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ABSTRACT
Two sets of random vectors cannot both be Gaussian if they are nonlinearly
related. Thus, Autoregressive (AR) parameters and reflection coefficient (resp.

cepstrum coefficient) estimators cannot both be Gaussian for a finite number of



samples. However, most estimators of AR parameters and reflection coefficients
(resp. cepstrum coefficients) are Gaussian asymptotically. Thus, the distribution
of AR parameter and reflection coefficient (resp. cepstrum coefficient) estimates
are close to Gaussian for large samples.

This paper studies the “closeness” between the Gaussian distribution and
the “non-linear transformation of Gaussian AR parameters” distribution. A
new distance is defined which is based on the Taylor expansion of the non-linear
transformation. This “Taylor” distance called M-distance is used to measure the
deviations from the Gaussian distribution of reflection coefficient and cepstrum
coefficient statistics. A comparison is presented between this distance and Kull-
back’s divergence. The main advantage of the A -distance with respect to other
distances is a very simple closed form expression of the deviations from normal-
ity. This closed form expression shows that the convergence of the reflection and
cepstrum coefficient distribution to its asymptotic Gaussian distribution (when
the number of samples tends to infinity) depends on the position of AR model
poles in the unit circle.

RESUME

Deux vecteurs aléatoires liés par des relations non-linéaires ne peuvent étre
simultanément Gaussiens. Cette propriété implique que les estimateurs des
paramétres AutoRégressifs (AR) et des coefficients de réflexion (resp. coeffi-
cients cepstraux) ne peuvent étre simultanément Gaussiens pour un nombre fini

d’échantillons. Cependant, la plupart de ces estimateurs sont asymptotiquement



Gaussiens. Donc, pour un “grand” nombre d’échantillons, la loi des estimateurs
des paramétres AR et des coefficients de réflexion (resp. coefficients cepstraux)
est proche de la loi normale.

Cet article étudie la distance entre la loi normale et la loi de coefficients liés
aux parameétres AR par une transformée non-linéaire. Une nouvelle distance
basée sur un développement de Taylor de la non-linéarité est étudiée. Cette
distance appelée M-distance permet de déterminer les écarts entre la loi des
coefficients de réflexion (resp. coefficients cepstraux) et la loi normale. Une
comparison entre la M-distance et la divergence de Kullback est présentée. Le
principal avantage de la M-distance par rapport aux autres distances est qu’elle
permet d’obtenir une expression analytique trés simple des écarts entre une
loi et la loi normale. Cette expression analytique permet de montrer que la
convergence de la loi des coefficients de réflexion et des coefficients cepstraux
vers la loi normale (lorsque le nombre d’échantillons tend vers P’infini) dépend
de la position des poles du modéle AR dans le cercle unité.
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I. Introduction

Reflection coefficients and cepstrum coefficients are nonlinearly related to Autoregressive
(AR) parameters. These non-linear relations define a diffeomorphism (it is one-to-one onto
appropriate subsets, and the function and its inverse are continuously differentiable). The
jacobian of this transformation (as well as higher-order derivatives) can be constructed ex-
plicitly. This observation has two consequences in Estimation Theory (where the AR
parameters have to be estimated since they are deterministic):

e asymptotic viewpoint: for a large class of methods based on second-order and/or higher-
order statistics (autocorrelation method, covariance method, Burg method, ... ), the esti-
mated AR parameter vector a can be shown to form an asymptotically normal sequence of
estimators of the “true” AR parameter vector a (under appropriate moment conditions for

the innovation) :

Vi(a—a) = N(0,02R(a)") (1)

n—-+oo
n is the number of samples, 0 is the driving noise variance, R (a) is the AR process covariance
matrix and — denotes convergence in distribution. Moreover, if the innovation has a finite

fourth-order moment, it is possible to demonstrate that [2]:

lim nE [(a —a)(a— a)t] = o?R(a)! (2)

n—-+oo

Applying a regular (differentiable with a non-singular Jacobian) mapping 7" to @ yields an

asymptotically normal sequence T (a) of T (a):

Vil (@) =T (@] % N(0,02DR(a) ' D) (3)

n——4o0o



such that:

lim nE ([T (@) =T (a)][T'(@) —T(a)]') = 0?DR(a) ' D' (4)

n=+o0
where D is a matrix defined in ([4], p. 211). This property can be heuristically derived by
linearizing T (@) about T (a) [7].

