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Abstract

The problem of abrupt change detection has received much attention in the literature. The Neyman—Pearson detector

can be derived and yields the well-known CUSUM algorithm, when the abrupt change is contaminated by an additive

noise. However, a multiplicative noise has been observed in many signal processing applications. These applications

include radar, sonar, communication and image processing. This paper addresses the problem of abrupt change detection

in presence of multiplicative noise. The optimal Neyman—Pearson detector is studied when the abrupt change and noise

parameters are known. The parameters are unknown in most practical applications and have to be estimated. The

maximum likelihood estimator is then derived for these parameters. The Neyman—Pearson detector combined with the

maximum likelihood estimator yields the generalized likelihood ratio detector.

Zusammenfassung

Das Problem der Detektion einer abrupten änderung hat in der Literatur grosse Beachtung gefunden. Der Ney-

man—Pearson Detektor kann hergeleitet werden und führt, wenn die abrupte änderung mit additivem Rauschen

überlagert ist, zu dem allgemein bekannten CUSUM-Algorithmus. In vielen Anwendungsgebieten, wie z.B. Radar,

Sonar, Kommunikationstechnik und Bildverarbeitung, wird jedoch ein multiplikativ überlagertes Rauschen beobachtet.

Dieser Beitrag behandelt das Problem der Detektion von abrupten änderungen bei der Anwesenheit von multiplikativem

Rauschen. Der optimale Neyman—Pearson Detektor wird untersucht, wenn die Parameter der abrupten änderung und

des Rauschens bekannt sind. Diese Parameter sind in den meisten praktischen Anwendungen unbekannt und müssen

geschätzt werden. Anschliessend wird für diese Parameter der Maximum Likelihood Schätzer hergeleitet. Der Ney-

man—Pearson Detektor kombiniert mit dem Maximum Likelihood Schätzer führt zu dem verallgemeinerten Likeli-

hood-Verhältnis-Detektor.

Résumé

La détection de ruptures est un problème qui a été considéré avec beaucoup d’intérêt dans la littérature. Lorsque la

rupture est noyée dans un bruit additif, le test de Neyman—Pearson donne naissance à l’algorithme CUSUM. Cependant,

la présence d’un bruit multiplicatif a été observée dans de nombreuses applications comme le radar, le sonar, les



télécommunications ou le traitement d’images. Cet article étudie le problème de la détection de ruptures noyées dans un

bruit multiplicatif. Lorsque les paramètres de la rupture et du bruit sont connus, le test optimal de Neyman—Pearson est

étudié. Dans la plupart des applications, les paramètres sont inconnus et doivent être estimés. L’estimateur du maximum

de vraisemblance pour ces paramètres est alors étudié. L’utilisation conjointe de l’estimateur du maximum de vraisem-

blance et du test de Neyman—Pearson permet d’étudier le test du rapport de vraisemblance généralisé.

Keywords: Abrupt changes; Multiplicative noise; Neyman—Pearson detector; Maximum likelihood detector

1. Introduction

There is an increasing interest in multiplicative

noise models for many signal processing applica-
tions. These applications include image processing
(speckle) [3,19], radar systems [2] and random
communication models (fading channels) ([14],
Chapter 7), [20]. This paper addresses the prob-
lems of detection and estimation of abrupt changes
contaminated by multiplicative Gaussian noise.
These problems arise in many practical applica-
tions such as segmentation or fault detection
[1,17]. The example of edge detection in synthetic
aperture radar (SAR) images is detailed. However,
the studied problem is of great interest in many
other applications.

