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We report a numerical study of passive tracer dispersion in fractures with rough walls modeled as the space

between two complementary self-affine surfaces rigidly translated with respect to each other. Geometrical

dispersion due to the disorder of the velocity distribution is computed using the lubrication approximation.

Using a spectral perturbative scheme to solve the flow problem and a mapping coordinate method to compute

dispersion, we perform extensive ensemble averaged simulations to test theoretical predictions on the disper-

sion dependence on simple geometrical parameters. We observe the expected quadratic dispersion coefficient

dependence on both the mean aperture and the relative shift of the crack as of well as the anomalous dispersion

dependence on tracer traveling distance. We also characterize the anisotropy of the dispersion front, which

progressively wrinkles into a self-affine curve whose exponent is equal to that of the fracture surface.

I. INTRODUCTION

A. Motivation of the study

Flow and mass transport in fractured media is a complex

problem with many applications to pollutant dispersion and

waste storage as well as to geothermic and oil and gas re-

covery processes @1,2#. From a fundamental point of view, it

has recently stimulated a great deal of interest in connection

with different approaches to the description of fracture

roughness in terms of a self-affine geometry @3,4#. A key

observation @5,6# is that flow and solute transport are not

distributed evenly across the fracture surface: Instead, they

are often concentrated in some preferential flow paths while

large parts of the fracture often act as dead zones. This effect

is very much dependent on the roughness of the fracture

walls and it plays a crucial role in enhancing pollutant trans-

port in a fractured zone.

In the present paper we present a numerical simulation of

tracer dispersion in fractures with self-affine rough walls.

Tracer dispersion, due to its nonlocal nature @7,8#, is indeed a
unique tool used to detect and characterize the influence of

preferential flow channels: Particles flowing through such

paths cross the sample and reach the detectors much sooner

than those trapped inside low-velocity zones. More global

measurements such as the average permeability or electrical

conductivity of the fracture are dominantly controlled by its

effective aperture @9# and thus are less sensitive to flow het-

erogeneities. Previous studies have indeed confirmed that

tracer dispersion in fracture geometries @5,10,11# often re-

sults largely from disparities between transit times along

macroscopic parallel flow channels.

The present work is devoted to a systematic quantitative

numerical analysis of these problems in the realistic case of a

self-affine roughness geometry. We investigate in particular

the influence of the sample size, of the relative displacement

of the complementary rough walls, and of the orientation

between the mean flow and the displacement. The simula-

tions are two-dimensional, involving a two-dimensional frac-

ture surface, and the flow is computed in the lubrication ap-

proximation. Let us discuss now the dispersion mechanisms

acting in fractures and their domain of applicability.

B. Tracer dispersion mechanisms in rough fractures

Tracer dispersion is a key tool used to analyze nonlocal

spatial correlations of the velocity field in a porous or frac-

tured system. We consider a steady three-dimensional Stokes

flow uW (x) established in the rough wall fracture geometry

introduced above. Locally, we assume that the local tracer

concentration c obeys a convection-diffusion equation

]c~xW ,t !

]t
1uW ~xW !•¹W c~xW ,t !5Dm¹2c~xW ,t !, ~1!

where Dm is the molecular diffusion coefficient. This behav-

ior is postulated at the local level.

Our aim is to be able to characterize the dispersion prop-

erties of the tracer in such a geometry without having to

resort to a detailed three-dimensional description. Upon

coarse graining at a scale much larger than the heterogeneity

scale and integration over the thickness x3 of the crack, it can

be shown that if the heterogeneity is small enough, the

coarse-grained concentration C(x1 ,x2) obeys an effective

convection-diffusion equation, with the coarse-grained ve-

locity UW (x1 ,x2) giving the advection term and an effective

dispersivity tensor D i j .

We define the coarse-grained fields as



C~x1 ,x2!5E E w~x12x18 ,x22x28!

3S ~1/h !E c~x18 ,x28 ,x38!dx38 D dx18dx28 , ~2!

where h is the aperture of the crack and w is the coarse-

graining weight function, e.g., a Gaussian, of unit integral

and decaying fast above a typical length scale larger than the

heterogeneity scale. A similar transformation is made on the

velocity field. The macroscopic description can be written as

@7#

]C

]t
1U i

]C

]x i

5D i j

]2C

]x i]x j

. ~3!

U i and D i j are, respectively, the components of the local

mean macroscopic flow velocity through the fracture or the

porous sample ~averaged over the aperture! and of the dis-

persivity tensor. The latter dispersivity tensor results from

velocity fluctuations in the local field and/or systematic

variation across the thickness, which are absent from the

coarse-grained description. D can be expressed as the La-

grangian velocity field covariance tensor @12#

D i j5 lim
T→`

K E
0

T

@V i~0 !2U i#@V j~ t !2U j#dtL , ~4!

where the integration is performed over particule trajectories

and V is the two-dimensional velocity field obtained from an

integration of uW over the aperture.

Several dispersion mechanisms are present in fractures.

Let us first discuss the ideal case of a perfect Hele-Shaw cell,

i.e., an ideal plane crack with a constant aperture h , and an

uniform flow. In this case, the velocity is simply a Poiseuille

flow with a parabolic profile across the thickness. The coarse

graining in this simple case consists in averaging the velocity

components over the thickness. Pure molecular diffusion is

significant only at extremely low velocities such that the Pé-

clet number Pe5Uh/Dm is less than 1. At high velocities,

the Taylor dispersion mechanism @13# dominates: It accounts
for the spreading due to the Poiseuille velocity profile be-

tween the fracture walls balanced by transverse molecular

diffusion ~homogenizing tracer concentration across the ap-

erture!. The resulting longitudinal ‘‘Taylor’’ dispersion coef-
ficient D i can be obtained analytically in this case for paral-

lel plane walls as @14#

D i5DTaylor5

h2U2

210Dm

1Dm ~5!

