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� Heparanase-1 (HPSE) is upregulated by HCV in an NF-jB-depen-
dent manner.

� HPSE favors HCV replication cycle at the virus release step.

� HCV release is dependent on the tetraspanin CD63.

� High HPSE levels may favor pathologic liver alterations.
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Lay summary
Chronic hepatitis C virus (HCV)
infection can lead to hepatocellular
carcinoma development in a pro-
cess that involves derangement of
the extracellular matrix (ECM).
Herein, we show that heparanase-1,

dation and remodeling, favors HCV
infection and is upregulated by HCV
infection; this upregulation may
result in pathogenic alterations of
the ECM.
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Heparanase-1 is upregulated by hepatitis C virus and favors
its replication
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Background & Aims: Over time, chronic HCV infection can lead © 2022 European Association for the Study of the Liver. Published by

to hepatocellular carcinoma (HCC), a process that involves
changes to the liver extracellular matrix (ECM). However, the
exact mechanisms by which HCV induces HCC remain unclear.
Therefore, we sought to investigate the impact of HCV on the
liver ECM, with a focus on heparanase-1 (HPSE).
Methods: HPSE expressionwas assessed by quantitative reverse-
transcription PCR, immunoblotting and immunofluorescence in
liver biopsies infected or not with HCV, and in 10-day-infected
hepatoma Huh7.5 cells. Cell lines deficient for or overexpressing
HPSE were established to study its role during infection.
Results: HCV propagation led to significant HPSE induction,
in vivo and in vitro. HPSE enhanced infection when exogenously
expressed or supplemented as a recombinant protein.
Conversely, when HPSE expression was downregulated or its
activity blocked, HCV infection dropped, suggesting a role of
HPSE in the HCV life cycle. We further studied the underlying
mechanisms of such observations and found that HPSE favored
HCV release by enhancing CD63 synthesis and exosome secre-
tion, but not by stimulating HCV entry or genome replication. We
also showed that virus-induced oxidative stress was involved in
HPSE induction, most likely through NF-jB activation.
Conclusions: We report for the first time that HCV infection is
favored by HPSE, and upregulates HPSE expression and secretion,
which may result in pathogenic alterations of the ECM.
Lay summary: Chronic hepatitis C virus (HCV) infection can lead
to hepatocellular carcinoma development in a process that in-
volves derangement of the extracellular matrix (ECM). Herein,
we show that heparanase-1, a protein involved in ECM degra-
dation and remodeling, favors HCV infection and is upregulated
by HCV infection; this upregulation may result in pathogenic
alterations of the ECM.
words: HCV; Heparanase-1; CD63.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most common
malignancies and is ranked as the fourth-leading cause of death
due to cancer.1 According to the WHO, HCV is a leading etiology
for HCC with an estimated 71 million chronic carriers globally.
Chronic HCV infection evolves through stages of fibrosis,
cirrhosis and may result in liver decompensation or HCC in se-
vere cases, decades after the initial infection. How exactly HCV
induces liver cancer is not yet fully understood since it is a non-
integrative virus, but epidemiological observations suggest that
HCV could fuel liver carcinogenesis by creating an oxidative,
inflammatory microenvironment characterized by concomitant
wound repair processes.2 In the long term, these processes lead
to genomic instability and deform the liver architecture, thus
favoring HCC. Importantly, oxidative stress, either directly
induced by the virus or due to inflammatory immune responses
against the virus, leads to a remodelling of the extracellular
matrix (ECM).3

To better understand how chronic hepatitis C leads to liver
disease, we sought to investigate the impact of viral infection on
the liver ECM by focusing on heparanase-1 (HPSE). Abnormal
ECM dynamics lead to pathological processes such as tissue
fibrosis and cancer.4–6 Major components of the ECM are hep-
aran sulfate proteoglycans (HSPGs). They not only provide a
storage depot for heparan sulfate (HS)-binding molecules such as
growth factors, cytokines, chemokines and enzymes, but also
regulate their accessibility, function and mode of action.7 HPSE is
the sole endo-beta-D-glucuronidase that cleaves HS side chains,
thereby participating in ECM degradation and remodelling. It is
synthesized as a 65 kDa-proenzyme in the Golgi and further
processed by cathepsin L in late endosomes into 2 subunits of
50 kDa and 8 kDa that form a proteolytically active enzyme.
HPSE expression is rather restricted to placenta, keratinocytes,
platelets, activated immune cells, with little expression in con-
nective tissues and epithelia, whereas an enzymatically inactive
form of HPSE (HPSE2), is widely spread in normal tissues.8–11

