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Abstract. The Semantic Web of Things enhances the Internet of Things
with Web technologies as well as Knowledge Graphs and reasoning. Tra-
ditional reasoners are too heavy in terms of memory footprint and/or
processing time to be implementable on things. In this work, we present
LiRoT, a lightweight incremental reasoner that can be embedded in con-
strained objects, so that reasoning on them in a fog architecture becomes
possible. The focus of this work is to reduce drastically memory footprint
while paying attention to processing time, hence usual optimization tech-
niques are not fully adequate. We provide evaluations that (i) compare
our system to the state of the art and (ii) show the effective benefits of
the different optimizations we have implemented.

Keywords: Semantic Web · Reasoning · Web of Things · Embedded
systems · Optimization

1 Introduction

Today, more and more applications require a connection to the physical world to
capture information from the environment as well as to act on it. The Internet
of Things provides answers to such needs by connecting sensors and actuators to
computers; the Web of Things (WoT) intends to do it using the Web standards;
and the Semantic Web of Things (SWoT) enhances the WoT by adding the
expressive power of Knowledge Graphs as well as reasoning capabilities. At the
same time, the huge number of things and the total volume of produced data
has raised the need for distributed edge and fog architectures [22] where data
are processed as close as possible to their production and consumption locations.
Fog computing architectures can involve different types of nodes. Some of these
fog nodes might have limited amounts of energy or/and bandwidth. Reasoning
on devices with limited resources, such as microcontroller-based4 ones, will be
an important enabler for reasoning in such architectures. It is obvious that very
small microcontrollers with a few kilobytes of RAM will not be able to process

4 Microcontrollers are small processing units designed to run embedded applications,
in contrast to more powerful microprocessors that can execute general purpose ap-
plications.



2 A. Bento et al.

highly expressive reasoning tasks about very large datasets, and that enabling
semantic reasoning on constrained devices is a matter of trade-offs. Nevertheless,
significantly useful tasks such as classification using subsets of RDF-S5 can be
performed on devices with around 100 KB RAM and 100 MHz clock speed.
However, modern state-of-the-art reasoners are optimized for speed and high
data volumes and many of the optimizations on which they rely (e.g. exploiting
multiple cores and highly parallel architectures) are not usable on such devices,
so that finally none of them seems to fit for edge/fog reasoning.

Focusing on typical SWoT use cases on such architectures, the application,
ruleset and ontology are usually known in advance. Hence, they can be flashed
on the device (we herein assume there is enough room for that). Whilst running
the application, sensor data that arrives periodically should be processed on the
fly. Given our fog architecture assumption, we focus on a scenario where small
data quantities issued by one or a few sensors require to update the reasoner’s
internal state. For example, in the CoSWoT6 project, we target applications
such as field watering or frost prevention that are based on temperature and
humidity data provided for each field a couple of times each day, and that can
rely on decisions made locally for each field (more details in our use case7).
W3C WoT use cases also highlight connectivity and autonomy constraints in
edge architectures8, making reasoning on edge nodes relevant. We herein choose
to process data incrementally [14] rather than as stream [4], to avoid the need
for the reasoner to handle time or data windows.

In this work, we present LiRoT, a lightweight incremental reasoner that can
be embedded in resource-constrained nodes of fog architectures. Starting from
the well known RETE algorithm, we propose specific improvements that target
the above SWoT use cases. The focus of our work is thus mainly on memory
frugality, while also considering algorithmic optimization.

The paper is organized as follows. Section 2 reviews previous works on incre-
mental reasoning optimizations and discusses their adequacy to SWoT; it also
describes the classic RETE algorithm. Section 3 presents the proposed optimiza-
tions for LiRoT, a SWoT-compliant RETE-based reasoner. Section 4 presents
two sets of evaluations, (i) to compare our reasoner to state of the art systems
and (ii) to show the effects of the implemented optimizations. Section 5 discusses
the results and describes optimizations that were experimented but did not im-
prove performance. Section 6 concludes and sketches future directions for our
work.

