N

N

Characterization of the fluctuations of an ultrasonic
wave passing through a complex environment in order to
simplify the modeling

Mirella Aoun, Clément Berger, Jean Cazalis, Thierry Gonon, David Lassounon

» To cite this version:

Mirella Aoun, Clément Berger, Jean Cazalis, Thierry Gonon, David Lassounon. Characterization of
the fluctuations of an ultrasonic wave passing through a complex environment in order to simplify the
modeling. [Research Report] IP Paris. 2022. hal-03607816v2

HAL Id: hal-03607816
https://hal.science/hal-03607816v2

Submitted on 1 Apr 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03607816v2
https://hal.archives-ouvertes.fr

Characterization of the fluctuations of an
ultrasonic wave passing through a complex
environment in order to simplify the modeling

Mirella Aoun !, Clément Berger 2, Jean Cazalis ?, Thierry Gonon *, David
Lassounon °

L' LMRS, CNRS, UMR 6085, University of Rouen, Avenue de I'Université, 76801
Saint Etienne du Rouvray, France, mirella.aoun@univ-rouen.fr
2 UMPA, CNRS, UMR 5669, ENS de Lyon, 69364 Lyon, France,
clement.berger@ens-lyon.fr
3 CEREMADE, CNRS, UMR 7534, Université Paris-Dauphine, PSL University,
75016 Paris, France, cazalisQceremade.dauphine.fr
4 ICJ, UMR 5208, Ecole Centrale de Lyon, Ecully, France, thierry.gonon@ec-lyon.fr
> IRMAR-INSA Rennes, CNRS, UMR 6625, 35708 Rennes, France,

enagnon-david.lassounon@insa-rennes.fr

Abstract

Ultrasonic nondestructive testing, also called ultrasonic NDT, is a method for char-
acterizing the thickness or internal structure of material using high-frequency acoustic
waves. This technique consists in emitting an ultrasound within the object and detect-
ing the echoes produced by the possible defects. In complex environments, in particular
for certain metals, composite materials and concretes, ultrasonic waves are strongly dis-
turbed by the material through which they propagate, which can distort measurements.
Modeling these phenomena can help designing control procedures and improving their
signal to noise ratio. Because simulation using finite-element methods can be computa-
tionally prohibitive, it is important to develop alternative and lighter approaches. In this
report, we model these fluctuations in the same manner as dynamic speckle sequences,
using stochastic processes. These methods have parameters that we fit with respect to
the simulations generated by the CEA.
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1 Introduction

This document summarizes a work that has been realized in four days for the CEA (Commis-
sariat a I’énergie atomique et aux énergies alternatives) during the SEME (Semaine d’Etudes
Mathématiques-Entreprises) organized by IP Paris (Institut Polytechnique de Paris) and
AMIES (Agence pour les Mathématiques en Interaction avec ’Entreprise et la Société) in
February 2022. We would like to thank our CEA supervisors, Vincent Dorval and Edouard
Demaldent, for their support during this week. We also thank Samuel Amstutz as well as
the whole staff of the SEME for providing us with this opportunity.

1.1 Ultrasonic testing

Many efforts are being made by the electric power industry in order to ensure security and
to extend the life of electric power stations such as nuclear plants or hydroelectric dams. For
this purpose, it is crucial to improve the detection of defects (inclusions, blisters, defects in
sticking, etc.) or damages in these structures. However tests must not affect the integrity of
the materials and thus require the use of so-called nondestructive testing methods.

Among these methods, ultrasonic testing is frequently used because it has many ad-
vantages: ease of implementation, possibility of working on a single side of the part to be
inspected (no need for access to the second side), and the ability to pass through large
thicknesses of material depending on the working frequency. Moreover, the existence of re-
lationships between the propagation of ultrasound and the characteristics of the material
allows its characterization. Therefore, the use of ultrasound offers the possibility, without
any deterioration, on the one hand of characterizing materials in order to know their elastic
properties, and on the other hand of inspecting parts to check their integrity. A challenge of
this method comes from the heterogeneity of the materials which are being put to the test.
Typically, concrete walls contain multiple aggregates at random places (see figure 1) which
disturb the propagation of the ultrasonic waves.