(D i is the longitudinal dispersivity coefficient, i.e., Dxx for a

flow along the x axis!. Taylor dispersion is observable in

fractures because of their inherently quasi-two-dimensional

flow geometry: Only molecular diffusion can move tracer

particles across the flow lines away from the fracture walls or

towards them. On the contrary, in usual random three-

dimensional porous media such as grain packings, a given

flow line moves continuously away from pore walls or to-

wards them along its path through severals pores; hence Tay-

lor dispersion does not play such an important part. Molecu-

lar diffusion and Taylor dispersion are the only two

mechanisms active in fractures with smooth plane walls.

For rough walls, on the contrary, the aperture of the crack

is no longer constant and therefore the fluid velocity displays

spatial fluctuations even after being averaged over the thick-

ness. This additional mechanism is also assumed to be taken

into account in the coarse description, corresponding to a

scale much larger than the heterogeneity scale. It induces a

geometrical dispersion component, an effect comparable to

that observed in three-dimensional porous media @7,15#!. If
Eq. ~3! is satisfied, the longitudinal coefficient D i is propor-

tional to velocity ~the dispersivity l D5D // /U represents the

Lagrangian correlation length of the flow field!. The geo-

metrical, molecular, and Taylor dispersion components sim-

ply add up in series: Thus the U2 Taylor dispersion compo-

nent dominates at high velocities, geometrical (U)

dispersion at lower ones, and finally (U0) molecular diffu-

sion at still lower velocities. A quantitative theoretical analy-

sis of the expected transition between these different regimes

can be found in @16# as well as predictions of the dependence
of the geometrical regime on the roughness of the crack.

These predictions are verified qualitatively in experiments

@17# on model fractures with parallel plane walls: For smooth
surfaces, only molecular and Taylor dispersion are observed;

for rough ones, geometrical dispersion occurs at low veloci-

ties and the Taylor component dominates at higher ones.

The present numerical model deals with geometrical dis-

persion effects directly associated with the velocity field dis-

order; Taylor and molecular dispersion terms are, on the con-

trary, much less related to flow field heterogeneities and are

not taken into account. We can thus use a simpler two-

dimensional model since we do not need to take into account

the flow structure in the direction perpendicular to the frac-

ture surface. These simulations describe adequately tracer

dispersion in the intermediate range of Péclet number values

such that both molecular diffusion and Taylor dispersion are

negligible. The limit of validity increases towards higher Pe

values as the heterogeneity of the flow field increases for a

given mean fracture aperture: Geometrical dispersion, indeed

increases with heterogeneity and ends up superseding Taylor

dispersion which remains almost the same. It must be also

pointed also that the Gaussian convection-diffusion equation

~3! is valid only if the correlation length of the flow velocity

field is small compared to the sample size: This is not the

case when large-scale preferential channels are present and

dispersion must then be characterized in another way.

C. Geometrical and transport properties

of self-affine rough fracture joints

An important point in modeling the topography of frac-

ture surfaces is the observation that they can often be de-

scribed as self-affine structures @3#: This applies to very di-

verse materials ~for instance, metal alloys, concrete, rocks
such as granite @18,19#, marble, and sandstone @20#!. Self-
affine surfaces display scale invariant properties provided

one uses different dilation ratios parallel l1 , l2 and perpen-

dicular l3 to the mean fracture plane, related by

l35l ~1,2!
z ~6!

(z is called the Hurst exponent!. This property implies the



existence of long-range correlations in the geometrical struc-
ture of the fracture surface: These in turn give rise to length
scale effects that must be understood and taken into account
when extrapolating laboratory scale measurements to field
applications. Such characteristics are observed for very di-
verse materials and fracturation mechanisms; the exponent z
has also been found in many cases to be close to a same
value z50.860.05, although some deviations have been ob-
served for some materials and at some length scales.

It has been suggested @4# that these self-affine features
allow one to predict variations of geometrical and transport
properties for fractures limited by complementary surfaces
shifted with respect to each other. A an important ingredient
is the residual displacement Dz perpendicular to their mean
plane of two such surfaces of global size L after they have
been displaced laterally by a distance Dx . It has been shown
@18# both experimentally ~on granite blocks! and theoreti-
cally that Dz does not scale exactly as expected as Dxz, but
that a logarithmic finite size term depending on the ratio
Dx/L must be introduced. Global physical quantities such as
the permeability of the fracture or its effective electrical con-
ductance after it has been saturated with a conducting fluid
have also been studied @9#. Both the permeability and the
electrical conductances are shown to depend mostly on the
normal distance Dz , however, very large fluctuations of
these quantities are observed when the direction and the am-

plitude of the lateral displacement Dx is varied, Dz being

kept constant. This confirms that the flow velocity and the

electrical current fields are influenced by the displacement

and that strong heterogeneities may appear: tracer dispersion

should be much more sensitive to these effects.

Previous numerical simulations @21,22# have been per-

formed to investigate the influence of random or self-affine

roughness on tracer dispersion through fractures: It is as-

sumed in these works that the local fracture thickness re-

mains constant in the direction perpendicular to the flow in

the fracture plane. This allows one to describe in detail the

influence of roughness on Taylor dispersion; however, it is

impossible in this framework to account for geometrical dis-

persion effects that require thickness variations in the two

directions of the mean fracture plane. Other authors

@10,11,5,23# have studied flow in fractures simulated as a

random permeability field accounting for aperture variations.

