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Abstract 7 

Purpose of the review:   The involvement of ethylene in fruit ripening has been the subject 8 

of intensive molecular and biochemical studies over the last twenty years. Whereas new 9 

methods and new genes are being discovered, the differences between climacteric and non-10 

climacteric fruit seem to decrease. Recent studies are showing potential roles for ethylene 11 

signals in grape berry ripening. 12 

Main findings:   Ethylene seems to be involved in some changes that occur during the grape 13 

berry ripening, the final step of berry development. The whole ethylene production pathway 14 

seems activated at the inception of the grape berry ripening, the veraison. Treatments with 15 

exogenous ethylene stimulate the long term expression of genes related to the anthocyanin 16 

synthesis. Ethylene signals are also involved in the regulation of vascular fluxes and acid 17 

content. The ethylene may also been involved in some steps of aroma production, modulated 18 

by alcohol dehydrogenases.  19 

Directions for future research:   These findings could help to further unravel the differences 20 

between climacteric and non-climacteric fruit. In the future, whole genome sequencing and 21 

computer analyses will surely provide new tools to complete our knowledge of ethylene 22 

involvement in the ripening of these two categories of fruit. Regarding the economic 23 

importance of fruit ripening and preservation, this knowledge is crucial.  24 

 25 
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Abbreviations 29 

ACC  1-aminocyclopropane-1-carboxylic acid 30 

ACO  ACC oxidase 31 

ACS  ACC synthase 32 

ETR1  ethylene receptor 1 33 

ETR2  ethylene receptor 2 34 

EIN4  ethylene insensitive 4 (receptor) 35 

ERS1  ethylene response Sensor 1 (receptor) 36 
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ERS2  ethylene response sensor 2 (receptor) 1 

CTR1  constitutive triple response 1 (ethylene receptor ‘central unit’) 2 

1-MCP 1-methylcyclopropene 3 

2-CEPA 2-chloroethylphosphonic acid (also named “ethephon”) 4 

UFGT  UDP glucose-flavonoid glycosyltransferase 5 

ADH  alcohol dehydrogenase 6 
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Introduction 12 

 13 

Ethylene in plant biology 14 

Ethylene is a gaseous compound (C2H4) which has wide-ranging functions in plant biology 15 

[1]. Firstly, ethylene is involved in most development steps of the plant life cycle, including 16 

seed germination, root hair development, root nodulation, flowering, fruit ripening, abscission 17 

and senescence [1, 2**, 3]. Secondly, it could be considered as a “stress hormone”, because it 18 

possesses a determinant role in responses to environmental stimuli from biotic (pathogen 19 

attack) and abiotic stresses, such as wounding, hypoxia, ozone, chilling or freezing [2**]. 20 

 21 

What is ripening?  22 

Fruit development and ripening are two steps that are plant specific, and render the fruit 23 

attractive to a variety of seed-dispersing organisms [4, 5**]. Ripening, like the senescence 24 

that follows, are genetically programmed steps of plant development which can be modulated 25 

by internal (hormones) or external (light, humidity, temperature) signals [5**]. Thus, the 26 

mature phenotype results from number of physiological and biological variations, like colour 27 

change due to pigment modification, softening and flavour elaboration with sugar and volatile 28 

compound accumulation [3, 6**, 7]. 29 

 30 

Classification of climacteric or non-climacteric fruit  31 

Concerning the ripening phase, fruit is classified into two categories: climacteric and non-32 

climacteric. The first category includes pear, apple, kiwi, banana, peach, apricot, melon and 33 

tomato; the second one includes pineapple, cherry, fig, strawberry, citrus fruits and grape, 34 

among others [3]. Climacteric fruit ripening is associated to important rises in respiration and 35 

ethylene synthesis, on the contrary to non-climacteric fruit ripening [3]. Since this 36 
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classification, new observations have described complex interactions in the ethylene pathways 1 

(biosynthesis and perception), their implications in fruit ripening, and particularly in grapes, 2 

which is the subject of this review. 3 

 4 

 5 

Known roles for ethylene in fruit ripening 6 

 7 

Over the last twenty years, the biochemistry of ethylene biosynthesis has been a subject of 8 

intensive studies. Today, the major steps of the production pathway have been discovered 9 