In previous studies [5,11,15], the SPECtral
ANalysis (SPECAN) algorithm (combined with
parametric spectral estimation) was shown to offer
spatial resolution improvement and speckle noise
reduction. The SPECAN performs a line-by-line
processing of the SAR image. Following the con-
ventional SAR processor (i.e. matched filtering#

SPECAN), the received signal can be modelled by

x(n)"b(n)s(n)"(m#y(n))s(n), n3M1,2,NN, (1)

b(n)"m#y(n) is the multiplicative speckle noise

(with mean m) and s(n) is a line of the SAR image.
The statistical properties of y(n) and s(n) can be
defined as follows, when intensity images are con-

sidered.
The speckle noise is usually modelled as a sta-

tionary exponentially distributed process. How-

ever, in many applications including SAR image

processing, the speckle is reduced by incoherently

averaging N
i
uncorrelated images for large values

of N
i
[3]. The resulting reduced-speckle image

intensities are approximately Gaussian distributed

(using the central limit theorem). Here, the multipli-

cative noise y(n) is assumed to be a zero-mean
Gaussian stationary AR(p) process with para-

meters p2 and a"(a
1
,2,a

p
)T. The multiplicative

noise y(n) can be modelled by an AR process for the
following reasons:

f for any real-valued stationary process y(n) with
continuous spectral density S( f ), it is possible to
find an AR process whose spectral density is

arbitrarily close to S( f ) ([4], p. 130).

f zero-mean Gaussian processes are completely

defined by their spectra.

An ideal abrupt change in an image line can be
modelled as a step of amplitude A located at time
t
0
[1,3]:

s
*$%!-

(n)"1#A, n'n
0
,

(2)
s
*$%!-

(n)"1, n)n
0
,

where ¹ is the sampling period and n
0

denotes the
sample point after which there is a sudden change

in the signal. The location of the actual change is

t
0
"n

0
¹#q, with 0(q(¹. Eq. (2) can represent

two fields with different reflectivities in piecewise

constant backgrounds. To ensure some regularity

conditions (differentiability of the likelihood func-

tion with respect to t
0
), the abrupt change is

modelled by an amplitude A sigmoidal function at
time t

0
[12]:

s
a
(n)"

1#A#e~a(nT~n0T~q)

1#e~a(nT~n0T~q)
, n3M1,2,NN. (3)

Parameter a determines how fast or slow the
noise-free signal s

a
(n) changes its amplitude from

1 to 1#A about t
0
. Note that the sigmoidal

function approaches the ideal abrupt change when



1A similar problem was studied in [18].

parameter a approaches infinity:

lim

a?`=

s
a
(n)"1#A, n'n

0
,

(4)
lim

a?`=

s
a
(n)"1, n)n

0
.

Abrupt change detection and estimation, in the
presence of an additive noise, has been studied for
long time (see [1] and references therein for an
overview). The new contribution here is the devel-
opment of several detection algorithms for signals

multiplied by the noise. The study is restricted to

off-line change detection algorithms [1]. However,
most algorithms could be modified for on-line
change detection problems. Note that the variance
is constant (the same before and after the change)
when the noise is additive. Contrary to additive
noise, the multiplicative noise causes both mean
and variance jumps.

The paper is organized as follows. Section 2
studies the optimal Neyman—Pearson Detector
(NPD) for the detection of abrupt changes con-
taminated by multiplicative Gaussian noise. The
NPD is optimal in the sense that it minimizes the
probability of non-detection (PND) for a fixed
probability of false-alarm (PFA). However, the
NPD requires a priori knowledge of the noise and
abrupt change parameters. These parameters are
unknown in practical applications and have to be
estimated. Section 3 studies the maximum likeli-
hood estimator (MLE) for these parameters. The
MLE combined with the NPD yields the generaliz-
ed likelihood ratio detector (GLRD), which is
studied in Section 4. The conclusions are reported
in Section 5.

2. Neyman—Pearson detector (NPD)

This section studies the NPD [20] for the detec-

tion of deterministic abrupt changes contaminated
by multiplicative Gaussian noise.

2.1. White Gaussian noise

White Gaussian noise for y(n) is a very interest-

ing case because the NPD is especially simple.

ºnder hypothesis H
0
, the signal is a stationary

independent and identically distributed (i.i.d.)

