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Abstract. The Arabian Sea (AS) was confirmed to be a net emitter of CO2 to the atmosphere during the international Joint

Global Ocean Flux Study program of the 1990s, but since then little in situ data has been collected, leaving data-based methods

to calculate air-sea exchange with fewer data and potentially out-of-date. Additionally, coarse-resolution models under-estimate

CO2 flux compared to other approaches. To address these shortcomings, we employ a high-resolution (1/24o) regional model

to quantify the seasonal cycle of air-sea CO2 exchange in the AS by focusing on two main contributing factors, pCO2 and5

winds. We compare the model to available in situ pCO2 data and find that uncertainties in dissolved inorganic carbon (DIC)

and total alkalinity (TA) lead to the greatest discrepancies. Nevertheless, the model is more successful than neural network

approaches in replicating the large variability in summertime pCO2 because it captures the AS’s intense monsoon dynamics.

In the seasonal pCO2 cycle, temperature plays the major role in determining surface pCO2, except where DIC delivery is

important in summer upwelling areas. Since seasonal temperature forcing is relatively uniform, pCO2 differences between the10

AS’s sub-regions are mostly caused by geographic DIC gradients. We find that primary productivity during both summer and

winter monsoon blooms, but also generally, is insufficient to off-set the physical delivery of DIC to the surface, resulting in

limited biological control of CO2 release. The most intense air-sea CO2 exchange occurs during the summer monsoon where

outgassing rates reach ∼6 molCm−2yr−1 in the upwelling regions of Oman and Somalia, but the entire AS contributes

CO2 to the atmosphere. Despite a regional spring maximum of pCO2 driven by surface heating, CO2 exchange rates peak15

in summer due to winds, which account for ∼90% of the summer CO2 flux variability versus 6% for pCO2 in a Reynolds

decomposition. In comparison with other estimates, we find that the AS emits∼160TgCyr−1, slightly higher than previously

reported. Altogether, there is 2x variability in annual flux magnitude across methodologies considered. Future attempts to

reduce the variability in estimates will likely require more in situ carbon data. Since summer monsoon winds are critical in

determining flux both directly and indirectly through temperature, DIC, TA, mixing, and primary production effects on pCO2,20

studies looking to predict CO2 emissions in the AS with ongoing climate change will need to correctly resolve their timing,

strength, and upwelling dynamics.
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1 Introduction

The global ocean represents a major reservoir of inorganic carbon on the planet’s surface, and up to the present has on average25

acted to uptake excess anthropogenic CO2 (Ciais et al., 2013; Khatiwala et al., 2009). The Arabian Sea (AS) is a region of

the ocean that has been found to naturally release CO2 to the atmosphere (Sarma et al., 1998), mitigating the ocean’s role in

moderating atmospheric CO2 accumulation. While the AS as a regional basin is considered too small to greatly impact global

budgets of air-sea CO2 exchange (Naqvi et al., 2005), it attracts attention because some of the highest rates of air-sea CO2 flux

and values of partial pressure of CO2, or pCO2, have been observed there, in addition to unique features such as the world’s30

thickest oxygen minimum zone (OMZ) (Lachkar et al., 2016) and corresponding Carbon Maximum Zone (CMZ) (Paulmier

et al., 2011).

The role of the AS as a region of net CO2 emission, while suspected for decades (Keeling, 1968; Naqvi et al., 1993), was

more firmly established with observations conducted under the international collaborative efforts of the Joint Global Ocean

Flux Study (JGOFS) program during the 1990s (Sarma et al., 1998; Millero et al., 1998a; Goyet et al., 1998b; Naqvi et al.,35

2005); see Smith (2005) and the accompanying Progress in Oceanography special issue for greater context. Conducted over

several years, a major focus was to sample over the particularly strong seasonal monsoon cycle present in the AS, complete with

surface current reversals, coastal upwelling, and intense phytoplankton blooms (Schott and McCreary Jr, 2001; Kumar et al.,

2001; Lévy et al., 2007). JGOFS carbon data were first used to create linear statistical models, which were then extrapolated

over a greater region of the AS to produce larger-scale estimates of seasonal CO2 flux showing emission to the atmosphere40

(Sabine et al., 2000; Sarma, 2003; Bates et al., 2006). JGOFS data still represent the greatest source of data for current de facto

standard global products, such as Takahashi et al. (2009) (hereafter TK09), who produced a global climatology of pCO2 and

CO2 flux gridded onto a 4o x 5o grid using a horizontal advection-diffusion scheme. In recent years, neural networks have

been applied instead of simpler statistical models to likewise produce global climatologies, such as Landschützer et al. (2015)

(hereafter L15) on an increased-resolution 1o x 1o grid. All these different methodologies, although of differing sophistication,45

still rely on the availability of in situ data.

The wealth of information provided by the JGOFS expeditions has been invaluable for understanding the AS, but there has

been little subsequent in situ sampling in the AS, as has been previously remarked (Hood et al., 2016). For example, in the

Global Ocean Data Analysis Project v2 (GLODAP; Olsen et al., 2019) database, there are no reported observations in the AS

of two important carbon variables, dissolved inorganic carbon (DIC) and total alkalinity (TA), more recent than 1998, with a50

similar story for pCO2. Thus, the global products of TK09 and L15 are based upon conditions in the AS from 20 years ago.

Since quantities like surface pCO2 concurrently trend with rising atmospheric CO2 concentration (Tjiputra et al., 2014), the

dearth of recent sampling means that uncertainty in the AS’s carbon system will only grow with time. The gap in data collection

also means that the AS is proportionally under-represented in global datasets: whereas the AS is 2% of the ocean surface, DIC

and TA measurements in the AS are <1% of the GLODAP ensemble, which is also the case with pCO2 reported in the Surface55

Ocean Carbon ATlas (SOCAT; Bakker et al., 2016; Pfeil et al., 2013).
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Where data are sparse in the AS, numerical circulation models have been used to complement the lack of spatiotemporal

coverage. These models fill the domain with their own estimates of carbon variables, such as pCO2, while also providing

detailed information on the factors affecting them, e.g. DIC, temperature, biological productivity, etc. For example, in the

wake of the JGOFS expeditions, the synthesis study of Sarma et al. (2003) used a numerical model to examine biological60

and chemical aspects of the annual carbon budget in the central and eastern AS. Further studies focus on other aspects over

different timescales, such as intraseasonal pCO2 variability due to temperature versus DIC (Valsala and Murtugudde, 2015),

or decadal trends in pH (Sreeush et al., 2019a). These approaches, without more in situ data, are the best estimates we have

of the current AS carbon system’s behavior. Therefore, it is incumbent that these models are vigorously validated against

what precious few data exist. The need is further emphasized when quantities such as pCO2 can be utilized as a proxy for65

other things, such as community compensation depth (Sreeush et al., 2019b). However, most recent studies compare output to

established climatologies, such as TK09, which are coarse in spatial resolution and smooth out unique features of the AS such

as coastal upwelling, although some studies have begun using ARGO float profiles for model validation (Chakraborty et al.,

2018).

Despite the wealth of information that models provide, they have their own weaknesses. In a review of CO2 flux esti-70

mates from various independent methodologies, Sarma et al. (2013) found that coupled ocean biogeochemical models under-

estimated the air-sea CO2 flux. The underestimate was attributed to poor resolution of monsoonal currents, specifically near the

coasts of Oman and Somalia. The need for sufficient resolution of monsoon and upwelling currents is underscored by the roles

that small-scale horizontal (Mahadevan et al., 2004) and vertical (Mahadevan et al., 2011; Resplandy et al., 2019) currents can

play in advecting carbon. Additionally, Sarma et al. (2013) found that the peak of flux observed in boreal summer occurred75

slightly out of phase, with models leading observations by over a month in the AS. Finally, the modeled pCO2 in the AS found

a springtime maximum not seen in the observations based on the data from TK09. Clearly, an effort must be made to establish

whether these discrepancies are residual effects of low resolution, endemic to models generally, or indicative of a real pattern

that suggests future concerted in situ sampling.