Figure 1: Surface of concrete showing multiple aggregates (image from wikipedia.org).

Numerical simulations of wave propagation through complex materials by finite-element
methods are introduced by the ATHENA code developed by EDF and INRIA. ATHENA
simulates the propagation of ultrasonic waves in a plane of symmetry of heterogeneous com-
plex anisotropic materials with applications on stainless welds [1, 2, 5]. The CEA uses a
more recent code developed in 2019 by Imperiale and Demaldent [4]. However these simula-
tions require the exact positions of the heterogeneities, which are in general not available. In
addition, these methods are computationally expensive which prevents their use in a large
scale. A way out consists in focusing on the averaged ultrasonic field, which makes it possible
to reduce the problem to the easier case of a homogeneous material. Nevertheless, because
this approach does not take the noise induced by the heterogeneities into account, it is not
precise enough for industrial purposes. One could improve the procedure by modeling the
fluctuations around the average wave.

1.2 Our framework

In this work, we propose to randomly simulate wave profiles which are similar to simulations
given by a finite-element based solver.

The simulations are performed on a 2D rectangular grid. We will denote space coordi-
nates by x and z and the time by ¢t. We follow a planar wave u(z, z,t) € R? evolving along
the z axis, parallel to the x axis. This work is dedicated to the simulation of the deformation
along the z axis, denoted by u,. There are 100 points in z and 200 points in . Because the
finite-element solver has an adaptative time discretization, the number of time steps depends
on the simulation. There are roughly between 100 and 200 time steps in the data.

As mentioned earlier, the wave averaged along the z axis can be easily simulated. Thus
we will focus only on the remaining fluctuations caused by the aggregates. Finally, at each
time ¢, the space can be roughly divided into three different areas. Starting from the top,
we have a zone with u, = 0 since the wave has not reached this zone yet. Getting down
we meet the front wave, corresponding to the wave we would have if the material was
homogeneous. Close to this area, the fluctuations are composed of many small disorganized
patches. Finally, under this area lies the so-called coda, which corresponds to the residues of
the wave. This setup is described in Figure 2. In this work, it is assumed that the coda is the
main contributor to the noise measured during the testing procedures. As a consequence,
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Figure 2: Scheme of the setup. The two upper images show the decomposition of the wave
between its average and the noise resulting from the aggregates. The decomposition of the
space between the three areas is also presented.

we mainly focus on its modeling.

This paper is presented as follows: in Section 2, we present a first method based on
Gaussian processes. Another method based on a dynamic update is presented in Section 3.
Finally we propose different indicators in Section 4 in order to get quantitative evaluations
of the performances of the methods proposed in this report.

2 (Gaussian processes based approach

2.1 Initial model

The first method is inspired from the Gaussian process regression formalism [6, 7]. The z
component of the residual fluctuations u, is supposed to be the realization of a Gaussian
process U, (z, z,t) depending on the space and time variables:

U.(w,2,t) = Y(7,2,t) - Tjg 100] (2 — V).

The coda is modeled by the process Y. We have denoted by v the group velocity in the
direction z of the ultrasonic wave and we compute it using the simulations provided by the
CEA. The function 1)y 4 o[ (2 — vt) is equal to 1 if z — vt €]0, +-co0[ and 0 otherwise. In other
words, we set the noise to zero in the area {z > vt} that the wave front has not reached yet.

The process U, is simulated by generating a path of Y and multiplying it by the Heavyside
function 1jg 4o (# — vt). The path of Y is generated on a grid G = {(v;,2i,t;), 1 <i < N}



Figure 3: Example of simulation using Gaussian processes at one time step. Coding has
been done in R.

of the input space (z, z,t). The law of Y is chosen equal to:
Y ~GP (0,k((z,2,t), (2,2, 1)),

where we denote by k the covariance kernel. We choose k as a Matérn kernel with parameter

g (a usual choice in the Gaussian regression community):

k((;v,z,t), (SL',,Z,,t/)) — 0_2 (1 + \/5|g;x/| + 5(13;:/)2> exp <_ \/5|;3;z’|)
T 5(53_95)2) VBlz—2|

(104 Bty SO o (VB

The generation of the Gaussian vector Y (G) of law:
Y(G) ~ N (0,k(G,G)) ,

is done by simulating a standard Gaussian vector ¢ ~ N(0,I) and multiplying it by the
square-root of the covariance matrix k(G, G) (see Algorithm 1):

Y(G) = /k(G,G) -e.