Gaussian sequence y(n) with variance p2 plus a con-
stant mean m:

x(n)"y(n)#m. (5)

ºnder hypothesis H
1
, the sequence y(n)#m is

multiplied by a sigmoidal function with amplitude

A at time t
0
:

x(n)"(y(n)#m)s
a
(n). (6)

The Neyman—Pearson test for this problem1 is de-
fined by [20]

H
0

rejected if
¸(XDH

1
)

¸(XDH
0
)
'k

PFA
. (7)

In Eq. (7), ¸(XDH
i
) is a Gaussian likelihood func-

tion for the vector X"[x(1),2,x(N)]T under hy-
pothesis H

i
and k

PFA
is a threshold depending on

the fixed PFA. The log-likelihood ratio test (7) can

then be written as

H
0

rejected if Z'S
PFA

, (8)

with

Z"
1

p2

N
+
i/1
A1!

1

s2
a
(i)BCx(i)!m

s
a
(i)

1#s
a
(i)D

2
. (9)

In Eq. (8), S
PFA

is a threshold depending on the
PFA (which will be denoted S for brevity). Z can be
expressed as the sum of N i.i.d. variables:

Z"
N
+
i/1

d
ij
(w(i)#M

ij
)2 under H

j
, (10)

with

M
i0

"
m

p

1

1#s
a

(i)
, d

i0
"

s2
a
(i)!1

s2
a
(i)

,

(11)

M
i1

"
m

p
s
a
(i)

1#s
a
(i)

, d
i1

"s2
a
(i)!1,

where w(i) is a zero-mean unit variance Gaussian

variable. The NPD for the abrupt change detection
leads to a Gaussian sufficient statistic when the
(white Gaussian) noise is additive. Eq. (10) shows



Fig. 1. PFA and PND as functions of the threshold (dashed

line: A"0.01, continuous line: A"0.05) (white noise).

Fig. 2. PND as a function of the abrupt change amplitude for

PFA"0.01 (white noise).

that the presence of a multiplicative white Gaussian
noise (which causes a variance jump) leads to
a non-Gaussian sufficient statistic. Note that
d
ij
'0 ∀(i, j) which means that Z is a positive-

definite quadratic form in variables w(i). The distri-

bution of Z can then be determined under either
hypothesis: the test statistic can be expressed as
mixtures of central or non-central s2-distributions

and its cumulative distribution function can be
expanded in Maclaurin or Legendre series ([8], pp.
168—173). Note that the problem is simpler than the

general Gaussian problem [20] for which the suffi-
cient statistic can be an indefinite quadratic form in
Gaussian variables.

For a large value of parameter a (i.e. for an ideal

abrupt change), Eq. (10) reduces to

lim

a?`=

Z"d
j

N
+

i/n0`1

(w(i)#M
j
)2 under H

j
, (12)

with

M
0
"

m

p
1

2#A
, d

0
"

A(2#A)

(1#A)2
,

(13)

M
1
"

m

p

1#A

2#A
, d

1
"A(2#A).

Under hypothesis H
j
, Eq. (12) shows that the distri-

bution of Z/d
j
is a non-central s2-distribution with

N!n
0

degrees of freedom and non-centrality
parameter j

j
"(N!n

0
)M2

j
. The PFA and PND

can then be expressed as functions of the cumulat-

ive distribution function of a non-central s2-distri-
bution:

PND"P
S@d1

~=

f
1
(t) dt, PFA"P

`=

S@d0

f
0
(t) dt. (14)

In these equations, f
j
(t) denotes the probability den-

sity function of the s2-distribution with N!n
0

degrees of freedom and non-centrality para-
meter j

j
"(N!n

0
)M2

j
. As an example, consider

N"2048 samples of a Gaussian distributed ran-

dom sequence with m"1 and p2"1. The abrupt
change occurs at time n

0
"1024. The variations

of PFA and PND as functions of the threshold

S are plotted in Fig. 1 for two different jump ampli-
tudes A"0.01 and A"0.05. This test constitutes

a reference to which suboptimal detectors can be

compared.
The test sensitivity is then studied as a function

of the jump amplitude A and the noise parameters.