High HPSE levels have been shown to correlate with cell
migration and invasion, inflammation, and angiogenesis,12 and
have been observed in various human malignancies such as
breast, colon, lung, prostate and liver cancers.9,10
2022 vol. - j 1–13
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Fig. 1. HPSE expression in liver biopsies. (A) mRNA analysis of liver biopsies
from HCV-infected or uninfected patients at various stages of chronic liver
disease; n, number of patients. HPSE is significantly induced in HCV-infected
patients. (B) HPSE is significantly induced in HCV-infected patients with
mild/moderate fibrosis compared to severe fibrosis/cirrhosis. (C) HCV infection
is more pronounced in patients with moderate/mild fibrosis compared to pa-
tients with severe fibrosis/cirrhosis. (D) HPSE expression in uninfected disease-
free patients vs. mild/moderate fibrosis and severe fibrosis/cirrhosis. Statistical
significance was calculated using Mann-Whitney U test. *p <0.05, **p <0.01,
***p <0.001 and ****p <0.0001.
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Apart from its pro-carcinogenic role, accumulating evidence
revealed a role of HPSE in regulating the lifecycle of several
human viruses including herpes simplex virus 1 (HSV-1),
dengue, human papilloma (HPV), respiratory syncytial (RSV), and
the porcine respiratory and reproductive syncytial virus
(PRRSV).13–17 However, very little is known about HPSE and HCV
infection. Indeed, one report suggests that HCV may enhance
HPSE expression in HCV-related HCC,18 but nothing is known
about the impact of HPSE on HCV replication and pathogenesis,
nor the underlying mechanisms. Therefore, we investigated
whether there was any relationship between HPSE and HCV
infection. We found that HCV induced HPSE in an NF-jB-
dependent manner in vitro and in patient biopsies, suggesting a
possible role of HPSE in the HCV lifecycle. Indeed, genetic
modulation of HPSE expression altered HCV infection and virus
release. Lastly, we identified the tetraspanin CD63, a molecule
involved in exosome biogenesis, as a key player in this process.

Materials and methods
RT-qPCR
To detect the role of HPSE on HCV replication, Huh7.5 cells were
seeded in 6- or 12-well plates. Virus replication or HPSE
expression was quantified by reverse-transcription quantitative
PCR (RT-qPCR). For RNA extraction, cells were lysed in Extrac-
tAll® solution according to the manufacturer’s protocol. For the
next step, 1.5 lg of RNA was treated with DNase (Roche) and
reverse transcribed by 5X RT master mix (Abm ref#G592)
following manufacturer’s instructions. Samples were diluted 1:5
and mixed with SYBR Green (Roche) and primers (Table S1) to
amplify cDNA on QuantStudio7 (Applied Biosystems). Beta-
glucuronidase (GUS) was used as a housekeeping gene.65

Biopsies
RNA was directly extracted from the biobank. Samples came
from 60 patients uninfected by HCV and 93 patients infected by
HCV as described in.66 The study protocol was approved by the
French IRB “Comité de Protection des Personnes (CPP) Sud-Est
IV” (#11/040). Clinical, biological, and virological parameters of
virus-free and HCV-positive patients are indicated. Written
informed consent was obtained from each patient included in
this study. The study protocol conforms to the ethical guidelines
of the 1975 Declaration of Helsinki as reflected in a priori
approval by the institution’s human research committee. Unin-
fected patients had autoimmune disease, alcohol-related liver
disease or non-alcoholic fatty liver disease, which included
metabolic and genetic diseases. Some samples were also unde-
termined. The details of the samples used are grouped in
Table S2. Concerning infected patients, we assume that fibrosis is
due to the infection itself.

For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.

