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Simulated Annealing-optimized Trajectory Planning within Non-Collision Nominal Intervals for Highway Autonomous Driving

Laurène Claussmann 1,2 , Marc Revilloud 1 , Sébastien Glaser 3 Abstract-This article considers the problem of near-optimal trajectory generation for autonomous vehicles on highways. The goal is to select a predictive reference trajectory in the free evolution space, while avoiding both generating a precalculated set of candidate trajectories and decoupling path and velocity optimizations. Moreover, this trajectory aims at optimizing a decision process based on multi-criteria functions, which are not straightforward to design and can have a blackbox formulation. The main idea of this article is to use the decision evaluation function in the trajectory generator with a Simulated Annealing (SA) approach. The parameters of a sigmoid trajectory are optimized within Non-Collision Nominal Intervals (NCNI), which are defined as collision-free intervals under nominal conditions using a velocity-space representation.

I. INTRODUCTION

A. Motivation

The introduction of autonomous vehicles to a human environment requires better performance from the robotic systems in terms of perception, prediction, interpretation and reaction, than in a closed environment. Motion planning algorithms are given a greater role in the autonomous scheme, stated as an intelligent linker between sensors and actuators. It is commonly decomposed into the four following subparts [START_REF] Katrakazas | Real-time motion planning methods for autonomous on-road driving: State-ofthe-art and future research directions[END_REF]: obstacles prediction, motion generation, decision making, and motion deformation. This article focuses on the subparts motion generation and decision making. In the literature, authors usually treat these two subparts separately and sequentially, either by first generating candidate motions and then evaluating the most appropriate one according to the objective function of a decision algorithm as in [START_REF] Claussmann | A path planner for autonomous driving on highways using a human mimicry approach with binary decision diagrams[END_REF], [START_REF] Chebly | Maneuver planning for autonomous vehicles, with clothoid tentacles for local trajectory planning[END_REF], or by first making the decision on the most appropriate maneuver and then generating a motion to fit properly as in [START_REF] Cesari | Scenario model predictive control for lane change assistance and autonomous driving on highways[END_REF], [START_REF] Wang | Predictive maneuver planning for an autonomous vehicle in public highway traffic[END_REF]. Our contribution addresses both the motion generation -under the form of trajectory generation-and the decision making -as an evaluation function-in a combined manner, in order to ensure the consistency between the choice of a maneuver and the calculation of the trajectory.

In addition, two approaches are distinguished for trajectory generation in autonomous vehicles: discretization and decoupling. The first one generates a set of candidate trajectories, called tentacles introduced in [START_REF] Von Hundelshausen | Driving with tentacles: Integral structures for sensing and motion[END_REF]. The generation is made a priori, based on predefined geometric curves, such as line and circle [START_REF] Cherubini | A new tentacles-based technique for avoiding obstacles during visual navigation[END_REF], clothoid [START_REF] Chebly | Maneuver planning for autonomous vehicles, with clothoid tentacles for local trajectory planning[END_REF] or sigmoid [START_REF] Claussmann | A path planner for autonomous driving on highways using a human mimicry approach with binary decision diagrams[END_REF]. The completion of each candidate trajectory is then tested and scored against the objective function of the decision subpart in order to define the most appropriate one. The second approach is based on static and dynamic decoupling. A spatial path solution is first defined on a static decomposition of the space, for example fitting particular points with polynomials [START_REF] Xu | A real-time motion planner with trajectory optimization for autonomous vehicles[END_REF] or Bézier curves [START_REF] Lattarulo | Overtaking maneuver for automated driving using virtual environments[END_REF]. This representation uses the topography of the road, such as lane marking, road shape, map information, and static obstacle avoidance. The path is then adjusted to the dynamic obstacles by choosing a speed / acceleration profile [START_REF] Liu | Speed profile planning in dynamic environments via temporal optimization[END_REF]. This time dynamic solution respects the speed limits and avoids dynamic obstacles. Conversely, defining first the optimal velocity profile dynamically and then the static path is also possible [START_REF] Wang | Predictive maneuver planning for an autonomous vehicle in public highway traffic[END_REF].

