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Nu111erical simulation of two-and three dirnensional free convection flows in a horizontal porous annulus using a pressure and temperature formulation

1\ numerical investigation of two-dimensional and three-dimensional free convection flows in a saturated porous horizontal annulus heated from the inner surface is carried out, using a Fourier-Galerkin approximation for the periodic azimuthal and axial directions and a collocation-Chebyshev approximation in the confined radial direction. The numerical algorithm integrates the Darcy-Boussinesq's equations formulated in terms of pressure and temperature. This method gives an accurate description of the 2-D multicellular structures for a large range of Rayleigh number and radii ratio. Sorne considerations about the existence of the various 2-D solutions previously described in the literature are reported. The 3-D spiral flows are described in the vicinity of the transition from the 2-D unicellular flows. Bifurcation points between 2-D unicellular flows and either 2-D multicellular or 3-D flows are also determined numerically.

INTRODUCTION

Buoyancy-driven flow and heat transfer in a porous layer bounded by two horizontal isothermal con centric cylinders have been the subject of a number of investigations over the last twenty years. This is due to the relevance of such a geometry in many tech nological applications such as thermal storage systems, cryogenics, underground electrical trans mission lines, nuclear reactors, etc.

Although a large number of papers have dealt with two-dimensional natural convection in a horizontal porous annulus, very few deal with the three-dimen sional free convective fl ows. However, three dimen sional convective flows occur within the porous annu lus for low Rayleigh numbers as demonstrated by Caltagirone [l]. In that investigation, Caltagirone [l] showed that in a cell of large longitudinal aspect rato (A = 20) and radii ratio R = 2, 3-D perturbations appear at the top of the annulus even for low Rayleigh numbers. The presence of these 3-D perturbations increases the overall heat transfer compared to the one obtained for 2-D flows.

The 2-D unicellular flows have been studied by sev eral numerical approaches such as the fi nite difference method (Caltagirone [I], Burns and Tien (21), fi nite element method (Mojtabi et al. [START_REF] Mojtabi | An efficient finite element code for 2-D steady state in a porous annulus[END_REF]) or Galerkin spec tral method (Charrier-Mojtabi and Caltagirone [START_REF] Charrier-Mojtabi | Numeri cal simulation of natural convection in an annular porous layer by spectral method[END_REF], Rao et al. [START_REF] Rao | Steady and transient analysis of natural convection in a horizontal porous annulus with Galerkin method[END_REF] and Himasekhar and Bau [START_REF] Himasekhar | Two-dimensional bifur cation phenomena in thermal convection in horizontal concentric annuli containing saturated porous media[END_REF]). For these flows, some perturbation solutions have been also pro posed (Caltagirone [1] and more recently Mojtabi et al. [START_REF] Mojtabi | Analytical solution of steady natural convection in an annular porous medium evaluated with a symbolic algebra code[END_REF] using a syrnbolic algebra code).

The Galerkin spectral method has been also used by several investigators [START_REF] Rao | Steady and transient analysis of natural convection in a horizontal porous annulus with Galerkin method[END_REF][START_REF] Himasekhar | Two-dimensional bifur cation phenomena in thermal convection in horizontal concentric annuli containing saturated porous media[END_REF][START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF] to describe the 2-D multicellular flows which appear in the annulus for Rayleigh numbers larger than a critical Rayleigh num ber depending on the radii ratio of the two cylinders. Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF], have shown that the Four ier-Chebyshev method gives a better accuracy than the full Fourier-Galerkin method for the description of these 2-D multicellular fl ows. Sorne authors have also studied effects of the eccentricity on the overall heat transfer like Himasekhar and Bau [START_REF] Himasekhar | Large Rayleigh number convection in a horizontal eccentric annulus containing saturated porous media[END_REF].

Experimental studies using the Christiansen effect to visualize the thermal 2-D fi elds have been carried out by Cloupeau et al. [10] for the description of 2-D flows with a cell of longitudinal aspect ratio of A = 0.5 and a radii ratio of R = 2. They only observed uni cellular flows. Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF], with a cell of dimensionless parameters A = 0.5 and R = 2, using the Christiansen effect, have also observed unicellular steady structures and have shown experimentally the physical existence of 2-D bicellular steady structures for Rayleigh numbers higher than 65(± 5), with one small counterrotating cell at the top of the annulus. For Ra* > 65, either a 2-D unicellular flow or a 2-D bicellular flow can be observed for the same value of Ra* and each one of them is stable. In an eccentric annulus, Bau et al. [START_REF] Bau | Numerical simulation of the1mal convection in an eccentric annulus containing porous media[END_REF] have obtained numerically, for the same set of dimensionless parameters ( for example, R = 2, eccentricity of 0.6, Ra* = 200), either an unicellular steady flow or a multicellular convective structure with two small counterrotating cells at the top of the annulus. However, their observations made So, this multicellular flow, which is a mathematical solution of the problem, does not seem to have a physical existence. Since higher heat transport rates are associated with the multicellular flows, it seems important to establish which type offlow is physically realizable.