2 Related work

In this section, we review the different works that can be applied to perform rea-
soning tasks with a focus on small devices. Given the strongly constrained envi-

5 https://www.w3.org/TR/rdf-mt/#rdfs_entailment
6 https://coswot.gitlab.io/
7 https://www.w3.org/TR/wot-usecases/#Agricultural-irrigation
8 https://www.w3.org/TR/wot-usecases/#edge-computing

https://www.w3.org/TR/rdf-mt/#rdfs_entailment
https://coswot.gitlab.io/
https://www.w3.org/TR/wot-usecases/#Agricultural-irrigation
https://www.w3.org/TR/wot-usecases/#edge-computing
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ronments on which we intend to deploy our work, we herein focus on lightweight
reasoning algorithms, namely rule-based ones. The OWL 2 RL profile9 has been
designed to foster the use of rule-based reasoners. The foundations of how and
why to combine rules with ontologies for the Semantic Web are addressed in De-
scription Logic Programs (DLP) [8], which bridge the gap between knowledge
representation (KR) and in particular DL and LP10. Moreover, in order to allow
their deployment on constrained environments, we herein restrict to subsets of
the OWL 2 RL ruleset and the RDF-S entailment list11.

2.1 The RETE algorithm

A rule-based reasoner applies rules to the facts12 contained in a knowledge base
(KB) to produce new knowledge, and loops over the set of initial and produced
knowledge until no new knowledge is issued. In the reasoning field, the facts that
were already present in the KB at the beginning of this loop are called explicit
facts, and those that have been inferred during the loop are called implicit facts.

Root

?v owl:someValuesFrom ?w ?v owl:onProperty ?p ?u ?p ?x ?x rdf:type ?w

?v = ?v

?p = ?p

Conflict set

fire

α nodes

β nodes

?x = ?x

?w = ?w

Fig. 1: Example of a RETE network for rule cls-svf1 from the OWL 2 RL
profile: (?v owl:someValuesFrom ?w) ∧ (?v owl:onProperty ?p) ∧ (?u ?p ?x) ∧

(?x rdf:type ?w) → (?u rdf:type ?v)

The RETE [6] algorithm is one of the most well-known algorithms to process
rulesets over a KB. Rules are represented with a trie structure called the RETE
network. A RETE network is composed of two main layers (see example on
Figure 1):

9 https://www.w3.org/TR/owl2-profiles/#OWL_2_RL
10 https://en.wikipedia.org/wiki/Logic_programming
11 https://www.w3.org/TR/rdf11-mt/#entailment-rules-informative
12 As we herein consider the KB as being an ontology expressed in OWL 2 RL under

RDF-based semantics, facts are RDF triples.

https://www.w3.org/TR/owl2-profiles/#OWL_2_RL
https://en.wikipedia.org/wiki/Logic_programming
https://www.w3.org/TR/rdf11-mt/#entailment-rules-informative
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– The alpha nodes: each alpha node is associated with an atomic condition in
a rule (e.g. ?x rdf:type foaf:Person), and performs a match operation over the
whole knowledge base (i.e. explicit and implicit facts). Alpha nodes contain
alpha memories, which store the facts that match the node’s condition. An
alpha node is related to a single rule, even if a same condition is shared by
multiple rules. An alpha node has a single output edge, that leads to a beta
node.

– The beta nodes: beta nodes perform join operations between two nodes.
Beta nodes can be placed either after two alpha nodes, or after a beta and
an alpha node if the associated rule has more than two conditions (then join
operations are performed sequentially). Beta nodes contain beta memories,
that store variable substitutions that are compatible with the node’s parents.
A beta node has exactly two input edges and one output edge.

2.2 Incremental reasoning

SWoT use cases imply multiple data insertion and deletion steps to reflect the
state of dynamically changing physical environments. When data evolves over
time, explicit facts may need to be inserted in and deleted from a reasoner.
Implicit facts derived from them also need to be updated. To tackle this issue,
incremental maintenance allows insertion and deletion of explicit facts without
re-performing the materialization operation from scratch.

