
HAL Id: hal-03607939
https://hal.science/hal-03607939

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interpreter-guided Differential JIT Compiler Unit
Testing

Guillermo Polito, Pablo Tesone, Stéphane Ducasse

To cite this version:
Guillermo Polito, Pablo Tesone, Stéphane Ducasse. Interpreter-guided Differential JIT Compiler Unit
Testing. Programming Language Design and Implementation - PLDI 2022, Jun 2022, San Diego,
United States. �10.1145/3519939.3523457�. �hal-03607939�

https://hal.science/hal-03607939
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Interpreter-guided Differential JIT Compiler Unit
Testing

Guillermo Polito
Univ. Lille, CNRS, Inria, Centrale Lille,

UMR 9189 CRIStAL, F-59000 Lille, France
guillermo.polito@univ-lille.fr

Pablo Tesone
Pharo Consortium

Univ. Lille, Inria, CNRS, Centrale Lille,
UMR 9189 CRIStAL
pablo.tesone@inria.fr

Stéphane Ducasse
Univ. Lille, Inria, CNRS, Centrale Lille,

UMR 9189 CRIStAL
stephane.ducasse@inria.fr

Abstract
Modern language implementations using Virtual Machines
feature diverse execution engines such as byte-code inter-
preters and machine-code dynamic translators, a.k.a. JIT
compilers. Validating such engines requires not only vali-
dating each in isolation, but also that they are functionally
equivalent. Tests should be duplicated for each execution
engine exercising the same execution paths on each of them.
In this paper we present a novel automated testing ap-

proach for virtual machines featuring byte-code interpreters.
Our solution uses concolic meta-interpretation: it applies
concolic testing to a byte-code interpreter to explore all pos-
sible execution interpreter paths and obtain a list of concrete
values that explore such paths. We then use such values
to apply differential testing on the VM interpreter and JIT
compiler. This solution is based on two insights: (1) both
the interpreter and compiler implement the same language
semantics and (2) interpreters are simple executable speci-
fications of those semantics and thus promising targets to
(meta-) interpretation using concolic testing. We validated
it on 4 different compilers of the open-source Pharo Virtual
Machine and found 468 differences between them, produced
by 91 different causes, organized in 6 different categories.

Keywords: virtual machine, concolic testing, JIT compilers,
interpreters

1 Introduction
Modern Virtual Machines support code generation for JIT
compilation and dynamic code patching for techniques such
as inline caching. They are often structured around a byte-
code interpreter, a baseline JIT compiler, and a speculative
inliner. This complexity is aggravated when the VM builds
and runs on multiple target architectures [1]. Validating the
execution of interpreted code and its compiled counterpart
is challenging.

Several solutions have been proposed to aid in VM testing
tasks. Traditionally, VM simulation environments have ap-
peared in Self [29], Smalltalk [14, 22] and Metacircular VMs
such as Maxine [30]. Complementary to simulation environ-
ments, multi-level debuggers [16, 31] aid VM developers to

PL’18, January 01–03, 2018, New York, NY, USA
2018.

switch views between the program-level and the implemen-
tation (VM)-level. These solutions are indeed beneficial to
identify and track problems once an issue has been spotted
and reproduced. However, reproducing bugs still remains an
expensive and time-consuming task because millions of in-
structions may need to be executed before hitting the actual
problem. For example, it has been reported that debugging
memory corruption bugs in a simulation could take several
hours of execution1. Recently, the team of Maxine reported a
test-based infrastructure for cross-ISA debugging [15]. They
reported that most debugging happens in gdb when boot-
strapping a new architecture, in a different abstraction level
than the original source code, and that they were not able to
cover many parts of their codebase. Béra et al., [3] and Flück-
iger et al., [8] focus on the validation interaction between
speculative compiler transformations and deoptimization.
Moreover, Virtual Machines often include several execu-

tion engines with different trade-offs: it is common for exam-
ple to mix byte-code interpretation for cold code, with Just in
Time compilers that optimize hot code. Since these different
components are meant to be semantically equivalent, test
scenarios need to be duplicated too for each of them.

In this paper we propose to guide the automatic unit test-
ing of a JIT compiler by the interpreter definition. Our tech-
nique is based on two insights. First, we consider interpreters
executable specifications of the programming language se-
mantics and thus we propose to use them to automatically
generate test inputs. Second, since both the interpreter and
compilers for a language should implement the same lan-
guage semantics, we apply differential testing on them [19],
comparing their behavior as test oracles.
We first apply concolic testing on the interpreter to (1)

discover all possible execution paths and (2) produce an
abstract description of the input values.We then generate the
compiled code for each case and exercise it each with values
equivalent to those in the interpreter. Our path exploration
differs from traditional concolic testing in that it does not
stop as soon as it finds a concrete error. Instead, it tracks
for each execution path an exit condition indicating how
the instruction finished (e.g., success, failure), or if it exited

1http://forum.world.st/OpenSmalltalk-opensmalltalk-vm-
Reproduceable-Segmentation-fault-while-saving-images-444-
td5106898i20.html

1

http://forum.world.st/OpenSmalltalk-opensmalltalk-vm-Reproduceable-Segmentation-fault-while-saving-images-444-td5106898i20.html
http://forum.world.st/OpenSmalltalk-opensmalltalk-vm-Reproduceable-Segmentation-fault-while-saving-images-444-td5106898i20.html
http://forum.world.st/OpenSmalltalk-opensmalltalk-vm-Reproduceable-Segmentation-fault-while-saving-images-444-td5106898i20.html

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’18, January 01–03, 2018, New York, NY, USA Guillermo Polito, Pablo Tesone, and Stéphane Ducasse

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

the main interpreter for some runtime service (e.g., message
send or method return). Tracking the exit condition allows
us to test that the compiled code has the same observable
behavior than the interpreted code.

We applied it to the byte-code interpreter and four differ-
ent compilers of the Pharo Virtual Machine: both the native
method template-based compiler and the stack-to-register
byte-code compiler considered stable and in production since
more than 10 years, plus two non-productive compilers. Our
approach generated in less than 10 minutes more than 4.5K
tests, and found 468 differences from 91 different causes.

The contributions of the article are:
• we show that interpreters are a valid resource when
generating JIT compiler test inputs, unveiling many
differences between them;
• we show that our approach finds differences ranging
from clear bugs producing segmentation faults, to op-
timisation and behavioural differences;
• we are, to the best of our knowledge, the first to use
concolic testing in the domain of Virtual Machines and
JIT compilers;
• we are, to the best of our knowledge, the first to com-
bine concolic testing with differential testing to test
compilers;
• we show that the approach is practical and applicable
on-line.