Stability analysis have been performed in refs. [l, 6]. In ref. [l], the transition between 2-D unicellular flows and 3-D flows with two-dimensional axi symmetrical perturbations depending on r and z (the radial and axial coordinates respectively) were inves tigated. Based on physical considerations, this stab ility analysis has been limited to the upper part of the annular layer and the axisymmetric 2-D disturbances considered were 0 = 0(r) exp(isz) for the temperature and u = u(r) exp(isz); w = w(r) exp(isz) for the vel ocity components in the radial and axial directions respectively (s denotes the wavenumber). In ref. [START_REF] Himasekhar | Two-dimensional bifur cation phenomena in thermal convection in horizontal concentric annuli containing saturated porous media[END_REF], the authors have considered the transitions between the 2-D multicellular flows using 2-D perturbation analysis.

In addition to experimental measurements of tem perature by means of thermocouples, Caltagirone [!] has developed a 3-D fi nite element code, but no sig nifi cant results have been obtained to confi rm the description of the three-dimensional flow patterns. Using a fi nite difference mode!, Fukuda et al. [START_REF] Fukuda | Three-Dimensional Natural Con vection in a Porous Medium Between Concentric Inc/ined Cylinders[END_REF] analyzed the case of inclined annuli, but their results could not be extended to the case of a horizontal annulus. Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Three dimensional convection in a horizontal porous layer[END_REF] ier-Galerkin spectral method to expand the tem perature and the velocity, but only low orders of approximation were considered. ln fact the main numerical results concerning the 3-D flows are due to Rao et al. [START_REF] Rao | A numerical study of three dimensional natural convection in a hori zontal porous annulus with Galerkin method[END_REF]. These authors used the Galerkin method and developed the temperature and the poten tial vector into truncated Fourier series. They described the steady 3-D flows with orders of approxi mation up to 10 x 13 x 5 in r-, <p-and z-directions respectively. Due to the symmetry of the boundary conditions, they assumed that the 3-D flows are sym metrical with respect to the vertical plane containing the cylinders' axis and also with respect to the medium plane normal to the axis. In their study, only one value of the radii ratio, R = 2, was considered for a longitudinal aspect ratio, H = 2, and Rayleigh num bers varying between 60 and 150.

In the same confi guration, but for a fluid medium, some investigations have been made by Cheddadi et al. [START_REF] Rao | Steady and transient analysis of natural convection in a horizontal porous annulus with Galerkin method[END_REF] for 2-D flows, by Rao et al. [START_REF] Rao | Flow patterns of natural convection in hori zontal cylindrical annuli[END_REF] and Vafai et al. [START_REF] Vafai | An investigation of transient three-dimensional buoyancy-driven flow and heat trans fer in a closed horizontal annulus[END_REF] for 3-D flows. The numerical technique used for ail these works was a fi nite difference method.

In the present work, the 2-D and 3-D equations are solved to study in detail the possible free convection regimes in a horizontal porous annulus. Thus, an accurate numerical method, based on a mixed Four ier-Chebyshev approximation, is used with a new for mulation in terms of pressure and temperature. For the 3-D case, this new formulation needs only two variables instead of four required for the classical formulation previously encountered in the literature. Up to 45 collocation points and 135 Fourier modes are used for the developments of the pressure and the temperature solutions to obtain an accurate descrip tion of the 2-D multicellular flows and to analyse the existence of the multiple 2-D solutions. Thus, the criteria of transition between the 2-D unicellular flow and these 2-D multicellular flows are determined numerically, for R , = 2 and R = 2' 12 . For the 3-D case, we are mainly interested in the characterization of the 3-D flows in the vicinity of the transition from the 2-D unicellular flows. Near the transition point, the 3-D flow is quite r, egular, so only orders of approxi mation up to 16 x 16 x 16 have been considered. How ever, the orders of approximation investigated in the present work are higher than those previously used by Rao et al. [START_REF] Rao | A numerical study of three dimensional natural convection in a hori zontal porous annulus with Galerkin method[END_REF]. Severa! values of non-dimensional parameters (R, H) have been investigated (R = 2, H=2;R = 2, H= 1; R=2' 1 2,H = 2) and the critical Rayleigh number of the transition from 2-D unicellular flow to 3-D flow is determined numerically for different sets of radii and longitudinal aspect ratios.

THE rmMERICAL APPROACH

Formulation of the problem

A porous annufa.r layer bounded by two horizontal and concentric cyli111ders of axial length / is considered. The inner cylinder of radius r i and the outer cylinder of radius r 0 are kcpt at uniform and constant tem peratures T i and T, respectively, with T i > T 0 (Fig. !). The porous medium of porosity e and permeability K, is saturated with an incompressible Newtonian fluid of kinematic viscosity v.

This saturated porous medium is equivalent to an artifi cial fluid of heat capacity (pc)* = e(pc) r + (1-e)(pc), and thf:rmal conductivity ,1.*. Two dimen sionless parametcrs characterize the considered geometry : the radii ratio of the two cylinders, R = r 0 /r i , and the longitudinal aspect ratio, A = // r i or H = l/(r 0 -r i ).

In addition to the Boussinesq approximation, sev eral classical assumptions are made to simplify the formulation (i) Darcy's law is assumed to be valid; (ii) the inertia terms and viscous dissipations are neglected;

(iii) the fluid is assumed to be in thermal equi librium with the porous matrix.

The range of validity of the above cited assumptions are analysed in detail in Aniri and Vafai [START_REF] Aniri | Analysis of dispersion effects and non thermal equilibrium, non-Darcian, variable porosity incompressible fl ow through porous medium[END_REF]. From their work it can be seen that the above assumptions can be invoked for a large range of practical appli cations.

