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A method is proposed to allow a more accurate evaluation of thermogravimetric data to identify diffusion or partial diffusion control of scaling kinetics. This method is based on the ® tting of mass-gain data to a parabola over a short time interval. The translation of the time interval over the entire test time period provides an actual instantaneous parabolic rate constant independently of any transient stage or simultaneous reaction steps. The usefulness and limitations of this procedure are illustrated from oxidation tests performed on several metallic materials (pure nickel, single-crystal superalloys, and Nb± Ti± Al alloy).

INTRODUCTION

One step in studying the high-temperature oxidation or corrosion of any kind of material is to determine its overall oxidation kinetics. Oxidation kinetics are commonly controlled by the diffusion of reactive species through the external oxide scale andy or in the subjacent metal or alloy. 1,2 Diffusion-driven oxidation kinetics usually lead to the so-called parabolic kinetics that are commonly described through a parabolic rate constant, kp . However, the de® nition of an instantaneous kp , and its variation with time, has been considered by several authors (e.g., refs. 3± 5) to explain apparent discrepancies occurring between observed experimental and purely parabolic growth kinetics. Such discrepancies are often observed for relatively short-term exposures for which many factors may affect scaling kinetics. Some of these factors, such as the variation of diffusion coef® cients within the scale as a function of oxide grain size or scale compositions are inherent to the growing scale, but heating procedure, surface preparation , and specimen handling are also known to drastically in¯uence the ® rst stage of scale growth. For example, these factors are of great importance for the oxidation of alloys for which a transient stage often occurs before the steady-state growth of a continuou s scale of the most stable oxide (for example, transformations of metastable forms of alumina into the stable a-alumina, or a change of the alloy composition below the oxide scale). Furthermore, the interfacial-reaction steps associated with mass or defect transfer at the gas± scale andy or scale± alloy interfaces may, at least partially, contribute to the control of scale growth, 6± 8 so that the growth kinetics are described by at least two rate constants, kp and kl , as will be seen below. Therefore, ignoring the role of interface reactions and the associated linear rate constant kl may lead to an apparent parabolic constant k app p

[e.g., de® ned as some local slope of the thermal gravimetric analysis (TGA) data] that varies with time. Thus, any method permitting a more accurate analysis of experimental data would be useful in providing more reliable interpretations of these data.

TGA permits continuou s and accurate measurements over long periods of time and, therefore, an accurate determination of oxidation kinetics in their integral form or derivative form. Furthermore, the increasing storage and calculation capacity of computers allows one to take advantage of the improving performances of automatic-recording thermobalances in terms of accuracy, sensitivity and reproducib ility. Fast personal computers now permit a careful systematic analysis of a continuou s mass-gain recording. A method to quantitativ ely evaluate the time evolution of actual instantane ous parabolic rate constants is proposed in the present work. The method is illustrated by its application to several sets of experimental data corresponding to commonly encountered oxidation behavior for pure metals or alloys.

ANALYSIS OF SCALING KINETICS

Rate Equations and Kinetic Laws for Metal and Alloy Oxidation

Since the classic works of Tammann 9 and Pilling and Bedworth, 10 the oxidation kinetics of metals and alloys determined from thermogravimetry are commonly described through a parabolic law

Dm 2 5 kp t
where Dm is the mass gain per unit area at time t and kp is the parabolic rate constant. The Wagner theory of metal oxidation has shown that such parabolic kinetics result from the control of scale growth by lattice or volume diffusion so that kp is then related to the self-diffu sion coef® cients of cations or anions across the scale. is achieved through the initial condition ``Dm 5 0 at t5 0 and constant temperature,' ' a condition that is quite dif® cult to achieve experimentally. For example, before the test temperature is reached and stabilized, test specimens can be oxidized during the initial heating period. Even in the case of specimen heating in a nonoxidizin g or reducing atmosphere, which is not always possible, the introducti on of oxidizing gas often disturbs the temperature and measurement of mass changes for several minutes and leads to a systematic error for the starting point of mass-gain curves.