The PND variations as a function of A for fixed
noise parameters (m"1 and p2"1) and PFA
(PFA"0.01) are plotted in Fig. 2. The ROC

curves, representing the variations of PD"1-PND
versus PFA, are plotted in Fig. 3, for fixed noise

parameters (m"1 and p2"1). Obviously, the



Fig. 3. ROC curves for the NPD (white noise).

Fig. 4. PND as a function of m2/p2 for A"0.1 and PFA"0.01

(white noise).

higher A, the better the NPD performance. Figs. 2
and 3 show that an abrupt change with amplitude

A*0.1 corrupted by a multiplicative white Gaus-
sian noise (with m"1 and p2"1) can be detected
with a very good performance.

What is the noise influence on the NPD perfor-
mance, for a fixed abrupt change? Eqs. (11) and (13)

show that the NPD parameters are functions of the

abrupt change amplitude A and the ratio m/p. Con-
sequently, the NPD performance is a function of

m/p, for a fixed abrupt change. The PND variations

as a function of m2/p2 are plotted in Fig. 4. Fig. 4

shows that an abrupt change with amplitude

A"0.1 corrupted by a multiplicative white Gaus-
sian noise with m2/p2*1 can be detected with

a very good performance.

2.2. AR(p) Gaussian noise

The simple case of a multiplicative white noise is
not always realistic. As it is specified in [3], it is
more realistic to model the speckle by a band-
limited noise process containing only lower spatial
frequencies. In this case, the detection algorithm
developed above cannot be used. The multiplica-
tive colored Gaussian noise y(n) is then modelled by
an AR(p) process.

ºnder hypothesis H
0
, the signal is a stationary

zero-mean AR(p) Gaussian process y(n) with para-
meters p2 and a"[a

1
,2,a

p
]T plus a constant

mean m:

x(n)"y(n)#m. (15)

ºnder hypothesis H
1
, the process y(n)#m is multi-

plied by an amplitude A sigmoidal function at time
t
0
:

x(n)"(y(n)#m)s
a
(n). (16)

Denote ln ¸(XDH
i
) the Gaussian log-likelihood

function for the vector X"[x(1),2,x(N)]T (with
mean M

i
and covariance matrix R

i
) under hypothe-

sis H
i
:

ln ¸(XDH
i
)"!

N

2
ln (2p)!

1

2
ln DR

i
D

!
1

2
(X!M

i
)TR~1

i
(X!M

i
), (17)

with M
0
"m(1,2,1)T and M

1
"mS

a
"m[s

a
(1),2,

s
a
(N)]T. The inverse covariance matrix of an

AR(p) process can be expressed as a function
of the model parameters p2 and a"[a

1
,2,a

p
]T

with the Gohberg—Semencul formula (see, for

instance, ([16], p. 123)):

R~1
0

"
1

p2
(FFT!GGT), (18)



Fig. 5. Histograms and PDF of Q(X) with 95% confidence

intervals: (a) under H
0
, (b) under H

1
.

where F"( f
ij
) and G"(g

ij
) are the N]N lower

triangular matrices defined by [10]

f
ij
"G

1, i"j,

a
i~j

, i'j,

0, i(j,

and g
ij
"G

a
p~i`j

, i'j,

0, i)j.

(19)

Under hypothesis H
1
, the inverse covariance

matrix of the vector X can be expressed as

R~1
1

"
1

p2
D(FFT!GGT)D, (20)

D being a diagonal matrix defined by D"

diag(1/s
a
(1),2,1/s

a
(N)). The Neyman—Pearson test

is then defined by

H
0

rejected if Q
0
(X)!Q

1
(X)'S. (21)

In Eq. (21), Q
0
(X) and Q

1
(X) are the two positive-

definite quadratic forms:

Q
0
(X)"(X!M

0
)TR~1

0
(X!M

0
), (22)

Q
1
(X)"(X./S

a
!M

0
)TR~1

0
(X./S

a
!M

0
), (23)

where (./) denotes the element-by-element division.
In the general case, the quadratic form Q(X)"