The RETE algorithm natively supports incremental maintenance using two
adaptations. Incremental insertion is managed by splitting alpha memories into
two parts: new facts and already-processed facts. Deletion is managed by adding
a data structure inside alpha and beta nodes to connect implicit facts with the
explicit facts they come from. This is traditionally done using lists, although a
tree structure is also possible [5].

Jena [3] is a reference rule-based OWL reasoner based on RETE that imple-
ments the DL subset of the first OWL specification. It provides an easy-to-use
API for Java programmers and has been widely used as such. However, all con-
strained objects do not support this language, and especially a garbage-collecting
function, so it is out of scope for the field of SWoT and embedded reasoning.

CLIPS13 [12] is a widely used expert system tool. It uses a complete object-
oriented language for writing expert systems. It employs the RETE algorithm
for reasoning. However, RDF triples are not supported natively by CLIPS. Other
tools, such as R-DEVICE [1], are needed to import RDF into CLIPS.

The Delete/Rederive (DRed) algorithm [10] handles deletion. It first over-
deletes all implicit facts that depend on the deleted facts. Then it rederives
the implicit facts that can be inferred another way. Rederivation is iteratively
applied. Some other works use a variant of the DRed algorithm, for example in
[19].

13 http://www.clipsrules.net/

http://www.clipsrules.net/
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For supporting incremental reasoning, RDFox [13] uses a backward-forward
algorithm. Unlike DRed that searches after over-deletion, the backward-forward
algorithm uses an approach that first searches for the alternative derivations.
This is done by using a combination of backward and forward chaining.The in-
duced performance gain is particularly visible with implicit facts that are derived
from numerous chained deductions (e.g. rdfs:subClassOf). GraphDB14 uses the
same approach. RDFox has a high memory footprint (especially due to a high
number of indexes) and is optimized for architectures that allow parallel com-
puting, hence it is not designed to be embedded in constrained devices.

HyLAR+ [17] is an incremental reasoner implemented in JavaScript and tar-
geting Web applications, which has been improved with a so-called “tag-based”
approach [18], that allows for fastly performing multiple fact insertion/deletion.
This approach is inspired from that initiated by [7] on improving reasoning about
evolving versions of ontologies. The general idea is to keep trace of previous rea-
soning computations originated by changes in the graph, in order to respond
more quickly to similar changes in the future. The drawback of this approach
is that it requires to store history as extra information, which is therefore not
suitable for memory-constrained devices.

2.3 Embedded Reasoning

Many existing semantic reasoners are too resource-intensive to be directly ported
on resource-constrained devices such as objects or sensors. Only a few works
embed reasoning in constrained devices. Some of them are designed for mobile
phones and not for more constrained devices. For example, [2] studied port-
ing Description Logics (DL) reasoners on mobile Android-based devices. It is
worth noting that smartphones have much higher computational capabilities as
compared to the devices we target.

An OWL reasoner for embedded devices was proposed in [15], it is based
on CLIPS. They considered OWL 2 RL. Their system was implemented and
tested on Gumstix Verdex Pro which has 400 MHz CPU, 64 MB RAM, and
16 MB Flash. Note that in our work, we are targeting embedded devices that
have several orders of magnitude less RAM (around 500 KB).

RETEpool [20] is a RETE-based reasoner that aims to reduce its memory
footprint by reducing data duplication during rule based reasoning, while specif-
ically considering OWL 2 RL. To do so, it uses one shared memory for all alpha
nodes in the network. This way, duplicates are eliminated during insertion. In
cases where a RDF store is used along the reasoner, another level of duplication
is removed by using this store directly as the RETE memory, each alpha node
having references to triples contained in the store. This saves memory, at the
cost of speed degradation. Their experiments were conducted on smartphones
and laptops.