Considering the challenges specific to studying the AS carbon cycle, in this paper we aim to put into context the role of the80

AS as a CO2 source by quantifying air-sea CO2 flux with a targeted approach. First, by employing a higher-resolution regional

numerical model of the AS carbon system, monsoonal and upwelling currents will be sufficiently resolved. Furthermore, model

validation will use raw data, not a smoothed climatological product, to evaluate the model. Quantification of air-sea flux will

focus on the contributing factors of pCO2 and wind. In particular, the role of temperature (T), salinity (S), DIC, and TA in

determining the seasonal cycle of pCO2 will be investigated, which of course also varies from region to region within the AS.85

A further budget analysis of surface DIC compares the physical and biological mechanisms governing carbon sources and

sinks, such as advection and mixing versus biological production and respiration. The relative impact of pCO2 and winds upon

the seasonal cycle of CO2 flux are also compared, culminating in a meta-analysis of the model’s CO2 flux estimates relative to

alternative approaches.

For this study, we choose to focus on the seasonal cycle due to the strength of the monsoon in the AS and because it is90

resolved by the data, although interannual (Valsala and Maksyutov, 2013; Valsala et al., 2020) and intraseasonal (Valsala and
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Murtugudde, 2015) variability exists. The rest of the paper will start with a description of pCO2 datasets used, along with the

model configuration and methods of analysis in Section 2. Following this in Section 3 is a description of the model validation

and results, with discussion in Section 4. We conclude in Section 5 with perspectives and recommendations regarding future

studies of pCO2 and air-sea CO2 flux in the AS.95

2 Methods

2.1 pCO2 data

In this study, pCO2 is used as the primary in situ data for model validation. Whereas models favor DIC and TA (Wolf-Gladrow

et al., 2007), shipboard pCO2 can be measured underway and hence there are more observations available. Additionally, since

model pCO2 is calculated from DIC and TA, pCO2 measurements act as an independent dataset. Here, pCO2 validation stems100

from in situ un-gridded data merged from SOCAT v. 2019 (downloaded from https://www.socat.info/index.php/version-2019/

September 2019) and the Lamont-Doherty Earth Observatory (LDEO) surface pCO2 database (Takahashi et al., 2019). Due

to the large overlap in the two databases, SOCAT data was preferred to LDEO observations, and LDEO observations were

included for years where SOCAT data are unreported. SOCAT fugacity (fCO2) values were converted to pCO2 and mole

fraction (xCO2) using reported sea surface temperature (SST) and S data included in the products. The anthropogenic effect105

of increasing surface pCO2 was calculated by removing a fit linear trend of 2 µatm yr−1, slightly higher than ≈1.5 seen in

Tjiputra et al. (2014). pCO2 values were calibrated to the year 2005, the representative year used for the model’s atmospheric

xCO2.

Alternative pCO2 products are used for comparison purposes. The gridded products from TK09 and L15, while based

upon the same in situ data mentioned above, represent different processing methodologies. pCO2 is also calculated from110

DIC and TA provided by the statistical fits to JGOFS data by Sarma (2003) and to the gridded GLODAP climatological

product. The statistical fits of Sarma (2003) were used twice, first using model T,S, and Chl-a, and second with World Ocean

Atlas (WOA) 2009 T, S with SeaWifs Chl-a. GLODAP-derived pCO2 also uses WOA2009 T, S. Calculations of pCO2 are

performed using the CO2SYS software package (Van Heuven et al., 2011). Since all calculations are conducted at the near-

surface, differences between this software suite and Orr and Epitalon (2015) are minimal. For air-sea flux calculations, all115

∆pCO2 values were calculated using Keeling curve values (downloaded from https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_

data.html, downloaded September 2019) of atmospheric xCO2 for the respective calibrated year of each data set (1995 for

Sarma (2003), 2001 for L15, 2002 for GLODAP, 2005 for TK09). A summary of these datasets and their characteristics is

provided in Table 1.

2.2 Model details and set-up120

The model we use is the Regional Ocean Modeling System-AGRIF (ROMS-AGRIF) 3.1.1. Shchepetkin and McWilliams

(2005). Previously used in the region (Lachkar et al., 2016), the model is a free-surface primitive equation model, with a sigma
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and curvilinear grid for the vertical and horizontal dimensions, respectively. ROMS implements a forward-backward time-

stepping alogrithm with split baroclinic and barotropic modes. The advection of tracers implements a rotated-split 3rd order

upstream biased algorithm for the advection of tracers to reduce spurious mixing (Marchesiello et al., 2009). The K-profile125

parameterization (KPP; Large et al., 1994) for vertical mixing is used. The model domain spans from 5.3oS to 30.5oN, and

from 33o to 78.1oE (Fig. 1). For the sake of comparison with previous studies, we will present the region north of the equator,

and exclude the Red Sea and Arabian Gulf. The model’s horizontal resolution is 1/24o, resulting in ∼5km horizontal grid

spacing.

Coupled to the hydrodynamic model is a nitrogen-based biogeochemical model with two components for nutrients, nitrate130

and ammonium, with one phytoplankton, zooplankton, and two detrital pools (Gruber et al., 2006). Biological parameters

for the model are the same as those used in Gruber et al. (2011). A carbon module is also applied to the model with the

state variables of DIC, TA, and calcium carbonate (CaCO3) (Gruber et al., 2012; Hauri et al., 2013; Lachkar and Gruber,

2013). In addition to usual physical transport and mixing, CaCO3 is allowed to vertically sink at 20 mday−1. Organic car-

bon is linked to organic nitrogen through the Redfield ratio 106:16. DIC is altered by air-sea CO2 flux, primary production,135

respiration/remineralization, and dissolution/precipitation of CaCO3. TA changes with the removal and creation of nitrate

(NO3) as well as dissolution/precipitation of CaCO3. The amount of CaCO3 precipitation is linked to primary production

through a constant ratio of 0.07, meaning 0.07 moles of CaCO3 are produced for each mole of organic carbon. The disso-

lution rate is a constant 0.0057 day−1 in the water column and 0.002 day−1 in the sediments. Surface fluxes of DIC and

TA due to evaporation and precipitation were included as virtual fluxes. Inside the module, surface carbon chemistry is cal-140

culated using routines from the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP) carbonate chemistry routines

(http://ocmip5.ipsl.jussieu.fr/OCMIP/phase3/simulations/). Carbon chemistry coefficients used here include K1 and K2 CO2

dissociation from Millero (1995), original data from Mehrbach et al. (1973) and refit by Dickson and Millero (1987).

The model was run in climatological mode, with 360-day years and interpolated monthly forcing. Heat flux, evaporation and

precipitation, and surface salinity were provided by the Comprehensive Ocean-Atmosphere Data Set (COADS; da Silva et al.,145

1994). SST forcing is provided by a monthly climatology of Pathfinder data from 1985-1997 (Casey and Cornillon, 1999).

Wind stress was produced using the QuikSCAT/SCOW monthly climatology from 1999-2009 (Risien and Chelton, 2008).

Tracer values for the initial conditions and the boundaries are given by WOA 2009 for T, S, NO3, and oxygen. Horizontal

velocities u,v for initial and boundary conditions derive from the Simple Ocean Data Assimilation (SODA) analysis (Carton

and Giese, 2008). Initial and boundary conditions for DIC and TA come from GLODAP from 300m down to the bottom.150

Surface TA was calculated using the relations from Lee et al. (2006), and the corresponding DIC was calculated using WOA

phosphate, silicate, T, and S values along with L15 pCO2. DIC and TA values between the surface and 300m were calculated

using density-weighting. The model was spun up for 30 years, with 5 additional years for analysis. Atmospheric xCO2 values

are set to 380ppm, equivalent to 2005 levels, with an annual sinusoidal perturbation of 2.9ppm.
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2.3 Domains of Analysis155

In this study we focus on 6 distinct regions (Fig. 1). The first, the entire analysis domain, is the AS north of the equator.

The upwelling regions of the Oman and Somalian coasts are included separately to focus on the summer monsoon impact of

enhanced DIC but also enhanced biological productivity. The Oman region begins at the coast and extends 300km outward.

