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Abstract 
In order to generalize the relativistic notion of boost to the case of non inertial 
particles and to general relativity, we look closer into the definition of the Lie 
group of Lorentz matrices and its Lie algebra and we study how this group 
acts on the Minskowski space. We thus define the notion of tangent boost 
along a worldline. This very general notion gives a useful tool both in special 
relativity (for non inertial particles or/and for non rectilinear coordinates) and 
in general relativity. We also introduce a matrix of the Lie algebra which, to-
gether with the tangent boost, gives the whole dynamical description of the 
considered system (acceleration and Thomas rotation). After studying the 
properties of Lie algebra matrices and their reduced forms, we show that the 
Lie group of special Lorentz matrices has four one-parameter subgroups. 
These tools lead us to introduce the Thomas rotation in a quite general way. 
At the end of the paper, we present some examples using these tools and we 
consider the case of an electron rotating on a circular orbit around an atom 
nucleus. We then discuss the twin paradox and we show that when the one 
who made a journey into space in a high-speed rocket returns home, he is not 
only younger than the twin who stayed on Earth but he is also disorientated 
because his gyroscope has turned with respect to earth referential frame.  
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1. Introduction 

In the frame of special relativity theory, the history of an inertial particle is 
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described by a geodesic straight line in the four dimensional Minkowski space, 
endowed with the ( )1,1,1,1diagη = −  metric. This geodesic is a timelike 
straight line and its orthogonal complement is the physical space of the particle 
formed by all its simultaneous events. The passage from one inertial particle to 
another one is done through a special Lorentz matrix, which is called the boost, 
and this process is the Lorentz-Poincar?? transformation. But for a non inertial 
particle, all this is lost since its worldline is no more a straight line and there is 
no Lorentz transformation and boost associated to it. In order to fill this gap we 
suggest a deeper insight into the action of the Lie group of Lorentz matrices (and 
its Lie algebra) on the Minkowski space. This leads us to a new definition of a 
tangent boost along a worldline. This notion may be used in both situations of 
special or general relativity theories. Therefore we introduce a matrix belonging 
to the Lie algebra, which, together with the tangent boost, describes completely 
the dynamical system: acceleration and instantaneous Thomas rotation. 

In a first part, we present properties of Lie matrices and of their reduced 
forms and we show that the Lie group of special and orthochronous Lorentz 
matrices has four one-parameter subgroups. These tools permit to introduce the 
Thomas rotation in a quite general way. Then, we give some applications of 
these tools: we first consider the case of an uniformly accelerated system and the 
one of an electron rotating on a circular orbit around the atom nucleus. We then 
present the case of the so-called “Langevin’s twins” and we show that, when the 
twin who made a journey into space returns home, he is not only younger than 
the twin who stayed on Earth but he is also disorientated with respect to the 
terrestial frame because his gyroscope has turned with respect to the earth 
referential frame [1]. 

Let us underline that this formalism can be used both in Special and in 
General Relativity. 

2. The Lie Algebra of a Lie Group 

A Lie group is a smooth manifold with a compatible group structure, which 
means that the product and inverse operations are smooth. The Lie algebra of 
this Lie group can be seen as the tangent space eT  to the manifold at the unit 
element e of the group multiplication. This tangent space is a vector space 
endowed with the Lie bracket of two tangent vectors. 

Example: The Lie Group ( )SO 3  and Its Lie Algebra 

Let’s start with the group of 3 3× -matrices having 1+  determinant. As a 
smooth manifold, it can be regarded as a 3-dimensional submanifold of 9  
defined by the 6 equations resulting from the orthogonal matrix definition: 
T AA I= . Let's denote it, as usual, by ( )3SO . 

Its Lie algebra   is the 3-dimensional vector space of skew-symmetric 
matrices endowed with the bracket  

[ ]1 2 1 2 2 1,Ω Ω =Ω ⋅Ω −Ω ⋅Ω  
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This manifold is obviously isomorphic to the euclidean space 3  endowed 
with the cross product. The vectors of our Lie algebra should be regarded as  

tangent vectors d
d A
A T
t
∈  of smooth paths ( )t A t→  on the ( )3SO  manifold.  

The left translation on the group by 1 TA A− =  shall be 1
T

A
L B AB− = . Of course 

if A B= , ( )1
T

A
L A AA I− = = . The linear mapping 1A

L −  which by definition is  

equal to its differential 1A
DL −  maps the tangent vector d

d
A
t

 from the tangent 

space AT  to the tangent space IT :  

1
1 Td d d

d d dA

A A ADL A A
t t t−

−Ω = = =                (1) 

Derivating the relation T AA I=  gives T 0Ω+Ω = , which means that Ω  is 
skew-symmetric. Of course it would be possible to obtain the same IT  through 
right translation by 1A− , using 1

T
A

R B B A− = . 
Application to kinematics of rotation of a rigid body around a fixed point. 
Keeping in mind later comparisons, we shall apply the results of the previous 

section to the study of the motion of a rigid body. We want to show the interest 
of looking at the action of ( )3SO  on 3  when this group is regarded as a 
subgroup of isometries of the euclidean space 3 , and the meaning of its Lie 
algebra IT= . Let us associate to a three-dimensional point O two coordinate 
systems ( ),O e  and ( ),O E  defined by two orthonormal basis e and E respec- 
tively. And let A denote the matrix mapping e to E. A smooth path ( )t A t→  
on the ( )3SO  manifold corresponds to a rotation movement of ( ),O E  
around O with respect to the coordinate system ( ),O e . 

Let us denote by eX  and EX  the coordinates of a point M in the 
neighborhood of O in the reference systems ( ),O e  and ( ),O E  respectively. 
Looking at the movement of M with respect to ( ),O E , we then have  

( ) ( ) ( ) d d d
d d d

e E
e E E

X X AX t A t X t A X
t t t

= ⇒ = +  

composing by the left translation 1A−  and using (1) we get  

1 1d d dd
d d d d

e E E
E E E

X X XAA A X X
t t t t

− −= + = +Ω  

This relation expresses the derivation rule of the movement of a point X in the 

moving coordinate system ( ),M E . The absolute derivative 
d
d e

X
t

 
 
 

 of X with 

respect to t is equal to the sum of the relative derivative 
d
d E

X
t

 
 
 

 and of the 

training derivative defined by E EXΩ  

d d
d d E E

e E

X X X
t t

   = +Ω   
   

                    (2) 