Section 2 presents the problems and the solution for val-
idating differences between interpreter and compiler. Sec-
tion 3 describes the execution model that we designed to
be able to capture the test domains (stack, operand, or for-
mat shapes). Section 4 describes the setup of our experience,
while Section 5 describes the results obtained. Further sec-
tions present related work and conclude.

2 Interpreter-Guided differential VM
Testing

2.1 Problem: Testing Duplicated Semantics in
Virtual Machines

Modern virtual machines include several execution engines
with different trade-offs. It is common to have simple yet
slow byte-code interpreters to execute code that is rarely
found at run time, and one or more dynamic translation tiers
that translate hot code to machine Just in time (JIT). Such
a schema is designed to achieve a good balance between
the time spent executing useful work and the time spent
compiling to machine-code. A key challenge is to validate
the correctness of these components that generally have few
code in common and present very different architectures. For
example, while a byte-code interpreter executes directly the
byte-code, each compilation tier uses a different intermediate
representation design.
Let us illustrate this difference with the interpreter im-

plementation of the addition byte-code in the Pharo Virtual

Machine shown in Listing 1. The addition byte-code is imple-
mented in Pharo’s interpreter using static type predictions,
inlining the common case for integer arithmetics, and de-
faulting to user-defined methods if not suitable [4, 11]. Such
an instruction pops two elements from the operand stack,
checks if they are both small integers and, if they are, it
adds them up. If the result does not overflow, arguments
are popped, the result is pushed to the operand stack, and
execution continues with the next byte-code. If none of the
conditions above hold, the instruction takes a slow path and
performs a normal message send.

1 Interpreter >> bytecodePrimAdd
2 | rcvr arg result |
3 rcvr := self internalStackValue: 1.
4 arg := self internalStackValue: 0.
5 (objectMemory areIntegers: rcvr and: arg) ifTrue: [
6 result := (objectMemory integerValueOf: rcvr) + (

objectMemory integerValueOf: arg).
7 "Check for overflow"
8 (objectMemory isIntegerValue: result) ifTrue: [
9 self
10 internalPop: 2
11 thenPush: (objectMemory integerObjectOf: result).
12 ^ self fetchNextBytecode "success"]].
13 "Slow path, message send"
14 self normalSend

Listing 1. Excerpt of the byte-code interpretation
implementing addition in the Pharo Virtual Machine.

At the same time, when the Pharo VM first-tier JIT com-
piler parses that byte-code it generates the sequence of inter-
mediate representation (IR) instructions illustrated in List-
ing 5. Although those IR instructions are meant to be com-
piled to machine code, they conceptually represent the same
behavior as in the interpreter: they perform type checks on
the arguments and result, and fall back to a slower message
send if any of those conditions do not hold.

1 ... # previous bytecode IR
2 checkSmallInteger t0
3 jumpzero notsmi
4 checkSmallInteger t1
5 jumpzero notsmi
6 t2 := t0 + t1
7 jumpIfNotOverflow continue
8 notsmi: #slow case first send
9 t2 := send #+ t0 t1
10 continue:
11 ... # following bytecode IR

Listing 2. Illustration of
the Intermediate Representation instructions created
when compiling the byte-code instruction in Listing 1.

It is indeed possible to manually write tests for these com-
ponents, but such manual specification is labor intensive and

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Interpreter-guided Differential JIT Compiler Unit Testing PL’18, January 01–03, 2018, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input
VM Frame

Compiled
Instruction

Concrete
Output VM

Frame
Differential

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

Figure 1. Solution Overview. We use a concolic explo-
ration on the interpreter to obtain the different execution
paths to test on the JIT compiled code.

error prone. However, since these different components are
meant to be semantically equivalent, test scenarios need to
be duplicated too for each of them. Instead, we propose to
use the VM interpreter to drive automatic VM testing.

2.2 Interpreter-Guided VM Testing
In this paper we use interpreter-guided differential testing
between interpreter and JIT compiler to discover differences
between them. Our approach is interpreter-guided in the
sense that we use the interpreter implementation to direct
automatic test case generation for the JIT compiler. This
technique is based on the following insights. First, we con-
sider Virtual Machine interpreters executable specifications
of a language semantics [9]. Second, interpreters often im-
plement complete semantics since they are the execution
engine that a VM falls back into when the more complex tiers
do not support a feature. Finally, since both interpreter and
compilers should implement the same language semantics,
comparing their behavior is useful as test oracles.
Figure 1 illustrates our solution for one VM instruction.

We first (step 1) perform a concolic execution [10, 27] of
the interpreter instruction to discover the input values that
exercise all of its execution paths. During our concolic exe-
cution, we record input and output constraints on both the
VM state before and after the instruction. We then compile
the instruction with the JIT compiler (step 2), use the input
constraints to build concrete VM stack frames and execute
the compiled code on it (step 3). Finally, we use the output
constraints to validate that the compiled code had the same
observable side effects on the stack frame (step 4).

2.3 Interpreter Concolic Testing
Concolic testing [10, 27] is an automated testing technique
that combines concrete and symbolic execution of a pro-
gram to generate input values that explore all of the pro-
gram’s possible execution paths. In a nutshell, concolic test-
ing executes the program under test many times, each time

with different concrete values. Each execution is instrumented
to produce symbolic constraints and track all control flow
conditions in so called path conditions. When the execu-
tion finishes, it negates the last path condition not already
negated to explore a new path, and its constraints are fed
to an automatic constraint solver. The values obtained from
the automatic constraint solver are the inputs for the next
iteration. The search finishes when all possible paths are
explored.

In our example of bytecodePrimAdd above, applying con-
colic testing yields the results shown in Table 1. The first
time, our VM concolic tester will execute the instruction
push integers as arguments, and record that the execution
checked that both are integers, and their sum is in range
too. It then negates the last condition, and the constraint
solver generates two integers that summed up generate an
overflow. The code is re-executed with those values and no
new constraints are found. It then negates the previous non-
negated condition and generates one integer argument and
one non-integer argument. It continues in such a way until
all paths are exercised.

2.4 Interpreter-Compiler Differential Testing
After compiling the code corresponding to an interpreter
instruction using the JIT compiler, we perform a concrete
execution using compiled code and compare its result with
the interpreter result. The concrete execution requires to set
up a concrete VM stack frame, created from the constraints
recorded on the interpreter input frame.
Our approach does not require that interpreter and com-

piler have stack frames with the same shape. This is the case
of our guiding example, where our interpreter implements a
stack-based machine while our compiler is a register-based
machine. In this case, it is the differential tester that inter-
prets the input frame constraints and sets up a VM frame
that suits the compiler structure and calling convention e.g.,
arguments should be pushed to the stack in the interpreter,
while they need to be put in registers in the compiled version.