Thus, the dimensionless form of the conservation of mass, momentum and energy are given as :

VP+Ra*kT+V=0 (1) (2) (3)
where V, P, and T refer to the velocity, the pressure and the temperature and k = g/ Il gll-The Rayleigh number of filtration, Ra*, is defined as :

R * _ gp(T; -T 0 )(pc)rKr; a -À*v '

where g is the gravitational acceleration, p the coefficient of thermal expansion of the fluid, p its density and (pc) r its heat capacity.

In the present investigation, the 2-D and 3-D flows are assumed to be symmetrical with respect to the vertical plane including the cylinders' axis. This assumption is partially supported by the experimental results for 2D natural convection[!, 8, 10].

Based on the above assumptions, the following boundary conditions are imposed:

V, = 0; T=I, atr=l V, = 0; T = 0, at r = R iJT V<t> = ô </J = 0, at </J = 0,n iJT V 0 = iJZ = 0, at Z = 0,A. (4)
A conformai transformation is then used to shift from polar (r, </J, Z) to cartesian coordinates (X= ln r, Y= </J, Z). The initial domain

[!, R] x [0, n] x [0, A] is then transformed in a cartesian domain : [0, ln R] x [0, n] x [0, A].
Taking the divergence of Darcy's law (equation 2), the velocity term is eliminated and the following transformed pressure and temperature equations are: (

a 2 P a 2 P a 2 P -+ -+exp(2X)- iJX 2 aY 2 az 2 ( iJT iJT ) = Ra* exp(X) cos Y iJ X -sin Y iJ y a 2 T a 2 T a 2 T -+ -+exp(2X)- iJX 2 aY 2 az 2 ( iJT iJT ) = Ra*exp(X)T cos Y iJX -sin Y iJY
) (6) (7) (8) 5 
The set of equations ( 5)-( 6) and boundary con ditions ( 7)-( 9) are also valid for the 2-D steady state if ail the derivatives ô/ôZ and ô 2 /iJZ 2 are equal to zero.

The conformai mapping into a cartesian domain allows an easier use of the spectral method for obtain ing the numerical solution of the problem. However, it should be noted that for the 3-D case, the presence of the term exp(2X) in the laplacian operator (equations ( 5)-( 6)) may induce some numerical instabilities and reduce the efficiency of this transformation.

Numerical procedure: a mixed Fourier-Chebyshev ap proximation

In this section, the mixed Fourier-Chebyshev approximation is only presented for the 3-D case. For the 2-D case, a similar development using a stream fonction and temperature formulation has been used by a Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF].

To solve equations ( 5)-( 6) with the boundary con ditions ( 7)-( 9), the pressure P and the temperature T are expanded in terms of Fourier series in both azimuthal and axial periodic directions and as Cheby shev polynomials in the confined radial direction.

P and Tare then expanded as follows, for the order N,L:

N L P N.L = L Lfn1(X) cos(nY) cos(lnBZ) (10) n=0l=0 N L
T N,L = l -oeX + I I g n1 (X) cos(n Y) cos(lnBZ) n=O 1=0 [START_REF] Bau | Numerical simulation of the1mal convection in an eccentric annulus containing porous media[END_REF] where B = 1/A. Expansions (10) and ( 11) are inserted in equations ( 5) and ( 6 The expressions of the terms C pk and E p k are given in the Appendix. One can notice (equations ( 12)-( 13)) that the treatment of the terms h k exp(x + 1 /rx) and g p k exp(x+ 1/rx) is explicit.

The boundary conditions for the fonctions h k (x) and g pk (x) are: g p k ( -l)=g pk (+ l )=0; 0,:;;,_p,:;;,_N, 0,:;;,_k,:;;,_L J; k ( + 1) = 0; 0 ,:;;,_ p ,:;;,_ N, 0 ,:;;,_ k ,:;;,_ L f�k ( -1) = 0 except j'10 (-l) = Ra*/2oe. ( 14) [START_REF] Rao | A numerical study of three dimensional natural convection in a hori zontal porous annulus with Galerkin method[END_REF] Equations ( 12) and ( 13) are discretized using the collocation-Chebyshev method (Canuto et al. [START_REF] Canuto | Spectral Methods in Fluids Dynamics[END_REF]) with the Gauss-Lobatto points : The values of the fonctions J;,k (x) and 9 pk (x) at the collocation points x 0 and x M -I are deduced from the boundary conditions.

{ x 1 = cos (in/(M- 1 
The linearized version of equations ( 12) and ( 13) are solved using a diagonalization procedure of the Chebyshev second-order derivative operation, D*�L, properly modified to take into account the boundary conditions for the pressure (Neumann conditions) and the homogeneous boundary conditions for the tem perature (Dirichlet conditions) (Haldenwang et al. [START_REF] Haldenwang | Chebyshev 3-D spectral and 2-D pseudospectral sol vers for the Hdmholtz equation[END_REF]). The diagonalization itselfis performed once, for ail in a preprocessing step storage.

A special procedure is used to calculate/ 00 (x) which appears in the devclopment of the pressure P. First, it can be shown that (f rom equation ( 12 

910-

The spectral coefficients of fo o (x) are then evaluated from a recurrent equation using the spectral coefficients of f� o ( x).