EΩ  is a skew-symmetric covariant tensor whose adjoint gives the components 
of a vector ω  in 3  and permits us to express the training velocity in the well 
known vector form:  
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( )E E EX XωΩ = ∧                       (3) 

An analogous process starting from the right translation 1A
R −  would lead us 

to the same derivation rule as given in (2) but using the components in ( ),M e . 
Note that  

1d
d e
A A
t

− = Ω  

There is another interesting application of the identification 3
IT= ≈  : The 

exponential map  

exp
!

k

k
Ω

Ω→ Ω =∑  

is a diffeomorphism of the open ball   of radius π  in 3  into an open 
subset of ( )3SO , and we thus obtain an interesting parametrization of ( )3SO : 
writing ϖ  the norm of ω  and ( )exp 3A SO= Ω∈ , we have  

( ) ( ) ( ) 3sin cos 1 .AX X X X Xϖ ω ϖ ω ω= + ∧ + − ∧ ∧ ∈  

Such a formula has an obvious geometrical meaning: expΩ  is a rotation 
through the angle ϖ  about the axis having the direction of the vector ω . Note 
that, Ω  being independant of t, the function ( ) ( )exp : 3t t SO→ Ω →  
defines a one-parameter subgroup of ( )3SO , and that the matrix product 

( ) 0exp t XΩ ⋅  is the solution of the linear differential equation  

d
d

e
e e

X X
t
= Ω ⋅  

with the initial condition 0eX X= . This equation is nothing but (2) when 
written in the coordinate system ( ),M e . Its solution defines a uniform rotation. 

3. The Lie Group of Lorentz Matrices Application to  
Special Relativity 

3.1. Preliminaries 

In special relativity the motion of an inertial particle with respect to an inertial 
observer is described by a Lorentz-Poincar transformation. This transformation 
is associated to a 4 4× -matrix belonging to the subgroup of orthochronous 
Lorentz matrices of 1+  determinant: they map the subset of timelike future 
oriented vectors into itself. They transform a η-orthonormal basis (associated to 
the inertial observer) into another η-orthonormal basis (associated to the 
particle). 

The columns of such a matrix have a clear physical and geometrical interpre- 
tation: the first column is the 4-velocity of the particle (a unitary timelike 
4-vector tangent to the worldline), and the three other columns define an 
orthonormal basis of the physical space of the particle. We turn now to the more 
general situation of a non inertial particle: the relative motion between two non 
inertial particles, or between a non inertial particle and another (inertial or non 
inertial) observer will be described by a time-dependent function with values in 
the group of Lorentz transformations. We thus naturally come to the notion of 
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tangent boost along a worldline, we shall now study its main properties. 

3.2. The Lie Group of Lorentz Matrices and Its  
Associated Lie Algebra 

The shall denote by   the subgroup of the Lie group of Lorentz matrices 
consisting of all orthochronous (Lorentz) matrices with 1+  determinant. It is a 
6-dimensional submanifold of 16  as defined by the 10 equations involving the 
16 coordinates ijs  of the matrix S, obtained from the relation TS Sη η= . 

This group   acts as a group of isometries on the Minkowski space 

( )4 ,η=  . We shall now be interested in the tangent space IT=  of   
taken at the identity matrix I. 

Let ( )t S t→  be a smooth curve on the manifold  , and d
d
SS
t

=  its 

tangent vector belonging to ( )S tT , the element ( )1S
DL S−Λ =   of IT=  shall 

simply be: 

( )1 1
1

IS S
DL S L S S S T− −

−Λ = = = ∈    

From the relation TS Sη η=  we deduce that 1 TS Sη η− =  and that the 
covariant tensor of type ( )0,2 , TS SηΩ =   is skew-symmetric (this is obtained 
by derivating the relation TS Sη ), and so the element Λ  of the Lie algebra can 
be rewritten: 

1 TwithS S S Sη η−Λ = = Ω Ω =                  (4) 

As a conclusion to this subsection, the Lie algebra   is the linear space of 
ηΩ  matrices, where Ω  is a skew-symmetric covariant tensor of type ( )0,2 . 

The skew-symmetric tensor associated to the Lie bracket [ ]1 2,Λ Λ  is  

1 2 2 1η ηΩ Ω −Ω Ω  

The exponential mapping from the Lie algebra to the group  

( )exp
!

k

S
k
Λ

Λ→ = Λ =∑                     (5) 

defines a diffeomorphism from 3 ×   into 6  (recall   is the open ball of 
radius π  in 3 ). 

3.3. Properties of the Lie Algebra Matrices 

Every matrix belonging to the Lie algebra   can be written  

( )

1 2 3

1 3 2

2 3 1

3 2 1

0
0

,
0

0

a a a
a b b

A B
a b b
a b b

 
 − Λ =
 −
 

− 

                (6) 

where ( )1 2 3, ,A a a a=  and ( )1 2 3, ,B b b b=  are spacelike vectors. 
Note the relation  

( ) ( )2det ,A B A BΛ = − ⋅  
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We then have the following proposition about the reduced forms of the 
matrices: Given any matrix Λ  of   such that 0A B⋅ ≠  (usual inner 
product), there exists an η-orthonormal basis ( )0 1 2 3, , ,E E E E E=  with respect 
to which Λ  can be written:  

0 0 0
0 0 0

0 0 0
0 0 0

α
α

ω
ω

 
 
 
 −
 
 

                       (7) 

where α  and ω  are two real numbers and where 0E  is a timelike 4-vector, 
the three other 4-vectors iE  are spacelike. 

If 0A B⋅ = , setting 2A A a⋅ =  and 2B B b⋅ = , the three reduced matrix 
forms, according to the three conditions 2 2 0a b− > , 2 2 0a b− <  and 2 2b a=  
respectively, shall be 

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

a a
a a a

b
b a

     
     −     
     −
     
     

       (8) 

Proof 
We shall use following notations:  
n1) Let ( )0 1 2 3, , ,e e e e  be a η-orthonormal basis consisting of 4-vectors, where 

0e  is a timelike vector and where ( )1 2 3, ,e e e  is the basis of the orthogonal 
complement of the straight line 0e . 

n2) To every 3-vector ( )1 2 3, ,V v v v=  a 4-vector ( )1 2 30, , ,qV v v v=  can be 
associated, which obviously is space like. Note that this process leeds us to the 
definition of a linear mapping q.  