From these two representations emerge two main issues. Indeed, the discretization of the candidate solutions requires either testing a large number of candidate profiles to approach the optimal one, or to make a choice a priori on the characteristics of the solution. This problem is studied with continuous optimization strategies, such as gradient descent [START_REF] Xu | A real-time motion planner with trajectory optimization for autonomous vehicles[END_REF], Linear Programming (LP) [START_REF] Plessen | Trajectory planning under vehicle dimension constraints using sequential linear programming[END_REF], Mixed-Integer Programming (MIP) [START_REF] Wang | Predictive maneuver planning for an autonomous vehicle in public highway traffic[END_REF], or Model Predictive Control (MPC) [START_REF] Cesari | Scenario model predictive control for lane change assistance and autonomous driving on highways[END_REF]. The drawback of such strategies is their need for an explicit cost function. Similarly, the decoupling approach does not allow exploring all motions over the space-time prediction horizon, as it optimizes each dimension separately. This has previously been addressed through the Velocity Obstacles (VO) representation [START_REF] Fiorini | Motion planning in dynamic environments using velocity obstacles[END_REF], the Inevitable Collision States (ICS) [START_REF] Fraichard | Inevitable collision statesa step towards safer robots?[END_REF], reachable sets [START_REF] Söntges | Computing the drivable area of autonomous road vehicles in dynamic road scenes[END_REF], or the graph interval formulation [START_REF] Altché | Partitioning of the free space-time for on-road navigation of autonomous ground vehicles[END_REF]. By combining these four ideas, we define the Non-Collision Nominal Intervals (NCNI), which return, based on a velocity representation, the predictive collisionfree intervals for nominal maneuvers.

The last topic of this paper is the optimization of black-box decision objective functions with a huge number of potential solutions and no a priori knowledge. This family of functions is optimized using metaheuristics [START_REF] Gendreau | Handbook of metaheuristics[END_REF]. Their advantages are that they do not require a formalized problem, unlike the gradient methods, and do not suffer from combinatorial explosion, due to the heuristic approach. Moreover, the heuristic property tackles the local minima issue. Nevertheless, the main drawbacks of these methods are the need for a fine problem-adaptive tuning, their non-deterministic resolution, and a trade-off between optimality, completeness and execution time. Our problem consists in finding a global optimum by optimizing a few parameters (less than 5), which are not independent and in a large search space. As reviewed in [START_REF] Wolpert | No free lunch theorems for optimization[END_REF], this can be achieved using a Simulated Annealing (SA) algorithm while guaranteeing theoretical convergence.

B. Contribution and Paper Outline

In this article, we introduce an all-in-one architecture, in which the motion generation is optimized with the objective function of the decision maker, see Fig. 1. NCNI are calculated from the interpretation of the environment data (road, obstacles, ego vehicle) issued from the perception, communication and localization blocks. They are defined as a continuous space-time, taking into account the kinematic constraints of the ego vehicle and the collision-free states (position and velocity) for nominal highway driving conditions. Candidate trajectories are then generated as a sigmoid function within the NCNI, and a SA-optimization loop using the decision making as a trajectory evaluation provides a near-optimal trajectory. Finally, this trajectory is sent to the control block as the reference trajectory to follow.

This paper is organized as follows: Section II describes the reachable space-time with the problem description and the NCNI interpretation. The architecture of the proposed algorithm is detailed in section III. The SA-optimization method is explained in section IV. Lastly, a numerical example is discussed in section V, and section VI presents the conclusion and future work.

II. THE REACHABLE SPACE-TIME

The reachable space-time is defined as the evolution space fulfilling the following conditions: (i) it must be consistent with the physical limitations of the vehicle, (ii) it is represented with position and velocity information, (iii) it is predicted along a space and time horizon, and (iv) it is collision-free or a predicted collision can be avoided through a nominal maneuver.

A. Environment description

In order to define the reachable space-time in a nominal highway situation, the environment is described using the following road representation, vehicle and trajectory models, and predicted obstacles' behaviors.

1) Road model: The reachable part of the road is delimited by the nominal lanes and the legal speed limits. Only the ego lane and the adjacent left and right lanes are considered. Moreover, the road curvature can be eliminated using a road-aligned coordinate frame, which is suitable to geometric paths, as detailed in [START_REF] Altché | Partitioning of the free space-time for on-road navigation of autonomous ground vehicles[END_REF], [START_REF] Hudecek | Improving and simplifying the generation of reference trajectories by usage of road-aligned coordinate systems[END_REF].

