
(64), we finally obtain

[T2| < hk“|W|Wk+1v4(771)3||W||W1v4(g)3||§h||1,h- (72)

(iii.C) Estimate of I3 and 4. To bound T3, we follow the same steps as in [11, Lemma 7.iii.C] along
with the boundedness (47) of Gzz(f“) to obtain

1
3

ka4
sl < Wl | D) 1w = RE#gll | Mz, Ml
TeTy

To estimate each addend in the second factor, we first insert in?w and then use a triangle inequality
to write . . . .

llw — RTKTHL“(T)3 <|w- ”TW||L4(T)3 + 7w — RTKT||L4(T)3 (73)
k+1 k ko
< hT+ |Wlwk+l,4(T)3 + ||7TTW - RTKT”L“(T)L

where we have used the approximation properties (5a) of ﬂ’} with (I,m,r,s) = (k,0,4,k + 1) to
conclude. To estimate the second term in the right-hand side of (73), we proceed as follows:

k ka4 k k14
lrfw = REWplfa s = D lckw — RE® IS s

TézT
X 4
“3)1.k K
<> (h#unrw —RTanLz(T)s)
TE%T
=3 (11K K 4
< 3 h (lIwhw = wlliairys + 1w = REwr 2y )
TEiT
-3 7.4(k+1 4 4(k+1 4
S Z hz hT( )|W|Hk+l(r)3 S hT( )lwlwk+1,4(T)3’

TGTT

where: to pass to the second line we have used the reverse Lebesgue embedding (43) for (X, a, 8) =
(T,4,2); to pass to the third line, we have inserted +w and used a triangle inequality along with
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7 C T; to pass to the fourth line, we have used the approximation properties (5a) of the L2-orthogonal
projector with ({,m,r,s) = (k,0,2, k + 1) for the first addend and the approximation property (16)
for the second addend; the conclusion follows from 47 'h7 < 1 (consequence of mesh regularity), the

3
bound (3) on card(Tr), and the Lebesgue embedding ||| 2(7) S hyll{ |l p4(7) valid forall £ € LA(T).
Plugging the above bound into (73), we get

[lw — R];ETHL“(TV < h’;” |W|Wk+1,4(T)3.
In conclusion, we have that
T3] < W Wl @ W w3112, - (74)
Using similar arguments as for T3, we have for the last term
T4l < K Wl @ Wi g 5112, - (75)
(iv.D) Conclusion. Taking absolute values in (61), recalling the definition (9) of the dual norm, and

using the estimates (62), (72), (74), and (75), and additionally noticing that |w|H1(Q)3 < |w|W1,4(Q)3,
the conclusion follows. O

3.4 Discrete problem and main results

The HHO discretization of problem (1) reads: Find (u,,, pp) € U ’;l 0 X P';l such that

vap(W,,v,) +th W, u,,v,) +br(v,,pn) = (f,v,) Vv, €Uy, (76a)
~bp(u,, qn) =0 Van € PX(T5). (76b)

The existence of a solution to (76) for any f € L*(Q)? can be proved using a topological degree
argument as in [23, Theorem 1]. Similarly, uniqueness can be proved along the lines of Theorem 2
therein under a smallness condition on f.

Recalling the Hodge decomposition (2) and denoting by Cp a Poincaré constant in Q, Proposition
11 below is the discrete equivalent of the following a priori continuous bound (see [11, Section 2.3])

|1 )3 < v ' Cpligll2 () (77)

Proposition 11 (Uniform a priori bound on the discrete velocity). Let (u,, pn) € Qﬁ’o X P’Z be a
solution to (76). Then, given the Hodge decomposition (2) of f, we have the following uniform a
priori bound for the velocity:

-1
lwyllin < voliglle )

Proof. The proof follows the same reasoning as [11, Proposition 8] with Lemmas 8 and 10 replacing,
respectively, [11, Egs. (41)—(42) and Lemma 7]. ]

Remark 12 (Efficient implementation). When solving the algebraic problem corresponding to (76)
by a first order iterative algorithm, all element-based velocity unknowns and all but one pressure
unknowns per element can be statically condensed at each iteration in the spirit of [20, Section 6.2]
; see [7] for a study of the effect of static condensation strategies on the multigrid resolution of the
global algebraic systems arising from HHO discretizations of incompressible flow problems.

Remark 13 (The two-dimensional case). The two-dimensional version of the method (76) will be
considered numerically in Section 4. Denoting by u;, i = 1,...,3, the component of the velocity
field along the Cartesian axis x;, the two-dimensional plane velocity problem can be recovered from
(1) setting u3z = 0 and assuming that u; and u; do not depend on x3.
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We next consider the discretization error defined as the difference between the solution to the
HHO scheme and the interpolate of the exact solution.