Consequently, reflection coefficients and cepstrum coefficients are asymptotically Gaussian.

e non-asymptotic viewpoint: Suppose the map is locally invertible. Then, the probability
density function (pdf) of T (@) can be deduced from the pdf of @. Since they are linked by
non-linear relations, @ and 7' (@) cannot both be Gaussian. Nevertheless, the pdf’s of @ and
T (a) are very close to Gaussian for a large number of samples because of the properties (1)
and (3). Similarly, the covariance matrices of @ and 7’ (@) can be approximated by %R (a)fl
and 0?DR (a)fl Dt respectively, for a large number of samples because of the properties (2)
and (4).

All the properties described above can be generalized to Pattern Recognition. The AR
parameters are random in pattern recognition applications. To derive the optimal Bayesian
Classifier, the pdf of “a” has to be known, conditioned on each class . According to ([6], p.
22), the multivariate normal density is an appropriate model for an important situation, viz.,
the case where the features vectors for a given class are conlinuous valued, mildly corrupted
versions of a single typical or prototype mean vector. When the features are statistically
independent and have the same variance o2, the covariance matrix of each class is of the form
0%l (I being the identity matrix). When the features are not independent, the covariance
matrix of each class is no longer diagonal. Tt can then be expressed as C, = 02C. C is a

unit norm matrix and o2 is the variance of the class (sometimes called within-class scatter)
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([6], p. 26). The following observations can then be made:

e asymplotic viewpoint:

[{P)]

Applying a regular mapping T’ to “a” yields a sequence T' (a) such that:

% [T (a) = T (ma)] % N (0,DCD) (5)
and:
lim %E ([T (@) = T (ma)] [T'(a) = T (ma)]") = DCD' (6)

where m, = F (a) and D is the matrix defined in ([4], p. 211).

e non-asymptotic viewpoint:

T (a) is related to a by a non-linear transformation. For a non-zero variance o2, T (a)
cannot be Gaussian. However, for a small value of 0%, the pdf and covariance matrix of T'(a)
are very close to Gaussian and DC D" respectively because of the properties (5) and (6).

For brevity in what follows, the generic terms “Estimation Case” are used whenever AR
parameters are deterministic and “Pattern Recognition Case” whenever AR parameters are
random. However, a unified notation is used for the AR parameter vector:

e in estimation theory, the AR process is a Gaussian vector a with mean m, = F (a) and
covariance matrix C, = %Rfl,

e in pattern recognition, a is a Gaussian vector with m, = F (a) and C, = 0*C, C being
a unit norm matrix.

The Gaussian assumption for a (for which the reflection coefficients and cepstrum coef-
ficients cannot be Gaussian) can be justified by some of the previous properties. In many
practical applications moreover, AR parameter histograms have a (saussian shape contrary
to reflection and cepstrum coefficients ([10], p. 166),([12], p. 146), [15].
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This paper studies the “closeness” between the distribution of 7" (a) and the Gaussian
(for a fixed number of samples n or a fixed variance 0?) as a function of m, and C,. Section
IT presents a recursive way to determine the pdf of reflection coefficients and cepstrum
coefficients as functions of the pdf of the AR parameter vector. Section III formulates the
problem and defines a new distance, denoted as M-distance, between the statistics of T (a)
and Gaussian. In sections IV and V, the M-distance is used to derive a closed form expression

of the “closeness” between reflection and cepstrum coefficient distribution and Gaussian.

II. REFLECTION AND CEPSTRUM COEFFICIENT PDF

The first part reminds the reader of a recursive way of determining the reflection and cep-
strum coefficient pdf as a function of the AR parameter vector pdf. The results of this section
(which were first derived in [15]) will be used in sections IV and V to compute the Kullback

divergence between the reflection and cepstrum coefficient pdf and Gaussian.

A. Reflection Coefficient pdf

Reflection coefficients k; are linked to AR parameters a; according to the following relations:

G/g-p) = Clj

- CERONON
a(llfl) _ a a; a;’ (7>

! 1- {aii)}Q
j=1..p ag-j):k:j

()

The parameters a;’, j = 1,...;4 are the ith order linear predictor coefficients. For i = p (pis

the AR model order), these parameters are the AR parameters. For i = j, these parameters

are the reflection coefficients. The vectors {a,ﬁ’:), ey (17(7)} can then be computed recursively for



i=p—1,..,1 from AR parameters and Eq. (7). Each step allows the determination of one
reflection coefficient k; = al(-i). Note that, in many algorithms such as Burg’s algorithm, AR
parameters are computed from reflection coefficients. However, this does not prevent Eq.
(7) to be satisfied.