3 Execution Model
In this section we present our concolic execution model
extended with Virtual Machine semantics.

3.1 Vocabulary: Byte-code and Native Methods
For clarity of the presentation, this subsection presents some
vocabulary points. Our solution works with the compilation
of two kind of instructions:
Byte-code instructions. Instructions used as a VM inter-

mediate language. The programming language source
code is compiled to a sequence of byte-code instruc-
tions e.g., push instance variable, duplicate the top of
the stack. Byte-code instructions in our implementa-
tion are by design unsafe for performance reasons. For

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PL’18, January 01–03, 2018, New York, NY, USA Guillermo Polito, Pablo Tesone, and Stéphane Ducasse

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Argument 0 (type) Argument 1(type) Path
0 (integer) 0 (integer) isInteger(arg0), isInteger(arg1), isInteger(arg0+arg1)

0xFFFFFFFF (integer) 1 (integer) isInteger(arg0), isInteger(arg1), isNotInteger(arg0+arg1)
0 (integer) object1 (object) isInteger(arg0), isNotInteger(arg1)

object1 (object) 0 (integer) isNotInteger(arg0), isInteger(arg1)
object1 (object) object2 (object) isNotInteger(arg0), isNotInteger(arg1)

Table 1. Example of concolic execution paths obtained on the byte-code instruction in Listing 1. Each line in the table shows
the concrete values fed as arguments, and the constraint path obtained for that exploration case.

s1 = max small int
s2 = small int 1

s1 = max small int
s2 = small int 1

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 is small int
AND

s2 is small int
AND

(s3 >= max small int
OR

s3 <= min small int)

operand_stack_size > 1
AND

s1 is small int
AND

s2 not small int

receiver = ?
method = ?
operand stack operand stack

operand stack operand stack

Abstract
Input

Frame

Abstract
Output
Frame

+
Recorded

Path
Constraints

Negated
Path

Constraints

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size <= 1

operand_stack_size > 1

operand stack

operand stack

(empty)

(empty) s1 = small int
s2 = small int

s3 = s1 + s2

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 is small int
AND

s2 is small int
AND

(s3 < max small int
AND

s3 > min small int)

operand_stack_size > 1
AND

s1 is small int
AND

s2 is small int
AND

! (s3 < max small int
AND

s3 > min small int)

operand stack

operand stack

s1 = small int
s2 = obj

s1 = small int
s2 = obj

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 is small int
AND

s2 not small int

operand_stack_size > 1
AND

s1 not small int

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e
co

ns
tru

ct
io

n>
>

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e
co

ns
tru

ct
io

n>
>

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e
co

ns
tru

ct
io

n>
>

concolic execution

Path negation

Concolic Execution #1 Concolic Execution #2 Concolic Execution #3 Concolic Execution #4

Exit: invalid frame Exit: success Exit: failure Exit: failure

…

<<constraint solving
+

abstract frame
construction>>

Figure 2. Example of constraint tracking on the add byte-code. Each column illustrates one concolic path execution.
Each concolic execution starts with an abstract input frame, and produces an abstract output frame, an exit condition, and the
recorded constraint path. Already negated conditions are in italics. The last not-already-negated constraint path is negated
and leads to the next concolic path execution.

example, a pop instruction does not validate the num-
ber of elements in the operand stack, assuming that
values were pushed to the stack before its execution.

Native Methods. Primitive operations exposed by the Vir-
tual Machine as methods. Native methods are used
implement basic functionality and natively optimised
versions of some functionality e.g., computing trigono-
metric functions, object allocation. Native methods in

our implementation are by design safe. They check the
types and shapes of all their operands and fail with a
failure code in case an operand is incorrect.

From the point of view of this paper, we will consider
both byte-code and native methods as VM instructions. Some
functionality in our VM implementation is provided as both
byte-code instructions and native methods, duplicated for
performance reasons e.g., integer addition. Moreover, native

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Interpreter-guided Differential JIT Compiler Unit Testing PL’18, January 01–03, 2018, New York, NY, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

id
class_object
type
value (if small integer)
slots

AbstractObject
receiver
method
argument_size
arguments
operand_stack_size
operand_stack

AbstractVMFrame

format
class_id

AbstractClass

* class_object

Figure 3. Constraint model. Constraint variables are
grouped in abstract frames, objects and classes. Abstract
objects model concrete objects and are interpreted to build
concrete objects.

methods tend to be larger and more complex, as we present
in Section 5.4.

3.2 Abstract Objects and Abstract Frames
Our constraint model represents path constraints together
with VM object constraint, as depicted in Figure 3. We use
VM object constraints to model dynamic VM data structures
and keep a link to the flat constraint variables fed to the
constraint solver. In this sense, re-creating a VM input im-
plies interpreting the results of the constraint solver using
the structural information in the VM object constraints. The
core of our contraint model includes the abstract modeling
of:
• VM stack frames with receiver object, method, locals,
operand stack;
• VM objects with their class, memory format, slots ref-
erencing other objects;
• VM classes with their class table id.

One key aspect of our solution is that we store copies of
both the input and output constraints created during the
concolic execution. Input constraints serve to re-create a
concrete input frame to execute the compiled code. We use
the stored output constraints to perform the differential vali-
dation and check that the compiled code has the same observ-
able behavior as the interpreted code. Moreover, recording
both input and output constraints for each concolic path
execution requires storing a copy of each of them because
VM instructions have side effects: if an instruction pushes
a value to the operand stack or modifies a variable that is
local to the frame, such modification must not alter the input
frame. Figure 2 illustrates this with our guiding example i.e.,
integer addition. Each column in the figure illustrates one
concolic path execution, for which it depicts: input frame,
output frame, exit condition (e.g., whether the instruction
finished with error or success), recorded constraint path and

finally the negated constraint path that leads to the next
concolic path execution.