Theorem 14 (Error estimate for small data). Recalling the Hodge decomposition (2) of the forcing
term f, we assume that it holds, for some a € (0, 1),

viC

< g9
lgllz2 ) < T

where C, and C, are defined in (53) and (59), while C; denotes the continuity constant of the HHO
interpolator in the discrete H Ulike norm (see [16, Proposition 2.2]) and Cp is the Poincaré constant
in (77). Let k > 0 and let (u,p) € U X P and (u,, py) € QZ X Pﬁ solve (1) and (76), respectively.
Assuming the additional regularity u € H**(7;)3 and p € H'(Q) n H**'(T3,), it holds:

I, = Iullin+v ' Ipn = 75 pllz @)
< s (1- Ck)_1 (|u|Hk+2(7;L)3 +y! ||u||W1,4(Q)3|u|Wk+1,4(7;l)3) . (78)
where the hidden constant is independent of v, A, h, as well as (u, p).
Proof. Analogous to that of [11, Theorem 11]. O

Remark 15 (Pressure robustness). The error estimate (78) is pressure-robust since the right-hand side
does not depend on A in (2) nor on the pressure.

4 Numerical tests

In this section we verify numerically the proposed method for general meshes with convex elements
for Q c R?. For each element T € 7}, we construct its simplicial submesh T using an ear clipping
algorithm, i.e., we construct T7 in such a way that no additional internal nodes are introduced and that
&1 = Fr (this construction fulfills the assumptions made in Section 2.1). For the sake of completeness,
we also include comparisons with the original HHO method of [8]. Our implementation is based
on the HArDCore library! and makes extensive use of the linear algebra Eigen open-source library
[32]. All the steady-state computations presented hereafter are done by means of the pseudo-transient-
continuation algorithm analyzed by [34] employing the Selective Evolution Relaxation (SER) strategy
[44] for evolving the pseudo-time step according to the Newton’s equations residual. Convergence to
steady-state is attained when the Euclidean norm of the residual for the momentum equation drops
below 107!, At each pseudo-time step, the linearized equations are exactly solved by means of the
direct solver Pardiso [48]. Accordingly, the Euclidean norm of the residual for the continuity equation
is comparable to the machine epsilon at all pseudo-time steps.

4.1 Kovasznay flow

We start by assessing the convergence properties of the method using the well known analytical
solution of Kovasznay [36] with v = 0.025; see, e.g., [16, Section 6.1] for the expression of the
velocity and pressure fields. We consider computations over three s-refined mesh families (Cartesian,
hexagonal and Kershaw type). Figure 3 shows the coarsest mesh for each family. We monitor the
following quantities in Table 3: Ngof and Ny, denoting, respectively, the number of discrete unknowns
and nonzero entries of the statically condensed linearized problem; |le,, ||y, = [vah (e),.e h)] v ’ the
energy norm of the error ¢, == u, — I ';lu on the velocity (using the global norm equivalence (53),
an estimate in h**! for this quantity is readily inferred from (78)); |le|| 2@ and [len|l 2(q), the
L?-errors on the velocity and the pressure, respectively. Each error measure is accompanied by the

thttps://github.com/jdroniou/HArDCore
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Figure 3: Coarsest meshes used in Section 4.1.

corresponding Estimated Order of Convergence (EOC) computed using successive refinement steps.
The results collected in Table 3 show that both the energy norm of the error on the velocity and the
L*-norm of error on the pressure converge as h**! as expected. Additionally, the L>-norm of the
error of the velocity converges with rates close to 2X*2,

4.2 Robustness of the velocity error estimate

The second numerical example, inspired by [41, Benchmark 3.3], is meant to demonstrate the robust-
ness of the proposed method for large irrotational body forces. Specifically, we verify numerically
the fact that the approximation of the velocity is independent of both A and p. Letting Q = (0, 1)? and
A > 0, we solve the Dirichlet problem corresponding to the exact solution (u, p) in (1) with velocity

— 2,2
components given by u(x) := ( xx2) and pressure given by p(x) := ﬂ.xf + xl;xz - 411' Wesetv =1,
1

. . . , . 3Ax2 .
then observe that the force in (la) is purely irrotational, i.e., f(x) = ( 0 1). In the computations,

we take A = 10° and consider a sequence of uniformly /-refined meshes equivalent (by scaling and
translation) to the three mesh families used in the previous section, see Figure 3. Table 1 collects
the results for the Cartesian and hexagonal mesh families, and Table 2 for the Kershaw mesh family.
For the sake of comparison, we also report in these tables the corresponding results obtained using
the original HHO method of [8]. It can be noticed that the solution is exactly reproduced by the
present method with k£ = 1 on all the meshes, while a quick convergence is observed for £ = 0 on the
hexagonal and Kershaw meshes, most likely due to the quadratic nature of the pressure. By contrast,
the HHO method of [8] shows large errors on the velocity due to the lack of pressure-robustness.