Any 4-vector ( ) ( )0 1 2 3 0V , , , ,v v v v v V= =  can be written 0 0V v e qV= + . The 
inner product of two 4-vectors U  and V  shall be written U,V , and we 
have the formula:  

0 0U,V u v U V= − + ⋅  

n3) With the aim of more elegant computations we shall write C the cross 
product B A× , and , ,a b c  the euclidean norms of the 3-vectors ,A B  and C 
respectively. The following formulas will be useful:  

( ) ( ) ( )2 22 2 2 2,c B A a b A B B C A B B b A= × = − ⋅ × = ⋅ −  

n4) With the aim of studying the action of Λ  on 4-vectors, we write 
( ),A BΛ  as A BΛ + Λ :  

1 2 3

1 3 2

2 3 1

3 2 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

A B

a a a
a b b
a b b
a b b

   
   −   Λ + Λ = +
   −
   

−  

        (9) 

Let ( )0 1 2 3V , , ,v v v v=  be any 4-vector, we get the following formulas for the 
matrix products:  
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0 0A A Ve v qAΛ ⋅ = ⋅ +V  

( )B q B VΛ ⋅ = ×V                      (10) 

( )0 0A Ve q v A B VΛ ⋅ = ⋅ + + ×V  

To obtain the reduced form of Λ  lets start with the study of 2Λ . Indeed its 
characteristic polynomial simply factorizes ( ) ( )( )2

mP X P X=  where  

( ) ( ) ( )22 2 2
mP X X A B X A B= − − − ⋅                (11) 

( )mP X  is the minimal polynomial of the matrix 2Λ , which means that we 
have the matrix relation ( )2

mP OΛ =   

( ) ( )( )2 2
mP X X Xα ω= − +  

( ) ( )( )2 2 2 2 2
mP I I Oα ωΛ = Λ − Λ + =               (12) 

where 2α  and 2ω−  are the two zeros of ( )mP X . We wrote I and O for the 
identity and the zero 4 4× -matrices. 

Note by the way the formulas linking the roots of the polynomial (11)):  
2 2 2 2 2 2A B a b α ω− = − = −  

A B αω⋅ =                          (13) 

The first columns of the matrices 2 2IαΛ −  and 2 2IωΛ +  are the 4-vectors 
obtained by computing the product qAΛ ⋅  respectively, using (10):  

( ) ( )2 2 2 2
0 0 0 0qA e e A A e B A a e Cα α αΛ ⋅ − = − + ⋅ + × = − +  

( )2 2 2
0 0qA e a e Cω ωΛ ⋅ + = + +                  (14) 

The relation (12) means that the columns of the matrix ( )2 2IωΛ +  generate 
the eigenspace of 2Λ  associated to the eigenvalue 2α  and that the columns of 
the matrix ( )2 2IαΛ −  generate the eigenspace associated to 2ω− . Let us write 

αΠ  and ωΠ  these two 2-dimensional eigenspaces.  
The eigenspace IIα associated to the eigenvalue α2: 
Writing 1 α∈ΠW  the vector defined by the first column of ( )2 2IωΛ +  and 

2 1= Λ ⋅W W , ( )1 2,W W  is an η-orthogonal basis of αΠ . Indeed, on the one 
hand:  

2 2 2 2 2
2 1 1 2 1 2α α αΛ ⋅ = Λ ⋅ = ⇒ Λ ⋅ = Λ ⋅ =W W W W W W       (15) 

shows that 2W  belongs to αΠ  and on the other hand, using (n3) to compute 

2W  we get:  

( )2 2 2
1 0 0a e qC b e qCω= + + = +W  

( )( )
( ) ( )( ) ( )

2 2
2 1 0

2 2 2

A Ce q a A B C

q a A b A A B B q A B

ω

ω α α ω

= Λ ⋅ = ⋅ + + + ×

= + − + ⋅ = +

W W
       (16) 

Apart from the relation 1 2, 0=W W  we also have:  

( )( )2 2 2 2 2
1 1 1, a Nα ω ω= − + + = −W W  

( )( )2 2 2 2 2 2
2 2 2, a Nα α ω ω= + + =W W              (17) 
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which means that 1W  is timelike and that 2W  is spacelike. Also note the 
relation 2 1N Nα= . 

Writing now 0 1
1

1E
N

= W , 1 2
2

1E
N

= W , ( )0 1,E E  defines an orthonormal 

basis of the space like plane αΠ  with:  

2
0 1 2 1 1

1 1 1

1 1 NE E E
N N N

αΛ ⋅ = Λ ⋅ = = =W W  

2 2 1
1 2 1 1 0

2 2 2

1 1 NE E
N N N

α αΛ ⋅ = Λ ⋅ = Λ ⋅ = =W W W          (18) 

The eigenspace IIω associated to the eigenvalue −ω2: 
Writing 1 ω∈ΠV  the vector defined by the first column of ( )2 2IαΛ −  and 

2 1= Λ ⋅V V , ( )1 2,V V  is an η-orthogonal basis of ωΠ . Moreover 1V  and 2V  
are spacelike and ωΠ  is the orthogonal complement of αΠ . Here is an outline 
of the computations:  

( )2 2
1 0a e qCα= − +V  

( )( )
( )

2 2 2
2 1 q a b A B

q A B

α αω

ω ω α

= Λ ⋅ = − − +

= − +

V V
 

2 2 2 2 2
2 1 1 2 1 2V ω ω ωΛ ⋅ = Λ ⋅ = − ⇒ Λ ⋅ = − Λ ⋅ = −V V V V V  

Apart from the relation 1 2, 0=V V  we also have:  

( )( )2 2 2 2 2
1 1 1, a Nα ω α= + − =V V  

( )( )2 2 2 2 2 2
2 2 2, a Nω α ω α= + − =V V  

2 1N Nω=  

The plane ωΠ  is obviously spacelike, and writing:  

2 1 3 2
1 2

1 1,E E
N N

= =V V  

( )2 3,E E  constitutes an orthonormal basis of ωΠ  with the relations:  

2 3E EωΛ ⋅ =  

1 2E EωΛ ⋅ = −                        (19) 

These two relations (19), with the former relations (18) linking 0E  and 1E , 
show that the matrix Λ  gets the reduced form (7) in the η-orthonormal basis 
( )0 1 2 3, , ,E E E E . Let us recall that 0E  is timelike and that the three other 
( )1 2 3, ,E E E  are spacelike; they define an orthonormal basis of 3 , the 
orthogonal complement of the line 0E .  