14 https://graphdb.ontotext.com/documentation/free/reasoning.html#

retraction-of-assertions

https://graphdb.ontotext.com/documentation/free/reasoning.html#retraction-of-assertions
https://graphdb.ontotext.com/documentation/free/reasoning.html#retraction-of-assertions


6 A. Bento et al.

Another work based on the RETE algorithm is called COROR [16]. It uses the
following composition algorithms to reduce memory consumption. It selectively
loads only the rules that are required, by creating a rule-construct dependencies
set. Next it decomposes the RETE algorithm in two phases. The first phase
does an initial matching. Then the next phase builds the next part of the RETE
network using statistics collected from the first phase, that allow to reorder rules
and conditions according to their selectivity (the most selective conditions are
matched first; this optimization is well-known in database management systems,
for ordering join operations). The first cycle is then completed by joining the facts
obtained from the first phase. Results show that COROR reduces the memory
footprint by 74% on average. COROR also uses rewriting for rules that are known
to be resource–and time–consuming, such as rules involving owl:sameAs and
wildcard conditions. COROR was experimented on a SunSPOT platform, which
has a similar memory size to our target platforms but uses the Java language.
These experiments showed very low speed: they reported 1561 seconds to process
the WINE ontology that contains 1833 triples with the ρD* ruleset.

This state of the art has shown that the proposed reasoners of the literature are
not well suited to be run on microcontroller-based platforms. Nevertheless, they
include some optimization proposals that target memory footprint. The next
section will present how we obtained a reasoner that can be run on platforms of
the Arduino family, by extracting the best ideas of the literature and adapting
them to this specific context.

3 LiRoT: improving RETE for the SWoT

We propose optimizations over the traditional RETE algorithm. These optimiza-
tions are built with the objective to be embeddable on platforms like Arduino or
ESP32 architectures. So they are focused on memory footprint, as it is a strict
criterion for such platforms. We also pay attention to processing time, checking
that it remains within acceptable bounds.

3.1 Term indexing

To save memory, we use an index over the terms within the reasoner. Various
implementations exist in the literature, relying on data structures such as linked
lists, arrays or binary search trees. A hash table can also be used to do this in an
efficient manner: indeed, on average, a hash table has a linear space complexity,
and constant time complexity for insertion, search and deletion, which is better
than the previously cited data structures. Hence we chose this option to make a
term index.

3.2 Merging alpha memories

Alpha memories have already been the place for optimization of the RETE algo-
rithm, like in RETEpool where all alpha memories are merged into one common
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memory. Here, to optimize smartly the RETE algorithm memory footprint, we
merge memories of alpha nodes that share a syntactically similar rule condition.

Let c1 = (s1, p1, o1) and c2 = (s2, p2, o2) be two conditions. c1 and c2 are
similar if either:

– s1 and s2 (resp. p1 and p2, o1 and o2) are variable terms
– s1 and s2 (resp. p1 and p2, o1 and o2) are not variable terms and s1 = s2

(resp. p1 = p2, o1 = o2)

As we merge memories of all alpha nodes that share similar rule conditions,
each rule condition is checked by only one node. This optimization saves both
memory and time. This is particularly useful in rulesets like RDFS, where mul-
tiple rules use a wildcard condition (a condition that matches all facts in the
KB, e.g. ?x ?p ?y).

This optimization implies that each alpha memory is potentially connected to
multiple beta nodes (one for each original alpha memory that has been merged),
which is not the case in the original RETE network. It has an impact on the
management of the alpha memories, as a fact remains new as long as one of its
beta nodes has not yet processed it (see section 2.2). Triggering the execution of
the beta nodes connected to this alpha memory is thus required before pushing
new facts in the already-processed part of the alpha memory.

3.3 Optimizing incremental maintenance

To handle incremental maintenance, we have used a similar philosophy as that
of the backward-forward algorithm [13]. Although not initially designed to work
with RETE, it is compatible with its network structure: each terminal beta node
(i.e. the last beta node of a rule) stores a list of the implicit facts that it has
produced. Every implicit fact contains the list of beta memories that led to its
production. When an explicit fact is removed from the knowledge base, it is first
removed from the memory of its matching alpha nodes, then the corresponding
variable substitutions are removed from beta memories following the same route
as when adding a new explicit fact. After this step, if an implicit fact has no
more cause coming from the beta node that produced it, the algorithm first
searches through all other terminal beta nodes if the same implicit fact was
produced somewhere else. If not, it is deleted from the knowledge base. This
avoids unnecessary deletions, in case an implicit fact was obtained in multiple
ways.