To ensure the stability of the numerical scheme a transient form of equation ( 13) is used: where:

ô [gp k ] -[D* 2 -A2J ] [g )-[G ) Of - CL p k pk I is the unity matrix, ( 13') 
and

n i B i i ( x+ 1) z z G pk = --(k exp ---L R )9pk+E p k 4 0'.2 IX
This false transient procedure is not used to analyse unsteady phenomena, but it allows us to introduce in the computations different sets of initial conditions. These initial conditions can induce different steady solutions for the same set of values of the dimen sionless parameters governing the problem.

The time integration is performed with an exponential fi tting scheme of fi rst-order [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF], in the eigenvectors space of the Chebyshev second-order derivative operator, D*� L , which takes into account the boundary conditions for the temperature. If !}7 + 1 indicates the value of i} pk (x;) at the time (n + 1) l':i.t in the eigenvectors space of D*� L , and A; the eigenvalues ofthis operator, the exponential fitting scheme reads: [START_REF] Cheddadi | Free two-dimensional convective bifurcation in a horizontal annulus[END_REF] With the same notations, the diagonalization pro cedure for the pressure leads to:

where A;p are the eigenvalues of the Chebyshev second order derivative operator modified to take into account the boundary conditions for the pressure.

The convergence criterion is based on both the glo bal Nusselt number Nu;, which characterizes the heat transfer rate between the two cylinders, and the local Nusselt number Nu*(Z) calculated in constant Z planes:

Nu _ ; = 1-2� 0 , (x = -1) and ( 16)

L Nu*(Z) = 1-2 L 9�i(x = -1)

cos(lnBZ). 1�0

The convergence of the spectral coefficients, ( m p k and e m p k , is also considered. The convergence test applied to each of 50 iterations is : 

Maxm pk I G, !k' -G,

MUL TICELLULAR 2-D FLOWS ANAL VSIS

Comparison with the results obtained usin g a 'l' T formulation

The results obtained with this new P-Tformulation have been first compared to those obtained using the stream fonction and temperature ('I'-T) formulation [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF]. In both cases, different fl ow structures and iso therms may appear for the same values of Ra* and R depending on the initial conditions introduced in the computations. These initial conditions have been obtained by means of an identification between the development of the temperature using the full Four ier-Galerkin method [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF] and the Fourier-Chebyshev method. Thus the fonctions g "(x) are developed as follows: 9 n (x) = ��-1 b mn sin(mn(x+ 1)/2)) and are computed at the collocation points x;.

In our previous work [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF], it has been shown that the introduction of initial coefficients in the computations bZ = 0.001 'efi,j induced an unicellular fl ow. With ail bi = 0, except b? For ail the cases which were investigated in this work, (Ra* E [10, 350], R = 2' 1 4, 2' 1 2, 2) a very good agreement has been found between the results obtained using the two formulations. With the P-T formulation, the stream fonction is calculated at the end of the computations. The stream fonction q, is represented by : where It can be seen that the pressure field is very weakly affected by the flow structure modifications. This result was observed for ail the cases studied in this work, as the pressure field remained quite stratified despite the free convective fi eld. The same behaviour is observed for natural convection in a horizontal annulus filled with a fluid (Cheddadi et al. [START_REF] Cheddadi | Free two-dimensional convective bifurcation in a horizontal annulus[END_REF]).

N 'l'(X, Y)= L h"(X)sin(nY) (17) n=I ph p (X) = Ra* exp(X)(l-ctX) i5,. p * exp(X) +Ra --2 -( gp_, +g p+ 1 +g,_ p ) -f � (X).

Bifurcation phenomena for R = 2 and R = 2 112: influence of the truncation

The numerical determination of the bifurcation points between the 2-D unicellular flow and mul ticellular flows requires an accurate description of the basic fl ows. In previous work [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF], Charrier-Mojtabi et al. have shown that 30 collocation points are sufficient to describe ail the fl ow configurations, while 80 Four ier-modes in the </>-direction are barely sufficient for the description ofmulticellular flows. Previous investi gators [START_REF] Rao | Steady and transient analysis of natural convection in a horizontal porous annulus with Galerkin method[END_REF][START_REF] Himasekhar | Two-dimensional bifur cation phenomena in thermal convection in horizontal concentric annuli containing saturated porous media[END_REF] have determined these 2-D multicellular fl ows using only low orders of approximation, not exceeding 20 x 20 with the full Fourier-Galerkin method. So, in this section, higher orders of approxi mation, up to M = 45 collocation points in the radial direction and N = 135 Fourier modes in the azimuthal direction have been considered.

The calculations were first performed to charac terize the transition between the 2-D unicellular � ow and the 2-D bicellular flow observed exper-1mentally by Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF] for R = 2 and for a large range of Ra*. The average Nusselt numbers for those two flows are reported in Table 1 and the corresponding curves Nu*g = F(Ra*) are plotted in Fig. 3.