2) Vehicle model: The ego vehicle is modeled by simple particle kinematics (longitudinal and lateral positions x, y, velocities ẋ, ẏ, and accelerations ẍ, ÿ) with constraints on the longitudinal and lateral accelerations a x , a y and yaw angle α. For this first approach, we consider that the ego vehicle navigates with a constant longitudinal acceleration or deceleration profile from its initial velocity v 0 , at position x 0 , y 0 , to a target velocity v t along the prediction horizon H P , i.e., with a trapezoidal speed profile. The target velocity is bounded by the road's longitudinal speed limits [v min ; v max ].

A lateral acceleration profile is also used in the trajectory model. According to [START_REF] Reif | Kraftfahrtechnisches Taschenbuch[END_REF], the limitation value for the lateral acceleration on highways in nominal conditions (i.e, comfort)

is |a y,max | = 2m/s 2 .
The vehicle model and constraints can be summarized as:

           ẍ(t) = a x ẋ(t) = v x (t) = a x t + v 0 x(t) = ax 2 t 2 + v 0 t + x 0 ÿ(t) = a y ẏ(t) = v y (t) s.t.            d x,max ≤ a x ≤ a x,max v min ≤ v x (t) ≤ v max |a y (t)| ≤ a y,max |α| ≤ α max v y (t) ≤ v x (t) tan(α)
(1) with a x,max , resp. d x,max , the maximum longitudinal acceleration, resp. deceleration. On highways, the condition on the maximum yaw angle α max is less restrictive than the one on the maximum lateral acceleration a y,max [START_REF] Reif | Kraftfahrtechnisches Taschenbuch[END_REF].

3) Trajectory model: The considered highway maneuvers are either lane keeping or lane changing right/left with an acceleration profile.

The lane keeping maneuver consists in following the center of the current lane: y(t) = y centerline .

The lane changing maneuver consists in a lane shift from the current lane centerline to the target one. Authors in [START_REF] Arbitmann | Method and device for performing a collision avoidance maneuver[END_REF] demonstrated that the parameterized sigmoid function fits the highway lane change recommendation:

y(t) = y 0 ± b 1 + e -λ(x(t)-c) ( 2 
)
where b is the lane change shift between y 0 and the target centerline. The sigmoid parameter λ and the distance delay c are tuning parameters for driver safety and comfort, which depend on the lateral and longitudinal ego vehicle's velocities. The properties of the sigmoid function make it easy to use, as it is bounded, symmetric, differentiable, and monotonic.

4) Obstacle prediction:

We assume full-lane occupancy for any detected obstacle. Although the present applications consider only constant-speed/direction obstacles, there is no theoretical limitation for this method to address multiple predicted obstacle's maneuvers with uncertainties. Indeed, uncertainties are taken into account in the evaluation function previously developed in [START_REF] Claussmann | Multi-criteria decision making for autonomous vehicles using fuzzy dempster-shafer reasoning[END_REF]. The extension to variable speeds will only impact the longitudinal collision test (see section III-B), whereas the lane change maneuver will result in both the initial and final lanes being marked as occupied.

B. Non-Collision Nominal Intervals (NCNI)

The evolution space delimits the region where the ego vehicle can navigate without collision. This definition con- siders that whatever happens, the ego vehicle can always apply a kinematically feasible motion within the evolution space to avoid collision. Authors in [START_REF] Fraichard | Inevitable collision statesa step towards safer robots?[END_REF] introduced as ICS, the states where a collision is inevitable, and authors in [START_REF] Söntges | Computing the drivable area of autonomous road vehicles in dynamic road scenes[END_REF] extended ICS to define reachable sets. In the scope of this paper, we limit the definition of the evolution space to a nominal highway driving situation by defining the NCNI.

They consist in intervals, in which the ego vehicle navigates collision-free under nominal conditions. We define 3 possible characterizations. A rear obstacle yields a lower bound of distance and velocity, under which a collision is encountered. Conversely, a front obstacle yields an upper bound of distance and velocity, over which there is also a collision. If there is no obstacle, an ego phantom vehicle marks respectively the lower and upper bounds, with the minimum and maximum velocity of the ego vehicle. These bounds delimit the NCNI, as depicted in Fig. 2.

The NCNI characterize where, when, and how the ego vehicle can maneuver along the prediction horizon H P . A classification of the perceived obstacles within the perception area returns the intervals to consider. Each interval I k is defined by a lower O The NCNI thus provide information on longitudinal and lateral position and velocity constraints to avoid a collision.