Notice that the computation of \/k(G,G) can be done once and for all before performing
multiple simulations. An illustration of a simulation is given in Figure 3, for a 25 x 25 x 25
grid in [0,1]® where the parameters are arbitrarily set to 02 = 1,0, =60, =6, =0.1, v = 1.

2.2 Refinements

e To smooth the wave front, the Heavyside function used for the cutoff can be replaced

by a function of the form: & — L arctan(a(z — vt)) with o a parameter to adjust.

e The model parameters may be adjusted numerically, instead of manually, by maximiz-



Algorithm 1 Simulation based on Gaussian processes.

1: Set G of size n, 02, 0, 6., 6;.

2: Generate € ~ N (0, I,,).

3: Compute k(G, G) = (k((z4, 2, t:), (x4, 25, t5)))
4

: Decompose: "
A 0
0
k(G,G)=P
0O ... O
5. Take the square root:
Vi 0
0
kE(G,G)=P '
0 0
6: Compute:
Y(G) =1/k(G,G)e

7: H vector of size n x 1
8 foriin {1,--- ,n} do

: if z; — vt; > 0 then
10: H(i)=0

11: else

12: H(i)=1
13: end if

14: end for

15: Final simulation:

0
PT. (2.1)
0
An
> Eigenvalue decomposition
0
PT. (2.2)
0
VAn
(2.3)

> Simulation of the noise

> Build Heavyside vector




ing the loglikelihood for the observations of one simulation:

w,Tk(G,G) lu,

1(62,0,,0.,0;) = —log |k(G,G)| — 5

e To take into account the fact that the fluctuations may vanish with time and far from
the wave front, we can multiply the simulation by exp(8(z — vt)) with 5 a parameter
to adjust.

2.3 Drawbacks

While the results are promising, the size of G makes the computations of \/k(G,G) (for the
simulations) and k(G,G)~! (for fitting the parameters) computationally expensive. Trun-
cations of the covariance matrix have been attempted in order to obtain sparser covariance
matrices. However, even with these adjustments, the calculation time of \/k(G,G) for a
25 x 25 x 25 grid takes hours. In conclusion, it is not realistic to use this method for bigger
grids and multiple different parameters.

3 Dynamic simulation with smoothing

In this section we build upon the work of [3] to simulate the noise. In [3], the authors present
a numerical simulation to generate a temporal sequence of dynamic speckle patterns which
is based on a model on a superposition of waves from discrete scattering centres.

3.1 A first implementation

Algorithm 2 Dynamic simulation of the noise with space smoothing.
1: Set ¢(.,.,t =0), ¢ > 0 decreasing, Ty,q > 0.
2: for 0 <t < Tae — At do

3: for all z,z do
4: Compute:
d(z, 2, t + At) = ¢(z, z,t) + N(0, 1)\/10g c(t + At) — log e(t)). (3.1)
> Computation of the new phase
5: Compute:
x(2, 2,8) = R (FH (Hug (F(e0D)) (2, 2,1)) (3.2)
> Application of low pass filter
6: end for
7: end for
8: Compute:

5 — arctan(a(z — vt))

Uy(x, 2, t). (3.3)

uy(z, 2,t) =
i

> Application of arctan to recreate the no-wave area




Let’s briefly describe the algorithm proposed in [3]. The idea is to work on the phase ¢
of the wave, with a time iterative update. We start with ¢(¢ = 0) given by sampling uniform
(over [—m,m|) random variables on the space grid. Then at each time, we update the phase
according to the formula (3.1) in which the phase at each time consists in the previous

phase shifted by a centered random variable. The quantity \/log c(t + At) — log c(t) allows
us to control the variance of the update, where the time function ¢ represents the correlation
between the image at time ¢ and the image at time 0. It is calibrated according to the CEA’s
simulations using the formula:

E[I(0)I(#)] - EL@)]E[L(0)]

VVI(O)V]I(#)) ’

where IE (resp. V) denotes the mean operator (resp. the variance operator).

c(t) = (3.4)

The resulting image is a white noise evolving with time, with a degree of time correlation.
To add spatial correlation, a low pass filter is applied on each image, see (3.2). More
specifically, we perform a discrete Fourier transform on the image at each time step then we
apply a cutoff function H,,, on both space variables: given a threshold wp in the frequency
domain, for each frequency w, the corresponding component is set to 0 if w > wg and is let
unchanged otherwise. We then perform an inverse Fourier transform to get our result.