Results
HCV-dependent heparanase induction in patients
We recently reported that HCV infection resulted in the down-
regulation of the HSPG syndecan-1 in hepatocytes,19 implying
that viral replication might lead to ECM alterations. Therefore, we
asked whether persistent HCV infection had an impact on
endogenous HPSE expression. We examined HPSE expression
in vivo on liver biopsies from patients chronically infected with
HCV or not, at different stages of liver disease according to
2 Journal of Hepatology
METAVIR scoring: F0 (no fibrosis), F1 (portal fibrosis without
septa), F2 (portal fibrosis with few septa), F3 (septal fibrosis) and
F4 (cirrhosis).20 Biopsies from uninfected patients were mainly
collected from patients with autoimmune liver disease, alcohol-
related liver disease, or non-alcoholic fatty liver disease. Prin-
cipal component analysis was performed on virological parame-
ters (viremia, genotypes) as well as on different parameters of
liver injury such as fibrosis score. HPSE expression was positively
correlated with viremia (r = 0.25) and negatively correlated with
fibrosis score (r = -0.22) in a significant manner (p = 0.05). When
all disease stages were included, and HCV-positive biopsies (n =
87) compared to uninfected ones (n = 58), HPSEmRNA expression
was found to be significantly upregulated in infected patients
(Fig. 1A). Moreover, this expression was positively correlated with
HCV infection rate (r = 0.328) as measured by intrahepatic HCV
RNA (Fig. S1A-B). After further stratification of the biopsies as
“mild/moderate fibrosis” (F1/F2) and “severe fibrosis/cirrhosis”
(F3/F4), HPSE expression was found to be higher in F1/F2 biopsies
compared to F3/F4 ones (Fig. 1B), which is in line with HCV
infection within the 2 groups (Fig. 1C). In uninfected patients,
HPSE mRNA expression did not seem to be related to disease
etiology (Fig. S1C), and no significant increase in expression was
found in F1/F2 or F3/F4 compared to F0 (Fig. 1D). Thus, our data
demonstrate for the first time that HPSE can be induced by HCV
in vivo, with overexpression more pronounced at early stages of
liver fibrosis when HCV titers are higher.
2022 vol. - j 1–13
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Fig. 2. Overexpression of heparanase upon HCV infection in different cells. (A) Huh7.5 cells were infected with HCVcc at MOI=0.1. At 5 dpi, cells were passaged
and at 10 dpi recovered for RT-qPCR analysis of mRNAs. GUS was used as a housekeeping gene. Mean ± SD of 4 independent experiments in triplicates. (B)
Western blot analysis of Huh7.5 cells infected or not by HCV, for HPSE and HCV core protein expression at 10 dpi. HPSE antibody recognizes both forms of HPSE,
i.e. the precursor pro-HPSE (�65 kDa) and the active HPSE (�50 kDa). Right panel: quantification of the bands for HPSE normalized on actin level (ImageJ
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HPSE expression is significantly induced at 5 dpi. Mean±SD of 2 independent experiments in triplicates. (E) Expression of HPSE in PHHs. PHHs were infected with
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Lysates of infected or uninfected PHHs were analyzed by Western blot for HPSE and HCV expression. (G) Extracellular HPSE measurement. Huh7.5 cells were
seeded in 12-well plates and infected or not by HCVcc at MOI=0.1 for 6 days. Cell supernatants were collected, centrifuged to discard cell debris, and 200 ll were
used for dot blot analysis using a HPSE antibody. Pixel densitometry of the dots was performed using ImageJ, and results presented as fold-change from the
uninfected cells. Statistical significance was calculated using Mann-Whitney U test. *p <0.05, **p <0.01, ***p <0.001 and ****p <0.0001. dpi, days post infection;
HCVcc, HCV cell culture; MOI, multiplicity of infection; PHHs, primary human hepatocytes; RT-qPCR, reverse-transcription quantitative PCR.
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Heparanase expression is induced in HCV-
infected hepatocytes
Next, we assessed the effect of HCV infection on HPSE using
Huh7.5 cells in which the HCV cell culture (HCVcc) JFH1 strain
had been passaged for 10 days. We detected a �6-fold increase in
HPSE mRNA expression, concomitant to an increase in protein
level (Fig. 2A,B). Immunofluorescence analyses confirmed HPSE
induction upon infection and furthermore revealed a punctate
distribution of HPSE and its colocalization with HCV core (Fig. 2C,
Fig. S2A), suggesting a link between both molecules. We also
followed HCV infection for 6 days post infection (dpi) in Huh7.5
cells which were not passaged (Fig. 2D) and for up to 17 dpi in
Huh7.5 cells incubated in DMSO-containing medium (Fig. S2B).
The latter leads to hepatocyte differentiation, as evidenced by
expression of markers such as cytokeratin-18, albumin, or alpha-
1-antitrypsin (Fig. S2C), which obviated the need for cell
passaging since cells become growth-arrested: they can be kept
in cell culture and infected for more than 2 weeks.21 These ki-
netics revealed that HPSE mRNA expression increased over time,
together with HCV infection, reaching its maximum at 4-5 dpi
when the replication rate was high, suggesting that HPSE over-
expression occurs once HCV infection becomes persistent. To
recreate a more physiological setting, we also infected primary
human hepatocytes (PHHs) with HCV. Since these cells exhibit
functional innate immunity, they rapidly clear HCV infection.
Therefore, we evaluated HCV RNA expression 3 dpi, which is
within the infection peak as demonstrated by us (Fig. S2D) and
C