The process of determination of the bifurcation points is shown in Fig. 3. From a converged 2-D bicellular solution obtained using initial conditions specified in Section 3.1, the Rayleigh number is decreased step by step and the converged steady-state solution is used as initial condition for the next step. This process is continued until the 2-D bicellular fl ow transits to a 2-D unicellular one. The lower branch of Fig. 3 is obtained by increasing the Rayleigh number, the first calculation using initial conditions inducing a 2-D unicellularflow. One can notice that the difference between the global Nusselt number of the two modes decreases continuously to zero when the Rayleigh number is closed to the critical value and that no hysteresis loop has been obtained as mentioned by Barbosa et al. [START_REF] Barbosa | Natural convection in porous horizontal cylindrical annulus[END_REF]. Thus, the critical value of the Rayleigh number corresponding to this transition, for R = 2, is: 60.5 <Rat< 61.5. This value, determined with the order of approxi mation of 30 x 95, is lower than the value obtained numerically by Rao et al. using the Galerkin method at low approximation [START_REF] Rao | Steady and transient analysis of natural convection in a horizontal porous annulus with Galerkin method[END_REF] (Rat= 65.5 ± 0.5) and close to th � one obtained, with a linear stability analysis, by Hlmasekhar and Bau [START_REF] Himasekhar | Two-dimensional bifur cation phenomena in thermal convection in horizontal concentric annuli containing saturated porous media[END_REF] (Rat� 62).

For the case R = 2' 1 2, the results are reported in Table 2. The critical Rayleigh number obtained for this transition, using an order of approximation of 30x95,is: 111.5 < Rat< 112.

Himasekhar and Bau [START_REF] Himasekhar | Two-dimensional bifur cation phenomena in thermal convection in horizontal concentric annuli containing saturated porous media[END_REF] using a linear stability analy sis, found Rat� 112. However, using another method ,------------------- based on the analysis of the convergence of the regular perturbation expansion Nu:= f(Ra* 2 ), these authors found a critical Rayleigh number of Rat= 120 ± 3.

So, considering a higher order of approximation leads to a more accurate determination of both the solutions and the transition points.

Our numerical analysis shows the existence of two stable solutions for Ra* > Rat, for R = 2 and R = 2 112• For these two values of R , Himasekhar and

Bau [START_REF] Himasekhar | Two-dimensional bifur cation phenomena in thermal convection in horizontal concentric annuli containing saturated porous media[END_REF] have shown that the Joss of uniqueness occurs as a result of the appearance of an isolated solution branch and that the two branches of solution (2-D unicellular and bicellular) are linearly stable which is in good agreement with our numerical results. Then, they show that these two branches of solution Jose their stability via a Hopf bifurcation for high Rayleigh numbers. On the contrary, for R = 2 114 and 2 118 , these authors have shown that the transition between the 2-D unicellular fl ow and 2-D multicellular flow occurs via a perfect bifurcation: one solution branch !oses stability while another one gains it.

On the existence of the 2-D tricellular jiow for R=2

Then, the same process was utilized to investigate the transition between the 2-D unicellular and the 2-D tricellular flows. However this led to some diffi culties. Figure 4(a obtained for Ra* = 300. For Rayleigh numbers higher than 350 oscillating flows occur.

So, for R = 2, a 2-D tricellular fl ow appears for lower order approximations, but this flow disappears for higher order approximations (see Table 3 for Ra* = 200), while the 2-D bicellular flow subsists for higher order approximations. These numerical results appear to agree with experimental visualizations of the thermal fi eld using the Christiansen effect and presented in previous work [START_REF] Charrier-Mojtabi | Numerical and experimental study of multicellular free convection fl ows in an annular porous layer[END_REF], for which 2-D bicellu lar structures have been observed while 2-D tricellular flows have never been observed (for the case R = 2).

For this case, the tricellular flow is only a math ematical solution which is linearly unstable. In this work, the steady solutions are obtained through a time evolution. The numerical residue of the temporal discretization can be seen as an infinitesimal per turbation of the system. Thus, this method allows only to keep the linearly stable solutions, steady or not. Recent mathematical developments proposed by [START_REF] Dijkstra | On the structure of cellular solutions in Rayleigh-Benard-Marangoni fl ows in small aspect ratio containers[END_REF] using a Newton method, allow the calculation of lin early unstable solutions. 

ANAL vms OF THE 3-D FLOWS

One of the interests ofthis new 2-D P-Tformulation is due to the fact that it may be naturally extended to a 3-D one. However, as it has been indicated in Section 2.1, the presence of the term exp(2X) in the Laplacian operator (equations ( 5) and ( 6)), for the 3-D case, induces numerical instabilities. These instabilities are due to the time step necessary for the iterative process to converge to the steady solution [START_REF] Fletcher | Computational Techniques for Fluids Dynamics[END_REF]. The explicit treatment of the terms _[p i X) exp(2X) and g P i X) exp(2X) penalizes this last. However, when low orders of approximation are considered, the time step remains acceptable in order that the system converges to the expected steady state. Therefore, the 3-D study has been limited to low orders of approximation up to Mx Nx L = (16) 3

• The same two values of R have been considered, i.e. R = 2 and R = 2 112 , while the longitudinal aspect ratio, H, was varied between 0.5 and 2. Calculatiom have been made with Rayleigh numbers close to the critical value of the transition between the 2-D unicellular flow and the 3-D flow. For these values of Ra*, the flow is still predominantly two dimensional except at the upper part of the layer and approximation Mx N x L = (16) 3 is sufficient to describe the 3-D effocts. The influence of the order of approximation on the solution is reported in Table 4, for the case R = 2, H = 2: it can be seen that the change of the approximation from 16 x 12 x 12 to 16 x 16 x 16 induce:; Jess than 6%0 change in the mean Nusselt number for Ra* varying from 60 to 100 and a change of 2.5% for Ra* = 120.