To finish we have to apply, as in Section 2, a cutoff on each image in order to set u, to
0 in the area that the wave has not reached yet. As suggested earlier, we use the formula
(3.3) based on the arctan function rather than a Heavyside in order to obtain a more regular
front. The complete algorithm is summed up in Algorithm 2.

An example of simulation using this algorithm is shown in Figure 4. The resulting image
is close to the one shown in Figure 2. Also note that this time it is possible to work on the
full space-time grid, within reasonable time (approximately 0.3s).

However when displaying the evolution of the noise, we observe that in our simulations
the patches are being irregularly deformed and have no visible motion whereas in the real
simulations, the noise behaves more like smudges coming from the front wave and going
down.

3.2 DModifications to enhance temporal behavior

To mimic this behavior we made some adjustments to the original algorithm.

We start by applying a low pass not only in space, but also in time. This means that
we perform a three-dimensional discrete Fourier transform on the whole sequence of images
before applying a filter B (for consistency we changed the notation as it is now a three-
dimensional function), as shown in (3.6). This smooths out the time evolution of the noise,
making its appearance closer to the ones in the CEA simulations. Since this filter already
manages the time correlation, we also remove the function ¢ and simply use a fixed variance
o? for the Gaussian random variables used in the phase update.

Another modification has been implemented in order to recreate the smudges going down,
as described earlier. In the phase update, we take a combination between the previous update
(3.1) and the value of the phase two space steps above. This allows the information coming
from above to partially propagate downwards. This is done by a convex combination of both



Algorithm 3 Dynamic simulation of the noise with space-time smoothing and added space
correlations.

1: Set ¢(.,.,t =0), corr € [0,1], ocorr >0, 0 > 0, Trpaz > 0.

2: for 0 <t < Tppae — At do

3: for all z, z do
4: Sample: COTTeff = /\/(COT’T, Ugorr)
5 Compute:

d(x, z,t+ At) = (1 —corresy) ((Z)(ac, z,t) + N(0, 02)) +correp X d(x, z+2A2,t). (3.5)

> Computation of the new phase
6: Compute:
(2, 2,t) = R (F U BF(E))(,2,1)) . (3.6)

> Application of low pass filter
7 end for
8: end for
9: Compute:
5 —arctan(a(z — vt)) _

uy(x, z,t) = - Uy(x, 2,1). (3.7)

> Application of arctan to recreate the no-wave area

quantities, using a coefficient corresy, see (3.5). This coefficient is chosen to be random,
which in practice provides better results. A heuristic explanation is that the smudges do
not always propagate as they can be cut out by other smudges and aggregates, so it seems
natural for the combination to be stochastic. This algorithm is detailed in Algorithm 3.

The Figure 4 displays a comparison between two images simulated by Algorithm 2 and
Algorithm 3. At fixed time, both give similar results. However, Algorithm 3 seems to produce
better time evolving signals, with more time regularity and the exhibition of smudges going
downwards. A simulation takes roughly 0.5 seconds to be done with this algorithm. While
it is still long, it is a significant improvement compared to the finite-element solver. Note
that there are many different free parameters that we did not explicit. As a first approach,
these are chosen by trials and fails, based on the visual appearance of the results.

4 Quantitative criteria

The method proposed in the previous section seems promising. This model have many
parameters and until now, the fitting has only been made by visualization. Of course, this is
not satisfying and we would like to dispose of quantitative criteria to evaluate the accordance
of the signals generated by our model with respect to the simulations provided by the CEA.