Q
0
(X)!Q

1
(X) is indefinite. Relatively little atten-

tion has been devoted to the problem of obtaining
the distribution of indefinite quadratic forms of
Gaussian vectors. Q(X) can be represented as
a mixture of differences between pairs of indepen-
dent central s2-distributions [7], ([8], p. 174). Un-

fortunately, these expansions are difficult to study.
Instead, the distribution of Q(X) can be approxi-
mated leading to a simple test statistic. For
example, Fig. 5(a) and (b) show a comparison be-
tween the histograms of Q(X) and the fitted Gaus-
sian pdf’s (under both hypotheses) with 95%
confidence intervals (computed as in [13], p. 251).
These figures show that the Gaussian probability
density function (PDF) is a good approximation for
the PDF of Q(X) under hypotheses H

0
and H

1
. The

approximate ROC curves (derived from the fitted
Gaussian PDF for Q(X)) are shown in Fig. 6 as

a function of the jump amplitude A for a low-pass

spectrum (a"[!0.2,0.153]T). The NPD perfor-

mance for the detection of abrupt changes con-
taminated by multiplicative colored noise is very
similar to the performance obtained with a multi-
plicative white Gaussian noise. Consequently, as
previously, an abrupt change with amplitude
A*0.1 corrupted by a multiplicative colored Gaus-

sian noise with m2/p2*1 can be detected with
a very good performance.

The optimal NPD gives a reference to which

suboptimal detectors can be compared. However,
the NPD requires a priori knowledge of the noise
and abrupt change parameters. These parameters
are unknown in practical applications and have to



Fig. 6. ROC curves for the NPD (colored noise).

be estimated. The next part of the paper derives the
Maximum likelihood estimator (MLE) for these
parameters.

3. Maximum likelihood estimator (MLE)

The maximum likelihood principle [20] provides

a method to estimate a parameter vector h from
a finite length data record X"[x(1),2,x(N)]T.
Under hypothesis H

0
, X is a Gaussian white or

AR(p) process plus a constant mean whose para-
meters can be estimated with the conventional
autocorrelation or covariance methods [9]. This
section focuses on estimating the noise and sigmoid
parameters under hypothesis H

1
. Note that para-

meter a (which characterizes the abrupt change

shape) is assumed to be known. All simulations
have been performed with a"10, which corres-
ponds to a very sharp change (very close to the
ideal abrupt change).

3.1. White Gaussian noise

The noise and sigmoid parameters are (m,p2) and

(A,t
0
) such that h"(m,p2,A,t

0
)T. The MLE of h de-

noted hK
ML

maximizes the Gaussian log-likelihood

function:

ln ¸(X;h)"!
N

2
ln (2pp2)!

N
+
i/1

ln s
a
(i)

!
1

2p2G
N
+
i/1
A

x(i)

s
a

(i)
!mB

2

H (24)

over a subset H of R3]]¹,N¹[. When (A,t
0
)T is

known, the MLE of (m,p2)T is obtained by setting
the partial derivatives of ln ¸(X;h) with respect to

m and p2 to zero:

mL
ML

"
1

N

N
+
i/1

x(i)

s
a
(i)

, (25)

pL 2
ML

"
1

N

N
+
i/1
A
x(i)

s
a
(i)

!mL
MLB

2
. (26)

These estimators are the conventional mean and
variance estimators for the observation vector
(x(1)/s

a
(1),2,x(N)/s

a
(N))T. When (A,t

0
)T is un-

known, the expression of mL
ML

and pL 2
ML

are sub-
stituted in Eq. (24). After dropping the constant
terms, the following criterion has to be maximized
with respect to A and t

0
:

J
1
(X;A,t

0
)

"!
N
+
i/1

ln s
a
(i)!

N

2
lnG

N
+
i/1
A
x(i)

s
a
(i)

!f(X;A,t
0
)B

2

H
(27)

with

f (X;A,t
0
)"

1

N

N
+
i/1

x(i)

s
a
(i)

. (28)

Setting the partial derivatives of J
1
(X;A,t

0
) with

respect to A and t
0

to zero generally yields non-
linear equations in A and t

0
. These equations do

not yield closed-form expressions for the estimates.