3.4 Implementation details

LiRoT is written in C: low-level languages are more suited for constrained plat-
forms because they allow for more fine-grained memory management. Rust[11]
could also have been an option, but it is relatively new and not yet available on
most platforms.

LiRoT is composed of two modules:
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– The core algorithm, based on RETE and including the proposed optimiza-
tions. It currently uses Sord15, a C library providing a lightweight in-memory
triplestore, to implement and store RDF triples.

– A wrapper to the core algorithm providing an RDF-JS-like API16 to query
the reasoner. It relies on Serd17 to parse and serialize RDF triples in Turtle,
N-Triples, N-Quads and TriG formats.

In the core algorithm, to implement the term index, we use the efficient
hashtable implementation from the uthash18 library. To compute terms hashes,
we use the hash function provided by Sord.

LiRoT comes with two versions: a Linux version and an Arduino version. It
was tested on Manjaro Linux, Arduino Due and ESP-32 platforms.

LiRoT source code is available at https://gitlab.com/coswot/lirot .

4 Evaluation and results

4.1 Dataset and evaluation method

We used the LUBM benchmark[9] to generate 12 synthetic datasets of various
sizes in the domain of universities. These datasets contain from 0 to 10,000
explicit triples representing assertions, in addition to the ontology itself (293
triples).

We have implemented the three rulesets RDFS-Simple, RDFS-Default and
RDFS-Full (provided by Apache Jena19) for each tested reasoner. We provide
the lists of rules in the LiRoT source code repository.

To compare our approach to other incremental reasoners and to assess the
effectiveness of different versions of our algorithm, we have run four types of
experiments on each of the 12 datasets:

– full materialization. The dataset is entirely loaded at once, then the rea-
soning is launched.

– incremental insertions. We randomly split each dataset into two equal
parts. The first half is inserted into the reasoner. The second half is divided
into five fragments, each representing 10% of the whole dataset, and are
added sequentially.

15 https://github.com/drobilla/sord
16 https://rdf.js.org/
17 https://github.com/drobilla/serd
18 https://github.com/troydhanson/uthash
19 Rulesets are described at https://jena.apache.org/documentation/inference/

#RDFSconfiguration

https://gitlab.com/coswot/lirot
https://github.com/drobilla/sord
https://rdf.js.org/
https://github.com/drobilla/serd
https://github.com/troydhanson/uthash
https://jena.apache.org/documentation/inference/#RDFSconfiguration
https://jena.apache.org/documentation/inference/#RDFSconfiguration
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– incremental deletions. The idea here is to delete multiple parts of a pre-
loaded dataset. We first load the whole dataset, execute an initial reasoning
task, then sequentially remove the same subsets as described before.

– incremental insertions and deletions. Here we sequentially add then
delete parts of the dataset. The first half of the dataset is loaded, then each
subset is first inserted then deleted. This is the closest test to the actual
use cases that we performed using LUBM. In the use cases for which this
reasoner is designed, the ”same” triples will be added and removed (possibly
with some variations).

We use two performance metrics: i) maximum resident set size20 (maxRSS):
in the context of constrained objects, memory size is a mandatory limitation,
and ii) execution time.

Experimentation materials are available at https://gitlab.com/coswot/lirot-
experiments-eswc-2022, where one can find datasets, scripts used to run all rea-
soners, raw results files and plots.

In the following sections, RETE denotes our baseline implementation of the
RETE algorithm; RETE+alpha is RETE with the optimization on alpha mem-
ories as described in section 3.2; RETE+terms denotes RETE with the index on
terms described in section 3.1; LiRoT is RETE with the optimizations on alpha
memories and the index on terms. The optimization on incremental reasoning is
present in all versions of RETE, RETE+alpha, RETE+terms and LiRoT.