Denote

Vi [of,a770 0 0, o, ®)

p 2 Vp—1 My

This vector can be split into two parts:

e the first one has p — 7 + 1 components equal to the p — i + 1 reflection coefficients:

a® "V a(i)} = [kp, ..., ki (9)

D p—1 Mg
e the second one has i — 1 components:
CLZ('Z‘,)l, CLZ('Z;)Q, vy agl) (10>

In particular, for i = p, V; is the AR parameter vector V,, whose pdf is assumed to
be known. For i = 1, V; is the reflection coefficient vector Vi, whose pdf is unknown. The
p—i—+1 first components of vectors V; and V; | are equal and the i —1 last ones are linked by
relations (7) which can be inverted. The jacobian of the one-to-one transformation between
V; and V;_; can then be computed (for more details see [15]). If f; (x,, x, 1. x1) denotes the

pdf of V; , the pdf of V; | can be computed with the following relations:

e 7 odd
(i 1)/2 :
fi 1 (g, ey mr) = (1 - 72) i (T) (11)
Wlth .77/ = (.7773,......,.777:,.777: 1 +.777:.771,...,.771+.777:.777: 1).

8



® 7 cven

(i-2)/2 "
ficr (@p, oy z1) = (1 + 25) (1 - 3712) fi <37 ) (12)
with ,17” = (a?p, ...... , Ly, i1 + i1y ..ny (1 + QTZ) Lif2, ...,,1714,,171'&71',1)

By means of p iterations, using (11) and (12), the reflection coefficient vector pdf can be

computed from the AR parameter vector pdf.

B. Cepstrum Coefficient pdf

Cepstrum coefficients are linked to AR parameters according to the following non-linear

relations:
k-1
2 S k S P /{:ck = —/{:ak— Z iciak,i
= (13)
P
k?>p kak:— Z (/{:—i)ck,iai
i—1
with ¢y = —ay. It is obvious from Eq. (13) that all the information contained in AR parame-

ters is in the p first cepstrum coefficients, mainly because of the one-to-one transformation
between these two finite dimension sets of parameters. In most applications, only the p first
cepstrum coefflicients are then considered. The p first relations (13) can be written in the

following form:

cr = —ap+ fe-1(ay, ..., a5 1) (14)
ar = —Cp+ gr-1(C1,.msCh1)
fr_1 and g1 being two polynomial functions with k —1 variables aq,...,ax 1 and ¢, ..., cx 1

respectively. From the form of equations (14), the jacobian matrix of the one-to-one trans-

formation between the two vectors a = (aq,...,a,) and ¢ = (¢q, ..., ¢,) is an upper triangular
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matrix, whose diagonal terms are equal to —1. The determinant of this matrix is conse-
quently equal to (—1)”. The cepstrum coefficient pdf ¢ (z1, ...,2,) can then be determined

from the AR parameter pdf a (xq, ..., z,):

(1, @p) = (=21, ooy —Tp + Gp1 (X1, s Tp1)) (15)

The functions f and gy, can be determined recursively using equations (13) (for more details

see [15],[17]).

ITI. DISTANCE BETWEEN 7T (a) PDF AND (GAUSSIAN

Many distances between random variables, such as the Kullback divergence or the Bhat-
tacharyya distance, can be used to measure the closeness between 7' (a) pdf (when it can be
determined) and the Gaussian pdf [1]. Using the results of the previous section, a “closeness”
measure between the reflection and cepstrum coefficient distribution and (GGaussian can then
be derived. However, these distances depend on m, and C, through non-linear (in general
integral) relations which are difficult to study. In this part, a new distance, which depends
on m, and C, by very simple relations, is presented. For simplicity, the pattern recognition
case for which C, = 02C is considered. However, the results can be extended easily to the
estimation case for which C, = %}Pfl. The study is restricted to the set S of variables X

satisfying the two following conditions:

vk e N M = F(X") < 4o0 (16)
limsup | —— < +o00 (17)
kE——+oo k‘
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Variables satisfying conditions (16) and (17) are characterized by their moments ([13], p.
290). In this section, T is a transformation from IR? into IR ( p is the AR model order)
and the first two derivatives of T'(a), denoted by 7" (a) and T" (a), exist in a neighborhood
of mg. In the case of a transformation T(a) = [T1(a), ..., Trm(a)]’ from IR? into IR™, the m
transformations Tj(a) , i € {1,...,m} can be considered separately. In what follows, the

sequence of variables {X,} converges in probability to zero, written X, = o, (1), if
Ve>0  lim P[IX,] > =0 (18)
The sequence {X,} is bounded in probability, written X, = O, (1), if
Ve >0 36(2) > 0 such that P[|X,| > ()] << for all o (19)