A numerical approach then has to be used. How-

ever, for large values of parameter a (i.e. for an ideal

abrupt change), Eq. (27) reduces to

J*$%!-
1

(X;A,n
0
)

"!(N!n
0
)ln(1#A)

!
N

2
lnG

N
+
i/1
A

x(i)

s
*$%!-

(i)
!f

*$%!-
(X;A,n

0
)B

2

H (29)



Fig. 7. Mean and standard deviation of estimated parameters

for different numbers of samples N (white noise): (a) AK
ML

, (b)

nL
0ML

/n
0
.

with

f
*$%!-

(X;A,n
0
)"

1

NC
n0
+
i/1

x(i)#
1

1#A

N
+

i/n0`1

x(i)D,
(30)

s
*$%!-

(i)"G
1, i)n

0
,

1#A, i'n
0
.

(31)

[LJ*$%!-
1

(X;A,n
0
)]/LA"0 leads to a quadratic equa-

tion in A. This equation gives a closed-form expres-

sion for A, denoted as g(X;n
0
), as a function of the

jump time n
0

and the observation vector X. The
MLEs for A and t

0
are then

tK
0ML

"arg max

k|M1,2,NN

J
3
(X;k),

AK
ML

"g(X;tK
0ML

),

(32)

with J
3
(X;k)"J

1
(X;g(X;k),k). The MLEs for m and

p2 can be deduced from Eqs. (25) and (26) by re-
placing s

a
(i) by

sL
a
(i)"G

1, i)nL
0ML

,

1#AK
ML

, i'nL
0ML

.
(33)

The following remarks apply for an ideal abrupt

change:

f The maximization of ¸(X;h) over the whole para-
meter vector h is equivalent to the maximization

of J
3
(X;n

0
) with respect to n

0
only [6].

f The maximization of J
3
(X;n

0
) with respect to

n
0

is discrete and is very simple to implement.
However, the usual MLE properties are not

guaranteed, since the regularity conditions on

J
3
(X;n

0
) with respect to n

0
are not satisfied.

The mean and standard deviation of the abrupt

change parameter MLEs, computed with 500

Monte Carlo runs, are shown in Fig. 7(a) and (b)

for different numbers of samples N. The true para-

meters are m"1, p2"1, A"0.5 and n
0
"N/2.

The comparison between the true parameters and

the estimates show the ML algorithm efficiency.

3.2. AR(p) Gaussian noise

The noise and sigmoid parameters are (m,p2,a)
and (A,t

0
) such that h"(m,p2,aT,A,t

0
)T with a"

[a(1),2,a(p)]T. The exact maximization of the

Gaussian likelihood function (17) produces a set

of highly non-linear equations even in the pure

AR case (A"0) [10]. However, the likelihood
function maximization can be approximated by

maximizing the conditional likelihood function

¸(x(p#1),2,x(N) Dx(1),2,x(p);h) for large data
records ([9], p. 186). The driving AR(p) process u(n)

is assumed an i.i.d. sequence with zero mean and

variance p2. The Jacobian matrix determinant of
the transformation from ºI "[u(p#1),2,u(N)]T

to XI "[x(p#1),2,x(N)]T is

det(J)"C
N
<

i/p`1

s
a
(i)D

~1
.



Consequently, the PDF for XI conditioned on the
p first values x(1),2,x(p) can be determined:

¸(XI D x(1),2,x(p);h)

"
det(J)

(2pp2)(N~p)@2
expA!