They did not, however, introduce specific aspects related to

the self-affine roughness geometry or to the fact that we are

not dealing with independent rough surfaces but with identi-

cal surfaces shifted by a specific amount. This mirrors the

fact that actual fractures observed in nature are created from

a single block of material @24# with the two halves shifted

thereafter by external stresses. It has been shown theoreti-

cally @18# that, in this case, the correlation between the ap-

erture at two different points of the fracture depends strongly

on the relative displacement of the surfaces: This will obvi-

ously influence the structure of the flow field. We shall there-

fore pay particular attention to the influence on tracer disper-

sion of this relative shift and of its orientation; the influence

of the finite size effects discussed above on the magnitude of

dispersion will also be investigated.

II. NUMERICAL METHODS

Our aim is to take into account the multiscale features of

the crack permeability induced by the crack roughness. As

mentioned in the Introduction, we focus here on case of self-

affine topography, observed in many instances. We first gen-

erate a self-affine surface with biperiodic boundary condi-

tions. We used both a dichotomy algorithm introduced by

Voss @25# and a Fourier method to generate such a self-affine
topography. The roughness exponent is chosen to be z
50.8. The amplitude of the roughness is chosen so that the

mean value of the height difference at the mesh size of the

discretization is constant. Therefore, the global standard de-

viation of the height of the crack depends on its size L . The

crack surface z(x) is then used to compute the aperture of

the crack after the two faces are translated with respect to

each other by a shift along the mean crack plane u , plus a

translation h normal to the mean plane so that the two sur-

faces do not overlap but have a point of contact. Therefore,

we obtain the aperture field as a(x)5z(x)2z(x1u)1h .

Given the aperture field, we use the lubrication or Rey-

nolds approximation to compute the velocity field. Thus we

consider the aperture gradient to be small enough so that we

may consider that the velocity field is locally a Poiseuille

flow everywhere in the crack, with a parabolic velocity pro-

file across the aperture. This reduces the three-dimensional

problem to a two-dimensional one and we simply have to

determine the aperture-averaged velocity field v
W from ~i! the

incompressibility condition

¹W •@a~xW !vW ~xW !#50 ~7!

and ~ii! the flux/pressure relation similar to Darcy’s law, with
a local permeability proportional to the square of the aperture

v~xW !52

a2~xW !

12h
¹W P~xW !52

k~xW !

h
¹W P~xW !, ~8!

where P is the coarse-grained pressure field. The applicabil-

ity of the Reynolds approximation is based on the condition

that the aperture gradient is much smaller than unity, i.e.,

u¹W au!1. In turn, this implies that the local slope of the crack

surface is much smaller than unity. Let us note that in the

case of a self-affine crack, with a roughness exponent strictly

smaller than unity, the coarse-grained slope estimated at a

scale l decreases as l
z21. Therefore, the small slope limi-

tation can be used at a sufficiently coarsened scale if an

effective hydraulic aperture is introduced. Using an experi-

mental determination of the crack surface topography, the

Reynolds approximation has been shown to be valid above a

scale of a few series of 10 mm @9#.
The numerical solution proceeds in two steps. One first

solves for the pressure and stream function. Then tracer ad-

vection is computed in the pressure-stream function coordi-

nate system and the corresponding spreading of a tracer step

profile is computed from the advection time along stream-

lines.

A. Hydraulic solution

Given the permeability field k(xW ) on a squared L3L

meshed domain D , the pressure field P(xW ) satisifes the equa-

tion imposed by the divergence-free flux field and the local

Darcy relation ~8!:



DP~xW !52

3

2

¹W k~xW !

k~xW !
•¹W P~xW !52

3

2
¹W @ ln k~xW !#•¹W P~xW !.

~9!

From the definition of the stream function CW (xW )

5„0,0,C(xW )…, a(xW )vW (xW )5¹W 3CW (xW ), and Darcy’s law ~8!
we get

DC~xW !5

3

2

¹W k~xW !

k~xW !
•¹W C~xW !5

3

2
¹W @ ln k~xW !#•¹W C~xW !,

~10!

with

¹W P~xW !•¹W C~xW !50.

These two very similar equations can be solved, simulta-

neously and iteratively, by a spectral method consistent with

the biperiodicity of the permeability field. This choice is nu-

merically convenient in the sense that it limits the spurious

effects of boundary conditions. However, its weakness lies in

the absence of an experimental counterpart.

We note that if the pressure gradient is periodic, the pres-

sure itself is not periodic but can be split into a periodic part

and a constant gradient term. The latter is treated separately

and acts as the forcing term for the flow. The mean pressure

gradient is oriented at 45° with respect to the principal axis

of the square grid used in the discretization, in order to limit

mesh orientation effects. The spectral iterative procedure is

based on a weak disorder expansion, commonly encountered

in heterogeneous porous media literature @7#. The following
procedure, albeit restricted to weakly heterogeneous media

unlike Ref @26#, is consistent with the aperture field of real-

istic fractures @9#. From Eq. ~9! we look for a solution for the
pressure gradient in the form of an expansion

¹W P~x !5¹W P ~0 !~x !1¹W P ~1 !~x !1•••1¹W P ~n !~x !1••• ,

~11!

where

DP ~0 !~x !50 ~12!

for

n.0DP ~n !~x !52

3

2
¹W @ ln k~x !#•¹W P ~n21 !~x !.