The Somalia region begins near 3.8oN and extends north to the tip of the Horn of Africa, with an eastern extension to 58.6oE so

as to encompass the region known as the Great Whirl (Vic et al., 2014), shown to be important for air-sea exchange in previous160

studies (Valsala and Murtugudde, 2015). The North region is defined by a rectangle from 59.4oE, 21oN to 69.5oE, 26.5oN,

encompassing the northern part of the AS where the winter monsoon’s primary productivity is most intense. An oligotrophic

region representing the central AS, which has less productivity and chlorophyll-a on average (Fig. 1), is defined by a rectangle

from 61.31oE, 3.3oN to 70.8oE, 17oN. The last region, covering the western coast of India, extends from the coastline 100km

offshore.165

2.4 Analysis of pCO2, DIC, and air-sea CO2 flux variability

2.4.1 pCO2 variability

The proximate variables impacting pCO2 in the model are DIC, TA, T, and S. Following previous studies (Lovenduski et al.,

2007; Turi et al., 2014), we use a first-order Taylor expansion to decompose pCO2 into contributions from these four, neglecting

contributions from nutrients (phosphate and silicate). Initially, the decomposition would follow the form170

∆pCO2 ≈
∂pCO2

∂DIC
∆DIC +

∂pCO2

∂TA
∆TA+

∂pCO2

∂T
∆T +

∂pCO2

∂S
∆S (1)

where ∆pCO2 is the perturbation of pCO2 from a mean value, and the ∆ terms for DIC, TA, T, and S likewise express

deviations from an average. However, in order to control for salinity effects on DIC and TA (Keeling et al., 2004), we normalize

DIC and TA by the salinity S0=35 psu, to create the variables

DICs = S0
DIC

S
and TAs = S0

TA

S
. (2)175

Substituting these terms into Eqn. (1), we can expand to produce, for example with DIC, the following (Lovenduski et al.,

2007):

∂pCO2

∂DIC
∆DIC =

∂pCO2

∂(S/S0DICs)
∆(S/S0DIC

s)

=
DICs

S0

∂pCO2

∂DIC
∆S+

S

S0

pCO2

∂DIC
∆DICs. (3)

Collectively, the ∆S term in Eqn. (3) and its counterpart in TA can be added to the original ∆S term in Eqn. (1) to represent

all salinity effects in a "freshwater" term, FW, so that we now have (Turi et al., 2014)180

∆pCO2 ≈
∂pCO2

∂DICS
∆DICS

︸ ︷︷ ︸
∆pCODICs

2

+
∂pCO2

∂TAS
∆TAS

︸ ︷︷ ︸
∆pCOT As

2

+
∂pCO2

∂T
∆T

︸ ︷︷ ︸
∆pCOT

2

+
∂pCO2

∂FW
∆FW

︸ ︷︷ ︸
∆pCOF W

2

. (4)
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For the remainder of this paper, when discussing the results of the Taylor series decomposition method, it will be understood

that DIC and TA refer to DICs and TAs.

The contributions of DIC, TA, T, and S to pCO2 variability are used to construct maps and timeseries of pCO2 anomalies.

In order to calculate the anomaly ∆pCO2 requires calculating both the ∆ deviations of DIC, TA, T, and FW, as well as partial185

derivatives. In this study, we calculate both temporal and spatial anomalies. To consider spatial variability, starting with annual

means of pCO2, DIC, TA, T, and S, an average value for the whole domain is calculated and removed from each grid point’s

annual mean to get a ∆ perturbation, or anomaly. Similarly, for temporal variability, with the monthly values of pCO2, DIC,

TA, T, and S at each grid point, the annual average at that grid point is removed to produce the monthly ∆ perturbation/anomaly.

Partial derivatives are approximated via centered differences. These are obtained by calculating pCO2 with slight deviations of190

DIC, TA, T, and S from the mean value. Both positive and negative deviations are used to construct centered differences, with

deviation magnitude determined by Orr et al. (2018).

2.4.2 DIC budget

Whereas the state variables of DIC, TA, T, and S provide the chemical context which determines carbon availability to potential

air-sea flux via pCO2, tracking the overall inventory of inorganic carbon (i.e. DIC), allows for the parsing of numerous source195

and sink processes governing the total amount of carbon reaching the surface. Beyond the biological processes impacting DIC

as outlined in Sect. 2.2, the physical processes impacting DIC are air-sea CO2 flux, surface evaporation and precipitation,

horizontal and vertical advection, and horizontal and vertical mixing. In order to diagnose the relative importance of these

terms (i.e. to weigh competition between upwelling circulation-source and biological drawdown-sink), we calculate the budget

IDIC in a 3D volume by integrating:200

IDIC =
∫∫

A

η∫

−z(σ)

J(x,y,z)dAdz (5)

with

J =−PPNew+Reg −CaCO3prec−remin +Zooresp +Detremin︸ ︷︷ ︸
NPP−Remin (Biology)

− FAS︸︷︷︸
Air−Sea

+Advx +Advy +Mixx +Mixy︸ ︷︷ ︸
Horz. Circ

+Advz +Mixz︸ ︷︷ ︸
V ert. Circ

+Evap−Precip︸ ︷︷ ︸
Forc

, (6)

which is the volume-specific flux J of DIC in a given grid cell. PPNew+Reg is net community primary production scaled by

the Redfield ratio, CaCO3remin−prec is net CaCO3 precipitation and remineralization, Zooresp is zooplankton respiration,205

and Detremin is remineralization of both detrital pools. All these terms are grouped together into NPP −Remin because

they represent all biological processes. FAS is air-sea flux, with a sign convention of positive outward. Advx is advective

flux in the x-direction, with corresponding y and z components. Mixx is the x-component of mixing flux, again with y and z

components. All x and y components of both advective and mixing DIC fluxes are grouped into horizontal circulation, with

a similar grouping for vertical circulation in the z-direction. Evap−Precip is the forced virtual flux from evaporation and210
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precipitation at the surface. A is the two-dimensional horizontal area to be considered, which in our study includes the entire

domain but also the sub-regions of analysis. The bottom boundary of integration, −z(σ), is the sigma-layer depth at which

integration starts, moving up to the free-moving surface η. We chose to integrate the top five sigma layers of the model,

corresponding to ∼20m depth. This level was chosen because below this depth, annual cycles of IDIC begin to deviate from

the surface DIC, which is our focus in this study of air-sea CO2 flux.215

2.4.3 Air-sea CO2 variability

The air-sea flux in the model is calculated using

FCO2 =K0 α (pCOsea2 − pCOair2 )

=K0 α∆pCO2 (7)

where K0 is the solubility determined by temperature and salinity (Weiss, 1974), α is the CO2 piston velocity with a quadratic

wind speed dependence (Wanninkhof, 1992), and the difference in ocean and atmosphere pCO2, ∆pCO2, is arranged so that the220

flux convention is positive outward from the ocean. The objective being to characterize seasonal anomalies of air-sea CO2 flux,

here we use a Reynolds decomposition (Doney et al., 2009). Noting that temperature effects upon solubility (K0) and piston

velocity (α) approximately cancel, meaning that their product mostly reflects wind forcing, we have the following arrangement

for the decomposition of flux anomalies (see Doney et al. (2009) for the derivation):

F ′CO2
= (K0 α)′∆pCO2︸ ︷︷ ︸

wind

+(K0 α)∆pCO′2︸ ︷︷ ︸
pCO2

+
(

(K0 α)′(∆pCO2)′− (K0 α)′∆pCO′2
)

︸ ︷︷ ︸
cross terms

, (8)225

where ′ indicates an anomaly and x is a five-year average of variable x, which are calculated at each grid point. F ′CO2
is the

seasonal flux anomaly, with groupings based on wind anomalies (K0 α)′, ∆pCO′2 anomalies, and cross-terms involving both.

3 Results

3.1 Model validation and pCO2 data-model comparisons

The implementation of ROMS-AGRIF presented here has been used in previous studies (Lachkar et al., 2016). Model output230

of net primary productivity (NPP) captures the summer monsoon highs near the upwelling regions of Oman and Somalia, with

enhanced NPP in the North during the winter monsoon (Fig. 1). The model also reproduces well the distribution of temperature,

salinity, and surface velocities in comparison with established climatologies (Fig. S1-S3).