4.3 Two-dimensional lid-driven cavity flow

The final numerical test is the classical two-dimensional lid-driven cavity problem. The computational
domain is the unit square Q = (0, 1)> and we initially set f = 0. Homogeneous (wall) boundary
conditions are enforced at all but the top horizontal wall (at x, = 1), where we enforce a unit tangential
velocity # = (1,0) instead. In Figure 4 we report the horizontal component | of the velocity along
the vertical centerline x| = % and the vertical component u, of the velocity along the horizontal
centerline x, = % for a global Reynolds number Re := % = 1000. The computation is carried out
setting k = 1 for the finest meshes of the Cartesian, hexagonal, and Kershaw sequences used in the
previous section. Reference solutions from the literature [25, 30] are also included for the sake of
comparison. The numerical solution obtained using the proposed method is in agreement with the
reference results for the selected value of the Reynolds number.

To check the robustness of the method with respect to irrotational body forces, we then run the

same test case but with f = AVy where ¢ = %(x3 +y3). This body force is completely irrotational,
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Figure 4: Two-dimensional lid-driven cavity flow, horizontal component u; of the velocity along the
vertical centerline x| = % and the vertical component u; of the velocity along the horizontal centerline
Xy = % for Re = 1,000.

so the velocity approximation obtained using the proposed method (76) should not be affected (and,
therefore, should not depend on 1). To verify this, we report in Figure 5 computations for 1 = 109,
using k = 1 and the same meshes as before. As expected, the velocity profiles are not affected by
the value of 4. The same plot also contains the results obtained with the original HHO formulation
of [8], but only for the Cartesian mesh and A = 103 (convergence was not achieved for A = 109). Tt
can be checked that the non-pressure-robust version of the method converges to a complete different
solution.
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A Proof of Lemma 3

Proof. For this proof we take inspiration mainly from [37, Section 3]. First of all, let us introduce a
few new definitions. We denote by 7 the reference tetrahedron. From the assumptions of Section 2.1,
there exists x7 € R? which is a common vertex for all simplices in T7. Then, for each T € T, itis
possible to construct a one-to-one affine map F; : T — 7 such that

F,.=].%+xT, (79)

where J; is an invertible real matrix of size 3 x 3. Now, given 7 € T7 and »,w € P!()> where
[ > 0 we introduce, respectively, the contravariant and covariant Piola’s transformations (see [24]) as
follows,

Yo () =|detI.| T (9o F7') and Yo (0 =" F,  (80)

which crucially satisfy

/de,m-wc,rm) - /vw (81)

We now introduce the space G** (%) := & x P¥~2(+)3, and the operator E];_l PLA(E) -
G°*~1(#) such that, for all # € L?(#)> and all g € GF1(#),

asS k=1, 4 S A A
/ PIRE (5) - Txg = / ’. 8, (82)
T T

where A is defined as the product of all the barycentric coordinates of £ in 7, i.e., A = ?:1 A;.

The fact that (82) defines E I;_l(f)) uniquely follows from the Riesz representation theorem after
observing that VX : G (8) —» PF2(#)3 is an isomorphism. We then define the operator
EX1: L2 (1)} - PR5(1)3 n H|(7)? as follows (see [37, Eq. (45)])

EX 0) = g o (V| BV BL 2k 0)). (83)

Using standard properties of the contravariant transformation ¢, . (-), we infer V - E k=l(w) = 0;
moreover, it is proved in [37, Proof of Proposition 17] that ||E’;‘1(w)||Lz(T)3 S Wl z2(7)3- Then, for
given a function v € L*(T)3, we define v , as the interpolate of E ’i‘l (v) onto the space RT* (1),
thus we have V - vy, = 0. Additionally, since E ﬁ_l(v) € Hé (1), o, has zero normal trace at
the boundary of 7 and, using standard interpolation estimates for vy » (see, e.g., [6, Proposition
2.5.1]), the bound || EX~!(v) l22(r)3 S IIWllL2(¢)3- and a discrete inverse inequality (this is valid since
E*=!(v) is a polynomial function), it is inferred that 00, zll2(zy3 < IVllz2(£)s- We now define

Ry(v) € RTE(T7) as
Ry)s=v0. Vrelr (84)
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and observe that ﬁ;(v) clearly satisfies the properties (18b—18d) from the above discussion.