A

Cell
seed

D0 D5 D8 D11

+HCV 

+ sofosbuvir

Pass cells

qRT-PCR

0

200

400

600

H
(prior

R
el

at
iv

e 
m

R
N

A 
le

ve
l t

o 
G

U
S

D HP
with

8
0.00

0.01

0.02

0.03

0.0

HCV infection

0

100

200

300

8 11
dpi

R
el

at
iv

e 
m

R
N

A 
le

ve
l t

o 
G

U
S Sofosbuvir -

Sofosbuvir +

R
el

at
iv

e 
m

R
N

A 
le

ve
l t

o 
G

U
S

*

Fig. 3. Reversibility of the HPSE induction upon HCV elimination. (A) HCV RNA
mRNA quantification at day 5 (prior cell passaging and sofosbuvir treatment). (C)
sofosbuvir. (D) HPSEmRNA quantification at days 8 and 11 in the absence of treatm
and 11 in the presence of sofosbuvir in HCV-infected or uninfected cells. All expe
significance was calculated using Mann-Whitney U test. *p <0.05, **p <0.01 and

4 Journal of Hepatology
others.22 A significant increase (�2.5-fold) of HPSE mRNA
expression was observed in HCV-infected PHHs from 3 different
donors (Fig. 2E), compared to uninfected cells. However, no
change in HPSE expression could be seen at the protein level,
compared to Huh7.5 (compare Fig. 2 panels B&F), and HCV core
was not detected. This could come from the low infectivity rate
of PHHs in vitro – 2,000 to 20,000-fold less than that of Huh7.5
cells based on DCt values (compare Fig. 2 panels A&E left), most
likely due to the early activation of interferon-related genes in
primary cells.23,24 Since HPSE plays its physiological or patho-
logical roles when released in the ECM, we further examined its
level in cell supernatants by dot blot. Our results showed a >2.5-
fold increase in extracellular HPSE level when cells were infected
(Fig. 2G). Collectively, our results show that HCV infection
enhanced HPSE expression and release in cultured hepatocytes.

HPSE expression returns to baseline upon HCV treatment
Whether HPSE overexpression was indeed linked to HCV infec-
tion was then studied in HCV-cured cells. Huh7.5 cells were
infected with HCV under conditions that allowed for a massive
spread of infection, as we documented.25 Five dpi and prior to
cell passaging, when HCV infection was established (Fig. 3A),
HPSE expression exhibited a 2-fold increase in HCV-infected cells
compared to uninfected ones (Fig. 3B), as previously observed
(Fig. 2). Cells were then passaged and cultured for 6 additional
days in the absence or presence of the NS5B polymerase inhib-
itor sofosbuvir to clear HCV infection. Eight dpi, sofosbuvir-
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mediated inhibition of HCV infection was 90% and nearly com-
plete at 11 dpi (Fig. 3C). Concomitantly baseline levels of HPSE
(Fig. 3E) were observed, whereas in the absence of sofosbuvir,
HPSE expression increased (Fig. 3D, �3-fold at 8 dpi, �4-fold at
11 dpi), as reported above. HCV infection per se could therefore
induce the upregulation of HPSE expression, and this effect was
reversible upon viral clearance.