Structure of the 3-D spiralfiows and temperature fields

If the initial conditions correspond to 3-D per turbations oriented in axial direction (Z), then 3-D spiral flows are generated for values of Ra* larger than a critical value, Rat. This critical value, which depends on Rand H, has been determined numerically for two sets of values of R and H.

Figure 5 shows the isothermal lines in r-Z planes for R = 2 and H = 2 and for Ra*= 100. The thermal fi eld at the top of th� annulus (Fig. 5(a)) is very similar to the one observed for a horizontal porous layer A graphical software has been used to visualize the 3-D velocity fi eld. On Fig. 7, the velocity field is reported for Ra* = 100, R = 2, H = 2 in planes <P = 0 ° (Fig. 7 field is plotted in a r-section near the outer cylinder and in two Z-sections, symmetrical with respect to the vertical midplane (Fig. 7(e)). These results are in good agreement with those obtained by Rao et al. [START_REF] Rao | A numerical study of three dimensional natural convection in a hori zontal porous annulus with Galerkin method[END_REF].

The results obtained for the case R = 2 112 and H = 2, are qui te close to those obtained for R = 2 and H = 2 and thus are not presented here. For the case R = 2 and H = 1, the isothermal lines show the pres ence of one cell at the top of the annulus extending in the axial direction (Fig. 8). This result confirms the influence of the longitudinal aspect ratio, H, on the development of three dimensional axial disturbances which governs the number of cells along the axial direction.

Transition between 2-D and 3-D convection regime

For a given set of values of R and H, a critical value of the Rayleigh number exists for which the 2-D unicellular flow and the 3-D flow have the same heat transfer rate. The determination of this point requires a special procedure. From a converged 3-D solution, Ra* is decreased step by step. For each step, the converged steady state solution is calculated and used as initial condition for the next step. When the critical value Rat is reached, the 3-D flow converges slowly to a 2-D unicellular one. Near this point a great number of iterations is required to obtain the converged solution. For R = 2 and H = 2, the average Nusselt numbers for the two flows are reported in Table 5. As can be seen in this table, the transition between the 2-D unicellular flow and the 3-D flow corresponds to : 55 < Rat< 60. For the case R = 2 112 and H = 2, the results are reported in Table 6. We find that Ra: is between 90 and 100 which agrees with the results of the linear stability analysis of Caltagirone 

Influence of the .fiow pattern on the heat transfer rate

For R = 2 and H = 2, the heat transfer rate expre ssed by the average Nusselt number plotted as a fonc tion of the Rayleigh number is represented in Fig. 9, for the 2-D unicellular and bicellular flow, and for the 3-D flow. As it might be expected, the 3-D spiral fl ow produces a higher heat transfer rate than the 2-D unicellular one. However, the difference obtained is rather small. It can also be seen that the heat transfer rate for the 3-D flow is smaller than the 2-D bicellular one. These results agree with the numerical results reported by Rao et al. [START_REF] Rao | A numerical study of three dimensional natural convection in a hori zontal porous annulus with Galerkin method[END_REF]. For the 3-D case a good agreement is found with the experimental results of Caltagirone [START_REF] Caltagirone | Thermoconvective instabilities in a porous medium bounded by two concentric horizontal cylinders[END_REF] obtained for R = 2 and H = 20, due to the periodicity of the fl ow a]ong the axial direction.

To complete this study, more computations have to be done to allow us to predict the fl ow (2-D mul ticellular fl ow or 3-D flow) that will set in after the 2-D unicellular one when the Rayleigh increases for a given value of the couple (R, H). The stability analysis performed in refs. [START_REF] Caltagirone | Thermoconvective instabilities in a porous medium bounded by two concentric horizontal cylinders[END_REF] and [START_REF] Himasekhar | Two-dimensional bifur cation phenomena in thermal convection in horizontal concentric annuli containing saturated porous media[END_REF] don't allow us to forecast which fl ow will take place. For the case of narrow gaps (R « 2 112

), Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Stabilité des écoulements de convection naturelle en espace annulaire poreux horizontal[END_REF] using an analytical analysis, has determined a criterion for which a 2-D multicellular structure can appear before a 3-D one.

CONCLUSION

A numerical investigation of natural convection in a saturated porous horizontal annulus using a pres sure and temperature formulation and a mixed Four ier-Galerkin-collocation-Chebyshev method is pre sented. Experimental studies to determine the onset of the different flows (2-D unicellular or multicellular, 3-D) are not easy to carry out. So, numerical exper imentation and/or stability analysis are used to inves tigate ail these problems where multiple solutions appear. In this study, the 2-D multicellular fl ows have been analysed using high orders of approximation. Thus an accurate evaluation of the critical Rayleigh number for the transition between the 2-D unicellular flow and these flows, has been done for R = 2 and R = 2 112• For the case R = 2, the computations show that the 2-D tricellular fl ow is unstable and changes, after a long period of time, towards the 2-D unicellular one. The mixed Fourier--Chebyshev method is con ceptually more adapted than the full Fourier-Galer kin method, used in the previous works, to analyse the multiple mathematical solutions of the problem.