Regarding pCO2, in situ data from the merged SOCAT/LDEO database shows that average binned ∆pCO2 values in the

region are positive for most of the AS (Fig. 2a). The ensemble of observations show that ∼90% of ∆pCO2 observations235

are positive, indicating positive flux to the atmosphere (Fig. 2a, inset). The monthly distribution of pCO2 sampling (Fig. 2b)

also shows that the majority of data (∼70%) come from the summer monsoon months (June-September JJAS), and that most

observations date from the 1990s, with 96% coming from the years 1995 and 1997 alone.
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Seasonal pCO2 distributions from both data and the model are shown in Fig. 3. During the winter monsoon, pCO2 values are

at their lowest (348-455 µatm; Fig. 3a). Spring intermonsoon (Fig. 3b) finds pCO2 values similar to the winter (354-451 µatm),240

with data coverage improving in the western AS. Summer monsoon, with best data coverage (Fig. 3c), has pCO2 peaking at

773 µatm. In contrast, the fall intermonsoon (Fig. 3d) has very little data coverage (311-485 µatm). Similar to the data, model

pCO2 (Fig. 3e) is at its lowest during the winter, but in the spring, open-ocean pCO2 finds its peak, which is not reflected in

the in situ data set (Fig. 3b,f). Maximum model pCO2 is found in the summer monsoon near upwelling reigons (Fig. 3g). Fall

model pCO2 still has elevated values, but less than the summer period. Certain regions in the model show persistent maxima245

in pCO2, such as the Gulf of Oman and the Strait of Hormuz, which are not reflected in the few data collected there. Similarly,

model pCO2 values in the Gulf of Aden increase during spring and then peak during the summer, a pattern which is unclear

from the data.

A Taylor diagram (Taylor, 2001) comparing in situ pCO2 data and model output shows the relative performance of the model

(Fig. 4). For the entire dataset, as well as for the spring and summer seasons, the model’s correlation with data is ∼0.5. Winter250

and fall have lower values at 0.2 and 0.06, respectively. Variability expressed as normalized standard deviation shows that

overall, and during spring and summer periods, the model under-estimates data variability, but over-estimates it during winter

and fall. For all periods apart from summer, model pCO2 has a positive bias (2.1, 24.6, 48.4, and 33.7 µatm for the annual,

winter, spring, and fall seasons, respectively). During the summer, the model has a negative bias of -3.1 µatm.

Since the model successfully replicates other tracers, physics, and biological processes (Fig. 1, Fig. S1-S3), we look for255

the source of bias within the four state variables T, S, DIC, and TA in comparison with data. T and S from the merged

LDEO/SOCAT database, and DIC, TA, from the ungridded GLODAP product are compared with model output (Fig. S4). In

this case, model SST and surface salinity (Fig. S4a,b) largely overlap with a 1:1 relationship, but with slight positive biases

of ≈0.4oC and 0.3psu. Removing these biases from the model results in a pCO2 shift of -6.8 and -3.5 µatm for T and S,

respectively, close to reported measurement error. Ungridded DIC and TA data from GLODAP, though more sparse (n=334260

data points with both DIC and TA at depth ≤ 50m), show more deviation from the 1:1 line (Fig. S4c,d) with overall negative

biases of -15.8 µmolkg−1 and -30.0 µmol− eqkg−1 for DIC and TA. These biases result in pCO2 perturbations of -33.8 and

+45.7 µatm, respectively, when accounted for individually. Since the buffering capacity of seawater is related to the ratio of

TA and DIC, when both biases are considered average pCO2 shifts +16.7 µatm. As a result, while the DIC model bias lowers

pCO2, the stronger bias in TA is the most likely cause for the model’s overall positive pCO2 bias.265

Comparisons between the monthly probability distribution functions of pCO2 from in situ data, model output, and L15

demonstrate temporal variability between pCO2 products (Fig. 5). For most of the year, the data (Fig. 5a) stays within a

relatively narrow range (375-425 µatm), except for the summer monsoon where values can exceed 500 µatm and the median

value has its peak. In the model (Fig. 5b), pCO2 is almost entirely above 400 µatm, with the median value increasing during

spring inter-monsoon and peaking in June. Similar to the data, the upper bound variability in pCO2 peaks in August. L15 (Fig.270

5c), by contrast, has a tighter envelope of variability, with 5-95 percentile values never going beyond the range of 368-434

µatm. Median pCO2 in L15 peaks in the summer like the data, but there is no large increase in upper bound variability.
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In summary, the survey of available data and comparing it to the model output produces a few distinct features: 1) available

in situ data shows that the majority of observations are skewed towards the summer monsoon during the years 1995 and 1997;

2) most in situ data show CO2 out-gassing in the AS; 3) the model has a net positive bias in surface pCO2, driven by a joint275

DIC-TA bias which is slightly stronger in TA; and 4) the model captures the high summer monsoon pCO2 values better than

competing products.

3.2 pCO2 distribution, seasonal cycle, and underlying contributors

3.2.1 Spatial pCO2 distribution

Spatial pCO2 anomalies from the regional mean highlight the geographic hotspots of pCO2 inside the domain (Fig 6a). Within280

the regions of analysis prescribed in this study, it is clear that Oman, the Indian coast, and the North AS including the Gulf

of Oman host enhanced pCO2. In contrast, both the oligotrophic central AS and Somalia regions have negative pCO2 anoma-

lies. The contributing factors to these pCO2 anomalies, temperature, DIC, TA, and freshwater components, display differing

distributions. Temperature (Fig. 6c) contributes toward negative pCO2 anomalies in a southwest-to-northeast band along the

coasts of east Africa and the Arabian peninsula, up to the coasts of Pakistan and northern coast of India near Gujarat. The cold285

SST structure largely overlaps the stronger summer monsoon winds. The opposite trend is found in the central oligotrophic

and Indian regions, where temperature contributes positively to pCO2 anomaly, despite upwelling in the southern Indian coast.

The distribution of DIC-induced anomalies (Fig. 6d) shows a positive influence near coastal regions and the western AS off

the coast of Somalia, whereas a strong minimum is found in an oval region encompassing the central, open-ocean AS. TA

effects (Fig. 6e) show a north-south gradient with positive contributions to pCO2 occurring in the north and negative towards290

the south, in a similar distribution to surface salinity gradients in the AS. Freshwater contributions (Fig. 6f) show a similar

distribution as TA, but weaker in magnitude for all regions.

Putting together all the spatial anomalies for each region, different variables become dominant (Fig. 6b). Near Oman, tem-

perature is a strong negative factor, but it is counteracted mostly by DIC and the other effects to produce a positive anomaly. A

similar pattern occurs for the North, but in this case TA and freshwater effects play a larger role than DIC. In the oligotrophic295

region, the strong negative DIC effect swamps all other effects. In the Somalia upwelling region, the strong positive DIC in-

fluence is stronger than opposing temperature, but TA and freshwater effects are enough to produce a slightly negative pCO2

anomaly. The coast of India, influenced most likely by its shelf, has a very high positive DIC contribution, more than enough

to overrule other variables.

3.2.2 Seasonal pCO2 cycle300

The previous section outlines why certain geographic regions within the AS have overall high or low pCO2 values, but in order

to investigate the strong seasonal monsoon impact in the AS, the decomposition of factors affecting monthly pCO2 values is

calculated at each model grid point and averaged into each analysis region (Fig. 7). Regarding the whole domain (Fig. 7a),

pCO2 variability is similar to that seen in Fig. 5b, with a spring pCO2 peak and minimum during fall and winter. Temperature
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effects largely mirror the overall pCO2 cycle. DIC acts in opposition to temperature but with lower magnitude. Both TA and305

freshwater effects are negative for the first half of the year before becoming slightly positive in the second half. The oligotrophic

central region (Fig. 7d), the largest in area, has similar pCO2 and temperature impacts as the whole domain, with the two largely

overlapping. DIC, TA, and freshwater impacts also follow similar patterns, but have slightly higher magnitudes in the central

AS.

Different pCO2 anomaly cycles can be found in the upwelling regions of Oman, Somalia and India (Fig. 7b,e,f). Here, a310

positive temperature peak appears in the spring, which is then supplanted by a positive DIC peak during the summer monsoon.

In both Oman and India, the summertime DIC peak is strong enough to contribute to the annual pCO2 peak despite cooler

temperatures. In Somalia, the summertime DIC peak is not sufficiently stronger than temperature, and the maximum pCO2 is

found in the spring like in the whole domain and oligotrophic regions. Both TA and freshwater effects in these three regions

are lower in magnitude and generally run counter to DIC.315

A completely different regime occurs in the North AS (Fig. 7c). Here, while temperature effects create a similar spring-

summertime peak in pCO2 somewhat counter-acted by DIC, during the winter monsoon temperature and DIC effects are both

maximal and in opposing amplitudes. This occurs due to the convective mixing that occurs during winter in the North AS,

where cooling temperatures lower pCO2 but subsurface water introduces more DIC, resulting in a near-balance.