[2**]. Additionally, the molecular cloning of the ACS and the ACO genes has now been 10 

performed in many plant species [2**, 7] and have led us to understand their regulation by a 11 

complex network of developmental and environmental signals responding to both internal and 12 

external stimuli [2**].  13 

Recently, Brummell [7] reviewed the two distinctive biosynthesis systems. System 1 14 

corresponds to the immature fruit development implying a weak ethylene synthesis, and to 15 

non-climacteric behaviour throughout all fruit development stages. System 2 refers to the 16 

massive production of this hormone in response to its own stimulation, named “autocatalytic 17 

synthesis”, specific to climacteric fruit. Most enzymes of the ethylene production, and 18 

probably perception, are involved. However, the transition between the two systems is not 19 

well understood, none specific molecular candidate of these two systems being isolated, and 20 

this could represents a new way for future research [7, 8]. The ethylene signal transduction 21 

pathway was first elucidated using the Arabidospis thaliana model [1]. Then, these findings 22 

were verified in tomato, a fleshy fruit model [9] and checked in strawberry, non-climacteric 23 

fruit [10]. In A. thaliana, there are five known ethylene receptors (ETR1, ETR2, EIN4, ERS1 24 

and ERS2) [11, 12] and six homologues were found in tomato, LeETR [9]. When ethylene is 25 

not bound to them, the receptors could be considered like negative regulators of the hormone 26 

signal, because they constitutively “activate” CTR1 in A. thaliana, and three CTR1 27 

homologues in tomato [5**], which in turn, negatively regulate the downstream signal 28 

pathway through a MAP-kinase cascade [1, 2**, 5**, 6]. MAP stands for Mitogen-Activated 29 

Protein. 30 

A quite recent tool, 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, was 31 

discovered by E. Sisler and colleagues. Blankenship and Dole [13*] wrote a comprehensive 32 

review about it. 1-MCP is a gas under ambient conditions and is thought to irreversibly bind 33 

ethylene receptors with an affinity ten times greater than that of ethylene [13*]. In the 34 

presence of 1-MCP, CTR1 maintains a signal inhibition configuration in the transduction 35 

pathway [8]. 36 
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Today, the development of grape genome sequencing provides new tools to find putative 1 

orthologues to A. thaliana genes, involved in this pathway [5**, 6]. Thus all these genes 2 

could represent as many clues to extend our knowledge about ethylene signalisation in this 3 

non-climacteric fruit [5**, 6]. Recently, Hilt and Bessis [14] reported a relation between the 4 

ethylene biosynthesis and the abscission of fruitlets during grape bloom. Therefore, this 5 

observation confirms the possibility that ethylene plays a role in other life cycle steps. And 6 

what about its role in grape ripening? 7 

 8 

 9 

What is known about grape ripening? 10 

  11 

In grape, ripening represents the second phase of berry development. The grape berry exhibits 12 

a double sigmoid pattern of growth with two distinct phases separated by a lag phase [15*, 13 

16*, 17*]. The first phase begins with a burst of cell division in pericarp tissue, which 14 

determines the berry final shape [15*, 16*]. The water for the volume expansion derives from 15 

both xylem and phloem sap, but more specifically from xylem. The main solutes to 16 

accumulate are the acids, particularly tartaric and malic [15*, 17*]. The second phase of grape 17 

berry development corresponds to the ripening. It results from the expansion of existing 18 

pericarp cells. A number of major physiological and biochemical simultaneous changes is 19 

characteristic to this ripening phase and determines the quality of the fruit at harvest [15*, 20 

16*]. Significant changes in metabolism begin at “véraison”, the onset of ripening, including 21 

sugar accumulation in flesh and skins, softening of berries, synthesis of anthocyanins and 22 

accumulation in skin, catabolism of organic acids and accumulation of flavour compounds 23 

[15*, 16*]. Concerning the vascular fluxes, the xylem flow is strongly reduced, hence the 24 

water and sugar that move during this phase largely come from phloem sap [15*, 17*]. At the 25 

inception of ripening, before the second phase of berry growth, Coombe and Hale [18*] did 26 

not observe an ethylene burst as in climacteric fruit, but Alleweldt and Koch did [19*].  27 

Beside these variations in ethylene content that are rather small, we observed that the whole 28 

ethylene synthesis pathway was activated, and that the major component that accumulated 29 

was the malonylated ACC form [20*]. 30 

As a spin-off of these studies, we checked the effects of ethanol in modulating grape ripening. 31 