The zeroth-order solution corresponds to the imposed con-

stant mean pressure gradient, i.e., ¹W P0(x)5¹W P0. Each con-

secutive term is computed with a standard pseudospectral

technique. We compute on the right-hand side the scalar

product in direct space, while Laplacian inversion is calcu-

lated in Fourier space on the left-hand side. The use of the

fast Fourier transform algorithm makes this procedure very

efficient compared to direct-space conjugate gradient tech-

niques. A sufficient condition for such spectral iterative pro-

cedure to converge is 3
2 ¹W ln k(x)•¹W P0/i¹W P0i,1 for every

position x , provided the greater eigenvalue associated with

the iterated pressure solution is always 1. A less restrictive

condition can be obtained with an underrelaxation iterative

scheme. Such an underrelaxation can even be imposed lo-

cally, i.e., precisely in the region where 3
2 ¹W ln k(x)•¹W P0/

i¹W P0i.1, for greater efficiency.

B. Tracer dispersion

Once the pressure and velocity fields are determined, we

wish to model the geometrical dispersion regime. For that

purpose, we note that the parabolic velocity profile is an

essential ingredient of the Taylor regime, but that it does not

affect the geometrical dispersion. We assume that molecular

diffusion is efficient enough to avoid the Taylor regime, i.e.,

Ua/Dm,1. This allows us to deal simply with the aperture-

averaged velocity field ~i.e., a two-dimensional description in
the mean crack plane!. It is assumed that aperture variations
occur over much larger scales than the mean aperture and the

velocity is large enough to have convection effects dominant

compared to diffusion ones. For this discussion, we intro-

duce the ‘‘Péclet’’ number Pe8 constructed from the velocity

fluctuation dV and the correlation length of the aperture fluc-

tuation j so that Pe85dVj/Dm . To observe the geometric

dispersion regime we assume Pe8@1. In this limit, valid only

for j@h , we can consider the ‘‘infinite’’ Péclet number limit

of the two-dimensional description. More precisely, using

our previously defined Péclet number Pe5Uh/Dm , we ob-

tained in @16# the limit of validity of the geometrical regime

S dV

U
D 22 h

j
!Pe!S dV

U
D 2 j

h
. ~13!

It must be stressed that such a limiting condition is needed

when there is a well defined correlation length for the veloc-

ity field. We expect a less restrictive condition in the pres-

ence of long-range correlations of the velocity field as exam-

ined here. It is also important to note that this limit is

different from the infinite Péclet limit of the full three-

dimensional problem, which is evidently governed by the

Taylor regime.

To compute tracer dispersion in the geometric regime, we

have to study the transit time distribution for particles pas-

sively advected across the domain by the fluid flow. In order

to follow the particle trajectories we use a coordinates

change from Cartesian (x ,y) position to an adimensionalized

pressure-stream function „P(x ,y),C(x ,y)… orthogonal coor-
dinate system. This procedure is interesting because it over-

comes numerical problems currently encountered with direct

Lagrangian computation of particle trajectories, such as lo-

cally nondivergent free velocity fields coming from a con-

tinuous interpolation of the discrete flow field. Such effects,

although localized at the mesh size scale, are accumulated

over the particles’ trajectories and can lead to spurious vio-

lations of the periodicity of the tracer spatial distribution in

the case of periodic boundary conditions. The idea of the

present method is to compute the trajectories of particles as a

change of coordinates. A mandatory condition for such a

coordinate mapping to exist is the bijectivity of the maping

between the coordinates (x ,y) and the pressure stream-

function „P(x ,y),C(x ,y)… pair. This condition is fulfilled for
a strictly monotonic pressure in the direction of the mean

imposed flow and a strictly monotonic stream function per-

pendicular to this direction. This is obtained, in our case in



the presence of a mean imposed pressure gradient, for

weakly heterogeneous media. More precisely, for such me-

dium, each consecutive nth term of the pressure expansion

written in Eq. ~11! can be shown @27,7# to be of

O„s2n(lnk)…, where s(lnk) is the log-permeability fluctua-

tion parameter. A weak disorder expansion ~9! can be written
if s(lnk)!1, which gives a sufficient condition to impose a

strictly monotonic pressure and stream function for a log-

normal permeability field distribution. Practically, for fresh,

noncompressed fractures, relative fluctuations of the aperture

field are sufficiently weak @9# to allow for such a coordinate

mapping. Hence one is interested in inverting the

„P(x ,y),C(x ,y)… relation to find the „x(P ,C),y(P ,C)… po-
sitions of pressure and stream-function isovalues. To sim-

plify notations, we introduce the normalized stream-function

c~x ,y !5C~x ,y !/^k&, ~14!

where ^k& is the arithmetic mean of the permeability field.

This choice provides symmetrical expression for the pressure

and the normalized stream function. At the zeroth order of

perturbation expansion the Darcy law ~8! can be rewritten

¹W 3cW 0
5¹W P0. This relation can be inverted numerically by

an iterative procedure. We will write for convenience this

inversion with a mean pressure gradient parallel to x axis.

We choose a mean pressure gradient parallel to the principal

diagonal direction for numerical precision

P~x ,y !5x1 f ~x ,y !, ~15!

c~x ,y !5y1g~x ,y !.

The functions f and g are known from the numerical solu-

tion of Eqs. ~9! and ~10!. We are now interested in finding

the inverse mapping

x~P ,c !5P1X~P ,c !, ~16!

y~P ,c !5c1Y ~P ,c !,

where X(P ,c),Y (P ,c) are the desired inverse mapping

functions. From Eqs. ~15! and ~16! we obtain the implicit

equation satisfied by X(P ,c) and Y (P ,c),

X~P ,c !52 f ~P1X ,c1Y !52 f , ~17!

Y ~P ,c !52g~P1X ,c1Y !52g .

