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Étude de la convection thermosolutale dans une cavité rectangulaire verticale fluide

L • étude des écoulements, dans une cavité rectangulaire de parois horizontales isolées et verticales soumises à des gradients horizontaux de température et de concentration différents, révèle l'existence de diagrammes de bifurcation complexes. Dans cette étude, on s'intéresse à la situation où le rapport des forces de volume solutale et thennique est égal à -1. On étudie la stabilité linéaire de la solution d'équilibre pour une cellule rectangulaire jusqu'au cas limite de la cellule d'extension infinie. On met en évidence numériquement, en fonction du rapport d'aspect, A, de la cellule, l'existence d'une bifurcation transcritique.

Abridged English Version

.

Study of double-diffusive natural convection in a vertical rectangular cavity

Abstract. A vertical enclosure, submitted to horizontal temperature and concentration gradients, is characterized by complex bifurcation phenomena. We are concemed by the situation where the opposing buoyancy forces due ta horizantal thermal and concentration gradients are equal. In this work. the linear stability of equilibrium solution is studied in the case of infinite and rectangular cell. The structure of subcritical steady solutions has been studied numerically for several values of the aspect ratio of the enclosure.

The problem of thermosolutal convection in a rectangular fluid cavity depends on five nondimen sional numbers (the thermal and solutal Grashof or Rayleigh numbers, GrT, RaT and Grs, Ras respectively, the Prandtl number Pr and the Lewis number Le, and the aspect ratio of the cell A). The problem is formulated using the Boussinesq approximation. The dimensionless equations for mass, momentum, energy and chemical species, where Soret effect is neglected, are given by ( 2)-( 5) and the corresponding boundary conditions by ( 6)-( 9).

We consider the stability analysis of the equilibrium solution when Gr s /GrT == -l. We assume that the perturbation quantities ( 1/f, 0, c) are small and the principle of exchange of stability is valid, so we obtain the l�nearized equations ( 10)-( 12). We have solved the equations (10Hl2) by the Galerkin method using the perturbation functions ( 18)-( 19). The equations ( 10)-( 12) were solved exactly for the case of an infinite vertical fluid layer, by the compound matrix method (Drazin et al.,l 981 ). This approach gi ves the values of the critical wavenumber k c == 2.53 and the critical Rayleigh number Rac( Le -1 ) = 6 509 which are in good agreement with the results obtained by the Galerkin method, given in table /. We can deduce from these results that, when Le � 1, the purely diffusive solution is infinitely linearly stable. For A = 1, we found theoretically and numerically Ra c ( Le -l ) = 17 298 while [START_REF] Krishnan | A numerical study of the instability of double diffusive convection in a square enclosure with a horizontal temperature and concentration gradients[END_REF] gives numerically Ra c ( Le -I ) = 6 486 and [START_REF] Gobin | Double diffusion in a vertical fl uid layer: onset of the conve-etive regime[END_REF] Ra,( Le 1) = 6 269. The numerical critical Rayleigh nu.rober obtained by [START_REF] Gobin | Double diffusion in a vertical fl uid layer: onset of the conve-etive regime[END_REF] corresponds not to the linear critical Rayleigh number, but to the onset of the subcritical solution.

Two numerical models, one with a finite volume method and the second with spectral collocation Chebychev method, have been perfonned. The time scheme used to solve the equations ( 2)-( 5) with ( 6)-( 9) in the two procedures is a second order Adams-Bashforth-Euler backward scheme. Direct simulation shows that, depending on the value of the aspect ratio, there exists a transcritical bifurcation and many subcritical flows. For A E [ 1, 2.5], we have an equilibrium solution with only one centro-symmetrical subcritical steady convective solution. We find for Ra > Ra c a symrnetric convective supercritical solution, and near the bifurcation point, lfl max depends linearly on Ra T while Nu and Sh parabolically. For A > 2.5, we find multiple subcritical solutions and for A = 4 we obtain three subcritical solutions. Two of them are centro-symmetrical and the third is non symmetrical with respect to the centre of the cavity. For A= 7 we observe four subcritical solutions, two symmetrical and two non-symmetrical.

Introduction

Les écoulements de convection thennosolutale en milieu fluide ont été largement étudiés ces dix dernières années comme en témoigne l'abondance des résultats publiés [START_REF] Wilcox | Transport phenomena in crystal growth from solution[END_REF], [START_REF] Schmidt | Double diffusion in oceanography[END_REF]]. On s'intéresse, dans cette étude, aux écoulements prenant naissance dans une cavité rectan gulaire dans le cas où les forces de gravité thermique et solutale sont égales et opposées. Cette situation physique en milieu fl uide a été analysée par [START_REF] Krishnan | A numerical study of the instability of double diffusive convection in a square enclosure with a horizontal temperature and concentration gradients[END_REF] qui a étudié numériquement la transition entre le régime diffusif pur et le régime convectif, ainsi que la transition entre le régime stationnaire unicellulaire et des régimes oscillants dans le cas d'une cavité carrée, pour un nombre de Prandtl égal à 1 et un nombre de Lewis égal à 3,161. [START_REF] Gobin | Double diffusion in a vertical fl uid layer: onset of the conve-etive regime[END_REF] ont analysé pour la première fois la stabilité linéaire de cette solution d'équilibre en considérant le cas de la cellule verticale infinie avec des conditions aux limites correspondant à un fluide parfait.