In this section, we propose many dissimilarity measures and we compare them through
their capacity to discriminate wave profiles provided by the finite-element solver according
to the input parameters (frequency f of the incoming wave, proportion p and size r of the
aggregates). Afterward, we use the best dissimilarity measure in the implementation of an
optimization algorithm, namely the Nelder-Mead method, in order to fit the parameters of
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Figure 4: Two noise simulations using the dynamic method. The left image has been gen-
erated using Algorithm 2 and the right image using Algorithm 3. Both codes have been
written in python, using scipy.fftpack for the discrete Fourier transforms.

the generative model.

4.1 Dissimilarity measures

For a simulation Uj(z, z,t) and a direction x € {z,z,t}, we denote by Vf the (biased)
variance along the axis k. We also denote Vf’z’t the variance along the temporal and both
spatial directions. Finally, we denote by V7(zp) the variance along the axis x at fixed zp. In
this report, we propose and study the following dissimilarity measures:

du(i ) = [V = V7™,

da(i, j) = [[Vj = Vjl2,

ds(i, j) = (V)T VE = (V)T VS o,
da(i, ) = [VE(V)T = Vi(V) o
ds (i, 7) = [IVi(20) = V5 (20)ll2

where |[-||, stands for the Frobenius norm in the appropriate vector space and (V¥#)T for
the transpose of V7. Because they only take the variances and covariances into account,
these functions measure the difference of dispersion between two simulations. We could have
considered other combinations of variances and covariances distances but it was not possible
because of insufficient time.

We want to use one of these dissimilarity measures to fit our generative model. As
a consequence, one should choose the measure with respect to its capacity to correctly
discriminate the simulations provided by the finite-element solver according to the input
parameters f, p and r. In this direction, we construct for each dissimilarity measure a
dissimilarity matrix where the entry (4, j) is given by d(i, j), see an example in Figure 5. For
each input parameter, there are ten simulations which are listed as follows:

e i€{1,...,10} correspond to parameters f =5 kHz, p = 20 and r = 2;

10



dl(Z,]) d2(27]) dg(l,j) d4(Za]) d5(27])
ARI 0.41 0.62 0.63 0.63 0.60
AMI 0.52 0.73 0.75 0.74 0.72

Table 1: Comparison of dissimilarity measures. The ARI and AMI scores are averaged over
50 iterations of the spectral clustering algorithm.

e i€ {l11,...,20} correspond to parameters f =5 kHz, p =5 and r = 4;

e i€ {21,...,30} correspond to parameters f =5 kHz, p =10 and r = 4;
e i€ {31,...,40} correspond to parameters f =5 kHz, p = 20 and r = 4;
o i€ {41,...,50} correspond to parameters f =5 kHz, p =40 and r = 4;
e i€ {51,...,60} correspond to parameters f = 10 kHz, p = 20 and r = 4;
e i€ {61,...,70} correspond to parameters f = 15 kHz, p = 20 and r = 4.

In addition, we compare the simulations to white noises filtered by a low pass filter, which
are labeled by i € {71,...,80}.

We convert the dissimilarity matrix into a similarity matrix by applying the operator
x;j — —x;j +maxy T e to each entry. To evaluate the capacity of a measure to discrim-
inate the input parameters, we apply spectral clustering to these similarity matrices and
we compute the corresponding adjusted rand index (ARI) and adjusted mutual informa-
tion (AMI), see Table 1. Except for d;(i,j) = [V&*! — V}c’z’t|, the scores obtained for the
proposed measures are alike (around 0.55 for the ARI and around 0.75 for the AMI). This
suggested that the do, d3, d4 and ds are more or less equivalent. In the sequel, we choose
ds for fitting our generative model. This is motivated by the fact that it will be easier to
extract the coda with this dissimilarity measure.

In Figure 6 is drawn the graph of the function ¢ — V?¥(zg,t) averaged on the ten simu-
lations samples for each input parameters. An interpolation procedure has been applied in
order to normalize the time scale. The graph exhibits a long-time behavior corresponding to
the coda whereas small times correspond to the wave front propagation which generates a
totally different noise regime. The long-time behavior seems sufficient to distinguish different
input parameters.

4.2 Parameter optimization

In this subsection, we explain how to fit the parameters of the generative model according
to the simulations provided by the CEA with the input parameters f = 5 kHz, p = 20 and
r=4.