The computation of X(P ,c),Y (P ,c) is achieved in the same
spirit as Eq. ~9! with an iterative procedure. First, we ap-

proximate the right-hand side dependence of f (x ,y) and

g(x ,y) by f (P ,c) and g(P ,c),

X0~P ,c !50, ~18!

Y 0~P ,c !50.

We then proceed iteratively for n.0,

Xn~P ,c !52 f ~P1Xn21,c1Y n21!, ~19!

Y n~P ,c !52g~P1Xn21,c1Y n21!.

The convergence of this method is conditioned by the Jaco-

bian J(x ,y) $P ,C% of the transformation ~16!. It is straightfor-
ward to show that this Jacobian satisfies

J21~x ,y !$P ,c%5¹W P•¹W 3cW 5i¹W Pi2
a~x !3

12h
. ~20!

Computing Eq. ~16! thus requires that at each (x ,y) location
iJ(x ,y) $P ,C%i<1. As can be seen from Eq. ~20!, this condi-
tion is fulfilled in a weakly disordered system, where the

local dissipated energy is dominated by the mean imposed

¹W P0•¹W 3cW 0. Numerical implementation of this iterative

procedure requires, at each step, the estimation

Xn(P ,c),Y n(P ,c) on the continuous system of coordinates

(P ,c), from the values of f and g on a discrete one. This

estimation is achieved with an undermesh mapping, to inter-

polate linearly an accurate estimation of the continuous de-

sired Xn(P ,c),Y n(P ,c). Dispersion curves are then easily

computed in the (P ,c) coordinate system, integrating the

advection time along each streamline c(x ,y)5c .

III. NUMERICAL RESULTS

A. Stream-function structure

The aperture maps of Figs. 1~a! and 1~b! show the influ-

ence of the relative shift d of crack faces on the typical

correlation length of the permeability field. The aperture field

is coded with gray levels from white for maximal aperture to

black for complete contact. The influence of the relative joint

shift d on the streamlines is illustrated in Figs. 1~c! and 1~d!.
These figures represent with bold lines stream-function isov-

alues computed solving ~10! using the iterative procedure

~11! and ~12! on two periods in the x and y directions. These

isovalues are to be compared with the computed pressure-

stream-function orthogonal coordinates system represented

on the deformed mesh computed from the scheme ~18! and
~19!. These figures illustrate that the streamlines’ large-scale
features are mainly controled by the shift value. More pre-

cisely, the translation distance d between both faces defines

an upper length scale cutoff for the streamlines’ tortuosity.

This qualitative observation is fully consistent with a previ-

ous analysis @18,16#, showing that the multiscale aperture

field cutoff length is precisely the distance d . As shown in

Fig. 2, the translation d is the typical correlation length of the

aperture covariance. Moreover, the choice of a direction of

translation dW leads to an anisotropy of the covariance. Figure

2 shows both the parallel and perpendicular ~with respect to
the in-plane displacement! covariance functions. Dispersion
will appear to be strongly influenced by the streamline struc-

ture as shown in the following. Moreover, anisotropy, which

is a natural consequence of our geometrical model, can also

influence dispersion @28#.

B. Geometrical influence on tracer transit time

dispersion curves

In the ideal case of an uncorrelated velocity field, the

transit time distribution is expected to be Gaussian, solely

characterized by its mean value T and its variance DT2

5(t2T)2. We define the dispersivity D through



D5

DT2

T2 . ~21!

D is related to the dispersion coefficient D, estimated at

distance L1 from the origin, in the presence of a mean ve-

locity field U , D5L1UD . In the case considered in this

work, the crack-face shift d is the typical correlation length.

There is a finite number L/d of such a correlation length.

The fact that this number L/d is rather limited in our case is

one obvious cause for a deviation from a Gaussian distribu-

tion. Moreover, above the scale d , the aperture field is not

completely uncorrelated. The covariance function decays
with the distance as a power law with an exponent 22(1
2z) and it can be shown that this decay is sufficient to
induce an anomalous dispersion of the tracer for persistent
crack topographies (z.0.5). Tracer curves are obtained
from the computation of the traveling time along streamlines.

We illustrate in Fig. 3 the numerical estimate of the influence

of finite size effects of the discretization mesh on tracer

curve results. This influence on dispersion curves is quite

small and validate the choice of size L5128 above which

numerical results can be compared to theoretical predictions.

Figure 4~a! shows tracer curves for the same crack surface

FIG. 1. Aperture field and corresponding computed streamlines for a 5123512 domain, with roughness exponent z50.8, pressure

imposed, and no flux boundary conditions; ~a! aperture field for a translation d5128 between crack faces in a gray scale, ~b! aperture field

for d532 with the same crack surface topography as ~a!, ~c! stream lines for permeability field a , and ~d! streamlines for permeability field

b .



for two different relative shift d/L51/128 and 64/128.

Gaussian and Coats-Smith @29# fits are shown for compari-

son, illustrating the non-Gaussian character of the transit

time distribution. Although the Coats-Smith expression pro-

vides a reasonable fit to the data, we do not believe that the

underlying theory is relevant to our case. We simply use it

here as a measurement of the deviation from normal disper-

sion. Figure 4~b! shows a superposition of each reduced-

centered exit time distributions. It indicates a small sensitiv-

ity of the higher moments (.2) of the tracer exit time

distribution to the shift d of the two crack surfaces. This

numerical result leads us to focus on the second moment

~which should survive at long time scales in the absence of

correlations! However, we have recently been able to de-

velop, in a previous analysis @16#, a more refined description
of the tracer front useful for estimating local dispersion. This

dispersion is obtained by measuring tracer spreading at a

particular point and is generally much easier to perform than

global measurements integrated over a line of tracer. The

latter dispersion, which is relevant for both field and experi-

mental purposes, is sensitive to the spatial correlation of the

tracer front.