4.2 Correctness verification

To ensure that LiRoT produces correct results, we compared its output with
that of Apache Jena, which is a well tested reasoner. We performed these tests
both on the insertion and deletion algorithms, and got the same output in all
cases.

4.3 Comparison with other reasoners

We compared our approach to two standard incremental reasoners: Apache Jena
and RDFox. To do so, we ran each reasoner on the same desktop computer (MSI
GF63 Thin 10SCXR-046FR Dragon Station, with an Intel Core i7-10750H CPU
and 32 GB of DDR4 2666 MHz RAM). We forced the execution of each reasoner
on only one CPU thread, to mimic the behavior of more constrained devices.
We ran each test 20 times, removed the most extreme values (5% lowest and
5% highest) and computed the average maxRSS and execution time for each
reasoner and dataset.

Figure 2 compares LiRoT with Jena and RDFox for the easiest type of test
(full materialization with the RDFS-Simple ruleset) and the most difficult one
(successive insertions and deletions with the RDFS-Full ruleset).
All other results lie in between these two extreme cases; figures for the other
tests are available online; they show similar trends to these figures.

https://gitlab.com/coswot/lirot-experiments-eswc-2022
https://gitlab.com/coswot/lirot-experiments-eswc-2022
https://gitlab.com/coswot/lirot-experiments-eswc-2022/-/tree/main/plots
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Fig. 2: maxRSS and execution time comparisons between LiRoT, Jena and
RDFox.

Figures a) and b) show a full materialization using the RDFS-Simple ruleset.
Figures c) and d) show successive insertions and deletions using the RDFS-Full

ruleset.

With the RDFS-Simple ruleset and a full materialization, LiRoT uses 58-
91% less memory than RDFox, and 92-98% less than Jena. With the RDFS-Full
ruleset and incremental insertions and deletions, LiRoT uses 46-90% less memory
than RDFox, and 91-98% less than Jena.
With RDFS-Simple and a full materialization, LiRoT is 72-93% faster than
Jena. It is faster than RDFox for datasets under 1000 explicit facts and slower
for larger datasets. With RDFS-Full and incremental insertions and deletions,
LiRoT is faster than Jena (resp. RDFox) for datasets under 2500 (resp. 200)
facts. Other configurations have maxRSS and execution time values in between
these intervals.

20 The maximum amount of RAM used by a program throughout its execution.
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Fig. 3: maxRSS and execution time comparisons between different
optimizations of the RETE algorithm.

Figures a) and b) show a full materialization using the RDFS-Simple ruleset.
Figures c) and d) show successive insertions and deletions using the RDFS-Full

ruleset.

4.4 Improvements of the RETE Algorithm

On the same desktop setup as previous evaluations, we ran each version of our
RETE algorithm baseline and improvements.

Figure 3 shows the different maxRSS and execution times for all four RETE-
based algorithms, and in the same configurations as above. With the RDFS-
Simple ruleset (resp. RDFS-Full), we find that sharing similar alpha nodes across
rules allows to save up to 24% (resp. 28%) memory compared to our baseline
RETE implementation. The use of an index on terms saves up to 25% (resp.
29%) memory compared to baseline. The combination of both saves up to 32%
(resp. 41%) memory.

Figure 3 shows that for easier types of tests (full materialization with the
RDFS-Simple ruleset), optimizations over the RETE baseline have a small im-
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pact on the execution time (+1% for the optimization on alpha nodes, +7.6% for
the optimization on terms, -0.2% with both optimizations, for the largest dataset;
the difference is even smaller for smaller datasets). For the most difficult type
of tests (successive insertions and deletions with the RDFS-Full ruleset), opti-
mizations have a more significant impact on the execution time (-37% for the
optimization on alpha nodes, +6.5% for the optimization on terms, -23% for the
combination of both). The differences among these optimizations are discussed
in section 5.2.