The spatial and seasonal decomposition of pCO2 anomalies in the AS demonstrate how the four variables of DIC, TA, T,320

and freshwater differently impact sub-regions in the AS, on the whole and within seasons. The upwelling and coastal regions

show elevated pCO2 relative to the whole AS, which is due to enhanced DIC and counter-acted by lower temperatures. The

central, oligotrophic AS has lower relative pCO2 due to a strong negative DIC anomaly. Analyzing the seasonal cycle within

the domain and its sub-regions, temperature anomalies are most responsible for pCO2 variability, generally peaking in the

spring. Positive DIC contributions to seasonal pCO2 anomalies become important in the upwelling zones during the summer325

monsoon, as well as the North AS due to wintertime convective mixing.

3.3 Near-surface DIC budgets and cycling

Whereas SST and its effect on pCO2 is controlled by the physical processes of surface forcing, mixing and advection, DIC

reflects both physical and biological processes because it is also impacted by photosynthesis, respiration, remineralization,

and shell calcification. Budgets of DIC fluxes in the upper 20 m (Fig. 8) show that two major processes dominate, vertical330

circulation (light blue lines) and net biological processes (green lines). In the entire domain and all sub-regions, vertical

circulation (advection and mixing) acts as a source of DIC, with the sum of all biological processes acting as a sink (n.b. the

top 20 m does not constitute the entire euphotic zone, so respiration and remineralization at depth is not included). Maximum

magnitudes of both vertical circulation and biological flux occur during the summer monsoon for all regions, except for the

North AS where they occur during the winter monsoon bloom (Fig. 8c). Biological fluxes are nearly phase-matched with335

vertical circulation, though peaks in summer biological flux lag vertical circulation by a month (Fig. 8d,e,f). Comparing the

two flux terms, after normalizing biological flux by vertical circulation flux, the relative strength of biological processes versus
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vertical sources of DIC becomes apparent. In the whole domain, biological flux ranges from -90% to -34.5% of vertical flux.

As a result, biological fixation of carbon is generally weaker than physical vertical delivery of DIC.

Air-sea flux (red lines) is always negative due to the high pCO2 values, peaking during the summer monsoon. DIC flux340

due to atmospheric escape is mostly smaller than biological flux, with the exception of spring when primary productivity is

weak and pCO2 values are high. Evaporation and precipitation (brown lines) results in higher DIC for most of the year (i.e. net

evaporation) in the entire domain and upwelling regions, except India where it is negative (net precipitation). The oligotrophic

region’s evaporation and precipitation flux (Fig. 8d) oscillates from being either positive or negative four times during the

year, with magnitudes rivaling air-sea flux at times. Horizontal advection (dark blue lines) is negative on average for the whole345

domain, denoting net export (Fig. 8a). The same pattern occurs for all sub-regions except India with net horizontal import

of surface DIC (Fig. 8f). The Oman upwelling region and the oligotrophic region experience positive peaks of horizontal

import during the summer monsoon, though for Somalia this period is the maximum DIC export. The overall, total flux of

DIC experiences a summer positive peak during the summer monsoon, except for the North AS which has its positive peak in

winter.350

Overall, the near-surface AS DIC budget provides a picture where the physical delivery and biological drawdown of DIC,

which are both larger in magnitude than the air-sea CO2 flux, compete to produce the annual cycle of DIC fluctuations. For

all regions except for the North AS (where similar processes occur during the winter monsoon), the largest physical vertical

fluxes occur during the summer monsoon when wind forcing both upwells subsurface water and produces mixing to enhance

DIC. The biological drawdown of DIC occurs concurrently or slightly lags the physical circulation since subsurface nutrient355

delivery must occur before stimulating phytoplankton growth. Importantly, the magnitude of biological DIC drawdown is less

than the sourcing from vertical circulation, limiting the prospect of biological control of pCO2 in the AS.

3.4 Air-sea CO2 flux and drivers of seasonal variability

Modeled annual mean atmospheric flux of CO2 (Fig. 9a) shows outgassing (positive, red) throughout the entire domain, pro-

ducing an average annual CO2 flux density rate of 1.9 mol C m−2yr−1 and a total of 162.6TgC yr−1. Similar to pCO2, several360

hotspots appear in the geographic distribution. Near the coast of Oman, the average flux density is 2.7, with 3.2 in Somalia

and 2.4 along the coast of India mol C m−2yr−1, producing a flux of 11.4, 32.9, and 4.9 TgCyr−1, respectively. The other

regions, the North AS and oligotrophic central AS, have average densities of 2.0 and 1.5 mol C m−2yr−1, with total fluxes of

10.5 and 28.6 TgCyr−1. The seasonal air-sea flux (Fig 9b-e) has minima during fall and winter, with an increase in spring and

a strong maximum during summer monsoon. Oman and Somalia flux densities during summer monsoon are 5.8 and 5.9 mol C365

m−2yr−1, respectively. The distribution of enhanced summer air-sea CO2 flux coincides with the southwest monsoon winds,

as well as the band of cooler temperatures impacting spatial pCO2 anomalies in Fig. 7c. The entire domain fluxes 32.0, 26.6,

90.9, and 13.1 TgCyr−1 for the winter, spring, summer, and fall periods, respectively, each contributing 19.7, 16.3, 55.9, and

8.1% of the annual total.

The variability in air-sea CO2 flux can be attributed to the contributions of winds, pCO2, and interacting cross-terms, as de-370

scribed in Eqn. (8). The temporal anomalies for the summer monsoon, the period with strongest CO2 flux signal, are presented
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in Fig. 10. Most of the domain has positive anomalies in air-sea flux (Fig. 10a). The wind contribution to flux variability, κα

(Fig. 10b), is also positive in most of the domain except the Gulf of Aden and the south-eastern corner of the domain, with its

magnitude and distribution close to the total anomaly in Fig. 10a. The ∆pCO2 contribution to seasonal flux anomaly (Fig. 10c)

has a lower magnitude effect overall, with positive values north of 10oN and slightly negative to the south. Maxima in these375

values occur near the upwelling centers of Oman, Somalia, and the Indian coast. Second-order cross-term values (Fig. 10d) are

almost all positive, with maxima also occurring near upwelling centers similar to the ∆pCO2 term but weaker in magnitude.

The seasonal flux anomalies for all regions throughout the year are displayed in Fig. 11. The summer monsoon flux is so

strong that it makes the anomalies (purple bars) for all the other seasons in all regions negative, except for the spring in the

North AS and central oligotrophic AS. During the winter months DJFM, both wind and pCO2 terms produce negative flux380

anomalies, indicating the relative lack of winds and minimum pCO2 values in the domain. In winter, while the negative wind

term is universally strongest, within the upwelling regions the pCO2 term is 58% of the wind term’s magnitude, and 53% for the

entire domain. The spring intermonsoon, where many regions such as Somalia and the central oligotrophic AS experience their

pCO2 maximum, shows a positive pCO2 effect on flux anomaly that is as large as or larger than the negative wind effect. In the

oligotrophic region, the second-order cross-term is small enough so that the net result is a positive anomaly, while in Somalia385

the near-balance between winds and pCO2 make the cross-terms important in creating a negative anomaly. Summer monsoon

winds represent the majority contribution to CO2 flux variability, with a minimum 64.7% contribution relative to the total

anomaly in India, a maximum of 112.8% in the oligotrophic AS, and 90.8% for the whole domain. By contrast, summer pCO2

and cross-terms contribute 6.0 and 3.1% to the domain’s anomaly, respectively. Fall inter-monsoon months resemble the winter

monsoon, with negative wind anomalies contributing most with small or negative pCO2 contributions. In most scenarios, pCO2390

contributes in the same direction as the winds or little at all, with the notable exceptions of Oman, oligotrophic AS, Somalia,

and the domain during spring inter-monsoon.