FIG. 2. Aperture covariances versus the normalized distance x/d

for a self-affine crack of rough exponent z50.8 in the directions

perpendicular ~dashed line! and parallel ~continuous line! to the

translation direction.

FIG. 3. Test of the geometrical finite size effects on tracer

curves. Different tracer curves have been calculated for two differ-

ent relative displacement of the joint (L , d/L532/6451/2; d ,

d/L564/12851/2 and h , d/L51/64; ! , d52/128) and different

domain size. The finite size effect influence on the dispersion coef-

ficient estimation is smaller than 2% in each case.

FIG. 4. ~a! Dispersion curves for a 1283128 simulated crack

for two different relative joint shifts d with the same fractured

surface topography: d , d564; L , d51. Gaussian and Coats-

Smith best fits are given for comparison, illustrating the non-

Gaussian characteristics of dispersion. ~b! Probability density func-

tion of the centered-reduced exit time corresponding to the

numerical results in ~a!. A comparison with the dotted centered-

reduced Gaussian distribution shows more clearly the non-Gaussian

character of dispersion. The good superposition of the simulated

curves indicates a small sensitivity of higher moments (.2) of the

tracer exit time distribution to the typical correlation length of the

crack.



Figure 5 shows the spatial structure of tracer fronts, which

is a single-valued function, for different mean advection

times or, equivalently, different mean advected distances L1 .

This figure displays a roughness of the front increasing along

the transverse direction x2 with the advection distance L1

from the origin. Moreover, we see that the front roughness

cannot be characterized by a single length scale. This quali-

tative picture will be fully compared to quantitative predic-

tion of @16# in the following subsection.
Figure 6 illustrates the influence of the mean aperture h

on the transit time distribution. This figure displays the sen-

sitivity of dispersion curves with the aperture to one realiza-

tion. A rescaling of transit time by a factor 4 permits a rough

superposition of tracer curves corresponding to a factor 2 in

the mean aperture h . The superposition between the data sets

shown by closed circles and open diamonds indicates a de-

coupled effect of mean aperture h and relative translation d

on the exit time distribution. Moreover, it shows a quadratic

dependence of dispersivity with the mean aperture. The fol-

lowing subsection will study more precisely this decoupled

influence on the averaged dispersivity.

C. Geometrical influence on global averaged dispersion

Statistical averaging is mandatory to analyze the mean

influence on dispersion of the geometrical parameters. The

simulations of Figs. 4~a! and 4~b! have shown how the two

first tracer curve moments were sufficient to characterize the

dispersion dependence on the typical correlation length d .

Figure 7~a! shows the histogram of the probability density

function ~PDF! of numerically estimated dispersivity from

200 numerically generated dispersion curves. A broad distri-

bution of dispersivity is observed, which increases with the

relative shift d . A rescaling @Fig. 7~b!# permits us to obtain a
good superposition between the different PDF’s. This rescal-

ing shows that the dependence of the first moment ^D& on

the relative shift d is sufficient to account roughly for the

whole PDF. Some more refined simulations based on 1000

dispersion curves displayed in Fig. 7~c! illustrate the expo-
nential tail of the dispersivity PDF.

A previous theoretical analysis @16#, based on a simple

first-order perturbation analysis such as the truncated equa-

tion ~11! has quantified the anomalous dependence of the

global dispersivity. In the limit d!L1 ,h!L1 the mean dis-

persivity ^D& is expected to scale as

^D&5

A2L1
2z22

h2
K~z !d2, ~22!

where h is the mean aperture, L1 is the distance traveled in

the mean flow direction, d is the shift between the aperture

faces, A and z are, respectively, the roughness amplitude and

exponent of the fracture surface, and K(z) is a parameter

that depends on the orientation of the mean flow with respect

to the relative shift direction dW and on roughness exponent z .
Figure 8~a! shows the mean dispersivity variation with the

relative shift d/L for three different imposed mean apertures

h while opening the crack from contact. The superposition of

different curves in Fig. 8~b! rescaling the dispersivity by 1/h2

confirms the expected decoupling of the effects of mean ap-

erture and relative shift indicated by Fig. 6 and predicted by

Eq. ~22!. The quadratic dependence on d is also confirmed

by numerical simulations. More precisely, the little differ-

ence observed between the expected quadratic behavior @dot-
ted curves in Fig. 8~b!# and the numerical results may be due
to a systematic finite size effect related to O(d/L) correc-

tions to Eq. ~22!. Anomalous dispersivity effects on the dis-
tance traveled L1 are also a major feature of geometrical

dispersion in rough self-affine cracks. This dependence

comes from the wrinkling of the initially straight tracer line

illustrated in Fig. 5. The front roughness s(L1), the rms of

the fluctuations, is exactly related to time fluctuations

FIG. 5. For each sample we compute the isotime fronts at dif-

ferent mean traveled distances L1: tracer locus front ~isotime lines!

and their growing roughness with the distance traveled in the

(P ,C) coordinate system, for system size 1283128 with displace-

ment d51.