4.5 Improvements on embedded devices

We also provide tests for LiRoT on constrained devices, with the RDFS-Simple
ruleset. We used an Arduino Due (clock speed of 84 MHz and 96 KB of SRAM)
and an Adafruit ESP32 Feather (clock speed of 240 MHz and 520 KB of SRAM).
We use incremental insertion of triples to determine the maximum number of
triples that can be handled by LiRoT before the device runs out of memory.

On an ESP32 board, we used the standard ESP.getFreeHeap function to
measure the memory footprint.

Figure 4 shows the results obtained on ESP32: the baseline RETE imple-
mentation is able to load 509 facts (ontology + explicit facts + implicit facts),
before the board runs out of memory. With the alpha node-sharing optimization,
this number goes up to 656 facts (+22% wrt baseline), 672 facts with the op-
timization with an index on terms (+24%) and 760 facts with the combination
of both optimizations (+49%). All versions have similar execution time for an
equal number of facts (for instance, the baseline takes about 200ms to load facts
until it runs out of memory).

Platform Version of RETE # facts

ESP32

RETE 509
RETE+alpha 656
RETE+terms 672

LiRoT 760

Arduino Due

RETE 240
RETE+alpha 285
RETE+terms 290

LiRoT 349

Table 1: Number of facts (ontology + explicit facts + implicit facts) after
reasoning on Arduino Due and ESP32, with the RDFS-Simple ruleset

The hardware architecture of the Arduino Due does not allow to dynamically
measure memory usage with standard functions, as we did on the ESP32. To
the best of our knowledge, no equivalent library allows to do it on this device.
Hence, we measured the maximum number of facts that the reasoner is able to



Do Arduinos dream of efficient reasoners? 13

300 400 500
# explicit t iples

100

150

200

250

Re
sid

en
t s

et
 si

ze
 (K

B)

Memo y #sage on ESP32

LiRoT
RETE
RETE+alpha
RETE+te ms

Fig. 4: Comparison of memory usage on a ESP32 board with different
optimizations of the RETE algorithm, using the RDFS-Simple ruleset.

The horizontal axis shows the number of explicit facts (ontology included).

load and process before the board runs out of memory. Table 1 shows that the
optimization on alpha nodes allows to load 19% more facts than the baseline
implementation on Arduino Due; the use of an index on terms allows for 21%
more facts, and the combination of both allows for 45% more facts, compared to
baseline. All versions have similar execution time (about 550ms for the baseline
version).

5 Discussion

5.1 Memory usage

On classic PC architectures, LiRoT significantly improves the memory footprint
as compared to the literature. Its processing time is lower for small datasets
in these settings, but increases rapidly when the number of facts grows. This
shows that LiRoT can also be of help on intermediary devices that rely on the
same architectures, but have less resources than even smaller computers (e.g.
Raspberry Pi).

To the best of our knowledge, LiRoT is the only one able to be actually
deployable on Arduino-based platforms21.

These two points validate our hypothesis of LiRoT as designed for specifically
targeting such devices. Processing time is of course to be taken seriously, but
must be considered with respect to the findings of Section 4.5.

21 Indeed, these devices have, in addition to a limited memory size for handling the
application data (DRAM), the same kind of limitations for storing the program itself
(IRAM). The reasoner should also be compiled specifically for the targeted platform,
and use platform-specific available libraries.
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5.2 Processing time

Considering the maximum number of facts that a small device can handle, LiRoT
remains faster than other reasoners, given that these reasoners could be deployed
on the devices. Our experiments also show that the time gained by the optimiza-
tions varies according to both sizes of the ruleset and the dataset. It is interesting
to note that the LiRoT optimization is not the one that shows the best time
performance among all optimizations presented in Section 4.4. However, as they
do save memory space, we chose to keep all three optimizations in LiRoT.

Though we admit that restricting the operation range to processing very
small amounts of data is not a common goal, it can still benefit to use cases
where energy consumption is a critical issue, as well as to embed the reasoner on
a relatively more powerful device that has to perform other tasks than reasoning.
Indeed, in the CoSWoT project, we intend to include this reasoner as a WoT
servient module, so that sensors and actuators can be run autonomously and
locally process data as RDF triples.