3.3 Virtual Machine Constraints
The VM does ultimately treat objects as raw unstructured
data through pointer arithmetics. This means that recording
constraints at that low-level of abstraction would complicate
object re-creation and misses semantic information that is
important for condition negation during the concolic exe-
cution. For example, the VM concrete execution checks if a
value is not an integer by checking if it is not a tagged value,
which we could represent with a constraint (v && 1) == 1.
However, negating that constraint obtains the constraint (v
&& 1) != 1, which does not correctly represent tagged inte-
gers: tagged integers need also to be within certain bounds.
To deal with this issue, our execution model models the

VM semantics instead of the concrete memorymanipulations
done by the VM. In our example above, we record if an object
is a tagged small integer or not using semantic conditions
such as isSmallInteger(v) and isNotSmallInteger(v). Our se-
mantic conditions includes conditions such as class index of,
integer to float conversions, object-to-native data conversions,
and so on.
Such a decoupling does help when negating conditions

during the concolic execution, but also allows conditions to
be address independent. This decoupling also makes our so-
lution work on constraint solvers that do not support bitwise
manipulations used not only for pointer tagging but also to
extract object header meta-data.

3.4 Instruction Exit Conditions
Alongside the input and output constraints and the con-
straint paths, our concolic execution model tracks also the
exit status of an instruction, as shown in Figure 2. An in-
struction exit status models how the instruction execution
finished, allowing us to validate the behavioral equivalence
between the interpreted and compiled versions. Moreover, it
allows us to detect certain conditions from which the execu-
tion leaves the main interpreter to execute slower execution
paths. Our concolic execution model tracks the following
exit conditions:

Success. Represents the correct execution of an instruction
until its end. It is the main exit condition of byte-code
instructionsmanipulating the operand stack (e.g., push,
pop, dup) and of native methods. Successful executions
should execute until the end in compiled byte-code, or
return to the caller in compiled native methods.

Failure. Represents the invalid attempt to execute a native
method. As specified above, native methods in our
model are safe: they check their operands’ types and
shape and fail if they are not as expected. Failing ex-
ecutions do fall-back to user defined code instead of
returning to the caller.

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

PL’18, January 01–03, 2018, New York, NY, USA Guillermo Polito, Pablo Tesone, and Stéphane Ducasse

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Message Send. Represents the attempt to activate amessage-
send. Several byte-code instructions perform method
activations, either in their main execution path or as a
slow path for optimized byte-code instructions. Mes-
sage send executions should perform a call to a tram-
poline or to a method linked through mono-, poly- or
mega-morphic inline caches [12].

Method Return. Represents the attempt to return to the
caller. Returned executions should return to the caller
both in interpreted and compiled methods.

Invalid Frame. Represents the attempt to access a non-
existing value in the stack frame. Our concolic exe-
cution generates VM frames based on constraints, and
thus it does only generate values in a frame if a con-
straint required so. An invalid frame exit indicates our
concolic execution engine that subsequent executions
need extra elements in the stack. We consider invalid
frame exits as expected failures in our test runner.

Invalid Memory Access. Represents the attempt to per-
form an out-of-bounds access on an object. Our con-
colic execution validates that object accesses arewithin
bounds, and fails if not. An invalid memory access in-
dicates our concolic execution engine that subsequent
executions need more slots in an object. In our test
runner we consider invalid memory access executions
as expected failures for byte-code instructions because
they are unsafe by design. However, we consider them
as errors for native methods because native methods
are supposed to validate accesses and fail instead of
performing the invalid reads/writes.

Although not yet covered by our implementation, our
model remains extensible with new exit conditions such as
activating a garbage collection.

4 Realization
4.1 Experimentation Platform: Pharo VM
Our experimentation platform is the Pharo Virtual Machine.
The Pharo Virtual Machine is an industrial level Virtual
Machine written in Pharo itself and transpiled to C using
a VM-specific translator called Slang [14]. The VM imple-
ments at the core of its execution engine a threaded byte-
code interpreter, a linear non-optimising JIT compiler named
Cogit [21] that includes polymorphic inline caches [12] and
a generational scavenger garbage collector that uses a copy
collector for young objects and a mark-compact collector
for older objects [28]. The following numbers illustrate the
complexity of this Virtual Machine:
• It implements 255 byte-codes, organized in a total of 77
different families [2].
• It implements about 340 native methods, several dupli-
cated in both the interpreter and in the JIT compiler.

Experimental Compilers. The Pharo VM JIT compiler
we test in our evaluation has different backends in charge
of translating IR to Machine-Code specialized per target
ISA, and three different front-ends: three byte-code com-
piler frontends and a native method compiler frontend. The
byte-code compilers parse byte-code into IR through abstract
interpretation. The byte-code compiler used in production
(StackToRegisterCogit) performs a stack-to-register map-
ping using a parse-time stack, to avoid unnecessary stack
accesses in the generated machine-code. We included in
our evaluation two additional byte-code compilers not used
in production: (a) the SimpleStackBasedCogit is a simpler
version of the compiler that maps push and pop byte-code in-
structions to their equivalent push and pop machine-code in-
structions, and (b) the experimental RegisterAllocatingCogit
extends the StackToRegisterCogit with a linear register al-
locator. Finally, native methods implementing primitive op-
erations are translated to IR using a hand-written template-
based approach.

Pharo Testing Infrastructure. The Pharo VM presents
a high-level simulation environment that is very handy to
simulate full executions including JITt’ed code and live-
program the VM [22], illustrated in Figure 4. The simulation
environment is extended with a testing infrastructure [25]
that allows VM developers to write fine-grained testing sce-
narios, making tests small, fast, reproducible, and cross-ISA.

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM
Disassembler

VM

Interpreter GC JIT Compiler
Transpiled to

Testing
infrastructure

Figure 4. Development environment of the Pharo VM.
The VM is executed as Pharo code in the simulation en-
vironment and transpiled to C to produce the production
artefact. The testing infrastructure extends the simulation
environment.

4.2 Compiling Instructions
The interpreted and compiled code present many semantic
differences that our differential tester needs to deal with.
First, interpreted byte-code is stack-based, while compiled
code is mainly register-based. Second, the granularity of
compiled code is the method, meaning that single instruc-
tions cannot be compiled in isolation. Last, but not least,
our three experimental compilers generate code that has
different behavior and expectations.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Interpreter-guided Differential JIT Compiler Unit Testing PL’18, January 01–03, 2018, New York, NY, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Compiling byte-code instructions. Pharo methods are
compiled to stack-based byte-code instructions. The byte-
code JIT compiler performs an abstract interpretation on
the byte-code to generate the corresponding IR, and later
perform code generation. However, as explained above in
Section 4.1, our byte-code compilers behave differently re-
garding optimisation of stack access. Indeed the StackToReg-
isterCogit will use a parse-time stack to simulate pushes,
and only generate stack accesses if a corresponding pop in-
struction consumes the operands in the stack. As a corollary,
when testing the compilation of instructions pushing val-
ues to the stack, we must ensure that those instructions are
followed by instructions consuming those stack values.