HCV-related oxidative stress induces HPSE expression in an
NF-jB-dependent manner
We have already documented that during its replication in
Huh7.5 cells, HCV creates an oxidative stress due to the accu-
mulation of peroxide ions.26 We therefore analyzed the expres-
sion of oxidative stress-related genes like the nuclear factor
erythroid-2 related factor 2 (NRF2) and its downstream target
– hemeoxygenase-1 (HO-1). NRF2 is a major transcription factor
which is involved in cellular defense against oxidative stress and
is upregulated in such conditions.27,28 The quantification of NRF2
and HO-1 mRNA levels in HCVcc-infected Huh7.5 cells showed a
significant increase compared to controls (Fig. 4A). Oxidative
stress has been shown to stimulate the expression and activation
of the transcription factor NF-jB.29,30 Since HPSE is an NF-jB
target gene,31 upregulated through NF-jB during HSV-1 and
PRRSV infections,13,14 we checked if this occurred with HCV. As
reported by others,32 we found that NF-jB was induced in HCV-
infected Huh7.5 cells (Fig. 4A), and observed the nuclear trans-
location of NF-jB p65 (Fig. 4B), as an indication of its activation.
In human liver biopsies, NF-jB was induced in HCV-infected
samples (Fig. 4C) and correlated positively to HCV infection
rate as measured by intrahepatic HCV RNA (r = 0.5) (Fig. S3A-B).
Interestingly, this induction occurred at the early stages of liver
disease (F1/F2), corresponding to high levels of HCV infection
and HPSE expression (Fig. 1). Indeed, a significant positive cor-
relation (r = 0.6) between NF-jB and HPSE mRNA expression was
found (Fig. S3C), suggesting a functional link between HCV
infection, NF-jB and HPSE expression. To identify whether NF-jB
upregulation is due to oxidative stress, Huh7.5 cells were treated
with H2O2. The results showed a dose-dependent increase in
NRF2 and HO-1 expression, correlating with NF-jB and HPSE
expression (Fig. 4D). As a control, cells treated with the antiox-
idant N-acetyl cysteine did not display any change in any of the
studied genes. Alternatively, we activated NF-jB by a different
mechanism than oxidative stress: cells were treated with PMA
(phorbol-12-myristate-13-acetate ester), an activator of NF-jB
transcription.33 Our results reveal that HPSE is upregulated by
PMA treatment (Fig. S3D) and are in favor of a mechanism
whereby HPSE upregulation is induced by NF-jB. Lastly, we
explored the effect of the NF-jB inhibitor CAPE34 on HPSE
expression. When cells were pretreated with CAPE prior to H2O2

stimulation, at concentrations where no cytotoxicity was
observed, there was no increase in NF-jB and HPSE mRNA
expression compared to the condition where H2O2 alone was
used (Fig. 4E, cf Fig. 4D). These results validate the link between
oxidative stress and NF-jB upregulation and suggest that the
oxidative stress-induced upregulation of HPSE depends on
NF-jB.

Heparanase favors HCV infection
A link between HPSE upregulation and infection by viruses such
as HSV-1, PRRSV, HPV and RSV was recently reported, where
HPSE contributed to enhanced virus release.13,14,16,17 We
6 Journal of Hepatology
investigated this further by establishing Huh7.5 cells that
constitutively expressed the canonical form of HPSE using len-
tiviral vectors. HPSE overexpressionwas evidenced at the protein
and mRNA levels (Fig. 5A-B). In these cells (Huh7.5 HPSE+), a �3-
fold increase in HCV infectionwas observed, compared to normal
Huh7.5 cells (Fig. 5C), suggesting that HPSE promotes the HCV
infectious cycle. A dose-dependent increase in HCV infection and
release was also observed when recombinant HPSE (rHPSE) was
added to the cell medium (Fig. 5D-E). Conversely, when HPSE
expression was downregulated using a short-hairpin (sh) RNA
approach (Fig. 5F-G), HCV infection was reduced by 70%
compared to control cells (Fig. 5H) and was partially restored
when rHPSE was added (Fig. 5I-J). This was also confirmed by a
CRISPR/Cas9 knockout approach (Fig. S4). Lastly, we used a
pharmacological approach to block HPSE activity. HCV-infected
Huh7.5 cells were treated with the specific HPSE inhibitor PI-
88, and HCV infection was assessed 3 dpi. We observed a dose-
dependent decrease in HCV RNA at PI-88 concentrations dis-
playing no significant cell cytotoxicity (Fig. 5K). Taken together,
these results suggest that HPSE plays a role in the HCV life cycle.