Moreover, even if RDFox overpasses LiRoT when the number of facts grows,
our trade-off assumption seems to remain valid for relatively higher number of
facts than those that Arduino-based devices can handle. Our evaluations showed
that there is less than 200ms difference for a full materialization of 2000 facts for
a whole run of insertions and deletions under the RDFS-Simple ruleset, which
sounds to us as acceptable.

The optimizations we implemented for LiRoT come with a few trade-offs.
The optimization on alpha nodes could cause concurrent access issues on alpha
memories if it were implemented in a multi-threaded application (which LiRoT
is not). Term indexing causes a slight loss in performance, as each term insertion
requires to check if the term already exists; however, a hash table is a very effi-
cient way to perform this task, so the performance loss is small, in comparison
with the overall computation time. Finally, the optimized incremental mainte-
nance algorithm requires to store intermediate reasoning results, which has an
impact on memory footprint.

In order to improve the speed of our reasoner, we explored one dead-end that
is worth mentioning, and are forseeing two directions:

– One option we tried consists in using an efficient join algorithm in beta nodes.
The naive approach, using a nested loop join, reviews all possible matches
among two nodes. The sort-merge join algorithm can solve this issue by using
sorted data structures in alpha and beta memories and limiting the number
of merge steps to the minimum required, to the cost of nodes needing to
maintain sorted data structures. However, the relevance of this optimization
depends on the ruleset and the dataset sizes: it saves time when the two
nodes to join have many elements in their respective memories. This is not
the case in our experiments, which showed lower performance.

– The evaluations in which data were to be deleted show higher processing
times than expected, while compared to RDFox for instance. Future works
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include improving the deletion algorithm by removing intermediary beta
node memories, as done in [21].

– Parsing and serializing facts from and to a standard representation format is
also time and memory-consuming. Even if Sord and Serd are optimized for
this task, they offer many unneeded functionalities that could be removed
from the reasoner. In order to diminish both memory usage and processing
time, we are currently looking for a more global way to handle compressed
RDF data without serialization/deserialization operations at the servient
level, relying on binary representations such as CBOR-LD or HDT.

6 Conclusion and future works

We proposed LiRoT, a lightweight incremental reasoner, the first–to the best of
our knowledge–that can be embedded on constrained devices such as Arduino
Due and ESP32. LiRoT as a tool acts as an enabler for Semantic Web of Things
by providing a reasoning capability to constrained devices. Our work also ad-
vances the existing state of the art in the fog computing paradigm.

LiRoT implements the RETE algorithm at its heart as the baseline algorithm.
Additionally, we studied three optimization schemes to the baseline RETE that
resulted in significant memory savings for incremental reasoning. We performed
experiments on Linux as well as on embedded systems. We compared the perfor-
mance of LiRoT with existing reasoners such as RDFox and Jena. As compared
to these approaches, our experiments showed that for relatively modest numbers
of facts (around 200 to 3000 facts depending on the complexity of the ruleset),
which corresponds well to the paradigm of the Semantic Web of Things, LiRoT
can do reasoning with lower computation times. LiRoT always had the lowest
memory usage for performing reasoning on up to 10,000 facts (maximum number
of facts tested). The memory usage was several orders of magnitude lower than
RDFox and Jena.

On a desktop configuration, using the LUBM benchmark, our optimizations
saved up to 32% of memory with the RDFS-Simple ruleset, up to 36% of memory
with RDFS-Default and up to 41% with RDFS-Full. On embedded devices, with
the RDFS-Simple ruleset, LiRoT was able to load up to 49% more facts than
our baseline RETE implementation.

In the future, we would like to perform tests on other rulesets and to explore
more optimization schemes as the ones presented in section 5.2. We will also
compare the energy consumption of different optimizations. We would also like
to explore distributed and collaborative reasoning algorithms suited to SWoT
and embedded environments.
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