In the estimation case, the covariance matrix of the AR process a is of the form C, = ¢2C
such that

a—m, =0, (c) (20)
which means that %(a — my) is bounded in probability. According to ([4], p. 210), T (a)
admits the following Taylor expansions:

T(a) =T (ma) +T" (ma) (a = ma) + 0 (7) (21)

T(a)="T (mg) + T (mg) (a —my) + %T” (ma) (@ — My, a —mg) + o (02) (22)

The computation of the second order derivative 7" (my,) (@ — mq, a — mg) can be made from
the Hessian H (a) of the transformation T (see [3] p. 143). For a transformation from IR?

into R, 7" (m,,) is defined by:

T" (mg) (u,v) = u'H (a)v (23)

11



with [H (a)],, = PT_ g0 (22) and (21) mean that the random vectors

T3 8ai aa]‘

S

[T (a) = T (ma) = T (ma) (@ — m4)]

% T (a) =T (mg) — T (mg) (a —m,) — %T” (me) (a — Mg, a —my)

converge in probability to zero. For small values of o, the variable o, (¢®) is negligible with
respect to the three first terms in (22). Under these conditions, the Gaussian or non-Gaussian

nature of the random vector 7' (a) is due to the two following terms:

Go =T (mg) (a—my) (24)
NG, = %T” (myg) (@ — Mg, a —myg) (25)

In what follows, to make shorter, we will write G and NG, instead of G, and NG,. If
the development (21) reduces to T (a) — T (m,) ~ (i, there exists a linear relation between
T (a) =T (mg) and a — mg. These two vectors are then both Gaussian. On the other hand,
when the second order term NG is not negligible, the vector T (a) — T (m,) is no longer
Gaussian.

Define the following distance between variables X and Y [16):

+oo | ME — ME
d(X,Y) =3 % (26)

k=1

This distance comes from the I; norm applied to infinite sequences of the form

CiME ) My

T el (27)

which appears naturally in the development of the characteristic function in terms of its

moments. In general, d is not a distance because two different random variables can have the
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same moments ([9] p. 12). But variables satisfying conditions (16) and (17) are characterized
by their moments such that d is a distance on S. For a Gaussian vector a, variables GG and

GG + NG belong to the set S with R = 400. Appendix A then shows that:

+o0 1
lim d(G,G + NG) —hmz ‘M’“ My ve| =0 (28)

020 o *)0
Eq. (28) is in accordance with the asymptotic normality of T'(a) defined in Eq. (5). Since

a is Gaussian, d(G,G + NG) can be expressed as
M
d(G,G—I—NG) :Z dk—|—0<02M) (29>
k=1

with dy, = O (02k). For small values of o, d(G,G + NG) can be approximated by the first

few terms in (29) such that

d(G,G + NG) gfj dy, (30)

In (30), dys is the first dy depending on the AR model poles (see appendices B and C for the
expression of dyy in the case of reflection and cepstrum coefficients). Similarly, in estimation,

d(G,G 4+ NG) can be expressed as:

d(G.G + NG) de—l—0< ) de (31)

with dy, = O (nik) In both cases, the lower d(G,G + NG), the lower the distance between
the distribution of T'(a) and the Gaussian. Next sections use Fqs. (30) and (31) to study the
convergence of the reflection coefficient and cepstrum coefficient distribution to the GGaussian

as a function of the position of the AR model poles in the unit circle.
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IV. APPLICATION TO REFLECTION COEFFICIENTS

For simplicity, a Gaussian real second order AR parameter vector a is considered. F (a) = m,
can be expressed as a function of two conjugated complex poles p; = pe’¥ and py = pe 7%
such that m, = (—2pcosy, p2)t. The reflection coefficient vector k is linked to the AR
parameter vector with the non-linear transformation k = (ﬁ;, G/Q)t. The second reflection

coefficient being Gaussian, only the first one is considered such that

T (a) = (32)