In summary, the air-sea CO2 flux is positive throughout the domain for the entire year, producing a total 162.6 TgCyr−1, and

is particularly elevated near the upwelling regions during the summer monsoon. Seasonal variability in flux is driven primarily

by the strong onset of summer monsoon winds.395

4 Discussion

4.1 Model pCO2 vs. data

The pCO2 output from the model has a positive bias with respect to the in situ data, as is clear from Fig. 3-5. The question

becomes whether the model bias precludes its use in acquiring a reasonable air-sea CO2 flux estimate. Regarding the direction

of CO2 flux (positive outgassing or negative uptake), the data in Fig. 2 are clear that, to the extent that in situ data exist and400

provide good coverage, ∆pCO2 values are mostly positive (90%). Additionally, the bias is negative in the summer months,

when the overall highest pCO2 data values occur, and also when CO2 flux peaks due to monsoon winds. Therefore, the positive

bias in model pCO2 should not significantly change the overall direction of flux, and the model results reaffirm the previous

findings of Sarma et al. (1998) and subsequent work demonstrating that the AS is a source of CO2 to the atmosphere.
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A positive bias in model pCO2 has been noted in previous modeling studies. For instance, in the global data assimilation405

study of Valsala and Maksyutov (2010), they found an overall positive bias in the North Indian ocean, with a similar underes-

timate near the upwelling regions (summer negative bias in the model) of the AS and overestimate elsewhere (their Figures 3

and 4). In Sreeush et al. (2019a), ROMS resulted in systematic positive pCO2 bias, whereas the offline Ocean Transport Tracer

Model (OTTM) produced negative bias in pCO2 in comparison to TK09. Anomalous patterns can be seen in OTTM, as well,

with a maximum pCO2 found near the equator as opposed to near the Oman coast (Valsala and Murtugudde, 2015).410

The search for the model bias source is hindered by the lack of in situ data in the region. While the bias does not appear to

be from T and S, but rather DIC and TA (Fig. S4), it is difficult to pinpoint which processes create these discrepancies since in

the AS domain the GLODAP database has a total of 334 locations where both DIC and TA are sampled in the upper 50m of the

water column. The few available in situ data that do exist in the AS have a number of deficiencies for the purpose of validating

model output. First, the data available are both old and concentrated around the years 1995 and 1997. While the JGOFS studies415

were quintessential in diagnosing the seasonal cycle of pCO2, they preclude being able to decipher the secular trend in surface

pCO2 due to increasing atmospheric CO2 concentrations. In our analysis, we estimated a +2µatm yr−1 trend, close to that of

Tjiputra et al. (2014), though finding an inter-annual linear trend requires more data at regular intervals. Second, due to the

nature of strong upwelling in the AS, previous cruise sampling also biases not only the summer months (≈70% of data), but

also in the vicinity of the Oman coast (Fig. 3c). As a result, it is difficult to determine to what extent the data are representative420

of the entire AS. Consider that in the model, flux intensities are lower in the central, oligotrophic region (Fig. 10), but due

to its surface area the total flux (28.6 TgCyr−1) was close to that of Somalia (32.9 TgCyr−1), an observation also made by

Lendt et al. (2003). Determining to what extent the model over- or under-estimates CO2 flux due to pCO2 bias would require

more in situ sampling, which would need to be designed around solving the problems of areal coverage (outside of Oman and

upwelling zones) and temporal coverage (off-summer months and recurrent over multiple years).425

Despite the model’s limitations, its advantages are also clear. Beyond the obvious increase in spatio-temporal coverage,

capturing the monsoon’s strong seasonal dynamics helps the model where other approaches fall short. This is especially il-

lustrated in Fig. 5. Since upwelling regions are limited in geographic extent near the coast, capturing their high pCO2 values

can be difficult for other approaches, such as TK09 with its coarse grid. Even the L15 product, with its finer grid, is unable to

produce the higher pCO2 values seen during the summer. Judging from these comparisons, the trade-off appears to be that the430

model currently may produce less accurate pCO2 values outside of summer, but the explicit resolving of upwelling allows for

enhanced pCO2 values during the summer monsoon, the peak of CO2 flux.

4.2 Surface distribution of pCO2 and spatial, temporal anomalies

The distribution of model pCO2 is both similar to and different from previous studies. Apart from the aforementioned bias

leading to heightened absolute values (though Bates et al. (2006) has >400 µatm for large parts of the AS), the relatively435

enhanced pCO2 values near Oman, along the west coast of India, and in the Gulf of Aden have already been observed (Sabine

et al., 2000; Bates et al., 2006; Sarma et al., 2000). These same studies, however, note a minimum of pCO2 outside of the

summer monsoon near the south-west coast of India due to freshwater influx, which is not replicated well in the model.
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Additionally, elevated pCO2 near the equator is not observed (Sabine et al., 2000; Bates et al., 2006), although as already

noted it can appear in other models (Valsala and Murtugudde, 2015). The model’s seasonal pCO2 minimum during the winter440

monsoon is also not reflective of results found elsewhere (Goyet et al. (1998a, b); Bates et al. (2006); though many studies

highlight the North AS, where minimum model pCO2 occurs during the spring). Instead, these papers state pCO2 is minimal

during the fall inter-monsoon. Likewise, the large-scale spring maximum of pCO2 seen in the model is not found in these

studies, except for in Louanchi et al. (1996), though this result is somewhat anomalous since that study showed a pCO2

minimum during summer monsoon. Thus, while the model agrees with previous work insofar as the coastal regions impacted445

by upwelling show enhanced pCO2, mismatches do appear in the seasonal timing of maxima and minima, especially within

certain sub-regions.

The spatial decomposition of factors influencing pCO2 (Fig. 6) highlights how geographically DIC can be the strongest

factor, with temperature and TA taking secondary roles and freshwater being a weak contributor. Since DIC and TA can co-

vary with salinity, when they are not normalized their distribution in the AS mirrors the north-south salinity gradient (see450

figures 2,3 in Bates et al. (2006)). Once corrected for salinity, it is clear that the upwelling region of Oman still has elevated

DIC whereas the central, oligotrophic AS shows a DIC deficit. By contrast, the onshore-offshore gradient in TA is weaker.

Differences between coastal and offshore normalized DIC and TA in the AS have been previously observed (Millero et al.,

1998b; Lendt et al., 2003), but the stronger relative absence of DIC in the central AS and its role in determining pCO2

has not been emphasized. A similar analysis in the California Current upwelling system (Turi et al., 2014) indicates near-455

compensation of DIC and temperature in opposing directions, nearly overlapping each other. In that scenario, DIC overpowers

temperature at the coast, with TA and freshwater being secondary. For the AS, while the upwelling regions of Oman and

Somalia show temperature and DIC working against each other, they are not as well compensated. Furthermore, the gradients

of positive/negative pCO2 contributions from temperature and DIC do not overlap, leading to the curious scenario where

temperature and DIC both contribute positively to the pCO2 anomaly along the Indian coast. The positioning of these gradients460

and the surprising negative influence of DIC away from upwelling regions perhaps underscores how the AS is rather unique,

where strong seasonal upwelling winds mingle with strong tropical heating and the influence of outflows from marginal seas.

Decomposition of seasonal pCO2 anomalies within regions portrays a slightly different picture where temperature is the

dominant force, with DIC countervailing in the upwelling regions. Not only is this seasonal cycle more akin to that seen in the

California Current (Turi et al., 2014), the dueling role of these two forces is also reflected in a similar analysis by Sreeush et al.465

(2019a) for pH instead of pCO2 in the AS. Interestingly, in that study both ROMS and OTTM were compared side-by-side, and

in OTTM, TA played a larger role than in ROMS. Similarly, in Valsala and Maksyutov (2013), TA played an important role in

regulating inter-annual pCO2 variability in the AS. These results using another model raise the possibility that TA’s importance

is under-estimated in the current study.

Zooming out from the upwelling regions and looking at the whole AS, the dominance of temperature is clear. This ob-470

servation, temperature overriding DIC in the AS to determine temporal pCO2 changes, can also be seen in the interannual

variability analysis of Doney et al. (2009). In the domain average, temperature effects nearly overlap with the overall pCO2

anomaly. This result brings back into focus the seasonal timing of pCO2 minima/maxima in the model vis à vis previous work.
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In the earlier studies, which either use data directly or build statistical models from those data, there is no spring intermonsoon

pCO2 maximum driven by heating. Indeed, Sabine et al. (2000) noted that pCO2 in the spring was much lower than would be475

expected given the SST, but attributed this to drawdown due to biological production. The model, however, indicates that this is

precisely the season where biological production is at its lowest. The presence of these springtime maxima can be seen in other

models, visible in the results of Valsala and Maksyutov (2010) and a synthesis by Sarma et al. (2013). Since the model indicates

temperature is producing the maxima, it reduces the concern that erroneous DIC or TA values in the model are driving this

signal. The model SST matches well with the in situ data (Fig. S4), and the forcing datasets for SST and heat flux correspond480

to data that predate or include the pCO2 sampling period (i.e. before 2000), so a climate change bias is unlikely. What might be

more likely, then, is a sampling bias towards summertime Oman, one of the few areas in the AS with a summertime instead of

springtime pCO2 max. Such a bias could possibly obscure what is happening in the rest of the AS. Regardless, the discrepancy

between models and observations during the spring period can be added as yet another reason to conduct more in situ sampling

to either confirm or disavow whether the model results are spurious.485

4.3 DIC seasonal budget and driving mechanisms

The potential for biological control in setting pCO2 has been found in Sri Lanka near the AS (Chakraborty et al., 2018). In this

study, it was found that the source water in Sri Lanka was sufficiently low in DIC relative to inorganic nutrients that upwelling

actually reduced surface pCO2. In a similar vein, Takahashi et al. (2002) found, using a metric comparing temperature and

"biological" effects (i.e. everything else), that the AS’s pCO2 is reduced more by biological production than temperature490

effects. Conducting this analysis on the model output (Fig. S5), it appears that "biological" control appears dominant over

the upwelling areas (Oman coast, coast of Somalia, India) and near the equator east of 60oE, but for the majority of the AS

temperature dominates. This cursory analysis aside, as is evident in the results of Chakraborty et al. (2018), the more useful

comparison is in determining whether biological production is sufficient to outweigh DIC enhancement from subsurface water.