Heparanase is not involved in HCV entry or virus
genome replication
To elucidate the mechanism(s) by which HPSE favors HCV
infection, viral entry was first investigated. For that purpose, we
used pseudo-particles displaying HCV E1/E2 (HCVpp) and ve-
sicular stomatitis virus G (VSVGpp), bearing a GFP marker gene,
as a control.25 Neither VSVGpp nor HCVpp entry was blocked by
the HPSE inhibitor PI-88, indicating that HPSE is dispensable for
HCV entry (Fig. 6A). Conversely, control reactions with the anti-
CD81 antibody JS81 showed an efficient dose-dependent inhi-
bition of HCVpp entry. Treating cells with rHPSE prior to trans-
duction had no effect on HCVpp entry (Fig. S5). Additionally, a
time of addition experiment was set up in the context of HCVcc:
PI-88 was added at -1, 0, +2, +3, and +5 hours post infection, and
kept until 1 dpi when HCV RNA was quantified by RT-qPCR
(Fig. 6B). Adding the drug even 5 hours post infection led to
inhibition of HCV infection at all time points, as was the case
with sofosbuvir, indicating that the PI-88 was active at a post
entry step. In contrast, JS81 inhibited HCV infection only when
added at the earliest time points (-1 h and 0 h), in agreement
with the involvement of CD81 in viral entry. Next, we set up an
HCV replicon system35 to specifically assess HCV replication. This
system is based on measuring luciferase activity, since the Renilla
luciferase reporter gene was encoded within the HCV RNA. HCV
replication in Huh7.5 cells was comparable in Huh7.5 HPSE+ and
Huh7.5 shHPSE cells (Fig. 6C), as well as in cells treated with PI-
88 (Fig. 6D), arguing against any involvement of HPSE in HCV
genome replication.

HPSE induction modifies the expression of the tetraspanin
CD63 and enhances HCV release
Finally, we investigated the impact of HPSE on HCV release as
described for HSV-1.14 Specifically, we focused on the tetra-
spanin CD63, considered as an endosomal and exosomal
marker, and involved in vesicle secretion.36,37 Indeed, the pro-
cessing of the inactive pro-HPSE to its active form by the pro-
tease cathepsin L requires acidic conditions, met in the late
endosomal/lysosomal compartments.38 Moreover, HPSE was
reported to enhance exosome secretion when overexpressed in
cancer cells,39 and the release of the exosomal cargo CD63.40
2022 vol. - j 1–13
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Although the precise mechanism of HCV assembly and release
remains unclear, there is evidence that these processes are
linked to the exosomal pathway,41–43 involving CD63 in
particular, identified to be associated to the viral particle.44

Therefore, we investigated CD63 expression during HCV infec-
tion. A significant increase in CD63 mRNA expression was
observed in infected liver biopsies and in Huh7.5 cells, but no
association with fibrosis stages was found (Fig. 7A-B).
Journal of Hepatology
Furthermore, CD63 protein expression was higher in HCV-
infected Huh7.5 cells compared to uninfected cells, and it
localized in large aggregates (Fig. 7C). CD63 overexpression
appeared to be due to HPSE induction during infection rather
than to viral infection per se, since uninfected Huh7.5 cells
expressing exogenous HPSE displayed CD63 profiles compara-
ble to infected cells (Fig. 7C). Earlier reports indicated that cells
overexpressing HPSE showed a high number of cytosolic
2022 vol. - j 1–13 7
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Research Article Viral Hepatitis
vesicles and an abundant release of exosome-like vesicles.39,40

This pointed to a potential link between HPSE, HCV and CD63,
further investigated by silencing CD63 in Huh7.5 cells by RNA
interference. CD63 was efficiently knocked down by 2 shCD63
constructs (Fig. 7D, left panel). CD63-deficient cells displayed
drastic reductions in HCV infection compared to control cells
(sh-scrambled), with HCV RNA and virus release as readouts
(Fig. 7D, graphs). These data delineate for the first time a
functional link between HPSE, CD63 and HCV. We next inves-
tigated whether this enhanced HCV release was linked to
8 Journal of Hepatology
exosomes. Three Huh7.5 cell lines (naïve, CD63-deficient, and
overexpressing exogenous HPSE) were infected or not, and
analyses were performed on the exosome-containing fraction
and cell lysates (cf. supplementary materials and methods). In
line with results above, CD63 expression was induced in the
presence of HCV and in cells overexpressing HPSE and down-
regulated in shCD63 cells (Fig. 7E “Intracellular”). Similarly, in
the pellet containing extracellular exosomes, the CD63 signal
was stronger in HCV-infected cells or when HPSE was overex-
pressed (Fig. 7E “Extracellular”). The infectivity assay of the
2022 vol. - j 1–13
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(blue). The first 4 couples are cells stained for CD63 (green). The fifth couple represents cells stained for HCV core protein (red) to visualize HCV spread. (D) CD63
downregulation by shRNA. Two different shRNA sequences against CD63 or a scrambled sequence were used to transduce Huh7.5 cells. CD63 protein expression
was checked by immunoblot (left panel). Cells were then infected with HCVcc and collected at 3 dpi for RNA analysis of CD63 (left chart), and intracellular HCV
RNA (middle chart). Cell supernatants were quantified by the TCID50 method to assess virus release and presented as fold-change from the titer of the Huh7.5
condition (right chart). Mean±SD of 3 independent experiments in triplicates. (E) Huh7.5 cells, Huh7.5 shCD63 (sh3) cells, and Huh7.5 HPSE+ cells were infected or
not with HCVcc and 3 dpi supernatants and cells were collected and subjected to purification and lysis respectively (cf. supplementary materials and methods).
Fifty lg of proteins (left panel “intracellular”), and equal volumes of exosome-containing pellets (right panel “extracellular”) were loaded on a gel and immu-
noblotted under non-reducing conditions. (F) Cell supernatants were quantified by the TCID50 method to assess virus release and presented as fold-change from
the titer of the Huh7.5 condition. (G) Exosome purification on iodixanol gradients. Supernatants from HCV-infected Huh7.5 cells were processed as described in
the supplementary materials and methods. Exosomes were isolated by ultracentrifugation and subjected to iodixanol gradient ultracentrifugation. Fractions were
taken from the top and equal volumes of each were used either for Western blot detection (by anti-CD9, anti-CD63, anti-HCV core or anti-HPSE antibodies), or
RNA quantification. Statistical significance was calculated using the Mann-Whitney U test. *p <0.05, **p <0.01, ***p <0.001 and
****p <0.0001. HCVcc, HCV cell culture; MOI, multiplicity of infection; sh, short-hairpin.
supernatants showed a drop in HCV release in shCD63 cells, and
an increase in HPSE-positive cells compared to naïve Huh7.5
cells (Fig. 7F).