1

2p2
f (x;m,p2,a,S

a
)B , (34)

with

f(x;m,p2,a,S
a
)"

N
+

i/p`1
C
x(i)

s
a
(i)

#
p
+
k/1

a(k)
x(i!k)

s
a
(i!k)

!mA1#
p
+
k/1

a(k)BD
2
. (35)

Setting the partial derivatives of ln ¸(XI D x(1),2,
x(p);h) with respect to m and p2 to zero yields

mL
ML

"
1

(N!p)(1#+p
k/1

a(k))

]
N
+

i/p`1
A
x(i)

s
a
(i)

#
p
+
k/1

a(k)
x(i!k)

s
a
(i!k)B, (36)

pL 2
ML

"
1

N!p

N
+

i/p`1
A
x(i)

s
a
(i)

#
p
+
k/1

a(k)
x(i!k)

s
a
(i!k)

!mL
MLC1#

p
+
k/1

a(k)DB
2
. (37)

Note that Eqs. (36) and (37) reduce to Eqs. (25)
and (26) when a"0. Replacing m and p2 in

ln ¸(XI D x(1),2,x(p);h) by their estimates from
Eqs. (36) and (37), the criterion JAR

1
has to be maxi-

mized with respect to a, A and t
0

with

JAR
1

(XI ;a,A,t
0
)"!

N
+

i/p`1

ln s
a
(i)!

N!p

2
ln Q(a),

Q(a)"
N
+

i/p`1
Av(i,0)#

p
+
k/1

a(k)v(i,k)B
2
,

v(i,k)"
x(i!k)

s
a
(i!k)

!
1

N!p

N
+

j/p`1

x( j!k)

s
a
( j!k)

.

(38)

JAR
1

is maximized over a by minimizing Q(a). Note
that Q(a) is a quadratic form in a. As a result, its

differentiation yields a global minimum (which may

not be unique) defined by the matrix equation

¼aL
ML

"!w with

¼"C
w(1,1) w(1,2) 2 w(1,p)

w(2,1) w(2,2) 2 w(2,p)

F F } F

w(p,1) w(p,2) 2 w(p,p)D,
w"C

w(1,0)

w(2,0)

F

w(p,0)D (39)

and

w( j, k)"
1

N!p

N
+

i/p`1

v(i, j)v(i,k). (40)

When (A,t
0
)T is unknown, aL

ML
is substituted in JAR

1
.

The maximization of ¸(XI D x(1),2,x(p);h) over the
whole parameter vector h is equivalent to the maxi-

mization of JAR
2

(XI ;A,t
0
)"JAR

1
(XI ;aL

MV
,A,t

0
) with re-

spect to (A,t
0
)T only [6]. The MLE for the

parameter vector (A,t
0
)T is

tK
0
"arg max

k|M1m2,NN Gsup

A

JAR
2

(XI ;A,k)H, (41)

AK "arg sup

A

JAR
2

(XI ;A,tK
0
). (42)

This case is significantly more complicated than
the white Gaussian multiplicative noise case. The
differentiation of JAR

2
(XI ;A,t

0
) with respect to

A yields a set of non-linear equations which cannot

be easily solved. An analytical closed-form expres-
sion of AK cannot be found even in the case of an
ideal abrupt change. A numerical method then has

to be used for the estimation of sup
A
JAR
2

(XI ;A,k).

This paper proposes to use the conventional iter-
ative quasi-Newton BFGS algorithm (available in
the Matlab optimization toolbox). Partial deriva-
tives are computed using a numerical differenti-
ation method via finite differences (although they
can be analytically derived with high computa-
tional cost). In general, the cost function JAR

2
(XI ;A,k)



Fig. 8. Mean and standard deviation of estimated parameters

for different numbers of samples N (colored noise): (a) AK
ML

, (b)

nL
0ML

/n
0
.

has several local maxima. Thus, the optimization
procedure has to be initialized sufficiently close to
the global maximum.

3.2.1. Initialization of tK
0

There is a simultaneous mean value and variance
jump after the abrupt change instant when the

multiplicative noise is non-zero mean (mO0). The
off-line estimation procedure described in ([1],

p. 66) for mean changes then can be used for the

initialization of tK
0
:

tK
0
"arg max

1xkxN

M!(k!1)(N!k#1)

][m
0
(k)2!m

1
(k)2]N. (43)

m
0
(k) and m

1
(k) are the usual mean estimates before

and after k, respectively,

m
0
(k)"

1

k!1

k~1
+
i/1

x(i),

(44)

m
1
(k)"

1

N!k#1

N
+
i/k

x(i).