FIG. 6. Influence of the mean crack aperture on dispersion il-

lustrated for two different gaps between the same crack faces, for a

displacement d564 and a domain size 1283128. The more open

the crack, the more uniform the permeability and the velocity field

and the less dispersion occurs. The straight line with d corresponds

to a h50.2 gap, while L is for h50.4. The dotted line data set

with L corresponds to a linear time rescaling of the h50.4 case by

a factor 4.



s(L1)5UADT2. Following Eqs. ~21! and ~22! and T

5L1U , the expected scaling of the front roughness is

s(L1)5UADT2}L1
z . Figure 9 displays variations of the

front roughness with distance traveled L1 computed numeri-

cally, showing a power law behavior coherent with the ex-

pected scaling. The observed small deviation from the ex-

pected z50.8 exponent is compatible with finite size effects

as discussed in @30#. Thus anomalous dispersion occurs in

the geometrical dispersion regime due to the long-range cor-

relation of fracture roughness leading to an apparently hyper-

diffusive process. The roughness of tracer front is directly

related to the roughness exponent of the crack faces.

D. Anisotropy of the tracer front and consequences

for dispersion

1. Anisotropy of macroscopic dispersion

We estimate quantitatively in this section the global dis-

persion anisotropy coming from the previously defined pref-

actor K(z). It is interesting to write from @18# the following

FIG. 7. Normalized histograms of the dispersivity computed from statistically generated dispersion curves. ~a! PDF p(D) of normalized

dispersivity D for 200 generated crack topographies Broad variations of D that increase with the displacement d are observed: d , d51; L ,

d54; ! , d58 ~the same seeds have been used for each displacement!. ~b! The rescaled dispersivity histograms shows a good superposition.

The first moment of the dispersivity PDF is the relevant parameter to account for crack relative shift u . ~c! Inverse cumulated dispersivity

PDF obtained from 1000 realizations in the case d51 (d). The dotted line indicates the exponential tail of the distribution.



expression for the aperture covariance, which has been com-

puted analytically and shown in Fig. 3:

Cov~xW !5

udW 1xW u2z
1udW 2xW u2z

22uxW u2z

2udW u2z
. ~23!

At large scales x@d this expression becomes

Cov~xW !;2zH 112~z21 !S xW•dW

uxW u udW u
D 2J S uxW u

udW u
D 22~12z !

.

~24!

Using classical weak disorder expansions of @31,8,32#, one
can estimate the dispersion coefficient by computing the in-

tegral of the velocity covariance tensor projected along

streamlines. A first estimate of such an integral is given by

the simple integration of the aperture covariance, along

straight lines. In this context, the dispersion coefficient inte-

gral is dominated by the long-range behavior of Eq. ~24! in
the case of persistent geometries, 1/2,z,1. Hence the an-

isotropy ratio of dispersion is simply given by the ratio of

prefactors. In the case of mean imposed flow, parallel or

perpendicular to the translation direction dW , one gets the an-

isotropy ratio

D i /D'.2z21. ~25!

This simple result, albeit obtained with a crude approxima-

tion, gives a qualitative picture of the anisotropy, showing

increasing anisotropy as z goes to the value 1/2. In the same

context of a long-wavelength expansion, from a Fourier de-

scription of the velocity fluctuations we obtain @16# the fol-
lowing integral dependence for orientational prefactors in

Fourier space and radial coordinates

K i~z ![E E k i~r ,u !dr du

[E E 2@12cos ~r cos u !#r2122z

3@cos ~u !222 sin ~u !2#2dr du , ~26!

FIG. 8. ~a! Mean dispersivity ^D& variations with the crack rela-
tive shift d/L for three different mean apertures h: h50.2 (h),

h50.5 (!); h52 (s) in arbitrary units, for a system size L

5256, averaged over 30 samples. Dispersivity increases with d/L

and decreases with the mean aperture h of the crack. ~b! The res-

caling ^Dh2& shows a very good superposition. The mean aperture
and relative shift dependence of ^D& are thus decoupled. Moreover,

~a! and ~b! show the scaling of ^D& as d2.

FIG. 9. Tracer locus front roughness dependence with the dis-

tance traveled L1 is numerically studied for system sizes L5256

and 512, respectively averaged over 30 and 10 realizations, respec-

tively. Root mean square time fluctuations s(L1) are represented

versus the mean distance traveled L1 in log-log coordinates and

display a clear power law behavior s(L1)}L1
0.85 . This small devia-

tion from the expected z50.8 exponent is compatible with finite

size effects as discussed in @30#.



K'~z ![E E k'~r ,u !dr du[E E k i~r ,u !tan2~u !dr du .

The ratio of these parameters is displayed in Fig. 10; techni-

cal details about their computation are discussed in the Ap-

pendix. Comparing Fig. 10 and the previous rapid estimation

~25!, one can note the qualitative analogy showing a diver-

gence of the anisotropy as z goes to 1/2. It is worth noting

that this divergence is physically controlled by the system

size in real cases while Eq. ~26! is written in the case of

infinite systems. Moreover, our numerical computation of the

anisotropy from Eq. ~26! displayed in Fig. 10 for z.1/2

leads to stronger effects than expected from Eq. ~25!. In the
special case of interest for many natural fractures z50.8, the

prediction is K'(0.8)/K i(0.8)56.6860.01. Direct numeri-

cal results are consistent with such a mean estimate of the

anisotropy ratio ^D'&/^D i& as shown in Fig. 10. Such a

strong effect is experimentally interesting because it offers a

unique opportunity to access the relative shift orientation

from a tracer dispersion analysis.

2. Tracer front self-affine structure

Another interesting aspect of the anisotropy lies in the

front structure itself. As mentioned previously, the meander-

ing of the tracer line is of special interest for local dispersion.