Indeed in tomato, Beaulieu and Saltveit [21*] observed that a treatment with ethanol 32 

accelerated ripening and stimulated ethylene synthesis. Chervin and al. [22] observed a 33 

similar stimulation after spraying grape clusters with ethanol (5 % in water, hand-sprayer and 34 

saturation of the berry surface). 35 

 36 
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 1 

Ethylene and grape berry colour 2 

 3 

Many authors have showed that grapevine treatments with ethylene precursors stimulate the 4 

berry coloration. The 2-chloroethylphosphonic acid (2-CEPA), around 500 to 1000 mg/litre, 5 

was tested on grapevine by Hale and al. [23*]. This compound is also named ethephon. It 6 

enhanced ripening, with an associated increase of the number of coloured berries per cluster. 7 

Its application has been shown to increase anthocyanin synthesis in “Ruby Cabernet” and 8 

“Zinfandel” grapes [24]. This has been confirmed by other studies, among which one report 9 

by Shulman and al. [25], where the authors showed that ethephon improved maturation and 10 

wine quality of “Carignane” grapes, in a warm region of Israel. These results have led to the 11 

commercial development of ethephon solutions. We have observed recently that such 12 

solutions can advance maturity of “Cabernet Sauvignon” in the foothills of the Pyrenean 13 

chain, a cool climate place in the South West of France (Chervin C., pers. comm.). The 14 

application of ethylene precursors, such as ethephon, was demonstrated to stimulate the long 15 

term expression of genes related to anthocyanins synthesis [26], more than 10 to 20 days after 16 

treatment. This may be linked to a sustained ethylene evolution from treated berries 17 

previously observed by Coombe and Hale [18*]. This sustained production of ethylene seems 18 

to reach higher quantities than those being applied as precursors, and suggests that there is 19 

some feedback in the grape tissues, even if the ethylene evolution does not evolve in a 20 

massive increase as in climacteric fruit [3]. The ethylene stimulation of the expression of 21 

anthocyanin synthesis genes was linked to an increased accumulation of all the major 22 

anthocyanins without a change towards a specific type of anthocyanin accumulation [26]. The 23 

important role of ethylene in anthocyanin accumulation in berry skin tissues was confirmed 24 

by the inhibition of anthocyanin accumulation, induced by gassing the clusters with 1-MCP at 25 

veraison; this was performed by applying 1-MCP in a bag surrounding the cluster [20*]. 26 

 27 

As we showed that ethanol stimulates ethylene evolution by the grape clusters [22], we tested 28 

the ethanol effect on the expression of some anthocyanin biosynthesis genes [27], and found 29 

that one was increased by this alcohol, the UDP glucose-flavonoid glycosyltransferase 30 

(UFGT). This is sought to be a key step in anthocyanin accumulation in plant tissues as the 31 

glycosylation stabilises the anthocyanin. We have since sequenced more than 1500 base pairs 32 

of the UFGT promoter (GenBank accession number AY955269) and observed that it contains 33 

several ethylene cis-elements. This gene is also thought to be strongly regulated by a Myb 34 

transcription factor [28]. Whether this factor depends on ethylene signals or not, is unknown. 35 

 36 
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  1 

Ethylene and vascular fluxes in grape berry 2 

 3 

Gassing clusters with 1-MCP limits the increase of berry volume during the ripening phase 4 

[20*]. The effect of 1-MCP was particularly important at the inception of ripening when there 5 

was a concomitant rise in ethylene evolution and associated biosynthesis pathway. During the 6 

following ripening period, the volume extension of the berry is thought to be mainly due to 7 

phloem fluxes [15*, 16*, 17*]. The observation that 1-MCP limits the increase of the berry 8 

diameter is a first proof of potential roles for ethylene signals in regulating the vascular fluxes 9 

associated to berry ripening.  10 

When regarding the effects of spraying ethanol onto clusters, we observed an increased berry 11 

size in France and Australia, in quite different conditions [29]. This is logical compared to the 12 

results obtained with 1-MCP, if we consider that ethanol slightly stimulates the endogenous 13 

ethylene production; this confirms that ethylene could boost vascular fluxes. However, it is 14 

know by industry people that massive doses of ethephon can lead to a decreased berry size. 15 