In order to determine whether HCV virions are secreted along
CD63-positive exosomes, we investigated a potential co-
Journal of Hepatology
fractionation of the exosomal markers CD63 and CD9 with HCV
virions. The exosome-containing pellet fraction from superna-
tants of HCV-infected cells was layered on iodixanol density
gradients. Their analysis revealed that CD63 and CD9 were both
present in fractions from 1.09 to 1.15 g/ml density, with a peak at
2022 vol. - j 1–13 9
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1.12 g/ml (Fig. 7G). Most classical (MVB-related) exosomes
display buoyant densities in iodixanol from 1.08 to 1.15 g/ml,45

indicating that CD63 is mainly of exosomal origin. HCV RNA
co-fractionated with CD9 and CD63, peaking in the 1.12 g/ml
fraction, consistent with recent data reporting that HCV RNA
traffics in exosomes.46 However, virions sedimented with a
shifted profile compared to that of exosomes, with HCV core
peaking in the 1.15 g/ml fraction, in line with previous data.47,48

Therefore, our data would indicate that HCV virions are not
contained in exosomes, although at this stage, we cannot exclude
that some virions might traffic with exosomes. The dependence
of HCV infection on CD63 expression nevertheless suggests that
virions may share common secretion mechanisms with exo-
somes. Altogether, these data imply that HPSE might favor HCV
release by enhancing CD63-positive exosome production
and secretion.

Discussion
Our studies show that HPSE may play important roles in the life
cycle as well as the pathophysiology of HCV infection. We show
that HPSE expression is significantly upregulated in HCV-positive
patients (Fig. 1A) and particularly at mild/moderate (F1/F2)
compared to severe (F3/F4) fibrosis stages (Fig. 1B) which is
consistent with HCV infection (Fig. 1C). In uninfected liver sam-
ples (Fig. 1D), we found that HPSE was slightly but significantly
upregulated in patients with mild/moderate fibrosis compared to
severe fibrosis/cirrhosis (Fig. 1B) implying that liver inflamma-
tion and/or scarring per se could induce HPSE, as previously
described49 but also reported for other pathologies such as
chronic pancreatitis and Crohn’s disease.50 Indeed, studies in rat
liver post partial hepatectomy and upon pharmacologically
induced liver fibrosis showed elevated HPSE expression during
10 Journal of Hepatology
the tissue regeneration process and early fibrosis, but a decrease
to baseline as the severity of fibrosis increased.51,52 Our results
extend the notion that HPSE expression is induced in early
fibrosis to human liver biopsies and are in agreement with other
studies showing that HPSE expression levels between cirrhotic
tissues and normal liver tissues are not significantly different.53