The above equations are also used to describe the oxidation kinetics of alloys. The most commonly encountered dif® culty is then the occurrence of a transient-oxidation period when the oxidation of more-noble components occurs simultaneou sly with the oxidation of the less-noble and more-protective component (e.g., chromia-or alumina-fo rmer alloys).
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Transient oxidation is also observed during the initial stages of oxidation of pure metals. In this case, the initially fast reaction rates may be related to local thermal instabilitie s (heat release), to the fast nucleation kinetics of oxide grains leading to microstructural instabilities , or to the very high gradient in chemical potential through the thin initial oxide scale. Thus, usually the initial condition Dm 5 0 at t5 0 cannot be applied. To account for the transient oxidation period of nonparaboli c kinetics, the initial condition could be Dm5 Dmi at t5 ti ; the integration of Eq. (1a) then leads to

Dm 2 2 Dm 2 i 5 kp (t2 ti ) (1b)
by assuming that the oxide scale grown at t. ti has the same protective properties as the initial scale grown at t, ti . For example, Eq. (1b) applies to the growth kinetics of alumina scales on NiAl 17 characterized by the growth of less-protective metastable aluminas and their subsequent transformations into a protective scale of a-alumina. However, if the initial oxide scale is not protective or much less protective than the stable oxide scale growing at t. ti , then the following rate equation

dDm dt 5 kp 2(Dm2 Dmi) (2) 
is more appropriate than the ``classic' ' Eq. ( 2). 14,18 ,1 9 In Eq. ( 2), Dmi is the initial mass change before the establishmen t of the kinetic regime associated with the parabolic growth of the stable oxide scale. The preceding Eqs. (1a) to (2) suppose that the oxidation kinetics are solely controlled by diffusion inside the scale, i.e., the hypothesis is made that diffusion of the reactive species within the scale is the rate-limiting step in the overall oxidation process. However, if among the several series reaction steps associated with the formation and growth of an oxide scale, one linear interfacial step is suf® ciently slow to not be neglected, then the overall diffusion and reaction process is described by the following rate equations: 

where kp and kl are the rate constants for the pure diffusion and pure reaction steps, respectively. As shown by the rate equations and kinetic laws listed in Table I, upon integration , these rate equations lead to kinetics laws which depend on the initial conditions and on the protective or unprotective character of the scale formed during the transient oxidation.

Equations ( 2) and ( 4) are particularly adapted to describe the kinetics of the selective oxidation of an alloy that is commonly preceded by an initial fast-oxidat ion regime corresponding to the growth of less-protective oxide (e.g., refs. 15 and 16).

It should be noted here that it is meaningless to give a value of kp in time ranges where the coef® cient C is not constant. All the rate equations reported in Table I, and their analytical solutions (kinetics laws of Table I), Unprotective ® rst oxide are valid for constant values of kp and kl : the rate equation and its integration would be different if kp and kl must be considered to vary with time.

Apparent and True Parabolic Rate Constants

The ® tting of any thermogravimetric data to equation ``Dm , the analysis of thermogravimetric data must provide an accurate determination of the true parabolic rate constant kp , which is the only parameter strictly related to the diffusion processes involved in the oxidation mechanisms. Then, if a time evolution of kp is observed over a long time period, then a more detailed analysis of the data would be required to relate the evolution of this rate constant to a change in the growth mechanisms or a change in the diffusion constant during the course of oxidation.

Analysis of Experim ental Data and Adjustment Procedure

As shown by the kinetics laws listed in Table I, all the considered kinetics correspond to a variation of mass gain vs. time, which can be ® tted to a parabola

t5 A1 B Dm1 C Dm 2 (5)
Table III shows which kinetics parameters can be evaluated from the coef® cients A, B, and C obtained from such a ® t. The most important feature is that the second degree coef® cient C is always the reciprocal of the ``true' ' parabolic rate constant. The ® tting of the experimental data to a complete parabola permits a correct evaluation of kp independently of the effective oxidation mechanism andy or the occurrence of transient oxidation . Moreover, kp does not depend on the values of Dmi and ti , which ® x the initial condition for integrating the rate law. On the contrary, the coef-® cients B and A would permit the determination of kl and of the characteristic elements Dmi and ti of the transient period for only some speci® c cases.