III. ALGORITHM ARCHITECTURE

This section details the assumptions and the algorithm diagrams used to define the NCNI before the SA-search for the reference trajectory.

A. Assumptions

The following additional assumptions are necessary to delimit the nominal use of the proposed motion planner.

Assumption 1: In the ego lane, only the closest front obstacle is considered, as overtaking this obstacle will lead to a replanning step.

Assumption 2: If the velocities of the closest front obstacles in left, ego, and right-lane in the perception area are below the minimum speed limit, the situation is not nominal and is out of the scope of this motion planner.

Assumption 3: Only the ego, adjacent left and right lanes are considered to define the NCNI. Indeed, if an obstacle in the second left lane plans to navigate to the ego lane, it will necessarily pass through the adjacent left lane first.

Assumption 4: If there is a front collision in one of the directions, the corresponding profile is discarded in this direction, but still remains for the adjacent directions.

Assumption 5: If there is a rear collision in one of the directions all along the prediction horizon, the corresponding profile is discarded in this direction.

Assumption 6: Rear obstacles in the ego lane are not considered in a general framework. This assumption can be relaxed in case of specific driver rules, e.g., to pull back the ego vehicle in the right-side lane.

B. Architecture

The architecture of the algorithm is displayed in Fig. 3. The initial diagram consists in defining the predicted ego and obstacles motion with the models described in sections II-A.2 and II-A.4 (step 0), and generating the NCNI (see II-B) in step 0bis. Although first and last moments of collision could be evaluated analytically (see [START_REF] Jula | Collision avoidance analysis for lane changing and merging[END_REF]), this first approach uses a sample of N target velocities v t within the road speed limits [v min ; v max ]. N longitudinal velocity v i=1:N and position p i=1:N profiles are then calculated for the ego vehicle over the prediction horizon H P .

The decision diagram treats in parallel each existing direction lef t/straight/right (step 1). For each interval I k in the considered direction (step 2), a longitudinal collision test of Minimum longitudinal Safety Spacings (MSS) [START_REF] Jula | Collision avoidance analysis for lane changing and merging[END_REF] between all the ego longitudinal position profiles and the bounding obstacles of I k returns the interval characterization [v inf ; v sup ] k and [d inf ; d sup ] k , as depicted in Fig. 4. The inf value is the lowest value (resp. velocity and position) from which the ego vehicle is not in collision with O inf I k j . The sup value is the highest value (resp. velocity and position) up to which the ego vehicle is not in collision with O sup I k j . For cases with ego phantom, v inf = v min , v sup = v max , d inf = x 0 and d sup = x(t = H P , v max ). Only the collision-free profiles are stored according to the Assumptions 4 and 5.

The next step is to gather the intervals into maneuvers (step 3). A maneuver is either a lane following or a lef t/right lane change. Each interval of directions left and right is gathered with the straight interval. The maneuver is feasible if there is at least one ego profile which exists, i.e., which is not in collision with the lower and upper bound obstacles. For each stored ego profile, the gathering test consists in verifying the following condition [START_REF] Jula | Collision avoidance analysis for lane changing and merging[END_REF]:

d inf (lef t/right) ≤ d sup (straight) d inf (straight) ≤ d sup (lef t/right) (3) 
In Fig. 4(d), the left change maneuver I 1→2 is possible for the ego profile v i , v j . The lower (resp. upper) velocity bound is the minimum (resp. maximum) of the v inf (resp. v sup ) of each existing profile:

v t ∈ [v i ; v j ].
The position of the lane as illustrated in Fig. 4(d) in blue for ego profile v i , p i and purple for v j , p j . Then, SA optimization is applied (step 4) on the remaining intervals in order to return the best trajectory parameters (step 5) according to the decision evaluation function.

IV. SIMULATED ANNEALING OPTIMIZATION

As stated previously, the meta-heuristics algorithms represent a good solution to problems with black-box evaluation functions, huge number of potential solutions, and acceptance of a near-optimal solution. The SA is based on an analogy with the annealing technique used in metallurgy to minimize the thermodynamic free energy of a material, introduced by [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF] and [START_REF] Černỳ | Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm[END_REF]. There exist different algorithm structures and parameter choices. For readability, only the final choices adopted in this article are given. We invite the reader to refer to [START_REF] Aarts | Statistical cooling: A general approach to combinatorial optimization problems[END_REF] for more details on the SA approach.