The situation where A and B are orthogonal: In the case ( )0A B⋅ =  we 
need to discuss according to the sign of 2 2a b−  since the two roots of (12) are 

2 2 2a bα = −  and 0=2ω  and matrices 2Λ  and Λ  are of rank 2. The 
minimal polynomial (11) can be simplified and the relation (12) becomes:  

( ) ( )2 2 2 2
mP I OαΛ = Λ − Λ =  
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1) Assume 2 2a b> . αΠ  is defined by 1W  and 2W  (16) with 0ω = :  
2

1 0a e qC= +W  
2

2 qAα=W  

and  
2 2 2 4

1 1 2 2, , ,a aα α= − =W W W W  

0Π  is the kernel of Λ . It is generated by 1V  (first column of 2 2IαΛ − ) 
and 2 qB=V   

( )2 2 2
1 0 0a e qC b e qCα= − + = +V  

2 qB=V  

As above, normalizing the four vectors and writing them ( )0 1 2 3, , ,E E E E  
respectively, the reduced form of the matrix Λ  in this new basis shall be the 
first matrix of (8) 

2) Assume 2 2a b< : Noting 2 2 2b aω = −  we have  

( ) ( )2 2 2 2
mP I OωΛ = Λ + Λ =  

0Π  is timelike since it is generated by the two vectors belonging to the kernel 
of Λ :  

( )2 2 2
1 0 0a e qC b e qCω= + + = +W  

2 qB=W  

2 2 4 2
1 1 2 2, , ,a aω ω= − =W W W W  

The plane ωΠ  is space like. It is generated the first column 1V  of 2Λ  and 

2 1V V= Λ ⋅ :  
2

1 0a e qC= +V  

( ) ( )( )2 2 2 2
2 1 q a A B C q a b A qAω= Λ ⋅ = + × = − = −V V  

2 2 4 2
1 1 2 2, , ,a aω ω= =V V V V  

As above, normalizing the four vectors (the first one being timelike) and 
writing them ( )0 1 2 3, , ,E E E E , the reduced form of Λ  in this new basis shall be 
the second matrix of (8) 

3) Assume 2 2a b= : when 2 2a b=  the minimal polynomial of 2Λ  is 
simply ( ) 2

mP X X=  that is to say:  

( )2 2 2
mP OΛ = Λ ⋅Λ =  

Noting  

0 0 1 2 3 2

1 1 1, , ,E e E qA E qB E qC
a a a

= = = =  

( )0 1 2 3, , ,E E E E  form an η-orthonormal basis and ( )0 1,E E  generate an 
eigenspace 0Π  with the relations:  

0 1E qA aEΛ ⋅ = =  
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( )( )2
1 0 0 3

1 1E qA a e q B A aE aE
a a

Λ ⋅ = Λ ⋅ = + × = +  

2 0EΛ ⋅ =  

( ) ( )2
3 12 2 2

1 1 1E qC q B C b qA aE
a a a

Λ ⋅ = Λ = × = − = −  

We thus obtain the third reduced form in (8). 
Corollary: 
The Lie group of special and orthochronous Lorentz matrices has four one- 

parameter subgroups which can be obtained by integrating the linear differential 
equation  

d
d
S S
t
= ⋅Λ  

where Λ  is one of the four reduced forms obtained above. 
The solution of this equation is 0

tS e Λ⋅  that is to say  

( )1 0

cosh sinh 0 0
sinh cosh 0 0

0 0 cos sin
0 0 sin cos

t t
t t

S t S
t t
t t

α α
α α

ω ω
ω ω

 
 
 =
 −
 
 

 

( )2 0

cosh sinh 0 0
sinh cosh 0 0

0 0 1 0
0 0 0 1

t t
t t

S t S

α α
α α

 
 
 =
 
 
 

 

( )3 0

1 0 0 0
0 1 0 0
0 0 cos sin
0 0 sin cos

S t S
t t
t t

ω ω
ω ω

 
 
 =
 −
 
 

 

( )

2 2 2 2

4 0

2 2 2 2

1 11 0
2 2

1 0
0 0 1 0

1 10 1
2 2

a t at a t

at at
S t S

a t at a t

 + − 
 

− =  
 
 

− 
 

 

4. Inertial Particles in Special Relativity 

Let O and M be two inertial particles in the Minkowski space ( ),η . Their 
worldlines O  and M  are two geodesic straight lines of   generated by 
the timelike future oriented unitary 4-vectors t and by V  (which define the 4- 
velocities of O and M respectively).  

Let ( )0 1 2 3, , ,O e t e e e= =  be the η-orthonormal basis associated to O along 

O  and let us recall that ( )1 2 3, ,e e e  is a basis of the hyperplane of   passing 
through O and orthogonal to the worldline of O. This hyperplane is the physical 
space of O. We note t and τ  the proper times of O and M respectively. We also 
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denote ( ), , ,t x y z  the coordinates of M in the referential frame of O and  

( ), ,V p q r=  the 3-velocity of M. Using these notations, the 4-velocity dV
d
M
τ

=  

can be written  

( ) 0
dV 1, , ,
d

t p q r e V
τ

= = Γ + Γ  

with t he relations:  

( )2 2 2 2 2 2V,V 1 1 1,V V p q r= − ⇒ Γ − = = + +  

where d
d

t
τ

Γ =  is the Lorentz factor. All these quantities are constants. 

In order to define the Lorentz-Poincar transform we may apply the 
orthonormalization Gram-Schmidt process to the basis ( )1 2 3V, , ,e e e . We thus 
obtain an η-orthonormal basis, ( )0 1 2 3, , , ,M E E E E  where 0 VE =  and where 
the three other vectors generate the basis of the physical space of M. This 
orthonormalization process directly gives the boost characterizing the relation 
between the two inertial particles:  

T

2
T

3 1

V
L

V I V V

 Γ Γ
 = Γ Γ + 
 + Γ 

                 (20) 

In this result, V  is the column matrix of its components and 3I  is the unit 
matrix of size 3. 

L  being a constant matrix, its associated matrix in the Lie algebra is the zero 
matrix. All this corresponds to the classical case of Special Relativity and can be 
summarized as follows: Any constant matrix L∈  defines a Lorentz transform 
relating two inertial particles.  

Remarks: 
1. The relation between O and M can be characterized by an infinity of 

Lorentz matrices. Each of them can be deduced from L by a left or a right 
multiplication of L with a pure rotation (a Lorentz matrix) R  

1 0
0

R
A

 
=  
 

 

where A is an orthogonal matrix of size 3. A left and a right multiplication 
correspond to a change of basis in the rest space of O and of M respectively.  