The first terms dy, in Egs. (30) and (31) (which correspond to the first reflection coeflicient )

can then be determined as a function of p and ¢ (see Appendix B):

Pattern Recognition Case

—2[)622 COs @ C19
d, = o? — 33
' (1+p2)" (1492 39)

o 2 2 9 2 2\ 2 2
dy = m 12¢5,p" cos™ ¢ + <611622 + 2612) (1 +p ) — 12pcos (1 +p ) C1aCea| (34)
Estimation Case
(1- /)2)2 [ 2\2 2 9 }

= 1 + — 4 COS 36
= i (1 ) (14p%) —4p*cos? (36)

Higher order terms can be derived in a similar way but, for large number of samples,

d(G,G 4+ NG) can be approximated by the first d;. This property is illustrated in Fig. 1

14



a) and b), representing the variations of d; (continuous line) and d; + dy (dotted line) as a
function of p and ¢ for the pattern recognition case. In this case, the distance d(G, G+ NG)
can be approximated by the first term d;.

The variations of d(G,G + N(G) as a function of p and ¢ for the estimation case are
plotted in Fig. 2 a) and b). In both cases, the distance between the reflection coefficient
distribution and the Gaussian is very small when the AR model poles are close to the unit
circle.

To show the efficiency of our distance, the variations of d(GG, G + NG) are compared with
the Kullback divergence between the first reflection coefficient pdf (determined in the first
part of the paper) and the Gaussian. The Kullback divergence between two variables X and

Y, with respective pdf’s p; and ps, is defined by:

) = [ I (o) = 1 (o)) 10 22 37

Figs. 1 and 3 show that the qualitative behavior of the two approaches is very similar.

The lower the d(G,G + NG), the lower the distance between the reflection coefficient
distribution and the Gaussian. Thus, this distance is very low when the AR model poles
are close to the unit circle. The three dimensional curves plotted in Fig 4, describing the
variations of d(G,G + NG) as a function of p and ¢, confirm this result.

This section shows that the convergence of the reflection coefficient pdf to the Gaussian
(when the number of samples tends to infinity in the Estimation case or when the variance
tends to zero in the Pattern Recognition case) is related to the AR model pole position in
the unit circle. Consequently, the analysis of the AR model pole position in the unit circle

allows us to determine whether the reflection coefficient distribution can be approximated
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by the Gaussian or not.

V. APPLICATION TO CEPSTRUM COEFFICIENTS

The second order cepstrum coefficient vector ¢ is linked to AR parameters with the non-
¢
linear transformation ¢ = (—al, —as + %a%) . The first cepstrum coeflicient being Gaussian,

only the second one is considered such that:

1
T (a) =—as+ 5@% (38)

The first terms in Fgs. (30) and (31) (which correspond to the second cepstrum coeflicient )

can then be determined as a function of p and ¢ (see Appendix C):

Pattern Recognition Case

2

dy = g ‘i (39)
2
W3 1, 2 2 2 1
dy =0 = + 5012 + 3ci1c19p cos @ + 3cy p” cosT p + ZCHC?? (40)
Estimation Case
dy = — (1—p") (41)
2n
3(L-—m3)®  (A—md)’f , 5 1
dy = = + = [3/) cos” ¢ + ﬂ
my (1 —ms)? [1

+% bml +3(1—my) (14ms)” peos 90} (42)

Higher order terms can be derived in a similar way but, for large number of samples, d(G, G+
NG@G) can be approximated by the first terms in (30) and (31). This property is illustrated

16



in Fig. 5 a) and b), representing the variations of dy (dotted line), dy + ds (continuous line)

and 23:1 d; (cross line) as a function of p and ¢ for the pattern recognition case. The first
=

term d; does not depend on p and ¢. The distance d(G,G + NG) can be approximated by

the two first terms in (30).

In the estimation case, from Eq. (41) and (42), d; (dotted line) depends on p but not
on ¢. One term in (31) is then sufficient to describe the evolution of d(G,G + NG) as a
function of the modulus, as it is illustrated in Fig. 6 a). For the variations of d(G,G' 4+ NG)
as a function of the phase, Fig. 6 b) shows that two terms in (26) have to be considered.