For the 3-D flows, the study has been limited to low orders of approximation, due to the resulting instabilities involved by the presence of the exp(2X) term in the governing equations. Therefore, only 3-D fl ows close to the transition region, 2-D unicellular flow-3-D fl ow, have been considered. For these flows, the approximation used in the present work, MxNxL =(16) 3 , is sufficient to describe the 3-D effects. The numerical results show the complex 3-D spiral fl ow patterns where 3-D effects are localized at the top of the annulus. For R = 2, H = 2 and R = 2 112 , H = 2, the bifurcation point between the 2-D uni cellular flow and the 3-D fl ow has been determined numerically. A good agreement was observed with both experimental results and stability analysis results ofCaltagirone [START_REF] Caltagirone | Thermoconvective instabilities in a porous medium bounded by two concentric horizontal cylinders[END_REF] for the case R = 2. However, higher orders of approximation must be considered to describe these 3-D fl ows for higher Rayleigh numbers. For the 3-D case, the hypothesis of symmetry with respect to the vertical plane including the axis of the two cylinders seems to be too restrictive. The author also believes that stability analysis are still necessary to understand the complete physical mechanisms of the transition from the 2-D unicellular flow towards either a 2-D multicellular or a 3-D flow.

NOMENCLATUREA

  = !/r i longitudinal aspect ratio of the cell g gravitational acceleration H = l/(r 0 -r i ) longitudinal aspect ratio based on the thickness of the layer K permeability of the porous matrix M, N, L order of approximation / axial length of the cell Nu; global Nusselt number P dimensionless pressure r coordinate in radius direction scaled by r i r i , r O inner and outer cylinder radii R ratio of the outer to the inner radius Ra* Rayleigh number of fi ltration: T Ra* = (gfJ (1;-T 0) ( pc)rKri) / Â*v dimensionless temperature inner and outer cylinder temperatures transformed coordinate, ln(r) transformed coordinate, <p in a Hele-Shaw cell demonstrate the existence of only unicellular structures. They attempted to artifi cially induce multicellular flows, but the multicell structure observed turned out to be unstable and after a period of time the unicellular flow regime was reconstructed.

1 .Fig. 1 .

 11 Fig. 1. Physical confi guration and coordinates system.

Y

  = 0, n : 0 y = 0, iJ y = 0; ôP ôT Z = 0, A : iJZ = 0, az = O.

  ), which are then properly projected on the Fourier basis fonction. If Res N ,L denotes the residue of order N, L, the projections are : (Res N _L(P),cos(pY) cos(knBZ)> = 0 0,:;;,_p ,:;;,_N; o,:;;,_k,:;;,_L (Res N _L(T), cos(p Y) cos(knBZ) > =O o,:;;,_p,:;;,_N; o,:;;,_k,:;;,_L. The fonctions h k and g pk are thus solutions of the second-order differential system: (12) (13) where x = 2oeX -l ; x E [ -1, + 1]

  )), i=O .. . M-1}. Near the boundaries x = -1 (i.e. r = 1) and x = + 1 (i.e. r = R) : this denser grid system ensures an accurate description of the radial boundary layers. The fonctions J;, . t(x) and 9 P ix) are expanded into truncated series of Chebyshev polynomials: M J;,k (x ) = L Çmpk Tm _, (x) m=l and M 9 p k (x) = L e mpk Tm -1 (x) m=I where Tix) = cos (k arccos x). With the collocation-Chebyshev method, ail the computations are made in the physical space. Thus the unknowns are not the spectral coefficients ç mpk and e m pk , but the values of the fonctions J;, ix) and 9 P ix) at the collocation points {x; = cos(in/(M-1)), i=O ... M-1}: [ J;,k] = [J;,,(x , ), J;,k (x 2 ), ... J;,k (x M_ z)] and [gpk] = [g pk (x , ), 9 p k (x 2 ), .. -9 p k (x M_z )]

  )) , Ra* exp((x+ 1)/20'.) , foo (x) = 2 (2 1X 9 10 +9 10 ) -81X Next, integrating the above equations results: , Ra* exp((x+ 1)/21X) f oo (x) = 4 0'.

  p k 1 < b Maxm p k I C, !/ 1 with b = 5 10-4 for the 3-D case and b = 10-4 or 10-5 for the 2-D case (depending on the value of R and Ra*).

  3 = -0.1, b? 4 = +O.!, b?s = -0.1, a bicellular flow is obtained and with the set: ail bf; = 0, except b? 6 = -0.2, b? 7 = +0.2, b? 8 = -0.2, b? 9 = + 0.2 a tricellular fl ow is induced.

Figure 2 (

 2 Figure 2(a), (b) and (c) shows the isotherms on the right and the pressure fields on the left, for the case Ra* = 200 and R = 2. For this configuration, with the approximation Mx N = 30 x 30, a 2-D unicellular (Fig. 2(a)), bicellular (Fig. 2(b)) or tricellular flow (Fig. 2(c)) can be obtained. The fl ow configuration consist of one, two or three cells on half the domain respectively. These figures can be compared to Fig'. 2(d), (e) and ( f), obtained with the 'l'-T formulation for the same Ra* and R combination and the same set of initial solutions.It can be seen that the pressure field is very weakly affected by the flow structure modifications. This result was observed for ail the cases studied in this work, as the pressure field remained quite stratified despite the free convective fi eld. The same behaviour is observed for natural convection in a horizontal annulus filled with a fluid (Cheddadi et al.[START_REF] Cheddadi | Free two-dimensional convective bifurcation in a horizontal annulus[END_REF]).