2. The writing of the boost (20) can be simplified by choosing an appropriate 
basis of ( ),O e  (recall that 0e  is the 4-velocity of O and let us note qV  the 
4-vector associated to the 3-velocity ( ), ,V p q r=  of M in ( ),O e ). 0e  and 
qV  are two orthogonal vectors in the Lorentz-Poincar?? transform plane. In 
fact, noting 2 2 2 2v p q r= + +   

0 0L e e qV⋅ = = Γ + ΓV  

2
0L qV v e qV⋅ = Γ + Γ  

We can define an η-orthonormal basis ( )0 1,e e′ ′  of this timelike plane by 
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taking 0 0e e′ =  and 1
1e qV
v

′ = . We thus obtain:  

0 0 1L e e ve′ ′ ′⋅ = Γ + Γ  

1 0 1L e ve e′ ′ ′⋅ = Γ + Γ  

We also know that the two dimensional orthogonal complement is L- 
invariant. This can be seen by noting that the two 4-vectors ( )1 0, , ,0W q p= −  
and ( )2 0, ,0,W r p= −  are orthogonal to 0e′  and to 1e′  and that they are linear- 
ly independant so that they form a basis. We can then construct an orthonormal 
basis of the spacelike plane which remains unchanged when orthonormalization 
process is applied:  

( )2 2 2

1 0, , ,0e q p
p q

′ = −
+

 

2 2

3 2 2 2 2
0, , ,

p qpr qre
vv p q v p q

 +
 ′ = − −
 + + 

 

These two vectors are eigenvectors of L associated to the double eigenvalue 1. 
We thus obtain a new η-orthonormal basis ( )0 1 2 3, , , ,O e e e e′ ′ ′ ′  the transfert matrix 
beeing the Lorentz matrix Q:  

2 2 2 2

2 2 2 2

2 2

1 0 0 0

0

0

0 0

p q pr
v p q p q v
q p qrQ
v p q p q v

p qr
v v

 
 
 − −
 + +
 

=  − 
+ + 

 
+ 

 
 

 

Q  is a pure rotation matrix ( TQ Q I⋅ = ) which only depends on the velocity 
direction. 

Noting  

( ) ( ) ( ) ( ) ( )( )cos cos , cos sin , sineV v v vα β α β α=  

the above expression can also be written  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 0 0 0
0 cos cos sin cos sin
0 cos sin cos sin sin
0 sin 0 cos

Q
α β β β α
α β β α β

α α

 
 − − =  −
  
 

      (21) 

To summarize: there is a basis e′  deduced from e through a space rotation of 
e for which the boost L can be written in the following canonical form:  

1

0 0
0 0

0 0 1 0
0 0 0 1

e

v
v

L Q L Q−
′

Γ Γ 
 Γ Γ = ⋅ ⋅ =
 
 
 

              (22) 
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With respect to e′ , ( )0 1, ,M E E  is the plane of the Lorentz transformation 
and ( )2 3, ,M E E  is the invariant plane of that transformation. 

5. Non Inertial Particles in Special Relativity. Tangent  
Boost along a Worldline 

Let us now consider the case where O is an inertial particle and where M is not. 
Then, the wordline M  of M is no more a straight line and its 4-velocity V  is 
a vector field along M . This leeds us to define the tangent boost along M  as 
being the boost of the inertial particle M ′  which coincides with M and the 
worldine of which is the tangent straight line at M. We thus obtain a field 

( )Lτ τ→  along M  where L is defined by (20). L being no more a constant  

matrix, its associated matrix in the Lie algebra 1 d
d

LL
τ

−Λ =  is no more the zero 

matrix. Before computing the 3-vectors A and B of the ( ),A BΛ  matrix, let us 
give some examples of using this latter. 

5.1. Derivation Rule of a Vector X Defined by Its Components  
in the Referential Frame of M 

Let us consider the two basis ( )0 1 2 3, ,e e e e e=  and ( )0 1 2 3, , ,E E E E E= , E being 
defined by the columns of L. Let eX  and EX  be the components of the X  
vector in e and E respectively ( e EX L X= ⋅ ). Let us derivate that relation with 
respect to t (or with respect to the proper time τ  of M). Using then the left 
translation 1L−

 , we get:  

1 1d d dd .
d d d d

e E E
E E E

X X XLL L X X
t t t t

− −= + ⋅ = + Λ ⋅  

where the subscripts e and E correspond to the basis e and E respectively. The 
above relation gives the derivative rule by its E-components that is the intrinsic 
vectorial relation:  

d d
d de Et t

   = + ⋅   
   

X X Λ X                     (23) 

Let us now apply that law to the 4-velocity of M the components of which are 
( )1,0,0,0  in E.  

Equation (23) shows that the first column of ( ),A BΛ  is the 4-acceleration 
( )1 2 30, , ,qA a a a=  (notation n2 in paragraph 3.3) of M in E. 

Now, let W  be a 4-vector defined by its components  
( )0 1 2 3 0 0, , ,EW w w w w w E qW= = +  in E  and let us recall that 0E = V  is the 

4-velocity of M. Noting W  the 3-vector ( )1 2 3, ,w w w , and A  the 4-accele- 
ration of M with EA qA= , the 3-vector ( )1 2 3, ,B b b b=  appears to be an 
instantaneous rotation defined by its components in E:  

( ) ( )

( )

0 0

0 0

d d d
d d d

d
,

d

e E E
E E

E
E

W W WW W A E q w A B W

W W qA E q w A B W

τ τ τ

τ

= + Λ ⋅ = + ⋅ + + ×

= + + + ×
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( )0
d d ,
d de E

w q B W
τ τ

   = + + + ×   
   

W W W A V A  

Changing 0w  into ,− V W  this last equation can also be written:  

( )d d , ,
d de E

q B W
τ τ

   = + − + ×   
   

W W W A V V W A         (24) 

Note that there is a minor abuse of notation in the last line: B and W must be 
understood here as 3-vectors and no more as components in E as in previous 
lines. The term ( )q B W×  shows that B is an instantaneous rotation in the 
(physical) space of 3-vectors. It corresponds to Thomas rotation. 

The matrix Λ  thus contains the 4-acceleration of M and the Thomas 
rotation. It therefore undoubtedly constitutes a valuable tool to describe the 
motion of any physical system. 