Because we are only interested on modeling the coda, we fit only with respect to the
long-time behavior that is, for times between 50 and 90 in Figure 6. Then we use the
L?-norm on this zone to perform an optimization on the parameters of Algorithm 3 using
the Nelder-Mead algorithm, a classical method for non smooth problems. Because of the
duration of the simulations, we had to limit ourselves to 600 steps. While this does not

11



Figure 5: Dissimilarity matrice for d(i, j) = [|[V{(20) — V§(20)[l2. There are ten samples for
each input parameter. For i € {1,...,50} (resp. i € {51,...,60}, resp. i € {61,...,70})
the frequency is set to f = 5 kHz (resp. f = 10 kHz, resp. f = 15 kHz). The samples
i € {71,80} correspond to white noises filtered by a low pass filter.
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Figure 6: Graphs of the function ¢t — V¥(z, t) averaged on samples for each input parameter.
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Figure 7: Graphs of the function ¢t — V¥(zq,t) for real data and two simulations provided
by the algorithm 3, one with non-optimal parameters and the other one after a numerical
optimization.

allow for the convergence of the algorithm, Figure 7 shows that it provides a significant
improvement in terms of curve-fitting. As expected, we observe an important discrepancy
between our simulations and the data in small times. Also, in the last times, we observe a
slope of the curves corresponding to our generative model. We believe that it is a boundary
effect related to numerical issues, probably linked with the low pass filter.

This optimization procedure could be improved with another choice of optimization al-
gorithm (Nelder-Mead algorithm was chosen for implementation convenience) or with more
data corresponding to the coda. However, this work indicates that it should be possible to
optimize the parameters of our algorithm to adjust any of the parameters provided by the
CEA.

5 Conclusion and further topics of research

In this work, different approaches to sample random fluctuations of ultrasonic wave within
heterogeneous materials have been proposed. A first approach based on Gaussian processes
gave promising results but has been discarded for computational cost issues. A second
approach, inspired by speckle simulations, gave better and faster results. The addition of a
low pass filter in time and an enforced space correlation along the z axis have been a key to
obtain realistic time-evolving simulations. Finally different metrics have been proposed in
order be able to quantify the quality of the simulations. They have been shown not only to
be able to discriminate between different wave and material parameters, but also to identify

13



noise that is not the result of an ultrasound propagation. Thus this allowed us to perform
an optimization on the parameters of our model in order to get a better fit on the CEA
simulations.

Multiple directions can be taken for future works. We hereby mention some of them.

A first work would have to be done on the code in order to get faster simulations.
The current code has been written in python, but other languages could be explored in
order to fasten the Gaussian sampling as well as the computations of the discrete Fourier
transforms, which are the two components which take most of the simulation time. Note that
by nature the algorithm has a high potential for parallel computations. This would allow
for a significantly faster parameter optimization and faster statistical studies afterwards.

For the moment we only considered one neighbour in the update (3.5), but studies have
to be made in order to find which exact neighbours should be taken into account in order to
properly retrieve the behavior of the downward smudges.

A Fourier transform could be performed on the data in order to identify some character-
istic modes or other properties that could nourish the pool of quantitative criteria.

Other wavelet transforms could be considered, not only to establish metrics, but also to
modify the low pass filter. A suitable wavelet basis could act as a selector on the simulation
in order to recreate with more fidelity the smudges observed in the data.

Finally, while the front wave area is not the most useful for detection, this is where
the coda comes from. Thus, working on a proper modelization of this area could lead to
significant improvements in the quality of the rest of the simulation. In this area the noise is
composed of small patches created by the shocks between the front wave and the aggregates.
These are very short-time patches which means that a dynamic procedure as described here
might not be the best lead for this part. In particular, the use of a Generative Adversarial
Network (GAN) should be considered. To briefly describe GANs, they are Neural Networks
(NN) composed of one NN which has the role of creating a random vector and another one
which is supposed to establish if it comes from a real set of data or if this is a fake. The
alternative optimizations of both NN allows for high quality creations by the first one. This
process is commonly used in image or text generation. In our case, as we have multiple
time steps to simulate, it would not be realistic to train a GAN to generate the coda for the
full simulation (since we have very limited data). However, successive generations of a few
images of front wave noise would be possible since one CEA simulation provides multiple
data of this nature. Some work would then have to be done in order to smoothly go from
one small sequence to another.
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