In summary, the results in Fig. 8 indicate that for the entire AS, DIC enhancement by vertical circulation (both advection495

and mixing) brings more DIC into the near-surface than is removed by net biological processes, and so no biologically-induced

decrease of pCO2 occurs. The timing of biological drawdown, occurring at the same time or lagging vertical circulation,

is consistent with the general phenology of blooms and similar to previous findings (Louanchi et al., 1996; Rixen et al.,

2006; Sharada et al., 2008). The result that biological cycling of carbon is much larger than the air-sea flux of CO2 also

corroborates the results of Lendt et al. (2003), who found net community production to be≈3.6 times larger than CO2 emission.500

The relatively low impact of horizontal advection is an interesting detail to consider; in other upwelling systems, significant

proportions of water and biological production are advected offshore (Nagai et al., 2015). Lendt et al. (2003) suggest upwelled

nitrate is assimilated and does not arrive in the central AS, while Resplandy et al. (2011) show that a large fraction of total

nutrients in the central AS come from the upwelling zones. Thus, although water may be advected offshore, the relevant

timescale for DIC cycling processes (i.e. air-sea emission, biological uptake) may be short enough so that horizontal export of505

enhanced DIC (keep in mind the onshore-offshore normalized DIC gradient) from the upwelling regions does not significantly

contribute to the central AS or other regions.
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4.4 Variability and mechanisms controlling air-sea CO2 flux

4.4.1 Flux distribution, seasonality, and drivers

The model results both affirm the conclusions of previous studies in terms of CO2 flux direction and seasonality, yet find510

difference in magnitudes. As previously stated, the AS is a atmospheric CO2 source, with most flux occurring (56%) during

the summer monsoon (Fig. 9). In our results, however, there is no region during any of the seasons where uptake of CO2 takes

place. While somewhat expected, this is still in disagreement with some of the other pCO2 datasets previously considered, such

as in Sarma (2003), where negative ∆pCO2 values appear, such as during winter monsoon near the south coast of India. The

model’s positive pCO2 bias may be to blame for this, making it so that no negative ∆pCO2 appears. Despite the positive pCO2515

bias, a few other patterns are clear in comparison to other CO2 flux estimates. Sabine et al. (2000) and Sarma (2003) both find

the maximum flux occurring during the summer monsoon centered around the upwelling regions, which is also quite visible in

the model results (Fig. 10d). However, Bates et al. (2006) found that a secondary maximum of flux occurs during the winter

monsoon, though due to the color scale in their figure 6 it is difficult to ascertain much beyond CO2 outgassing from the AS

during all months of the year. Their secondary max in flux may be partly attributable to higher wintertime pCO2, as well.520

The fact that model CO2 flux peaks in summer despite a wide-ranging spring peak in pCO2 is the first sign that perhaps

pCO2 is not the primary driver in determining flux timing. The Reynolds decomposition of CO2 flux terms (Fig. 10) clearly

shows that a large proportion of the summer flux is due to the arrival of the strong SW summer monsoon winds. The positive

contributions due to pCO2 occur in the usual upwelling regions, though their contribution in magnitude is relatively muted, and

negative in the southern portion of the AS. Cross-terms, while non-zero, are inconsequential in determining the overall anomaly525

in summer flux intensity, as has been seen elsewhere (Doney et al., 2009). Indeed, one of the largest cross-term contributions

is in Oman during the summer (Fig. 11), but this clearly is not enough to sway the direction of the anomaly. The summer

flux signal is so strong that in nearly all the regions outside of summer, the anomaly is negative (Fig. 11). Furthermore, the

contribution of winds in particular is so strong, it is the largest factor all year except for the spring intermonsoon, where peak

pCO2 is important relative to the effects of wind (or lack thereof) in the central oligotrophic AS, Somalia, and the averaged530

domain. This would suggest that, on first order, winds are the most important factor in determining the seasonal air-sea flux

cycle in the AS, to the point that wind contribution to the domain’s summer anomaly was 90.8% in magnitude relative to

the total. Therefore, when considering the inconsistencies of models in estimating air-sea CO2 flux (Sarma et al., 2013), the

possibility that incomplete representation of winds and the various parameterizations of piston velocity must be considered in

addition to pCO2.535

4.4.2 Influence of variable pCO2 in flux magnitude

While strong monsoon winds dominate the timing of air-sea CO2 flux, and the AS is always a source of CO2 due to mostly

positive ∆pCO2, the variability in pCO2 between independent sources can still result in a wide range of overall magnitudes. In

the AS, CO2 outgassing estimates vary from 7 TgCyr−1 (Goyet et al., 1998b) to >90 TgCyr−1 (Sarma, 2003), with each study

using their own pCO2 data and wind parameterizations. Considering the important role of winds, the best way to investigate the540
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role of pCO2 variability is to keep winds (and their flux parameterization) constant. Towards this end, we use multiple pCO2

products to calculate CO2 flux with the same winds and parameterization as the model (Fig. 12). As summarized in Table 1,

pCO2 from TK09, L15, GLODAP data and Sarma (2003), interpolated to the WOA 1ox1o grid, were used in these calculations

(except for TK09 where the coarse resolution reduced coverage). The original applicability of the Sarma (2003) model is north

of 10oN, and so flux was calculated for this region, as well.545

Despite differing pCO2 seasonality (Fig. 5), all calculations have their peak CO2 flux sometime in the summer, confirming

the role of winds in CO2 flux timing. After calculating total flux for both the entire AS and the Sarma (2003) reduced domain,

this study’s model consistently produced one of the higher estimates (except for GLODAP in the reduced domain; Fig. 12b).

This is perhaps unsurprising, considering the pCO2 bias. The ratio between the largest and smallest estimates of total CO2 flux

is 2.1 (57-120 TgCyr−1) for the whole domain, and 5.3 (12.3 and 65.6 TgCyr−1) for the reduced domain. It should be noted550

that application of the Sarma (2003) model resulted in negative ∆pCO2 values. While some negative values were reported in

the original publication, the total fluxes (12.3 or 17.6 TgCyr−1) were quite smaller than the 70 TgCyr−1 reported using the

same parameterization from Wanninkhof (1992). Removing the two Sarma models from the reduced domain analysis produces

a ratio of 1.6 between the largest and smallest flux values, more in line with the whole domain’s variability. Additionally, the

GLODAP data, with no temporal variability in pCO2, probably over-estimate pCO2 and hence flux due to sampling bias near555

Oman during the summer monsoon, and so the ratio between flux estimates may indeed be smaller. As a final note, another

interesting detail concerns how the original estimate of Sarma (2003) at 70 TgCyr−1 is larger than both the model, which had

57.1 TgCyr−1, and GLODAP data. Thus, while the model pCO2 bias makes us think the model over-estimates flux, it is still

within the range of previous studies in the AS.

Ultimately, once winds are controlled, it appears that on balance: 1) gridded data-based pCO2 products will under-estimate560

the upwelling zone maxima of pCO2 and CO2 flux during the summer, 2) the model over-estimates pCO2 the rest of the year,

eventually contributing to a possible over-estimate of CO2 flux, and 3) this leaves reality somewhere in between. The only way

to rectify these differences and arrive at a more accurate estimate will be to conduct sufficient in situ sampling of DIC, TA,

and pCO2 in more regions than the upwelling zones, and preferably outside of the summer and over the course of multiple

years. With the advent of ARGO floats with pH sensors, and the advancement of technology for other variables such as TA, the565

possibility emerges of using autonomous sampling platforms to expand beyond the limitations of ship-board measurements to

fill the data gap in the AS carbon system.