5.2. Example of an Uniformly Accelerated Particle 

In the referential frame O  of an inertial observer O, an uniform acceleration 
of M does not correspond to a constant 4-acceleration A . In fact, the worldline 

M  of M is not a straigth line since it is not a geodesic. At two different points 

1M  and 2M , 1A  and 2A  are not parallel. In the case of an uniformly 
accelerated particule, we consequently only know that the norm of A  is a 
constant a. Moreover, in what follows, we will also consider that, for the inertial 
observer O, M  remains in a given plane ( )0 1,e e . This plane is necessarily a 
timelike plane. The parametric equation of motion for M and its 4-velocity  

d
d
M
τ

=V  are then:  

( ) ( ) ( )( ), ,0,0M t xτ τ τ=  

( ) ( )2 2d1, ,0,0 , , 1 1
d
xv v v
t

= Γ = Γ − =V  

where:  

( ) ( )2 2 3 3dd d d1 1 ,
d d d d

vv vv v
τ τ τ τ

ΓΓ
Γ − = ⇒ = Γ = Γ          (25) 

The mere knowledge of V  permits to calcule the tangent boost L. Inserting 
( ),0,0V v=  into Equation (20) we get:  

0 0
0 0

0 0 1 0
0 0 0 1

v
v

L

Γ Γ 
 Γ Γ =
 
 
 

                     (26) 

Let us then calculate its associated matrix Λ  in the Lie algebra  

1 Td d
d d

L LL Lη η
τ τ

−Λ = ⋅ = ⋅ ⋅ ⋅  

Using (25) in computing d
d

L
τ

, the above equation gives:  
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2

0 1 0 0 0 0 0
1 0 0 0 0 0 0d
0 0 0 0 0 0 0 0d
0 0 0 0 0 0 0 0

a
av

τ

   
   
   Λ = Γ =
   
   
   

            (27) 

where 2 d
d

v a
τ

Γ =  is the constant defined above (when d 0
d

v
τ
> , a is the norm of 

the 4-acceleration). Using the derivation rule, we obtain the components EA  of 
the 4-acceleration in ( ),M E   

2 d0, ,0,0
dE E

v
τ

 = Λ ⋅ = Γ 
 

A V  

Its components eA  in ( ),O e  are then obtained by a change of basis  

( )3 d ,1,0,0
de E

vL v
τ

= ⋅ = ΓA A  

Calculating ( ) eL ττ Λ=  we get the following conclusions: any uniformly 
accelerated particle is defined by a one-parameter subgroup of the Lie group  ,  

( )

( ) ( )
( ) ( )

cosh sinh 0 0
sinh cosh 0 0

e
0 0 1 0
0 0 0 1

a a
a a

L τ

τ τ
τ τ

τ τ Λ

 
 
 → = =  
  
 

 

and the 4-acceleration is uniform in the rest frame ( ),M E  of M (note again 
that the basis E is defined by the columns of L). In an uniformly accelerated 
system, there is no Thomas rotation. 

Let us now consider two nearby particles N and M, N being at rest with 
respect to M and their coordinates in ( ),M E  being ( )0, ,0,0MN X=  where 

constantX = . Let us calculate d
d
ON
τ

.  

d d d dV
d d d dM
ON OM MN MN
τ τ τ τ

= + = +  

Knowing that X does not depend on τ , the derivation rule gives:  

( )d ,0,0,0
d
MN MN aX
τ

= Λ ⋅ =  

The components of d
d
ON
τ

 in ( ),M E  are then  

( )d 1 ,0,0,0
d
ON aX
τ

= +  

where 1 aX+  is a velocity (using 1c ≠  we would get aXc
c

+  instead of 

1 aX+ ). It is important to note that d
d
ON
τ

 is not the 4-velocity of N and that  

the proper time of N is not the same as the one of M. In fact, the norm VN  of 
the 4-velocity of N, defined with its proper time s being 1, we obtain the 
following relation between τ  and s:  
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( )d d d d 1V 1,0,0,0
d d d d 1N
ON ON

s s s aX
τ τ

τ
= = = ⇒ =

+
 

This shows that in the case of a non inertial motion of M, it is impossible to 
synchronize the clocks in the rest frame of M. 

Let us add that N has not the same acceleration as M. In fact, knowing that 

V VN M=  and consequently that dV dV A
d d

N M
Mτ τ

= = , we get  

dV dV dVd 1 1A A
d d d 1 d 1

N N N
N Ms s aX aX

τ
τ τ

= = = =
+ +

 

5.3. Tangent Boost of a Worldline and Its Associated Matrix  
in the Lie Algebra in Special Relativity 

In the referential frame of O, the parametric equations of the worldline M  are 
defined by cartesian coordinates where the parameter is the proper time τ  of 
M:  

( ) ( ) ( ) ( ) ( )( ), , ,M t x y zτ τ τ τ τ τ→ =  

Noting ( ), ,eV x y z′ ′ ′=  and ( ), ,eA x y z′′ ′′ ′′=  the 3-velocity and the 3-accele- 
ration in the reference frame of O (with its propertime t) the 4-velocity and the 
4-acceleration (first and second derivative of coordinates with respect to t) are:  

( ) ( ) ( )2 2
01, , , ; 1 1e ex y z e V V′ ′ ′= Γ = Γ + Γ − =V  

( ) 2
0

d
d e ee V qA
τ
Γ

= + + ΓA  

( ) ( )2 2 4d1 1
de e eV V A
τ
Γ

Γ − = ⇒ = Γ ⋅  

The tangent boost (20) is:  

( )

( )

( )

( )

22 2 2

222 2

222 2

1
1 1 1

1
1 1 1

1
1 1 1

x y z

x x y x zx

L yx y y zy

zx z y zz

τ

′ ′ ′Γ Γ Γ Γ 
 

′Γ ′ ′ ′ ′Γ Γ ′Γ + Γ + Γ + Γ + 
=  ′Γ′ ′ ′ ′Γ Γ′Γ + 

Γ + Γ + Γ + 
 ′Γ′ ′ ′ ′Γ Γ ′Γ +
 Γ + Γ + Γ + 

          (28) 

and its associated matrix in the Lie algebra 1 d
d

LL
τ

−Λ =  is  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

4 4 4
2 2 2

4 3 3
2

4 3 3
2

4 3 3
2

0
1 1 1

0
1 1 1

0
1 1 1

1 1

e e e e e e

e e

e e

e e

V A x V A y V A z
x y z

V A x y x x y z x x z
x

V A y x y y x z y y z
y

V A z x z z x y z
z

′ ′ ′⋅ Γ ⋅ Γ ⋅ Γ
′′ ′′ ′′+ Γ + Γ + Γ

Γ + Γ + Γ +
′ ′ ′′ ′ ′′ ′ ′′ ′ ′′⋅ Γ Γ − Γ −

′′+ Γ
Γ + Γ + Γ +Λ =

′ ′ ′′ ′ ′′ ′ ′′ ′ ′′⋅ Γ Γ − Γ −
′′+ Γ

Γ + Γ + Γ +
′ ′ ′′ ′ ′′ ′ ′′⋅ Γ Γ − Γ

′′+ Γ
Γ + Γ +

( ) 0
1

z y

 
 