On se propose dans ce travail de faire, d'une part, une étude de stabilité linéaire complète de ce problème et, d'autre part, de compléter les études numériques dues à [START_REF] Krishnan | A numerical study of the instability of double diffusive convection in a square enclosure with a horizontal temperature and concentration gradients[END_REF] et à [START_REF] Gobin | Double diffusion in a vertical fl uid layer: onset of the conve-etive regime[END_REF]. On analysera l'influence du rapport d'aspect de la cellule et du nombre de Lewis sur les structures d'écoulement. On se restreindra à l'étude numérique des différents régimes sous-critiques et au régime convectif qui se substitue à la solution d'équilibre quand celle-ci perd sa stabilité. Le modèle mathématique régissant ces écoulements est basé sur les équations de bilan et l'hypothèse de Boussinesq. La masse volumique p( T, C) est prise, dans le terme générateur de convection, sous la forme: 

Formulation mathématique

p( T, C) = Po[l -/J-Â T-To ) -/Je ( C-C 0 )] (1 
Ce problème dépend de cinq paramètres adimensionnels. On se place dans l'hypothèse où Gr 5 /Gr T = 1. Dans ces conditions, T = C = l x et U O constitue une solution exacte des équations (2)-( 5) avec les conditions aux limites associées ( 6)-( 9). On se propose, dans un premier temps, d'étudier la stabilité de cette solution d'équilibre correspondant à la double diffusion pure.

Analyse de la stabilité

En désignant par If/, 0 et c respectivement les perturbations de la fonction de courant, de la température et de la concentration, on obtient, en supposant le principe d'échange de stabilité vérifié pour le problème, les équations de la stabilité à l'état marginal sous la forme:

,12 lfl + G r (ac_ ae) = 0 r clx ax .1c + Sc =0

auxquelles sont associées les conditions aux limites suivantes:

c=O= fll!!_ =�=O (x-Ox-l 'r::/z) ax iiz . -' -'
A partir du système ( 11)-( 12), on en déduit :

.1( s_ -J.L) = 0 Sc Pr

(10) (11) (12) ( 13 
) (14) (15)
Et, compte tenu des conditions aux limites {13)-( 14), on déduit qu'au voisinage de la transition diffusion pure-convection la perturbation de concentration est reliée à la perturbation de température par la relation simple : c i� 0 = Le 0, résultat que l'on retrouve parfaitement, au voisinage du point de bifurcation, à partir de notre simulation numérique. En éliminant une des inconnues du système (l 0 ) -( 12). on obtient un système du quatrième ordre en IJI et 0 ou IJI et c, soit :

� 2 IJI + Grr( Le -l ) �i = 0 (16) (17)
On peut remarquer, en remplaçant IJI par Pr IJI dans les équations de stabilité ( 16)-( 17), que le paramètre de stabilité de ce problème est le groupement Ra T ( Le 1 ). En écrivant les perturba tions, vérifiant l'ensemble des conditions aux limites, sous la forme:

N M IJI i'-L L a nm sin ( nx ) sin ( nnx ) sin ( rc X) sin ( mn X )

11 1 m= l N M 0= L L b 11m sin (n1CX) cos ( mn}) ""lm = 1 (18) (19) 
nous avons résolu le système ( 16) -( 17 Pour A = 7, on retrouve cette fois-ci quatre solutions dont deux à symétrie centrale (types 1 et 3) et deux non centro-symétriques (types 2 et 4) (fig. 4 et 5). La quatrième solution (type 4) correspond à la superposition de la solution de type l et de la solution de type 2. La valeur du nombre de Nusselt (Sherwood) associé se déduit, sans autre calcul, des solutions précédentes. 

Conclusion

Nous avons ainsi déterminé le point de bifurcation, double diffusion pure -convection stationnaire par voie théorique de deux façons différentes dans le cas de la cellule rectangulaire ou verticale infinie. De plus, nous avons montré que le confinement stabilise la solution de double diffusion pure puisque c'est pour la cellule d'extension verticale infinie que l'on obtient la plus petite valeur du paramètre Ra c ( Le 1 ) . Ces résultats ont été de plus confirmés numériquement D'autres calculs restent encore à développer pour analyser de manière plus approfondie ces différentes transitions transcri tiques.

Note remise le 12 mars 1996, acceptée après révision le 10 octobre 1996.