Fig. 2 .

 2 Fig. 2. Ra* = 200, R = 2. Pressure fi eld and isotherms: (a) 2-D unicellular flow; (b) 2-D bicellular flow; (c) 2-D triccllular fl ow. Streamlines and isotherms: (d) 2-D unicellular flow ; (e) 2-D bicellular flow; ( f) 2-D tricellular flow.

4 -Fig. 3 .

 43 Fig. 3. Bifurcation point 2-D unicellular flow to 2-D bicellu Jar flow for R = 2 (Mx N = 30 x 95).

Fig. 4 .

 4 Fig. 4. Nu:= f(t) for Ra* = 200, R = 2: (a) 2-D bicellular fl ow; (b) 2-D tricellular flow.

Fig. 5 .

 5 Fig. 5. Isothermal lines in planes (a)</J = 0 °; (b) cp = 30 °; (c) </J = 60 °; (d) </J = 90 °. Ra* = 100, R = 2, H = 2.

  (a)), <P = 10 ° (Fig. 7(b)), and </J = 20 ° (Fig. 7(c)). In accordance with the thermal fi eld, the flow at the top of the annulus is similar to a couple of Benard cells in a horizontal porous layer. The spiral aspect of this 3-D flow clearly appears in planes <P = 10 ° and </J = 20 °. The cellular flow becomes weaker at lower planes for <P > 60 °. The fl ow remains then qui te 2-D as indicated in Fig. 7 ( d) where the fl ow

Fig. 6 .

 6 Fig. 6. Isothermal lines in planes: (a) Z = 0; (b) Z = H/4; (c) Z = H/2. Ra*= 100, R = 2, H = 2.

Fig. 7 . 3 -°Fig. 8 .

 738 Fig. 7. 3-D velocity fi eld for Ra* = 100, R = 2, H = 2.

Fig. 9 .

 9 Fig. 9. Comparison between average Nusselt numbers for 2-D flows and 3-D flow R = 2; H = 2.
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		Nu: unicellular	Nu: bicellular
	Ra*	flow	flow
	55	1.397	
	60	1.451	
	61.5	1.468	1.482
	62.5	1.479	1.508
	65	1.506	1.562
	70	1.560	1.657
	80	1.666	1.807
	100	1.867	2.053
	120	2.053	2.269
	150	2.309	2.544

Table 2 .

 2 Transition frorn 2-D unicellular fl ow to 2-D bicellu lar fl ow, for R = 2 112 ; Mx N = 30 x 95

		Nut unicellular	Nu: bicellular
	Ra*	fl ow	fl ow
	100	1.0791	
	105 107 109	1.0866 1.0886 1.0916	
	110 110.5 Il l	1.0933 1.0943 1.0948	
	111.5 I 12	1.0956 1.0964	1.1014
	I 15	1.1013	1.1208
	120	1.1096	1.1455

Table 3 .

 3 Analysis of the tricellular flow for R = 2: influence of the order of approximation

	Ra*	M	N	Nu:	Flow
	200 200 200 200 200 200 200	16 20 30 40 20 30 45	16 20 30 40 80 95 135	2.98-3.02 2.683 3.001 2.995 3.000 2.681 2.679	Tricellular Unicellular Tricellular Tricellular Tricellular Unicellular Unicellular

Table 4 .

 4 Influence of the orders of approximation Mx N x L:

			R=2,H=2	
	Ra*	M	N	L	Nu:3-D flow
	60	16	12	12	1.471
	60 75	16 16	16 12	16 12	1.479 1.707
	75	16	16	16	1.716
	100 100	8 16	8 12	8 12	1.879 1.953
	100	16	16	16	1.960
	120	8	8	8	1.984
	120	16	12	12	2.169
	120	16	16	16	2.120

Table 5

 5 

		. Transition from 2-D unicellular flow to 3-D flow,
		for R = 2; H= 2; MxNxL = 16x 16x 16
		Nu: 2-D unicellular	
	Ra*	flow	Nu:3-D flow
	40	1.234	
	45	1.289	
	50	1.343	
	55	1.397	
	60	1.451	1.479
	75	1.615	1.716
	100	1.867	1.960
	120	2.053	2.120
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APPENDIX

The expressions of the terms C P ix) and E P ix) of equations ( 12) and ( 13) are issued from the corresponding terms expre ssed with the variable X and denoted respectively C;k(X) and E; k(X) : 

(' J: ,k-, f ' f ' )

-T + n,r-k + n,k+r

• ( u;-n., , , )

T +g p +n.,+Un-p ., ( f..k -, f, f, )

-n T + n.,-k+ n.k+,

*(( n +p)g p +n,, + ( n -p)g n-p.,-( p-n)g p-n.,)

-e 2x (B,_,J;,_,-k + Bk+,J,..k+, -Bk_,f,._k-,)

• ( Up-n., ) B ] _

Ô

_ t

_ +g p +n.,+Un-p ., , ô 1 = ½ for p = 0 and <'i 1 = 1 for p > 0, ô 2 = ½ for k = 0 and ô2 = 1 for k > 0 B , = rnB '<lrE N the symbol D is defined as follows:

Df mn =f:.. n -(m 2 + B;e 2x ) f--