In the most general case that a reaction step and diffusion jointly control throughout a transient period kl , Dmi , and ti cannot be evaluated. However, as the ® t to Eq. ( 5) covers all the cases considered, taking care of both a transient stage and an interfacial reaction, it would always be better to ® t the experimental data to Eq. ( 5) rather than to ``Dm 2 5 kp t.' '

The ® t of experimental data to a general parabola can be applied to the entire set of data or only to a portion thereof, corresponding to a given time interval. When using such local calculation s, any evolution or change of the parabolic rate constant as a function of time can be detected. Therefore, a numerical method was developed to calculate, for a short time interval, the parabolic constant from the least-square s ® t of (Dm, t) data to a parabola. This local ® t allows one to determine the value of the parabolic rate constant for the time interval considered. The repetition of this time interval calculation over the entire test time period permits one to detect and analyze any change or evolution of the parabolic rate ``constant' ' as a function of time.

This ``local parabolic ® tting' ' procedure is illustrated on Fig. 1 and detailed in the Appendix. The accuracy of the analysis depends on three factors: (1) Accurate mass gains must be recorded as a function of time and the maximum number of (Dm, t) couples, which can be stored by the equipment , should be used. (2) The size of the time window is decided by a compromise between two opposing objectives: reduction of noise and increase in time resolution, which corresponds typically to a smoothing procedure. In case of large mass gains, the size of the time window can be reduced, leading to a better time resolution. (3) Choose the translation step of the time window. This is just a question of time resolution vs. computing time, which nowadays, is not a problem for such a simple algorithm.

EXAMPLES OF DATA ANALYSIS

To illustrate the advantage of this procedure, it was tested on data for the oxidation behavior of several materials studied in our laboratory. These tests demonstrated the usefulness and accuracy of this procedure and it is now currently used routinely for analyzing thermogravimetric data.

All the data reported in the following examples were obtained from oxidation tests performed on an automatic recording thermobalance SETARAM TAG 24S equipped with a double symmetrical furnace that permits a compensation for any perturbatio n resulting from gas ¯ow, buoyancy, and convection. This symmetrical furnace provides a very stable signal and minimizes the drift error to less than 3 mg for a test duration of 24 hr. Each test record was limited in size to 4000 (Dm, t) couples and the parameters of local ® tting were calculated for a time interval containing 200 (Dm, t) couples.

Oxidation of Pure Nickel

The time evolution of an instantaneo us, apparent parabolic rate constant has been reported for the oxidation kinetics of pure nickel.

3± 5, 12± 1 4 In a study of the effect of super® cial alkaline-ear th doping on the oxidation of nickel, the oxidation kinetics of high-purity nickel were again determined for tests performed in pure oxygen at temperatures between 600 and 1200°C for 24 hr. 20 The local ® t procedure was applied with a translation step of the time interval of 22 s between 20 min and 24 hr. Figure 2a shows the oxidation kinetics at 600°C; Fig. 2b shows the variation as a function of time of k app p (calculated according to 2Dm(dDmy dt)) and also of kp5 C -1 .