  Fig. l. -Schéma de définition.
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 1 Fig. 1. -Definition sketch.
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  ) avec Po = p( To, Co), Pr = -( llpo )( iJpliJT) c et f3 c = -( 1/ Po)( ap/iJC h désignant respectivement la masse volumique à � } et à C 0 , le coefficient d'expansion thermique et le coefficient d'expansion solutal du fluide. Les équations adimensionnelles de conservation de la masse, de la quantité de mouvement, de la conservation des espèces et de l'énergie, en l'absence d'effet Soret, s'écrivent respectivement: Gr r ( g fJ T i5T L 3 )lv 2 désignant le nombre de Grashof thermique, Gr 5 ( g /J e i5C L 3 )lv 2 le nombre de Grashof solutal, Pr= vl x le nombre de Prandtl et Sc= v/D le nombre de Schmidt. On introduit également le nombre de Lewis Le Sc/Pr x tD où x désigne la diffusivité thermique, D le coefficient de la diffusion moléculaire et v la viscosité cinématique. Les conditions aux limites sont données par : 0, z = A, \::fx)

  ) dans le cas d'une cellule rectangulaire par la méthode de Galerkin j usqu'à l'ordre (N 8, M=8), ce qui revient à annuler des déterminants( 128,128). Dans le cas de la cellule infinie, les perturbations sont écrites sous la forme : N IJI = L a 11 sin ( 1CX ) sin ( mtx) e ik , n 1 N 0 = L, b n sin ( nrcx ) e ikz n = l où k désigne le nombre d'onde dans la direction z et i l'imaginaire pur. été résolu par la méthode des matrices composées ( Drazin et al., 1981 ). On trouve, dans ce cas, un nombre d'onde critique k c = 2,53 e t une valeur du groupement Ra c ( Le -1 ) = 6 509 qui sont en parfait accord avec les résultats obtenus par la méthode de Galerkin (tableau/). Pour A = 1 nous avons trouvé Ra,.( Le 1 ) = 17 298 [ alors que Krishnan ( 1989 ) et Gobin et al. ( 1994) ont obtenu respectivement de bien plus faibles valeurs: Ra c ( Le -I ) = 6 486 et Ra c ( Le -1 ) = 6 269 ] . Ces valeurs sont associées, à notre avis, à l'apparition de la solution sous-critique, résultat que l'on a retrouvé numériquement. Ainsi, plus on astreint l'écoulement, plus la solution d'équilibre est stable. La solution d'équilibre devient linéai rement infiniment stable quand Le -t l.

  Fig. 2. -Courbes de stabilité marginale en fonction du nombre de Lewis, A = 1.
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 3 Fig. 3. -Bifurcation diagram : Nusselt number of Rar for Le = 11, A = 1.

  Fig, 4. -Lignes de courant. iwconcentrations et isothermes pour plusieurs écoulements sous-critiques pour A = 7, Le = 11, Ra = 550. Fig. 4. -Stream/ines, concentration lines and isotherms for multiple subcritical fl ows for A = 7, Le = 11, Ra r = 550.
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 5 Fig. 5. -Behaviour ()f the Nusselt number for the supercritical regimes for A 7. Fe 11.

TABLEAU I

Nombre de Rayleigh critique en fonction du rapport de cellule, pour plusieurs approximations.

Critical Rayleigh number as a function of the aspect ratio for different orders of approximations.

A N M Ra c (le -1) 

Approche numérique

Les équations (2)-( 5) et ( 6)-( 9) ont été résolues en utilisant un code aux volumes finis basé sur la méthode des projections avec des maillages (40, 40) pour les cellules carrées et un maillage de (40, 200) 9), alors [ 'fi( 1 x, A z, t ), I T( 1 x, A -z, t ), 1 C( 1 -x, A z, t)] est aussi solution de ce problème. On ne tiendra compte par la suite que de l'une ou de l'autre de ces deux variantes de solutions non centro-symétriques.

Nous avons procédé, dans une première partie, à la détennination du nombre de Rayleigh critique linéaire en fonction du rapport d'aspect et pour plusieurs valeurs du nombre de Lewis (fig. 2). On confirme numériquement que le groupement Rarl Le -l ) est le paramètre de stabilité effectif du problème.

Nous avons ensuite mis en évidence, en se restreignant à l'étude des solutions de double diffusion sous-critiques ou celles obtenues juste après la perte de stabilité de la solution d'équilibre, les résultats suivants.

Pour A E [ 1, 2,5], on observe une seule solution stationnaire convective monocellulaire sous critique à symétrie centrale et une solution convective tricellulaire centro-symétrique qui se substitue à la solution d'équilibre pour Ra r légèrement supérieur à Ra c -Au voisinage du point de bifurcation, les nombres de Nusselt et de Sherwood croissent de façon parabolique en fonction de Ra r (fig. 3) alors que 'If max croît linéairement.

Pour A > 2,5, nous avons obtenu, pour Ra r et Le fixés, une multiplicité de solutions convectives sous-critiques selon les conditions initiales utilisées.

Pour A = 4, on observe trois solutions stationnaires sous-critiques dont deux à symétrie centrale (types I et 3) et une non centra-symétrique (type 2). Cette dernière solution possède un bassin d'attraction plus important que les deux premières qui ne sont obtenues que pour une variété de conditions initiales particulières.