 
 
 
 
 
 
 
 ′ ′′−  
 Γ + 
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To summarize: using notations (6) we see that Λ  gives the complete dyna- 
mics of M. In ( ),A BΛ :  

• the 3-vector A is the acceleration of M in its rest frame ( )0 1 2 3, , , ,M E E E E :  

( )
4

2

1 e e e eA V A V AΓ
= ⋅ + Γ
Γ +

                   (29) 

• the 3-vector B gives the instantaneous Thomas rotation by its components in 
( )0 1 2 3, , , ,M E E E E :  

3

1T e eB V AΓ
= Ω = ×

Γ +
                     (30) 

5.3.1. Writing the Tangent Boost and Its Associated Matrix in the  
Lie Algebra in a Rotating Frame ( )′O e, . A first Insight on  
Thomas Rotation 

The rotating basis e′  is defined in the remark (2) of paragraph 4 but, in the 
present case, the rotation matrix Q now depends on the proper time of M. The 
tangent boost L in e′  has the remarkable form (22). Our aim is to calculate the 
components of the matrix of the Lie algebra in the rotating frame ( ),O e′  in two 
ways: 

1. Using the definition of Λ  in the moving referential frame e′   

1 T 1 1 Td d
d de e

L LQ Q Q L Q L Q Q
τ τ

− − −
′ ′Λ = ⋅Λ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅  

and applying the derivation rule to the tangent boost eL ′  in e′   

( )T T T dd d
d d d

e
e e e

LLQ Q Q Q L Q Q L L
τ τ τ

′
′ ′ ′⋅ ⋅ = ⋅ ⋅ ⋅ = +Ω ⋅ − ⋅Ω  

where T d
d
QQ
τ

Ω = ⋅  is the antisymmetric matrix which defines the instantane- 

ous rotation of ( ),O e′ . Inserting this result in the previous equation gives the 
matrix of the Lie algebra of the boost eL ′  as seen by the rotating observer 

( ),O e′   

1 1d
d

e
e e e e

LL L L
τ

− −′
′ ′ ′ ′Λ = ⋅ + ⋅Ω ⋅ −Ω  

We thus obtain Ω  and e′Λ   

( )
( ) ( )

( )

T

0 0 0 0
0 0 cosd
0 cos 0 sind
0 sin 0

QQ
α β α

α β α βτ
α α β

 
 ′ ′−Γ −Γ Ω = ⋅ =  ′ ′Γ −Γ
  ′ ′Γ Γ 

 

( )
( )

( ) ( )

3 2 2

2 3 2 3
3

2 3
2

2 3
2

0 cos

cos
0

1 1
cos

cos 0 0
1

0 0
1

e

v v v
v vv

v
v

vv

α β α

α β α

α β
α β

α
α

′

 ′ ′ ′Γ Γ Γ
 

′Γ ′Γ ′Γ − − Γ + Γ + Λ = ′Γ 
′Γ Γ + 

′ Γ′Γ 
 Γ + 
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where ,α β′ ′  and v′  are the derivatives with respect to t of the three 

parameter defining V  (let us recall that d d
d dtτ

= Γ ).  

2. Using (29) and (30) which give the 3-vectors A and B from eV  and eA . 
we get: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

cos cos sin cos cos sin
cos sin sin sin cos cos

sin cos
e

v v v
A v v v

v v

α β α α β α β β
α β α α β α β β

α α α

′ ′ ′− − 
 ′ ′ ′= − + 
 ′ ′+ 

 

( )T ,0,0e eV Q V v′ = ⋅ =  

( )( )T , cos ,e eA Q A v v vα β α′ ′ ′ ′= ⋅ =  

Using 2 2 2 1vΓ = Γ − , Equation (29) gives:  

( ) ( )( )
4

2 2 , cos ,
1 e e e eA V A V A v v vα β α′ ′ ′ ′

Γ ′ ′ ′= ⋅ + Γ = Γ Γ
Γ +

 

and Equation (30) gives the Thomas rotation TB = Ω :  

( )( )
3 3

2 20, , cos
1 1T e eV A v vα α β′ ′

Γ Γ ′ ′Ω = × = −
Γ + Γ +

 

To conclude: from the ( ),O e  observer point of view, the L boost written in 
the rotating basis e′  defines the rest frame ( ),M e  with respect to ( ),O e′ . 
From the ( ),O e′  point of view, the two dimensional space of the Lorentz- 
Poincar transform, as well as its invariant space are not moving. The matrix Q 
defines the rotation of the rest frame of M with respect to ( ),O e . 

These calculations show that we must clearly distinguish between the 
instantaneous rotation of ( ),O e′  (which is defined from the antisymmetric 

matrix T d
de
QQ
τ′Ω = ⋅ ) and the instantaneous Thomas rotation. 

In order to get a better insight on Thomas rotation, let us consider the 
infinitesimal Lorentz matrix relating ( )M τ  to ( )dM τ τ+ :  

( ) ( ) ( ) ( ) ( )( )1 dd d d
d

LL L I L L Iτ τ τ τ τ τ τ τ
τ

− + + + Λ 
 

   

A left-multiplication by 1L−  of this result gives the Lorentz matrix  

( ) ( ) ( ) ( )
( ) ( )

( )( ) ( )

1 d d d

d d

d d d
A B

A B

Li L L I o

I o

I I o

τ τ τ τ τ τ

τ τ

τ τ τ

−= + = + Λ +

= + Λ + Λ +

= + Λ + Λ +

 

At first order, Li  thus appears to be the product of an infinitesimal boost 
dABi I τ= + Λ  with an infinitesimal pure rotation (Thomas rotation) 
dBRi I τ= + Λ :  

( )dLi Bi Ri o τ= ⋅ +  

We will see later that the Thomas rotation is a rotation of the rest frame of M 
with respect to the referential frame ( ),M E  which is defined by the tangent 
boost.  
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5.3.2. Application to a Particle in Circular Motion at Constant Velocity 
With respect to the frame ( ), , , ,t r zO θ∂ ∂ ∂ ∂  of O, the parametric equations of 
the particule worldline are those of a circular helix with axis ( ), tO ∂ . Using 
cylindrical coordinates ( ), , ,t r zθ   