Figure 2b shows that kp remains practically constant as soon as the time exceeds about 3 hr, while k app p varies over a much longer time period and is always greater than kp . For one time interval extending from 15 to 90 ks, the experimental mass-gain curve can be ® tted to a single parabola (Fig. 2a) corresponding to a constant kp equal to 1.9 3 10 -6 mg 2 cm -4 s -1 . Figure 2b shows that this value of kp corresponds exactly to the mean value calculated from the local ® tting procedure. Therefore, at test times exceeding 4 hr, the growth kinetics can be described by a classic parabolic law, but it is preceded by a transient regime of faster kinetics. Figures 2a andb clearly illustrate that the difference between the apparent (k app p ) and ``true' ' (kp) To better illustrate the potential and the advantage of this ® tting technique, an experiment was done to determine the parabolic rate constant, kp , at several temperatures from one single thermogravim etric test. From the data reported by Gonzalez-Balanchi 20 for the oxidation of pure nickel, a temperature program was applied to one test specimen. It consisted of a succession of isothermal periods whose durations were selected to lead to approximate ly the same mass gain of 1 mg cm -2 . Figure 3 shows the temperature program and the corresponding mass-gain curve. As illustrated by Fig. 4, each isothermal period of the mass-gain curve can be ® tted to only one parabola. Comparison of Fig. 4a andd shows that the reproducibi lity is excellent. Moreover, as shown from Table IV, the rate constants kp determined in this way are in good agreement (a factor 3 or less) with those obtained from entirely isothermal experiments despite the small mass gains.

No other calculation procedure would have permitted such an accurate measurement of the individual rate constants for each isothermal period; linear regression from (Dm 2 , t) data or even (Dm, t 1y 2 ) would not lead to such an accurate value of kp .

Oxidation of Single-Cryst al Ni-Base Superalloy

A more obvious and important examination of the transient-o xidation regime is encountered during the oxidation of alumina-fo rming alloys. For example, Ni-base superalloys form an alumina scale when oxidized above 1000°C, but the growth of a Ni-rich oxide, spinel phases, and transition aluminas may occur during the heating period and before completion of a continuous protective a-alumina scale. The fast growth of these transient oxides during the ® rst 2-hr leads to a mass gain at least of the magnitude for the mass gain by alumina growth during 24 hr. 21 A direct consequenc e of these initially fast oxidation kinetics is once again that the Dm 2 vs. t ® t (or k app p 5 2Dm(dDmy dt)) would require very long experiments before ever reaching the ``true' ' kp value characteristic of alumina growth (Fig. 5a andb). 16 This example illustrates one limit of the proposed local ® tting procedure: Fig. 5b shows that the width of the scatter band for kp increases with time. Indeed, the ratio between the mass gain during the considered time interval and the experimental mass-gain sensitivity, i.e., the signal-tonoise ratio, decreases over time. This effect is particularly important for a slow-growing oxide, such as alumina. However, even if it would be possible to maintain a signal-to-n oise ratio approximate ly constant by increasing the time interval, the gain in accuracy would not be signi® cant compared to other possible error sources. Checking the constancy of kp over a large part of the test time is more important and signi® cant than a very accurate measurement of kp , whose value is strongly dependent on surface preparation, local composition and heterogeneity, gas composition, etc.

Oxidation Kinetics of Nb± Ti± Al Alloy

This last experimental example concerns the oxidation of a Nb± Ti± Al alloy. The accuracy of mass-change measurements and the signal stability permitted the detection of a small irregularity in mass-change curves as shown in Fig. 6a. 21 Indeed, the mass gain vs. time plot clearly shows several local changes of slope indicative of a succession of protective-scale growth and scale failures (Fig. 6a). The local ® tting procedure is well adapted to analyze these complex kinetics. First, this procedure allows one to localize between each parabolic period. Second, Fig. 6b shows that the minimum values of local kp are approximate ly equal within each period. These minimum values (kp5 6.0 3 10 -3 mg 2 cm -4 s -1 ) are quite different from the value that approximate ly ® ts the experimental curve to a single parabola over the entire plot (kp5 1.5 and kp . This large discrepancy between the two analyses can be attributed to the overestimation by k a pp p , which is intrinsic in its calculation. Indeed, the value of Dm entering into this calculation is not the value that must be considered in the rate equation. The local ® tting is, therefore, much more appropriate and leads to kp values that permit a more accurate analysis of the scale-growt h kinetics during the growth of the temporary protective scale, because this procedure leads to the correct value independen t of the origin chosen for the calculation (cf. Table III).