We are interested in the tracer meandering front that is a

consequence of a weakly disordered permeability field. Let

us note that the time needed to travel a distance L1 along the

flow ~direction x1) is

t~L1 ,x2!5

1

uv ~0 !u
@L12f~L1 ,x2!# , ~27!

where f(L1 ,x2) is the transit time fluctuations and can be

computed in Fourier space. We obtain in @16# the scaling

behavior for long wavelengths kWdW !1,

f̃~k1 ,k2!}2

A

h

kWdW uku212z

k1
S k1

2
22k2

2

k2
D . ~28!

A constant t section thus provides the geometry of this tracer

line. Due to the perturbative origin of this result, a delay

f/v0 can also be interpreted as a distance f with respect to

the mean front position. The function f thus gives the pro-

gressive wrinkling of the tracer line. The most important

property to be noted is the homogeneity of f̃ in k of degree

2(11z). Therefore, f is a self-affine function of exponent

z and the angular dependence in kW space is to be interpreted

as a significant anisotropy but does not change the roughness

exponent. Therefore, we conclude that the front progres-

sively develops a self-affine character over a range of scales

that is limited by a short-range one d equal to the relative

surface shift and a large one L1 , i.e., the convected distance.

We consider numerically the two cases where the relative

shift between the two surfaces is either parallel or perpen-

dicular to the mean flow direction, i.e., dW 5deW 1 and dW

5deW 2 . Figure 11 shows the resulting power spectra of the

front position with a power law fit corresponding to a deter-

mined roughness exponent z f ront'0.7560.10, close to the

choosen roughness exponent zsur f ace50.8. Thus the agree-

ment with the theoretical prediction is quite satisfactory. In

this figure the fracture surface is discretized on a 5123512

grid, the relative shift magnitude is 1, and L1 is 256. The

relative amplitude of the power spectra depending on the

orientation of dW for small k2 gives the large-scale dispersion

anisotropy displayed in Fig. 10.

IV. CONCLUSION

We have numerically analyzed dispersion in self-affine

rough cracks in the geometrical regime, focusing on the de-

FIG. 10. Anisotropy ratio of dispersivity K'(z)/K i(z) estimated
for the mean imposed flow parallel and perpendicular to the relative

shift direction dW (L). Numerical calculations derived from an

analysis of @16# is compared to numerical simulations results in the

case z50.8 for 5123512 systems averaged over 10 realizations

(d). Both estimates are consistent, within error bars, indicating a

strong anisotropy ratio of natural fractures.

FIG. 11. Mean Fourier spectra P f(k2) of the tracer front along

the x2 direction perpendicular to the mean flow. The average is

performed over 10 realizations of 5123512 system size. d5d2

51 (d) and d5d151 (L) displacements perpendicular and

parallel to the mean flow orientation are represented.



pendence of dispersion on simple geometrical parameters of

natural fractures in this regime. We demonstrate numerically

the significance of mean dispersivity with ensemble averaged

simulations, which account for most of the observed tracer

spreading dependence on geometrical parameters. We veri-

fied numerically previous theoretical predictions of the dis-

persivity dependence on the mean aperture, relative shift,

and tracer traveling length of self-affine rough cracks.

Anomalous dispersion and tracer front mean meandering

variations as a function of advected distance have been con-

sidered in detail. Strong anisotropic effects have also been

identified, even though the original fractured surface are sta-

tistically isotropic. Macroscopic dispersion anisotropy has

been studied with both direct numerical simulation and ana-

lytic computations using an earlier large-scale perturbative

expansion. Agreement is found between both approaches,

indicating a large anisotropy ratio for the dispersivity coeffi-

cient in natural fractures. Moreover, this anisotropy has been

shown to increase drastically as the crack roughness expo-

nent z approaches 1/2. We thus quantified numerically the

self-affine features of the tracer front, showing that its rough-

ness exponent is simply equal to that of the crack face for all

orientations of the flow. Moreover, a strong anisotropy is

observed for the amplitude of the front roughness. This study

motivates further experimental work on natural systems to

examine and characterize the geometrical dispersion regime.
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APPENDIX: NUMERICAL ESTIMATE OF

ORIENTATIONAL EFFECTS

We analyzed in @16# the expression, in Fourier space, of

orientational prefactor, in radial coordinates:

K i~z !5E E k i~r ,u !dr du

5E E 2@12cos ~r cos u !#r2122z@cos ~u !2

22 sin ~u !2#2dr du , ~A1!

K'~z !5E E k i~r ,u !tan2~u !dr du5E E k'~r ,u !dr du .

~A2!

The above expression for K i is convergent for 0,z,1 @one
can easily check that for small distances r cos (u)!1 a Tay-

lor expansion of the cosine provides an r2 factor that guar-

antees the convergence of the above-mentioned integral#.
The perpendicular dispersion integral involves an additional

singularitiy for r→` and u5p/2. The latter singularity is,

however, integrable if z.1/2. For a smaller value of the

roughness exponent, the divergence means physically that

the integral is controlled by its upper bound ~the distance

traveled in this case! and thus the ratio of perpendicular to

parallel dispersion coefficients becomes system size depen-

dent. For z.1/2 the integrals are all convergent and thus the

anisotropy is finite and system size independent. The specific

sensitivity of the dispersion coefficient to the orientation of

the relative shift of the two surfaces with respect to the mean

flow orientation is much more than a mathematical subtlety

since it provides a potential access to the shift orientation

from directional dispersion measurements in an open crack.

This idea is discussed in more detail in the main text.
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@16# S. Roux, F. Plouraboué, and J. P Hulin, Transp. Porous Media

~to be published!.

@17# I. Ippolito, G. Daccord, E.J. Hinch, and J.P. Hulin, J. Contam.

Hydrol. 16, 87 ~1994!.
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