To show the efficiency of our method, the variations of d(G,G + NG) are compared (in
the pattern recognition case) with the Kullback divergence between the second cepstrum
coefficient pdf and the Gaussian. Figs. 5 and 7 show that the two approaches lead to similar
results. The convergence of the cepstrum coefficient distribution to the Gaussian is different
in the two cases:

e in the pattern recognition case, the closer to the origin the AR model poles, the lower
the distance between the cepstrum coefficient distribution and the Gaussian.

e in the estimation case, the closer to the unit circle the AR model poles, the lower the
distance between the cepstrum coefficient distribution and the Gaussian

The three dimensional curves plotted in Fig 8, describing the variations of d(G, G + NG)
as a function of p and ¢, confirm these results.

This section shows that the convergence of the cepstrum coefficient pdf to the (Gaussian
(when the number of samples tends to infinity in the Estimation case or when the variance

tends to zero in the Pattern Recognition case) is related to the AR model pole position in
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the unit circle. Consequently, the analysis of the AR model pole position in the unit circle
allows us to determine whether the cepstrum coefficient distribution can be approximated

by the Gaussian or not.

VI. CONCLUSION

The distribution of a non-linear transformation of Gaussian AR parameters cannot be
Gaussian. The AM-distance between this distribution and Gaussian, based on the Taylor
expansion of the non-linearity, is defined. The M-distance is used to measure the devia-
tions from the normal distribution of reflection coefficient and cepstrum coefficient statistics.
Other methods such as the expansions in Edgeworth or Gram-Charlier series could be used
as well. However, the main advantage of the M-distance is a very simple closed form ex-
pression of these deviations as a function of the AR parameter vector mean and covariance
matrix. This closed form expression shows that the distance between reflection or cepstrum
coefficient statistics and (GGaussian depends, by very simple relations, on the position of the
AR model poles in the unit circle. Such a result is of great interest in estimation theory and
in pattern recognition:

In estimation theory, it shows that the number of samples necessary to approximate the
reflection coefficient and cepstrum coefficient distribution by the Gaussian is directly related
to the position of the AR model poles in the unit circle.

In pattern recognition, the M-distance depends on the class variance but on the position
of the AR model poles in the unit circle as well. This allows us to determine in which cases

the (Gaussian approximation can be used for reflection and cepstrum coefficients. This is

18



very important, since a fine knowledge of the parameter pdf is not necessary for the optimal

Bayesian classifier.
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APPENDIX A

PROOF OF EQUATION (28)
This appendix shows that variables G and G + NG satisfy the following equation:
: R k k
lim d(G, G + NG) :(175%; = |ME = M | =0 (43)

For simplicity, the study is restricted to the transformations T from IR? into IR. Accord-
ing to the form of the covariance matrix C, = 0?C, G = T" (m,) (a —m,) and NG =
%T’ '(mq) (@ — Mg, a —my,) converge in mean square and then in distribution to 0. The char-

acterization of the convergence in distribution due to Levy leads to:

lim =1 VieR (44)
lim £ N =1 vieR (45)

Since a is Gaussian, variables G and NG belong to the set S with R = 400 and ([13], p.

290):
E ] :ZG}{;—‘ teR (46)
k=1 :
“+o00 k i\ k
E |:€it(G+NG):| :Z MG+NG<Zt) t c R (47>
k!
k—1
hence:
lim >~ (7/3 (ME =Ml ye) =0 teR (48)
77—
Fq. (48) leads to:
i +ml/\//k—/\//k =0 49
”T})Z I RE GHNG| — (49)
E—1



APPENDIX B

COMPUTATION OF d; FOR REFLECTION COEFFICIENTS

In this appendix, the first moments of variables G and G + NG are determined for
reflection coefficients in the case of a second order AR model. Similar results can be obtained
for higher order AR models. AR parameters and reflection coefficients are linked by the

following relations:

1{72 a9

ay
T = 51
(@) = 7o (1)
m
T(mg,) = 52
(m0) = 17 (52)
my
with m, = = F(a). The first and second order derivatives of T can then be
Mo
computed:
1
T (mg)=| ™ (53)
—m
(1+mg)?
0 ;12
Ty (ma) = ) (54)
—1 2m1

(1+mz)®  (1+mg)?
Equations (24) and (25) lead to:
ay — my ma ((],2 — 7’)’1,2)

G =T (my)(a—mgy) = — 15%)
(m )((] m ) 1 +m,2 (1 +m,2)2 ( )

. l m ((],2 — 777,2)2 — ((],1 — 7’)’],1) ((],2 — ’I’)’I,Q) (1 + ’I’)’I,Q)
3

(1 +ms)