CONCLUSIONS

The above analyses of experimental data for scale-growth kinetics show that the use of the classic ``Dm 2 5 kp t' ' ® t (i.e., the Dm 2 vs. t plot) should be systematically replaced by the more general procedure of ® tting to a complete parabola ``t5 A1 B Dm1 C Dm 2 .' ' The use of classic ``Dm 2 5 kp t ' ' ® t involves unnecessary assumption s (e.g., pure diffusion control and no transient regime), which may lead to a misinterpretation of kinetics and to apparent variations in rate constants, i.e., of diffusion properties for oxides. The complete parabolic ® t offers the advantage of accounting for pure diffusion control, mixed (diffusion y reaction) control, and a transient regime. Further- more, it can be applied to small portions of mass-gain curves, which then allows the calculation of an instantaneo us value of the parabolic ``constant' ' kp5 C -1 inherently better than the usual kp5 2Dm(dDmy dt).

To interpret experimental mass-gain data, the following systematic procedure can be proposed. First, the kinetics data should be ® tted to the Eq. ( 5) inside a time-window sliding over the entire experiment duration (Fig. 1). This ® rst test allows the determination of those time periods over which the oxidation kinetics are parabolic. Second, data can be ® tted to Eq. ( 5) over the entire time range, where the ® tting coef® cient ``C ' ' (Eq. ( 5)) appears to be constant in the ® rst test. This allows one to accurately compute the value of the local true parabolic rate constant kp5 C -1 inside these speci® c time ranges. The values of the ® tting coef® cients ``A' ' and ``B ' ' (Eq. ( 5)) can provide insight about the relative importance of the linear and parabolic rate constants, but the value of the constant kl cannot be calculated in the most general cases considered here (cases 3 and 4, Tables I andIII), since the rate equations involve four unknown parameters and the parabolic ® tting permits one to determine only three coef® cients. Additiona l assumptions are then needed in order to simplify the kinetics model.

APPENDIX. NUMERICAL PROCEDURE TO ANALYZE THE THERMOGRAVIMETRIC DATA (MASS GAIN AS A FUNCTION OF TIME)*

Experimental mass gain ® le name (s, mgy cm 2 ) corresponding to Fig. 2 title5 ``nid912.txt' ' ;

Read the experimental ® le and build the mass vs. time list: Plot the result: kp as a function of time (see Fig. 2b) plotkp5 ListPlot[kp_list,PlotStyle ® RGBColor[1,0,0],PlotRange ® kpmin,kpmax] From the last result, select the largest time-window where the kp is constant in order to get a precise value of the true parabolic constant kp (here, between 15 and 80 ks). Plot[mass_® t,x,0,time_mass [[Lengt h[time_mass]]][ [1]],PlotStyle ® RGBColor[1,0,0]]; Print[``kp calculated between 5 ' ' ,time_min,' ' s and t5 ' ' ,time_max,' ' s, ``kp5 ' ' , kp] The resulting plot and kp , A, and B values are given in Fig. 2a.
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 1 rate constant, kp . Moreover, the time evolution of k app p does not necessarily involve a change in the oxide-scale properties, but can be explained by only the occurrence of a short transient-oxidation period andy or slow reaction steps. This time evolution depends mainly on the amplitude of the transient mass gain Dmi and of the linear rate constant kl . Therefore, rather than the determination of k app p
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 1 Fig. 1. Illustration of the ``local parabolic ® tting' ' algorithm. The time-window is translated over the entire data set.

Fig. 2 .

 2 Fig. 2. Oxidation kinetics for pure nickel at 600°C in oxygen. 20 (a) Mass gain vs. time and parabolic ® tting between 15 and 90 ks; (b) comparison of k ap p p and kp calculated from the local ® tting procedure.

Fig. 3 .

 3 Fig. 3. Temperature program applied to a pure-nickel specimen oxidized under oxygen at atmospheric pressure and corresponding mass-gain curve.