We solved the challenges above by implementing the fol-
lowing compilation schema. First, when testing a byte-code
instruction, our compilation unit is a method. The method
will have as many arguments or locals as required by the
instruction (e.g., to support a pushLocalVariable byte-code)
and the compiler will ensure the method has a correct pream-
ble. Second, we prepend in the method IR instructions that
push literals to guarantee the shape of the operand stack.

1 ConcolicBytecodeTester >> compileBytecode: bytecode
2 ^ self compile: [| descriptor result |
3

4 "Instantiate method and compile code
5 pushing elements to the operand stack"
6 cogit methodObj: self instantiateMethod.
7 solution inputConstraints
8 operandStack
9 reversed
10 do: [:aStackValue |
11 cogit genPushLiteral: (self instantiate: aStackValue)

].
12

13 "Generate the instruction IR"
14 descriptor := cogit generatorAt: bytecode.
15 result := cogit perform: descriptor generator.
16

17 "Generate a return instruction if necessary,
18 returning the result of the instruction"
19 solution exitCondition returnResultInto: self]

Listing 3. Intermediate Representation created when
compiling the byte-code instruction in Listing 1

Compiling native method instructions. Native meth-
ods implement non-inlined versions of arithmetics, object
and array accesses, reflection, and so on. The main difference
between a native method and a byte-code instruction is that
they are late-bound: what method is to be executed is defined
from the type of the receiver object. This schema allows one
to exploit polymorphism and operator redefinitions.
Pharo native methods are hybrid, they have a native be-

havior component and a byte-code component. On the one

hand, native methods are interpreted by calling a VM func-
tion that manipulates the operand stack and returns to the
caller if successful. If the native behavior fails, interpretation
continues with byte-code execution of the user redefined
method. On the other hand, JIT compiled native methods
are a linear version of the above, where the machine-code
method starts with a machine-code version of the native be-
havior, and falls through a compiled version of the byte-code
in case of failure.

1 ConcolicNativeMethodTester >> compileNativeMethod:
nativeMethodId

2 ^ self compile: [| descriptor result |
3

4 "Generate the instruction IR"
5 descriptor := cogit generatorAt: nativeMethodId.
6 compilationResult := cogit
7 objectRepresentation
8 perform: generator.
9

10 "Generate a break instruction to detect fall−through
cases"

11 cogit Stop]

Listing 4. Intermediate Representation created when
compiling the byte-code instruction in Listing 1

Second, wemade our differential tester to only compile the
native behavior and introduce a breakpoint/stop instruction
after the last instruction to detect fall-through cases. Then,
for each test path, we assert that the compiled code returns
to the caller if we had detected no error condition, or to hit
the breakpoint instruction otherwise.

4.3 Current Prototype Limitations
Our concolic tester prototype does not currently support
several features of the Pharo interpreter, namely stack-frame
reifications and byte-code look-aheads. Moreover, the con-
straint solver we are using for the concolic exploration limits
integers to 56 bit precision and does not support bit-wise
operations. None of these limitations are essential to the
approach, but they rather require additional engineering
effort.

Stack-frame Reifications. Stack-frame reifications are
implemented in the Pharo interpreter to support reflection
on stack-frames, and the implementation of exceptions as a
library rather than a language feature. The current implemen-
tation of stack-frame reifications implements lazy context-
to-stack mapping [20, 21]: context objects are heap allocated
only on demand and work as proxies to a stack-frame for
some of their life time. This means that the interpreter han-
dles such mapping in several execution paths, particularly
during explicit stack reification (i.e., the pushThisContext
byte-code instruction) and during instance variable access
instructions that handle proxified accesses to the stack.

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PL’18, January 01–03, 2018, New York, NY, USA Guillermo Polito, Pablo Tesone, and Stéphane Ducasse

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Byte-code look-aheads. Several byte-code instructions
in our interpreter perform a look-ahead to avoid unneces-
sary instruction dispatches. This is the case for example of
comparison instructions, that generate a boolean value by
default, but skip modifying the operand stack and advances
two instructions at a time if the following instruction is a
branch instruction. Our implementation partially supports
tracking constraints on the current method’s byte-code, al-
lowing one to generate byte-code sequences for the concrete
execution, but requires extending it to symbolically look-
ahead byte-code in the instruction stream.

Constraint Solver Limitations. Doing a concolic exe-
cution of the VM requires a constraint solver that handles
numbers with the same amount of precision as the VM. In-
deed, the VM performs integer bound checks to apply safe
arithmetics, detect potential overflow cases and the internal
change integer representation. The constraint solver we are
using supports (as for the time of writing this article) 56bit
large numbers, and thus we constrained our usage for now
to 32bit compilations. Other limitations of the constraint
solver include the absence of bit-wise operations, which we
overcome so far by abstracting the constraint model from
the exact memory representation of objects (cf. Section 3.3).

5 Evaluation
In this section we evaluate our solution by the means of au-
tomatically testing the Pharo Virtual Machine JIT compiler.
We first explain our evaluation methodology, and then fol-
lows a two-fold evaluation. On the one hand, we present and
analyze our results applying interpreter-guided testing to a
large set of the Virtual Machine byte-code and native method
instructions. On the other hand, we evaluate the practicality
of the approach by presenting time measurements of the
concolic exploration and test execution time.

5.1 Evaluation Methodology
We evaluate our testing approach by applying it to the Pharo
Virtual Machine JIT compiler. Our evaluation consists in four
main experiments: (1) testing the IR-template compiler of na-
tive methods and (2-4) testing the three different byte-code
to machine-code compilers, explained before in Section 4.1.
Each test-case scenario found by the concolic exploration is
executed on the JIT compiler using two different architec-
tures: x86 and ARM32(v5-v7).

Time measurements for the second part of the evaluation
were taken from machine with the following specs: 2015
MacBook Pro, 2,9 Ghz Intel Core i5, 16GB 1867 MHz DDR3.
We report as time measurements averages with dispersion
and totals for running all our tests. We did not run a thor-
ough performance evaluation because we consider that the
measurements are low-enough for practical usage, and per-
formance is not at the core of this paper.

5.2 Results
Table 2 reports our results on top of the Pharo VM JIT com-
pilers. Each line in the table reports the results for each of our
compilers (column 1). The table shows the number of tested
instructions (column 2), and howmany execution paths were
discovered by applying concolic testing on them (column
3). We semi-automatically curated the list of explored paths
keeping only those paths that do work in our prototype im-
plementation (column 4). The paths we removed paths are
those not handled because of limitations of our prototype
implementation: they either make our concolic execution
to fail, they produce errors on the constraint solver, or they
require special initializations on the JIT compiler we have
not implemented in our testing infrastructure. Finally, we
report how many of those paths present differences between
interpreter and the JIT compilation, and the percentage they
represent.