(56)
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The moments of NG can be determined as a function of the AR parameter covariance matrix

C,.
€11 C12
e Pattern Recognition case C, = o2
€12 C22
The following relations
1) {(CLQ — m2)2} = 0'2(322 1D [(a1 - ml) (CLQ - m2)] = 0'2(312 (57>

lead to:

5 M1 Cog — C19 (1 4 M)

E(NG)=dy =0 a8
(NG) = o 59
which can be expressed as a function of the AR model poles:

E(NG) 20_2_2/)622COS<70_612 <1+p2) (59>

(1+p%)°
It 1s well known that higher order moments of the Gaussian distribution can be deter-
mined as a function of its mean and covariance matrix . In particular, for i € {1,2}

and 7 € IN:

1) {(CLZ - mi)QjH} = 0

, 274+ 1) ..
B {(ai _mi)2y+2} _ ( JQ;;! ) g2i+2

Higher order moments of NG can then be computed. For instance, the three following

relations

1D _((1,2 — mQ)ﬂ = 30tcl,

E i((]q — M )2 ((],2 — m,2)2:| e (74 ((311(322 + 2(3?2) (6())

D) i((]q —my) (ag — 777/2)3} = 301909
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lead to:

0_4

d2 = m (‘36%2’)’)@% + <C11C22 + 26%2) (1 + m2)2 — 6m1 (1 + m2) 612622‘) (61>

Estimation Case C, = %Z‘R*l

For large number of samples, the Cramer-Rao Bound of the AR process can be used
for Cy:

1 _
Co =~ [MAT = 4,43 ' (62)

Ay and Ay are two matrices which depend on the AR parameter vector m,[8]. In the

case of a second order AR process, Fq. (62) leads to:

1 1 —m2 my (1 —ms)

my (1 —ms) 1—m3

Thus:

(L= m3) = my (L= ma) (L4 my)
4 — e —0 (64)

B (1— m2)2 {(1 + m2)2 — mﬂ
d2 = 2n? (1 + m2)4 (6%)
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APPENDIX C

COMPUTATION OF d;, FOR CEPSTRUM COEFFICIENTS

This appendix determines the first moments of variables G and G + NG for cepstrum
coefficients in the case of a second order AR model. AR parameters and cepstrum coefficients

are linked by the following relations:

1 —a1

= (66)
Cy —ag + %a%
This leads to:
1
T(a) = —as + Ea% (67)
L,
T (mg) = —mg + 37 (68)
my
with m, = = F(a). The first and second order derivatives of T can then be
mo
computed:
my
1" (ma) = (69)
-1
1 0
T" (M) = (70)
0 0
Equations (24) and (25) lead to:
G =T (mgy) (a —my) = — (ag — ma) +mq (a1 —my) (71)
1 " 1 2
NG = §T (ma) (@ —mg,a—myg) = 3 (a1 —my) (72)
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In this particular case, the third order derivative of 1" is zero such that ¢ is exactly equal to

T (a) + G + NG (the third and higher order terms in (22) are equal to zero). The moments

of G and G + NG can be determined as a function of the AR parameter covariance matrix

Cla.

€11 C12
e Pattern Recognition case C, = o2
€12 C22
Eq. (71) and (72) lead to:
2
dy = B(NG) =2 ;” (73)
1 9 3otc?,
3 |5 (NG?) + 2B (NG.G)| = — (74)

The two first term in d(G, G + NG) do not depend on the AR model poles. The third

term in d(G, G + NG) depends on the third moments of variables G and NG

£ [BIVG®) + 3E(NG.G) + 38 (NG.C?)| (75)

It can be expressed as:

500t 49,2 2 2 1 415
ETE +o [3611/) cos” ¢ + 1011022} +o [5012 + 3cpic1ap cos ¢ (76)
hence
2 [3ch 2 2 2 1 Ly
dy =0 Yy + 3cq p” cos” p + 11162 + 5C12 + 3c11612p €08 (77)
e bstimation Case (', = %Rfl
Fq. (73), (74) and (75) yield:
1 — ,2
dy = —2 (78)
2n



_ 2 2

d = 8n? * n?
my (1 —my)? 1
—I—M [§m1 + 3 (1 —my) (14 my)’peosg

1—m2)?  (1—m2)? 1
3( m) ( m) [3/)2C052§0+Z}

(79)

n2
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Fig. 1. d(G,G + NG) for the first reflection coefficient (a) as a function of p (gp = %)
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