To prove (18a), we introduce the space
6“1 (Tr) = (x —xp) x PFA(Tr), (85)

and denote the L2-orthogonal projector onto this space by ncg’k;. Observe that G*~1(T) c
G“* 1 (ZTy), thus

J—=1,_c,k—1 k-1
ncg,r (ncg’sz) = ”Cg,r w vw € L*(T),
then (18a) holds a fortiori if we prove that
Jk—17k k=1
ncg’zTRT(v) = ncg’va. (86)

To prove it, let g € G©*~'(T7) and 7 € T1. Then, using the definition (84) of Til;(v), we obtain, for
allT e EIT,

/ RE) g = / Vor-g = / E<'(v) g = / WILEST ) gile) =T (87)

where in the second step we have used the interpolation properties of vy, . and the fact that g . €
P =1(1)? along with the definition of the Raviart-Thomas interpolator, and in the last step the
definitions (80) of the Piola transformations and the identity (81). By definition (85), we have that
8 = (x —x71) X g, Where g, € P*=2(7)3. With this mind, and using (79), we get that

Y (@@ =THT (M X qg<FT<f>)) = & X det(J)J; ' g, (F (%)), (88)

where in the last step we have used the matrix-cross-product identity (see [24, Ex.9.5]) A" (y x z) =
det(A)~'Ay x Az valid for any y, z € R? and any invertible real matrix A of size 3 x 3. Now, define
q, = det(JT)J;lqg(FT(fc)) € P*=2(+)3. Then, using the definition (83), we compute T in (87) as
follows:

T = /jx (/izﬁxE';‘l(xp;}T(v))) C(®Xy)
= fizﬁxﬁ’;‘l(ap;;(v)) L VX(E X q,)
= ‘/'/’;,IT(V) (XX q,) = /J;lv IN((x —x7) % q,) = /v - g,

where, in the second line, we have used integration by parts, along with the fact that 2UxE! ()
vanishes at the boundary of 7, in the third line first the definition (82), then a change of coordinates
using (79) along with the definitions (80) and the same matrix-cross-product identity as before, and
finally some standard properties of the transpose. Thus, using the last equation above and (87), we

have that
~k ~k
/RT(V)-g=Z/RT(V)-g=Z/v-g=/v-g- (89)
T TE%T T TE%T T T
Since g is an arbitrary element of G*~!(Z7), it implies (86), and we conclude. m|

Remark 16 (The common vertex assumption). In the proof of Lemma 3, the fact that x7 is a common
vertex for all simpex 7 € T7 allows to express the affine transformation F, : T — 7 as (79) implying
the key property that the covariant transformation ¢ . . : GO () = (x —x7) x P*2(1)3, defined
in (80), is an isomorphism. This is required for (88) and (89), and then making possible to prove
(18a) and (18d).
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Naot  lle,llv,n  EOC  lenll 22 EOC |lenllp2@ EOC
Cartesian, k =0
540 5.92E-01 - 1.11E-01 - 2.54E-01 -
2080 3.35E-01 0.822 3.54E-02 1.644 8.58E-02 1.565
8160 1.78E-01 0.911 9.92E-03 1.835 2.46E-02 1.800
32320 9.10E-02 0.969 2.59E-03 1.938 6.50E-03 1.923
Cartesian, k = 1
980 2.04E-01 - 1.97E-02 - 4.91E-02 -
3760  5.73E-02 1.831 2.28E-03 3.114 5.86E-03 3.067
14720 1.51E-02 1926 291E-04 2970 7.75E-04 2918
58240 3.85E-03 1.96 3.75E-05 2957 1.08E-04 2.845
Hexagonal, £k =0
3241  8.26E-01 - 5.46E-02 - 1.53E-01 -
12081 4.42E-01 0901 1.71E-02 1.674 4.21E-02 1.861
46561 2.27E-01 0964 4.78E-03 1.838 1.10E-02 1.929
182721 1.14E-01 0.986 1.25E-03 1.931 2.85E-03 1.954
Hexagonal, k =1
6041  4.80E-01 - 3.04E-02 - 1.03E-01 —
22481 8.40E-02 2.515 142E-03 4421 4.53E-03 4.507
86561 1.78E-02 2.237 1.23E-04 3.529 4.20E-04 3.432
339521 4.20E-03 2.085 1.37E-05 3.164 6.84E-05 2.618
Kershaw, k =0
5577  5.76E-01 - 1.78E-01 - 2.10E-01 -
22044  2.46E-01 1.231 6.36E-02 1.488 8.74E-02 1.269
49401 1.50E-01 1.230 2.93E-02 1921 427E-02 1.774
87648 1.08E-01 1.142 1.66E-02 1.983 2.47E-02 1.908
136785 8.46E-02 1.092 1.06E-02 1.995 1.60E-02 1.951
Kershaw, k =1
10065 4.51E-01 - 5.88E-02 - 1.50E-01 -
39732  7.00E-02 2.701 2.35E-03 4.672 5.12E-03 4.897
89001 3.02E-02 2.080 5.08E-04 3.785 1.09E-03 3.830
157872 1.64E-02 2.131 1.78E-04 3.653 4.23E-04 3.299
246345 1.04E-02 2.032 7.80E-05 3.703 2.11E-04 3.112

Table 3: Convergence rates for the numerical test of Section 4.1.
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