5.3 Analysis of Results
In this subsection we analyze the 468 path differences to
identify its causing defect. We performed defect identification
by manually inspecting and debugging the source code of
the interpreter and the tested compiler. Because many paths
do fail because of a same defect, we count a defect only once
regardless of how many execution paths it lead to a failure.
Our testing approach detects six different categories of

defects. We interpreted some differences as being caused by
bugs in the interpreter or compiler (e.g., respective missing
type-checks), while others are arguably correct in both and
thus we interpreted them in a more neutral manner (e.g.,
behavioral differences). Table 3 summarizes all the defects
causing the differences we found.

Most of the bugs found are in the byte-code front-end, and
thus failed in both back-ends: ARM32 and x86. The first thing
to notice is that nativemethods present more execution paths
than byte-code instructions, shown in Figure 5, explaining
why much more differences are found in native methods.
Indeed, byte-code instructions present in average few more
than 2 paths, while native method instructions approach 10
paths in average.

Missing interpreter type check. Type checks are miss-
ing in the interpreter, allowing some paths to execute on
wrong conditions. Missing type checks, regardless of being
in the interpreter or compiled code, produce unpredictable
results and ultimately crashes at run time. This is the case
of the primitiveAsFloat native method shown below. This
native method checks the receiver type using an assertion
that is removed at compile-time instead of explicitly failing
the method execution. If the receiver is a pointer, its value
will be coerced as an integer through pointer untagging, and
then coerced to a double precision float, producing random
numbers.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Interpreter-guided Differential JIT Compiler Unit Testing PL’18, January 01–03, 2018, New York, NY, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Compiler # Tested Instructions # Interpreter Paths # Curated Paths # Differences (%)
Native Methods (primitives) 112 2024 1520 440 (28,95%)
Simple Stack BC Compiler 175 1308 1136 18 (1,59%)
Stack-to-Register BC Compiler 175 1308 1136 10 (0,88%)
Linear-Scan Allocator BC Compiler 175 1308 1136 10 (0,88%)
Total 462 4640 4582 468 (32,29%)

Table 2. Results running our approach on four different compilers. Number tested instructions indicate the explored
interpreter instructions. Interpreter paths indicate the number of paths founds during the concolic execution. Curated paths
indicate the number of paths supported by our implementation. Differences indicate how many of those paths differ between
interpreter and compiler.

Family # Cases
Missing interpreter type check 1
Missing compiled type check 13
Optimisation difference 10
Behavioral difference 5
Missing Functionality 60
Simulation Error 2

Table 3. Summary of found defects. Interpreter-guided
testing finds differences including behavioural differences,
missing type-checks leading to runtime errors and different
optimized paths.

1

10

100

Bytecode Native Method
Paths per Instruction

P
at

hs
 −

 lo
g

sc
al

e

Figure 5. Paths per instruction. Byte-code instructions
present in average few more than 2 paths, while native
method instructions approach 10 paths in average.

1 primitiveAsFloat
2 | rcvr |
3 rcvr := self stackTop.
4 self assert: (objectMemory isIntegerObject: rcvr).

5 self pop: 1 thenPushFloat: (objectMemory integerValueOf:
rcvr) asFloat

Listing 5. Missing type-check in the interpreter
primitiveAsFloat

Missing compiled type check. Type checks are missing
in the compiled code, allowing some paths to execute on
wrong conditions. As above, missing type checks produce
unpredictable results and ultimately crashes at run time.
For example, we have found that all floating-point related
native methods (i.e., all arithmetics and comparisons) do
not perform a type check on the receiver. The compiled
code proceeds to unbox a double from the receiver’s body
producing a segmentation fault on the wrong receiver type.

Optimization difference. Optimizations exist on the com-
piler but not on the interpreter instruction, or vice-versa. Op-
timization differences do not produce incorrect executions as
in the examples above, but raise the awareness of potential
performance improvements. For example, our interpreter
performs static type predictions on arithmetic byte-code in-
structions, inlining integer and float arithmetics [4, 11] and
performing a slowermessage-send only if types do not match
the expectations. However, not all of our byte-code com-
pilers implement the same: the simpler SimpleStackCogit
implements no static type predictions, while the productive
StackToRegisterMappingCogit and the experimental Regis-
terAllocatingCogit inline only integer arithmetics but not
floating point arithmetics.

Behavioral difference. The behavior differs in some way
between compiled and interpreted code. For example, we
have found that bit-wise operations on the interpreter fail
with negative integers and fall-back to slower library code,
while compiled code works both with positive and negative
integers by treating both as unsigned integers.

Missing Functionality. Behavior is missing in the com-
piler or interpreter, not implemented and failing at run time
with e.g., a not yet implemented exception. For example, we
have found that several native methods introduced to accel-
erate FFI (Foreign Function Interface) memory and structure

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

PL’18, January 01–03, 2018, New York, NY, USA Guillermo Polito, Pablo Tesone, and Stéphane Ducasse

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

accesses were never implemented in the 32 bit compiler ver-
sion.

Simulation Error. Error in our testing/simulation envi-
ronment. Since our interpreter-guided approach is more ex-
haustive at testing that the pre-existing hand-written tests,
it has found two different non-implemented paths in the sim-
ulation run time. These non-implemented paths are related
to the simulation of invalid memory accesses: the simulation
disassembles the failing instruction and performs a read-
/write operation using reflection to call the corresponding
register setter/getters. Our dynamic approach has found that
some setter/getter methods reflectively called were missing,
and thus difficult to detect by static analyses and lint quality
rules.

5.4 Execution Time Analysis
To analyze the practicality of the approach, in this section we
evaluate the different components that make the execution
time. We identify two different kinds of run times: concolic
execution run time, and test run time.
On the one hand, concolic execution run time, shown in

Figure 6, is the time taken to concolically explore all execu-
tion paths of an instruction. Our measurements show that
a single byte-code instruction takes in average ~600 ms to
explore, while native methods take in average ~1700 ms. To-
tal run time aggregates to 3 and 4.5 minutes respectively. It
is worth noticing that most of this run time is taken by the
constraint solver and a non-optimized AST-interpreter im-
plementation, and that the results of the concolic exploration
can be cached and reused multiple times.

On the other hand, test run time, shown in Figure 7, is the
time taken to run all generated tests of a single instruction.
Our measurements show that all the byte-code compiler tests
take in average ~little above 30ms, while nativemethods take
in average ~little less than 100 ms. Total run times aggregates
to ~10 seconds in total per set of tests.