 16 

 17 

Ethylene and grape acidity 18 

 19 

Ethylene seems also implicated in the regulation of berry acidity. Indeed, ethephon treatment 20 

induces an acidity decrease in grape juice [25]. These authors observed the acidity drop in 21 

musts and wines of “Carignane” grapes over two seasons, and this was linked to the 22 

concentration decrease of both tartaric and malic acids. We recently confirmed these 23 

observations in a cool climate region on “Cabernet Sauvignon” (Chervin, unpublished). We 24 

also observed that gassing clusters with 1-MCP led to a slower decrease of acidity over the 25 

ripening phase [20*]. As the acidity was measured in equivalent per litre of juice, we cannot 26 

conclude whether this effect was directly related to ethylene signalling or indirectly related 27 

reflecting the smaller diameter of treated berries, thus leading to less juice per berry, which in 28 

turns leads to a smaller dilution of the same quantity of acids.  29 

As the acidity was measured in equivalent per litre of juice, we cannot conclude whether this 30 

effect was directly related to blocked ethylene signals limiting acid degradation, or indirectly 31 

related, reflecting the smaller diameter of treated berries, leading to less juice per berry and a 32 

smaller dilution of the same quantity of acids. 33 

This is somehow controversial with known effects of ethephon leading globally to smaller 34 

berries with lower acidity, compared to controls. 35 



 7 

And finally regarding berry acidity, we observed a decreased acidity by spraying ethanol onto 1 

the “Cabernet Sauvignon” clusters [30]; the malic acid was the only acid affected in this case.  2 

 3 

 4 

Ethylene and aroma in grape berries and wine 5 

 6 

Not much is known about the ethylene role in grape flavour and aroma. Ethylene stimulates 7 

one specific Vitis vinifera alcohol dehydrogenase (VvADH) implicated in the grape ripening 8 

phase [31*].  In plants, the ADHs have a variety of functions: detoxification, stress response, 9 

aldehyde/alcohol ratio regulation. This last reaction may have some potential in changing the 10 

aroma production as stated by other authors working with tomato [32]. Tesnière and al. 11 

showed the presence in the VvADH promoter of cis-elements for ethylene, suggesting that the 12 

ethylene transduction pathway could be partly involved in the regulation of the expression of 13 

this enzyme [31*].   14 

The fact that lots of aroma precursors are glycosylated [15*] is another track to follow in the 15 

search for hormonal regulation of these critical steps for berry quality gain. At present, Boss 16 

and colleagues are working to decrypt the complex mechanisms of aroma formation in grapes.  17 

 18 

 19 

Perspectives  20 

 21 

Since the 70’s, the grape has been classified as a non-climacteric fruit [3]. This does not mean 22 

that ethylene has nothing to do with grape and other non-climacteric fruit ripening. Recent 23 

data confirm this. An autocatalytic system 2-like ethylene synthesis was observed in citrus in 24 

response to initial low amounts of this hormone. This rise in ethylene production is preceded 25 

by induction of the genes for CsACS1 and CsACO1 and one of the receptors, CsERS1 [33*].  26 

Other results have been obtained recently in strawberry, another non-climacteric fruit, in 27 

which two cDNAs coding for enzymes of the ethylene biosynthesis pathway (FaACO1 and 28 

FaACO2) and three cDNAs encoding different ethylene receptors (FaETR1, FaETR2 and 29 

FaERS1) have been isolated [34*]. These observations suggest perhaps a similar way of 30 

ethylene signalisation in climacteric and non-climacteric fruits. The only distinction could be 31 

based on the sensitivity of the hormone receptors, or the ethylene rate required to induce the 32 

response, or some missing link to trigger the autocatalytic rise in some non-climacteric fruit.  33 

Perhaps, new methods like whole genome sequencing and computer analyses will permit to 34 

elucidate the ethylene involvement in grape berry ripening, and to measure the real 35 

differences between climacteric and non-climacteric fruits. The recent development of grape 36 
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microarray has revealed the first large pool of genes involved in the inception of grape berry 1 

ripening [35]. Other plant hormones that are involved in grape ripening are under scrutiny of 2 

research groups at the moment: brassinosteroids [36] and jasmonates [37], and these may 3 

have interactions with ethylene signalling. 4 

Among these critical works, some potential for ethanol applications have derived from works 5 

on the relations between ethylene and ethanol. Indeed the table grape preservation is 6 

improved in presence of ethanol vapours [29]. 7 

 8 
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