Low HCV replication in end-stage liver disease has been re-
ported,54 which further strengthens our data that HPSE expres-
sion is linked to HCV infection rate. Moreover, high HPSE level
was also shown to have a cytoprotective role by upregulating
pro-survival genes in the heart.55 We can speculate that at the
early stages of liver disease where HCV infection is highly active,
high HPSE levels may favor ECM alterations and inflammation
but also cell survival, thus favoring cancer development. HPSE
plays a role in angiogenesis and its levels rise in some HCC but
remain low in others, depending on the tumor differentiation
grade and heterogeneity.56,57 Moreover, Huh7.5 which are hep-
atoma cells, present very low levels of HPSE expression
compared to PHHs and other cells (data not shown). It is note-
worthy that, in renal fibrosis, HPSE can regulate TGF-b expres-
sion and activity,58 a cytokine thought to be responsible for viral
persistence and liver fibrogenesis. Therefore, specific anti-HPSE
inhibitors may be developed to target not only HPSE activity
(anti-oncogenic effect) but indirectly TGF-b (anti-fibrotic effect)
for which no suitable inhibitors could be found.59

HPSE is a target gene of NF-jB and is upregulated by other
viruses (e.g. HSV-1 and PPRSV) through that pathway.13,14,60

Analyses of liver biopsies revealed that HCV infection resulted
in NF-jB upregulation especially at the early stages of fibrosis.
The common view that NF-jB has an anti-apoptotic effect would
suggest that its expression/activity will be enhanced in the
context of F3/F4 where it would serve to promote carcinogenesis.
2022 vol. - j 1–13



However, data in NF-jB-deficient mice rather points to NF-jB as
a tumor suppressor gene.61 The precise role of NF-jB in liver
regeneration and HCC remains controversial62 but our results
suggest that downstream targets of NF-jB such as HPSE might
favor tumor development. In our in vitro system NF-jB also
appeared to be upregulated, most likely due to HCV-induced
oxidative stress, as evidenced by the overexpression of NRF-2
and HO-1. In support of this hypothesis, when naïve cells were
treated with H2O2, there was a dose-dependent increase in NF-
jB mRNA levels, concomitant to HPSE induction. Accordingly,
H2O2-related oxidative stress can induce HPSE production63 and
in our study we further show that this induction is NF-jB
dependent. However, we cannot exclude the possibility that
additional pathways are implicated in HPSE upregulation in
HCV-infected cells. Reactive oxygen species accumulation may
lead to cell damage and death, but can also induce NF-jB, which
targets genes that typically promote cell survival.30

Recent evidence showed that HPSE plays an important role
during the replication of different viruses but nothing was
known about its role in the HCV life cycle.64 Through genetic or
pharmacological modulation of HPSE expression or activity, we
give the first demonstration that HPSE plays a role in HCV
infection. Assuming that HPSE may be involved in the later steps
of the viral cycle, we focused on virus release, since this was
reported to be the case for other viruses like HSV-1, HPV,
PRRSV.13,14,16 In fact, the exact mechanism of HCV assembly and
release is still not completely elucidated but evidence indicates
that these processes are linked to the exosomal pathway.41–43,46

Besides, HPSE has been shown to enhance exosomal secretion
when overexpressed,39 and to activate the syndecan-syntenin-
ALIX exosomal pathway by stimulating the exosomal secretion
of syntenin-1, syndecan-1 and other exosomal cargos, such as
CD63.40 The latter is considered as a late endosomal/multi-
vesicular body marker, involved in exosome vesicle formation
and secretion.36,37 For that reason, we investigated the expres-
sion of CD63 in HCV-infected Huh7.5 and liver biopsies. Our re-
sults showed a marked increase in CD63 expression during HCV
infection in vivo and in vitro and interestingly, HCV infection and
release were dramatically reduced in CD63-silenced cells
(Fig. 7A-D), showing for the first time a link between the tetra-
spanin CD63 and HCV. Such a link is also supported by the fact
that CD63 is associated with HCV virions.44 Further analysis
revealed that high HPSE expression is linked to enhanced release
of CD63-containing exosomes and infectious HCV particles.
Moreover, we show that HCV RNA, but not necessarily HCV vi-
rions, traffic via these exosomes, suggesting that HCV shares a
common secretion mechanism with exosomes.

In conclusion, our results demonstrate that HPSE is upregu-
lated in chronic HCV infection both in vitro and in vivo, most
likely through the induction of oxidative stress generated during
infection. HPSE plays a role in the HCV life cycle by favoring virus
release, via mechanisms that may be common to other viruses.
Eventually, high liver HPSE expression may lead to pathogenic
alterations of the ECM, such as decreased HSPG levels and
enhanced exosome release, whose impact on HCC development
warrants further investigation.
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