6 Related Work
Several solutions have been proposed in the past to aid in
testing and debugging programming language implementa-
tion validation, let them be Virtual Machines or compilers.

VMSimulation Environments andMeta-circularVMs.
Meta-circular VMs and VM frameworks have offered for a
long time simulation environments that helped in testing
and debugging virtual machines. Such is the case of Self [29],
Smalltalk [14, 22] and Maxine [30]. Our solution comple-
ments simulation environments with unit testing generation,
generating tests that are unitary, fast-to-execute and exhaus-
tive.

VM Testing. Maxine and Pharo reported recently QEMU
based unit testing infrastructures for cross-ISA testing and
debugging [15, 25]. They reported that this infrastructures

300

1000

3000

10000

30000

Bytecode Native Method
Type of Instruction

T
im

e
(m

s)
 −

 lo
g

sc
al

e

Figure 6. Concolic execution time per kind of instruc-
tion. Concolic execution per instruction, grouped by kind
of instruction. Each data point represents the total execution
time to concolically execute all paths of the instruction. Byte-
code instructions have less execution paths and thus less
execution time. Exploring instructions remains in the other
of milliseconds for most instructions making them practical
of on-line execution.

helped them in porting their VMs to ARMv7 and ARMv8
64bits respectively. Although their approaches are based on
unit testing, they rely on manually written tests, while our
approach performs automatic test generation.
Lately, several work has explored the path of program

fuzzing and differential testing between different Virtual Ma-
chines for a single language. Several work on the Java Vir-
tual Machine (JVM) expose bugs via differential testing and
bytecode fuzzing [6, 7]. Moreover, test generation has been
explored in the case of native extensions for the JVM (i.e.,
JNI) [13]. Similar work appeared recently for JavaScript
engines, applying differential testing with test transplan-
tation [18] and compiler fuzzing [23, 33]. Although we share
with these approaches the goal of automatic test generation,
these explore a more coarse test generation using and usu-
ally think of the VM as a black-box. Our approach differs
from these in several points: using the interpreter to guide
the compiler testing helps us generating an exhaustive set
of tests that are unitary. Indeed, our tests are fast to run and
easy to debug. Additionally, one key aspect of our solution is
that it is applicable in VMs that have a single implementation
but many execution engines within it. Finally, our approach
produces reproducible tests that exercise both the interpreter

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Interpreter-guided Differential JIT Compiler Unit Testing PL’18, January 01–03, 2018, New York, NY, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

10

100

1000

Native Method Stack−to−Register Simple Linear−Allocator
Compiler

T
im

e
(m

s)
 −

 lo
g

sc
al

e

Figure 7. Test execution time per kind of instruction.
Test execution per instruction, grouped by kind of instruc-
tion. Each data point represents the total execution time to
execute all generated tests for the instruction. Although na-
tive method compiler tests seem to have a higher average
than byte-code compiler tests, they all remain below the
100ms bar.

and JIT compilers, while the other approaches are subject to
VM non-determinisms.

Finally, some work report efforts to validate optimising
compilers in an automatic and semi-automatic way [3, 8].
Although this is not the focus of this paper, we plan to extend
our infrastructure in the future to test our optimising JIT
compiler.

Compiler Testing. More broadly than VM testing, several
work exist on the area of compiler testing and particularly
on the automatic generation of test programs and oracles for
their validation [5]. Remarkable existing work cover random
test generation solutions such as CSmith [32], grammar-
based solutions such as the work originated by Purdom [26]
and mutation-based test generation such as equivalence-
modulo-input (EMI) [17]. Our approach differs from existing
work in that most existing work treats compilers as black
boxes, while our approach benefits from considering the
interpreter as the language specification. In such manner,
our approach quickly generates fast and relevant tests that
exercise different parts on the JIT compiler and interpreter.

Differential Compiler testing. Differential testing was
introduced by McKeeman [19], where he showed how com-
paring different C compilers to find bugs in their differences.

They generate random test cases, depending on the level
they test e.g., sequence syntactically correct C programs or
type-correct C programs. Our approach extends traditional
differential testing by comparing two essentially different
execution engines: an interpreter and a compiler.

Concolic Testing. Concolic testing [10, 27] is an auto-
mated testing technique that combines concrete and symbolic
execution of a program to explore all of the program’s possi-
ble execution paths. Traditionally concolic execution engines
have been interpreter based, although recently they have
been accelerated through compilation [24]. Our approach
is so far implemented as a tree-walking AST interpreter, al-
though, as shown in our evaluation, the execution times
remain practical for its on-line usage. Instead, our current
performance bottle-necks are in the constraint solver.

7 Conclusion
In this article we propose to guide the automatic unit testing
of a JIT compiler by an interpreter definition based on two
insights: first, we consider interpreters executable specifica-
tions of the programming language and second, both the in-
terpreter and compilers for a language should implement the
same language semantics. Based on these observations, our
approach We first apply concolic testing on the interpreter
to discover all possible execution paths and then validate the
compiler using a differential testing approach.

We applied it to the byte-code interpreter and four differ-
ent compilers of the Pharo Virtual Machine: both the native
method template-based compiler and the stack-to-register
byte-code compiler considered stable and in production since
more than 10 years, plus two non-productive compilers. Our
approach generated in less than 10 minutes more than 4.5K
tests, and found 468 differences from 91 different causes.
We show that interpreters are a valid resource when gener-
ating JIT compiler test inputs, unveiling many differences
between them, ranging from clear bugs producing segmenta-
tion faults, to optimization and behavioral differences. More-
over, we show that the approach is practical and applicable
on-line. In the future we plan to extend this work to generate
minimal and relevant byte-code sequences for unit testing
the JIT compiler.

Acknowledgments
Thisworkwas funded by Inria’s Action Exploratoire AlaMVic.

References
[1] B. Alpern, M. A. Butrico, A. Cocchi, J. Dolby, S. J. Fink, D. Grove, and

T. Ngo. Experiences porting the jikes rvm to linux/ia32. In Java Virtual
Machine Research and Technology Symposium, pages 51–64, 2002.

[2] C. Béra and E. Miranda. A bytecode set for adaptive optimizations.
In International Workshop on Smalltalk Technologies (IWST 14), Aug.
2014.

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PL’18, January 01–03, 2018, New York, NY, USA Guillermo Polito, Pablo Tesone, and Stéphane Ducasse

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

[3] C. Béra, E. Miranda, M. Denker, and S. Ducasse. Practical validation
of bytecode to bytecode jit compiler dynamic deoptimization. Journal
of Object Technology, 15(2):1:1–26, 2016.