A. Algorithm Description

The main idea of the algorithm is to accept a worse solution according to an acceptance probability, slowly decreasing. The annealing schedule must be adapted to the specific problem to solve. The tuning part concerns both the resolution scheme and the definition of the parameters.

1) Variables search space: The variables to optimize are the target velocity v t and the sigmoid parameters λ, c (see II-A.3). v t (resp. c) is bounded by the velocity (resp. position) intervals ( 9) calculated in section III-B. The position interval depends on v t , thus it is interpolated from the position intervals of the remaining speed profiles. The bounds of λ are issued from the constraint of a lane change maneuver completion and one of the maximum lateral accelerations of the sigmoid function [START_REF] Claussmann | A path planner for autonomous driving on highways using a human mimicry approach with binary decision diagrams[END_REF]. The first constraint is defined by requiring the sigmoid curve completion, for example at 98% [START_REF] Cesari | Scenario model predictive control for lane change assistance and autonomous driving on highways[END_REF]: 0.98b ≤ y(x = 2c) ⇐⇒ λ ≥ 4 c . The latter constraint is given by the maximum value of the second-order time derivative (with y = y(t) -y 0 ), which respects the limitation value for the ego lateral acceleration a y,max :

d 2 y dt 2 = a x dy dx + v 2 x d 2 y dx 2 (5) = a x λ b y(b -y) + v 2 x λ 2 b 2 y(b -y)(b -2y) (6) 
≤ a y,max

Equation ( 5) is obtained according to Schwarz's theorem on partial derivatives with continuous second-order derivatives functions, and ( 6) uses the derivative properties of the sigmoid function.

The two terms of ( 6) are bounded separately, so that the maximum value for λ respecting ( 7) is approximated by [START_REF] Xu | A real-time motion planner with trajectory optimization for autonomous vehicles[END_REF]:

λ max = -a x b/4 + √ ∆ √ 3 9 bv 2 x , ∆ = a 2 x b 2 4 + 2 √ 3 9 v 2 x ba y,max (8) 
Thus, the variables search space is defined as:

       v t ∈ [v inf ; v sup ] I k→k c ∈ [d inf,vt ; d sup,vt ] I k→k λ ∈ [ 4 c ; λ max,vt ] (9) 
2) Cost function: We want to maximize for the sigmoid trajectory the risk assessment function based on Fuzzy Dempster-Shafer Theory, previously published in [START_REF] Claussmann | Multi-criteria decision making for autonomous vehicles using fuzzy dempster-shafer reasoning[END_REF]. We selected 3 risk's criteria: relative velocity v rel , time headway T h and ego longitudinal velocity v x . Fig. 5 displays the evaluation of this black-box cost function. The choice of v t influences all 3 criteria, while λ and c have an effect on T h .

3) Architecture Choice: Authors in [START_REF] Eglese | Simulated annealing: a tool for operational research[END_REF] review different improvements to the SA architecture. The main difference concerns the optimization loop based on a step-temperature or a continuous-temperature. The step-temperature consists of two optimization loops: the temperature decreases in steps in an outer loop, and at each temperature step, an inner loop is applied to find a local equilibrium solution. The continuous-temperature consists in one optimization loop which corresponds to the outer loop of the first method, i.e., the temperature decreases continuously at each iteration. The first architecture is closer to the physical law but the second one is faster. In this first work, we use the second one for real-time application. Moreover, we list the best encountered solution, which corresponds to the global nearoptimal solution found until then.

4) Parameters definition: The annealing schedule includes the tuning of:

-Acceptance probability function: We use the initial Metropolis rules with the Boltzmann probabilities to randomly accept a worse solution. -Initial temperature T 0 : The temperature is a positive global-time varying parameter used for the acceptance probability function, which decreases along the iterations. The higher it is, the more uphill candidates can be accepted as a solution, and vice versa. T 0 can be fixed using the initial acceptance probability. With Z a characteristic value (median or maximum gap) of the evaluation function, for a given initial acceptance probability P 0 , the initial temperature is obtained by P 0 = exp(-Z 0 /T 0 ). With P 0 ≈ 0.2 and Z 0 = 1, we choose T 0 = 0.62. -Cooling schedule: The cooling schedule is the iterative function to decrease the temperature value. Different strategies exist such as linear, geometric, logarithmic or adaptive cooling schedules. The convergence is guaranteed if the temperature decreases in a logarithmic way [START_REF] Hajek | Cooling schedules for optimal annealing[END_REF]. However, in practice, the geometric law is faster and returns satisfying results. The geometric parameter q is calculated according to the final acceptance probability. At the end, we want a very low acceptance probability P f = 0.001 with the characteristic value Z f = 0.1, so that T f = 0.0145. For a number of iterations N iter = 200: T f = q N iter T 0 , q = 0.98. -Initial solution x 0 : As the autonomous vehicle application is continuous, the initial solution is the current trajectory of the ego vehicle. -Neighborhood search: The function generates uniformly random numbers within a decreasing interval around the previous solution. The interval length decreases proportionally with the temperature: (ub -lb) iter = T iter /T 0 (ub -lb) 0 . -Stop criterion: The stop criterion is either fixed as a maximum number of iterations, or when the temperature is too low, or at a steady state of the evolution function.

We set a maximum of 200 iterations and a steady state criterion of 10 -1 on the evaluation function.

B. Evaluation

We evaluate the performance of the algorithm by analyzing the convergence to a near-global optimum and the sensitivity to T 0 and q, as well as to the initial variables (v t , c, λ). The algorithm is run over 10 iterations for each performance test. The evaluation tests are performed for a left lane change maneuver with 1 obstacle in the ego front lane, with a relative velocity -5m/s and a relative distance +90m. The ego initial velocity is 30m/s, 15 v t sampled within [v min = 22.22; v max =36.11]m/s are chosen.

1) Convergence: The convergence analysis yields the convergence speed and optimal evaluation value I m displayed in Table I. One notices that the convergence speed is fast, as the evaluation function displayed in Fig. 5 shows similar values for large ranges of variables. This is due to a conservative evaluation for decision making. Moreover, the optimal values present a very low standard deviation σ over iterations, which indicates that despite the heuristic calculation, the algorithm always finds a solution close to the global optimum value.

2) Temperature sensitivity: In order to verify the annealing schedule tuning, we test 7 values for T 0 ∈ {10 -3 ; 10 -2 ; 10 -1 ; 10 0 ; 10 1 ; 10 2 ; 10 3 } and 10 values for q sampled within [0.8; 0.99]. The averaged maximum evaluation function is plotted in Fig. 6. The maximum of the evaluation function is reached for T 0 ∈ [0.001; 10] with q ∈ [0.90; 0.99].

Fig. 6: Influence of T0 and q on the maximum evaluation value.

3) Initial variables sensitivity: To guarantee a uniform random search, 10 different initial variables sets are tested. The results are summarized in Table I. The variability of the optimal I m indicates that the initial variables choice has limited influence on the optimization process. However, as the evaluation function shows similar results for large ranges of variables, the optimal parameters have high standard deviation. In this situation, there is no maneuver for I 1→4 as O 4 is driving at the minimum bound velocity of the ego vehicle, nor for I 1→6 as O 1 and O 6 have the same velocity and are close to each other. I 1→3 does not allow a left change maneuver, as O 3 is driving at the initial ego velocity, and thus, the distance to reach a higher v t is too low with O 1 for a lane change. The index profiles and velocity bounds for each maneuver, as well as the optimal parameters and evaluation, are summarized in Table II. The corresponding I m are in [-0.42; 6.00]. One notices that maneuver I 1→2 has a very low evaluation value due to the small T h to insert between O 2 and O 3 . I 1→5 has a smaller evaluation value than I 1→1 as the distances to O 5 and O 6 , as well as v t , are smaller than the ones with O 1 , and v rel is higher. Finally, the best maneuver is to stay in the ego lane I 1→1 and adapt the ego velocity for car following at v t = 28.17m/s, with the maximum I m value. To validate our approach in real-time, 28 computations of the described scenario are performed on an embedded computer (2.10 GHz Intel Core i7-3612QM CPU, 8 GB RAM) running a Visual C/C++ Solution File for Simulink Coder. The mean ± standard deviation/minimum/maximum values for the calculation time are 72 ± 10/61/99ms, which is satisfyingly fast for a real-time predictive motion planner.