Fig. 4 .

 4 Fig. 4. Nickel oxidation: ® tting of successive portions of the mass gain vs. time plot. (a) 1200°C; (b) 1000°C; (c) 1100°C; (d) 1200°C.
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 4 Fig. 4. Continued.
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 3105 Fig. 5. Oxidation kinetics for a Ni-base superalloy at 1100°C in oxygen. (a) Mass gain vs. time plot 2 1 and parabolic ® tting between 5 and 71 ks; (b) comparison of k a pp p and kp calculated from the local parabolic-® tting technique.

Fig. 6 .

 6 Fig. 6. Oxidation kinetics of one Nb± Ti± Al alloy at 900°C in air. (a) Mass gain vs. time plot; 22 (b) Comparison of k ap p p and kp calculated from the local parabolic-® tting technique.

  time_mass]; W hile[time_as_a_functio n_of_mass[[imin]][[2]], timemin,imin5 imin1 1]; W hile[time_as_a_functio n_of_mass[[imax]][[2]]. time_max,imax5 imax2 1]; time-window5 Take[time_as_a_function_of_mass,imin,imax]; poly® t5 Fit[time-window,1,x,x à 2,x]; A5 Coef® cient[poly® t,x,0]; B5 Coef® cient[poly® t,x,1]; kp5 1y Coef® cient[poly® t,x,2]; mass_® t5 kp*(Sqrt[b*b2 4*(a2 x)y kp]2 b)y 2 plotdu® t5

  

  1 1 However, this purely parabolic law satisfactorily applies to the oxidation kinetics at high temperature of only a limited number of pure metals. Deviations are often observed and reported in the literature for the oxidation of pure metals (e.g., for pure nickel

					3± 5 ,1 2± 14 )
	or alloys (e.g., refs. 15 and 16), particularly at intermediat e temperatures,
	i.e., at temperatures lower than about 0.5 Tm (K), where Tm is the melting
	temperature of the growing oxide.		
	Independent of any changes in scale-growth mechanisms, which might
	depend on time andy or temperature, a common misinterpretation in the
	use of equation ``Dm	2 5 kp t ' ' results from overlooking the initial condition
	required to integrate the rate equation. Indeed, the integration of the com-
	mon rate equation			
		dDm dt	5	kp 2Dm	(1a)

Table I .

 I Common Rate Equations and Kinetics Laws for Metal or Alloy Oxidation

	Case	Rate equation	Initial conditions	Kinetics law
	1	t5 ti	Dm	2 2 Dm

Table IV .

 IV Parabolic Rate Constants kp Determined from Local Fit from Nonisothermal and Isothermal Tests

		Holding time	kp (local ® t)	kp (24-hr isothermal test)
	T (°C)	(hr)	(mg	2 cm	-4 s -1 )	(mg	2 cm	-4 s	-1 )
	1200	2.8	3.43 10	-3	7.4 3 10	-3
	1000	12	3.03 10	-4	3.3 3 10	-4
	1100	2.8	4.13 10				

  ReadList[title,Number,RecordLists® True];Build a new table: time as a function of mass in order to perform the parabolic ® t sequence performs the local full parabolic ® tting:deltai5 100; (size of the sliding window in which the ® t is performed, in number of points) kp_list5 0,0;

	Do[ imin5 i;
	imax 5 imin1 deltai;
	time_window5 Take[time_as_a_function_of_mass,imin,imax];
	poly® t5 Fit[time-window,1,x,xà 2,x];
	kp5 1y Coef® cient[poly® t,x,2];
	kp-list5 Append[kp_list,time_mass[[Ceiling[(imin1 imax)y 2]]][[1]],Log[10,kp]]
	,i,1,Length[time_mass]-deltai,step];

time_mass 5 time_as_a_fu nction_of_mass 5 Table[Reverse [time_mass[[i]]],i,1,Length[time_mass]]; * This example was written with Mathemati caÒ version 3.0.

This