[4] C. Chambers and D. Ungar. Customization: Optimizing compiler
technology for self, a dynamically-typed object-oriented programming
language. In Programming Language Design and Implementation (PLDI),
PLDI ’89, pages 146–160, New York, NY, USA, 1989.

[5] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang.
A Survey of Compiler Testing. ACM Computing Surveys, pages 1–36,
May 2020.

[6] Y. Chen, T. Su, and Z. Su. Deep differential testing of jvm implementa-
tions. In Proceedings of the 41st International Conference on Software
Engineering, ICSE ’19, pages 1257–1268. IEEE Press, 2019.

[7] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao. Coverage-directed differen-
tial testing of JVM implementations. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 85–99, June 2016.

[8] O. Flückiger, G. Scherer, M.-H. Yee, A. Goel, A. Ahmed, and J. Vitek.
Correctness of speculative optimizations with dynamic deoptimization.
In Principles of programming languages (POPL’17), 2017.

[9] Y. Futamura. Partial evaluation of computation process: An approach
to a compiler-compiler. Higher Order Symbol. Comput., 12(4):381–391,
1999.

[10] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated ran-
dom testing. In Proceedings of Programming Language Design and
Implementation (PLDI’05), pages 213–223. ACM, 2005.

[11] U. Holzle. Adaptive Optimization for Self: Reconciling High Perfor-
mance with Exploratory Programming. PhD thesis, Stanford University,
Stanford, CA, USA, 1994.

[12] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In European
Conference on Object-Oriented Programming, ECOOP ’91, 1991.

[13] S. Hwang, S. Lee, J. Kim, and S. Ryu. Justgen: Effective test generation
for unspecified jni behaviors on jvms. In 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE), pages 1708–1718,
2021.

[14] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the
future: The story of Squeak, a practical Smalltalk written in itself. In
Proceedings of Object-Oriented Programming, Systems, Languages, and
Applications conference (OOPSLA’97), pages 318–326, Nov. 1997.

[15] C. Kotselidis, A. Nisbet, F. S. Zakkak, and N. Foutris. Cross-isa debug-
ging in meta-circular vms. In Proceedings of International Workshop
on Virtual Machines and Intermediate Languages (VMIL’17), pages 1–9,
2017.

[16] B. Kruck, S. Lehmann, C. Keßler, J. Reschke, T. Felgentreff, J. Lincke,
and R. Hirschfeld. Multi-level debugging for interpreter developers. In
Companion to Proceedings of the international conference on Modularity,
pages 91–93. ACM, 2016.

[17] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence
modulo inputs. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, June 2014.

[18] I. Lima, J. Silva, B. Miranda, G. Pinto, and M. d’Amorim. Exposing Bugs
in JavaScript Engines through Test Transplantation and Differential
Testing. arXiv:2012.03759 [cs], 2020.

[19] W. M. McKeeman. Differential Testing for Software. DIGITAL TECH-
NICAL JOURNAL, 1998.

[20] E. Miranda. Context management in visualworks 5i, 1999.
[21] E. Miranda. The cog smalltalk virtual machine. In Proceedings of VMIL

2011, 2011.
[22] E. Miranda, C. Béra, E. G. Boix, and D. Ingalls. Two decades of smalltalk

vm development: live vm development through simulation tools. In
Proceedings of International Workshop on Virtual Machines and Inter-
mediate Languages (VMIL’18), pages 57–66. ACM, 2018.

[23] J. Park, S. An, D. Youn, G. Kim, and S. Ryu. Jest: N+1-version differential
testing of both javascript engines and specification. In Proceedings of
the 43rd International Conference on Software Engineering, ICSE ’21,
pages 13–24. IEEE Press, 2021.

[24] S. Poeplau and A. Francillon. Symbolic execution with SymCC: Don’t
interpret, compile! In 29th USENIX Security Symposium, pages 181–198,
Boston, MA, Aug. 2020. USENIX Association.

[25] G. Polito, P. Tesone, S. Ducasse, L. Fabresse, T. Rogliano, P. Misse-
Chanabier, and C. H. Phillips. Cross-ISA Testing of the Pharo VM:
Lessons Learned While Porting to ARMv8. In Proceedings of the 18th
international conference on Managed Programming Languages and Run-
times (MPLR ’21), Münster, Germany, Sept. 2021.

[26] P. Purdom. A sentence generator for testing parsers. BIT Numerical
Mathematics, 12(3):366–375, 1972.

[27] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine
for c. In Proceedings of the European Software Engineering Conference
(ESEC), pages 263–272, New York, NY, USA, 2005.

[28] D. Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. ACM SIGPLAN Notices, 19(5):157–167,
1984.

[29] D. Ungar, A. Spitz, and A. Ausch. Constructing a metacircular virtual
machine in an exploratory programming environment. In Companion
to Object-Oriented Programming, Systems, Languages, and Applications
conference(OOPSLA ’05), pages 11–20, New York, NY, USA, 2005. ACM.

[30] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan, L. Daynès, and
D. Simon. Maxine: An approachable virtual machine for, and in, java.
ACM Transaction Architecture Code Optimization, 9(4), Jan. 2013.

[31] T. Würthinger, M. L. Van De Vanter, and D. Simon. Multi-level virtual
machine debugging using the java platform debugger architecture. In
Perspectives of Systems Informatics, pages 401–412. Springer, 2010.

[32] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and Understanding
Bugs in C Compilers. In Programming Language Design and Imple-
mentation, PLDI ’11, 2011.

[33] G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, X. Sun, L. Bian, H. Wang,
and Z. Wang. Automated conformance testing for javascript engines
via deep compiler fuzzing. In PLDI ’21: Proceedings of the 2021 ACM SIG-
PLAN conference on Programming language design and implementation,
PLDI 2021, pages 435–450, New York, NY, USA, 2021.

12

	Abstract
	1 Introduction
	2 Interpreter-Guided differential VM Testing
	2.1 Problem: Testing Duplicated Semantics in Virtual Machines
	2.2 Interpreter-Guided VM Testing
	2.3 Interpreter Concolic Testing
	2.4 Interpreter-Compiler Differential Testing

	3 Execution Model
	3.1 Vocabulary: Byte-code and Native Methods
	3.2 Abstract Objects and Abstract Frames
	3.3 Virtual Machine Constraints
	3.4 Instruction Exit Conditions

	4 Realization
	4.1 Experimentation Platform: Pharo VM
	4.2 Compiling Instructions
	4.3 Current Prototype Limitations

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Results
	5.3 Analysis of Results
	5.4 Execution Time Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