A mean value jump occurs in the signal x2(n) when
the multiplicative noise is zero-mean (m"0). This
jump can be used for the initialization of tK

0
.

3.2.2. Initialization of AK

Once the abrupt change instant has been esti-
mated, the amplitude can be estimated as

AK "
m

1
(tK
0
)

m
0
(tK
0
)
!1. (45)

The mean and standard deviation of the abrupt
change parameter MLEs are shown in Fig. 8(a) and
(b) for different numbers of samples N. The true

parameters are m"1, p2"1, a"[!0.2,0.153]T

(low-pass spectrum), A"0.5 and n
0
"N/2. The

comparison between the true parameters and the
estimates shows the ML algorithm good perfor-
mance.

4. Generalized likelihood ratio detector (GLRD)

The generalized likelihood ratio detector
(GLRD) estimates the unknown parameters under

hypotheses H
0

and H
1

using the maximum likeli-
hood procedure and uses these estimates in the
Neyman—Pearson test defined in Eq. (7). The GLR

test for our problem is [20]

H
0

rejected if
¸(XDhK

1
)

¸(XDhK
0
)
'k

PFA
, (46)

where hK
i
denotes the MLE of h under hypothesis

H
i
. According to the first section, the GLRD is

defined by

H
0

rejected if QK
0
(X)!QK

1
(X)'S, (47)



Fig. 9. ROC curves for the GLRD: (a) white noise, (b) colored

noise.

with

QK
0
(X)"(X!MK

0
)TRK ~1

0
(X!MK

0
), (48)

QK
1
(X)"(X./S

a
L !MK

0
)TRK ~1

0
(X./SK

a
!MK

0
). (49)

Eqs. (48) and (49) show that the test statistics can be

computed from noise and abrupt change parameter

estimates. The threshold S corresponding to a fixed
PFA is determined as in the first section (i.e. using

the non-central s2-distribution for the white noise
case or the fitted Gaussian PDF for the colored

noise case), after replacing noise and abrupt change

parameter by their ML estimates. The GLRD ROC

curves are depicted in Fig. 9(a) and (b) as a function

of the abrupt change amplitude, for white and

colored noise (same parameters than in the first

section). Fig. 9(a) and (b) show that

f the GLRD performance is significantly reduced

compared to NPD performance. This is due to

the ML estimation procedure.

f the GLRD performance for a colored noise can

be significantly reduced with respect to the

GLRD performance obtained with a white noise.

This is again due to the ML procedure which

requires a numerical optimization algorithm

when the noise is colored.

f an abrupt change with amplitude A*0.1 (re-

spectively A*0.4) corrupted by a multiplicative

white (respectively colored) Gaussian noise (with
m2/p2*1) can be detected with a very good

performance.

5. Summary and conclusions

This paper studied the detection of abrupt cha-
nges contaminated by multiplicative Gaussian

noise. The optimal Neyman—Pearson detector

(NPD) was derived for white and colored noise.

The NPD performance was shown to be similar in

both cases. The NPD provides a reference to which

suboptimal detectors can be compared. However,

the NPD requires knowledge of the abrupt change

and noise parameters. The abrupt change and noise

parameters are unknown in practical applications

and have to be estimated.
The maximum likelihood estimator (MLE) was

then derived for these parameters. When the noise

is white, the MLE algorithm reduced to a discrete

maximization (easy to implement). When the noise

is colored, a numerical algorithm was used for the

maximization with respect to the abrupt change

parameters.
The MLE was then combined with the NPD to

yield the generalized likelihood ratio detector

(GLRD). The GLRD performance was shown to be

significantly reduced compared to the NPD perfor-

mance, because of the estimation procedure. More-

over, the GLRD performance was shown to be

different for white and colored noise: the numerical

optimization algorithm, required when the noise is

colored, leaded to smaller performance with respect

to the white noise case.
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