VI. CONCLUSION AND FUTURE WORK

This article presents an all-in-one architecture for trajectory generation and decision making. The method addresses both the problem of candidate trajectories discretization and path/velocity decoupling optimization, using first a velocity representation for the evolution space. It is then reduced to the complement of the ICS in nominal situations, by introducing the Non-Collision Nominal Intervals (NCNI). A SA-optimized sigmoid trajectory within the NCNI is finally performed to define a near-optimal reference trajectory. Moreover, this optimization strategy can run in real-time for black-box cost functions.

Future work will consist in testing on a real vehicle, considering more complex speed profiles (addition of the acceleration profile as a fourth optimization variable) and extending to more complex behavior of obstacles (lane changing, acceleration/deceleration), as well as merging, with a more aggressive decision function.
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 1 Fig. 1: All-in-one Motion Planning architecture.

Fig. 2 :

 2 Fig. 2: Example of a 3-lane road with 7 obstacles around the ego vehicle in the perception area, which define 6 NCNI.

  inf I k j and an upper O sup I k j bound due to a rear obstacle O j and a front obstacle O j . The open intervals (e.g., intervals I 4 and I 6 ) are bounded with the minimum and maximum dynamics of the ego phantom vehicle. The closest rear obstacle is not considered as an interval bound. In Fig. 2, lane/car following will consist in finding the non-collision range of velocities inside interval I 1 , whereas a left lane change is only possible if there exists at least one velocity profile to reach intervals I 2 or I 3 from interval I 1 (I 4 , I 5 or I 6 for a right lane change).
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 31212 Fig. 3: Algorithm diagrams.
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 412 Fig. 4: Characterization of the intervals I1 and I2 for a left change maneuver. (a) Ego I1 upper bound: The ego profiles pmax, pi, pj are in collision with O sup I 1 1 , they are discarded for the direction ego (Assumption 4). (b) Left I2 upper bound: The pmax profile collides with O sup I 2 3 . (c) Left I2 lower bound: Both pmin, pj are in collision with O inf I 2 2 . pmin always collides along HP , so the profile is discarded (Assumption 5). (d) Left change maneuver I1→2: As pmax collides both with I1 and I2, it is discarded. Only pi,j remain with [d inf ; dsup]I 1→2 (pi) and [d inf ; dsup]I 1→2 (pj).

Fig. 5 :

 5 Fig. 5: Evaluation function over the range of 3 variables: relative velocity v rel , time headway T h and ego longitudinal velocity vx.

Fig. 2 .

 2 We assign for each obstacle O j=1..6 the following initial relative-speed (m/s), position (m) and direction: O 1 (-5, 90, ego), O 2 (0, -30, lef t), O 3 (0, 60, lef t), O 4 (5, 130, lef t), O 5 (-8, -20, right), O 6 (-5, 70, right). The ego vehicle's initial position is x 0 = 0m, y 0 = y centerline-ego , with v 0 = 30m/s, a x = 2m/s 2 and d x = -1.5m/s 2 . We sample 15 v t within [v min =22.22; v max =36.11]m/s. The prediction horizon H P is set to 10s. We use the decision function in [21] displayed in Fig. 5. The range of the criteria are v rel ∈ [-8; 14]m/s T h ∈ [0; 3.36]s, and v x ∈ [22.22; 30.16]m/s.

TABLE I :

 I SA Performance Evaluation

			mean	min	max	σ
	Convergence	Speed (iteration) Optimal Im (/)	112 5.99	90 5.98	135 5.99	/ 7.4e -3
	Variables Initial Values	Optimal vt (m/s) Optimal c (m) Optimal λ (m -1 ) Optimal Im (/)	23.40 136 0.068 5.65	22.22 98 0.029 4.67	28.07 193 0.102 5.99	2.47 32 0.022 0.41
		V. NUMERICAL EXAMPLE		
	We demonstrate our SA-optimized trajectory generator
	on the scenario of				

TABLE II :

 II Maneuvers Bounds and Evaluation

	Maneuver	I 1→1	I 1→2	I 1→3	I 1→4	I 1→5	I 1→6
	N	1..7	9	none	none	2..5	none
	v inf (m/s)	22.22	30.16	none	none	23.21	none
	vsup (m/s)	28.17	30.16	none	none	26.19	none
	vt (m/s)	28.17	30.16	none	none	26.19	none
	c (m)	n.a.	116	none	none	157.5	none
	λ (m -1 )	n.a.	0.034	none	none	0.025	none
	Im (/)	6.00	0.07	none	none	3.67	none