5 Conclusions

In this study, we used a regional circulation model coupled with a biogeochemical model to investigate the annual magnitude,

seasonal cycle, and drivers of air-sea CO2 flux in the AS, primarily winds and pCO2. This effort was made to complement570

previous flux estimates, where limited data or insufficient model resolution have produced contrasting results. Consistent with

previous work, we find that the AS is a source of CO2 to the atmosphere for the entire year, with the bulk occurring during

the summer monsoon. Our estimate of flux, ≈160 TgCyr−1, with concentrated flux densities up to 6 molCm−2yr−1 in the
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upwelling regions, is larger than most previous reports but not inconsistent with the range of other findings. Since the AS lacks

carbon data, here we subjected the model to validation with raw data instead of smoothed climatologies. The model is shown575

to have a positive bias in pCO2, attributed to TA and DIC, with TA bias being stronger. Despite this, pCO2 variability compares

favorably to alternative products in the region. The bias results in strongly positive ∆pCO2 throughout the domain year-round.

While positive ∆pCO2 values have been observed before in the AS, we likely over-estimate CO2 flux outside of the summer

monsoon.

The majority of flux occurs during the summer as opposed to a modeled spring pCO2 maximum due to the influence of580

winds. A Reynolds decomposition of both pCO2 and wind variability shows that the intense winds of the summer monsoon

contribute 90% of that season’s flux anomaly. In fact, winds play a more important role than the increase of pCO2 in the

upwelling regions. Even though winds represent such a major variable in determining AS CO2 flux timing, the variability in

total flux due to different pCO2 products leads to a 2x range in magnitude. These results suggest that in addition to the expected

increase of surface ocean pCO2 due to anthropogenic climate change, possible changes in the timing, location, and magnitude585

of monsoon winds (Lachkar et al., 2018; Praveen et al., 01 Apr. 2020) will have downstream impacts on seasonal air-sea flux.

An important result of this modeling study is that temperature drives a springtime maximum of pCO2 in the AS. This max-

imum has been observed in lower-resolution models, but is not found in the in situ data. Due to the fact that temperature is

not sensitive to biological processes like DIC and TA, this discrepancy suggests that more sampling is necessary to deter-

mine whether it is an artifact of spotty sampling or an inherent problem in models unrelated to resolving coastal upwelling.590

Additionally, we find that spatial gradients of DIC and temperature do not overlap as they do elsewhere in the ocean. Instead,

temperature follows a southwest-northeast monsoon wind pattern, whereas DIC is enhanced nearest to the coasts. The resulting

apparent deficit of normalized DIC in the central, oligotrophic AS has not been emphasized previously. Finally, we find that

despite the intense biological activity in the AS, primary production by phytoplankton is insufficient to counter the increased

carbon supply provided by vertical circulation during bloom periods.595

Models can be used to expand spatiotemporal coverage when data is scarce. However, models’ limitations often manifest

when there is no new data to test their fidelity. Limitations in the spatiotemporal coverage of existing datasets stem from biases

in sampling during summer monsoon, sampling close to the Oman upwelling region, and limited in scope to the years of

JGOFS expeditions of the 1990s. In order to fully characterize the pCO2 cycle outside of summer in the rest of the AS, as well

as to determine the secular trend of surface pCO2 due to anthropogenic carbon additions to the atmosphere, more in situ data of600

the carbon system (e.g. DIC, TA, pCO2), from shipboard measurements or autonomous sampling platforms, are sorely needed.

Furthermore, since ∆pCO2 is generally positive in the AS, the direction of air-sea CO2 exchange examined here is robust to

model error, whereas other important indicators such as pH and its relevant biological thresholds will be less so. These data

are thus critical for resolving the possible responses of the carbon system in the AS to ongoing climate change, whether from

changes in timing or magnitude of monsoon wind forcing, the impact of increased surface heating on stratification and vertical605

circulation, or changing levels of primary and fisheries productivity with altered carbonate solubility. Without this baseline

information, it will be difficult to predict what the future has in store for the AS carbon system.
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Figure 1. Vertically integrated net primary production in the Arabian Sea gCm−2yr−1 from the VGPM algorithm (Behrenfeld and

Falkowski, 1997) for SeaWifs (a,c) and model output (b,d) for the summer (JJAS, a-b) and winter (DJFM,c-d) monsoon. White boxes in

(b,d) denote regions of analysis in the paper.
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Figure 2. (a) Average surface in situ ∆pCO2 (ppm), with probability density function (PDF) of all ∆pCO2 values inset. ∆pCO2 data are

calculated in comparison to Keeling atmospheric pCO2, then binned into a 1ox1o grid. (b) Monthly distribution of in situ data sampling

times, color-coded by sampling year.
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Figure 3. Seasonal surface pCO2 (µatm) from data (a-d) and the model (e-h), representing winter monsoon DJFM (a,e), spring intermonsoon

AM (b,f), summer monsoon JJAS (c,g), and fall intermonsoon ON (d,h).
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Figure 4. Taylor diagram of modeled vs. observed surface pCO2, both in total and seasonal sub-sampling. Data are from merged SOCAT

and LDEO databases, corrected to year 2005. Distance frmo origin (concentric solid lines) is normalized model standard deviation. Angle

from vertical axis is Pearson correlation coefficient. Distance from observation point (black dot) is root-mean square deviation (blue dashed

lines). Color of each point denotes model bias, i.e. positive values are overestimate.

29

https://doi.org/10.5194/bg-2021-22
Preprint. Discussion started: 17 February 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 5. Monthly probability density distributions of surface pCO2 in (a) merged SOCAT/LDEO in situ data, (b) modeled pCO2, and (c)

L15 pCO2 climatology.
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Figure 6. (a) Spatial anomaly of time-averaged surface pCO2 (µatm). Black boxes represent regions of analysis used in (b) to show averaged

contributions of four variables to pCO2 variability. The changes in pCO2 due to these variables are shown for (c) temperature, (d) DIC, (e)

TA, and (f) freshwater.

31

https://doi.org/10.5194/bg-2021-22
Preprint. Discussion started: 17 February 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 7. Timeseries of pCO2 anomalies (µatm) (black lines) for (a) the entire domain, (b) Oman, (c) North AS, (d) oligotrophic central AS,

(e) Somalia, and (f) India. Dashed gray lines indicates horizontal axis. Gray shading shows summer and winter monsoons. Additional lines

show change in pCO2 due to temperature (blue), DIC (red), TA (green), and freshwater (magenta).
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Figure 8. Timeseries of DIC fluxes (PgCyr−1) in the top 20 m for (a) the domain, (b) Oman, (c) North AS, (d) oligotrophic central AS, (e)

Somalia, and (f) India. Dashed gray line shows x=zero axis. Gray shading denotes summer and winter monsoons, similar to Fig. 8.
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Figure 9. (a) Modeled annual mean air-sea CO2 flux density (molCm−2yr−1). (b-e) Seasonal flux density for winter DJFM, spring AM,

summer JJAS, and fall ON, respectively. Positive is flux out of the ocean.
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Figure 10. (a) Anomaly of air-sea CO2 flux during summer monsoon JJAS (molCm−2yr−1. Summer flux anomaly contributions due to (b)

wind, (c) pCO2, and (d) cross-terms in Eqn.(8).
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Figure 11. Seasonal CO2 flux anomaly (purple) for winter DJFM monsoon (top-left), spring AM (top-right), summer monsoon JJAS (bottom-

left), and fall ON (bottom-right). Contributors to the flux are solubility/winds (kα,blue), pCO2 (red), and cross-terms (yellow). Results are

shown for entire domain and sub-regions.
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Figure 12. (a) Monthy CO2 flux (TgC) from the AS as calculated using pCO2 from TK09 (cyan), L15 (blue), model (black), and GLODAP

(red). (b) Monthly CO2 flux from 10oN and north using pCO2 from L15 (blue), model (black), GLODAP (red), Sarma using model output

(bright green), and Sarma using WOA data (dark green). Dashed line in (b) is the zero flux axis, gray regions denote winter and summer

monsoons. Positive flux is out from the ocean surface.
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