( ) ( ), , ,0t M t t R tω→ =  

where R  and ω  are constant and where t is a function of τ .The 4-velocity 
is:  

( )d 1,0, ,0
d
M
t

ω= Γ = ΓV  

2 2

d 1
d 1

t

Rτ ω
Γ = =

−
 

Noting that the Lorentz factor Γ  is constant, the 4-acceleration is:  

( )2 2d 0, ,0,0
d

D R ω
τ

= = = − ΓV
VA V  

where DV  is the covariant derivative in the direction of V  expressed in 
cylindrical coordinate. In order to calculate the tangent boost we have to express 
V  in the η-orthonormal system ( )0 1 2 3, , , ,M e e e e  obtained by applying the 
Gram-Schmidt orthonormalisation process to the natural basis  
( ) ( ), , ,t r zθ∂ = ∂ ∂ ∂ ∂  and starting with the 4-vector t∂ . In the present case, 
calculations are very simple since the basis ( )∂  is already η-orthogonal. We get 

( ),0, ,0Rω= Γ ΓV . The tangent boost is then defined by using (20):  
0 0

0 1 0 0
0 0

0 0 0 1

R

R

ω

ω

Γ Γ 
 
 =
 Γ Γ
 
 

B  

Let us recall that the B -columns give the referential frame  
( ) ( )0 1 2 3, , ,E E E E E= = V  of M, and that the 4-vectors Eα  are defined from 
their components in (e). Let us also note that ( )0 2, ,M E E  is the plane of the 
Poincar-Lorentz transform, ( )1 3, ,M E E  being the invariant orthogonal 
supplementary plane of the transformation. 

The matrix of the Lie algebra 1 1d
d

D
τ

− −= = V
BΛ B B B  is  

( )
( )

2 2

2 2

0 0 0
0 1 0

0 1 0 0
0 0 0 0

R
R

ω
ω ω

ω

 − Γ
 
− Γ − Γ − Γ =  Γ − Γ
  
 

Λ              (31) 

It directly gives the 3-acceleration and the instantaneous Thomas rotation 
(which both are in the physical space of M). Let us note that it is also possible to 
obtain the 3-vectors A and B of ( ),A BΛ  from Equations (29) and (30): using 

( )0, ,0eV Rω=  and ( )2 ,0,0eA Rω= −  we in fact obtain the 3-acceleration and 
the instantaneous Thomas rotation in E (E is defined by the column vectors of 
L):  
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( )2 2 2 ,0,0eA A Rω= Γ = −Γ  

( )( )
3

0,0, 1
1Th e eB V A ω

Γ
= Ω = × = Γ Γ −

Γ +
 

6. Discussion 

In order to understand the meaning of Thomas rotation, let us consider a 
gyroscope and let us recall the definition of a gyroscopic torque along a 
worldline as given in [2] and in [3] [4]: 

A gyroscopic torque along a worldline   the 4-velocity and the proper time 
of which are V and τ  respectively is a 4-vector G defined along  , 
orthogonal to V and such that its derivative with respect to τ  is proportional 
to V, that is to say:  

d, 0 and
d

k
τ

= =
GG V V                     (32) 

These relations permit to calculate k. Noting A  the 4-acceleration d
dτ
V , we 

in fact get:  

d , 0 , , ,
d

k k
τ

= ⇒ + = ⇒ =G V V V G A 0 G A  

The proportionality condition implies that the 4-vector G  (which belongs to 
the physical space of M along the worldline  ) rotates in that space. In fact, let 
us write the differential Equation (32) with respect to the components of G  in 
( ),M E . Noting ( )1 2 30, , ,E G G G=G  in ( ),M E , the components of G  in the 
inertial frame are then defined by:  

( )2 1 2 3, , ,e E R G G G Gω= ⋅ = Γ ΓG B G  

In the inertial referential frame, Equation (32) thus becomes:  

( ) ( )d
,0, ,0

d
E

e ek R ω
τ
⋅

= = Γ Γ
B G

V V  

Using the covariant derivative in cylindrical coordinates and noting 
derivatives with respect to τ  by accentuated characters we get:  

( ) ( ) ( )( )2
2 2 1 1 2 3

d
, , ,

d
E

ED R G G G G G Gω ω ω
τ
⋅

′ ′ ′ ′= ⋅ = Γ −Γ + Γ +V
B G

B G  

Identifying this result with ( ),0, ,0ek k k Rω= Γ ΓV  gives 2k R Gω ′=  and the 

three differential equations (note that 2 2
2

11 R ω− =
Γ

):  

2
1 2G Gω′ = Γ  

2
2 1G Gω′ = −Γ  

3 0G′ =  

Taking initial conditions ( ) ( )1 2 30 0, , ,E A A Aτ = =G , the solutions of these 
differential equations are  
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( ) ( ) ( ) ( ) ( )( )2 2 2 2
1 2 2 1 30, cos sin , cos sin ,E A A A A Aτ ωτ ωτ ωτ ωτ= Γ + Γ Γ − ΓG  

Figure 1 shows the rotation of a gyroscope initially oriented following the x 

axis ( ( ) ( )0 0,1,0,0E =G ), in ( ),M E  when τ  varies from 0 to π
ωΓ

 that is to  

say when M goes a 180 degree turn. It shows that in that case, the gyroscope 
indicates a half turn plus a rotation which corresponds to the Thomas rotation 
(in the clockwise direction). The gyroscope rotation in the plane ( )1 2, ,M E E  is 
also shown when M goes a complete rotation (360-degree) in Figure 2. In that 
case, the gyroscope indicates a complete turn plus a part. For the sake of clarity, 
we only show this supplementary part. 
 

 
Figure 1. The gyroscope rotation in the plane ( )1 2, ,M E E  when M goes a 180 degree 

turn. Numerical values are 1R =  and 5
10

ω = . 

 

 
Figure 2. Gyroscope rotation in the plane ( )1 2, ,M E E  when M goes a complete rotation 

(360-degree). In that case, the gyroscope indicates a complete turn plus a part. For the 
sake of clarity, we only show this supplementary part. We used here for R and ω  the 

values 51,
10

R ω= = . 
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It is also possible to highlight the Thomas rotation by applying the derivation 
rule (23) to EG  (which is defined by its components in ( ),M E ). Noting  

( ) ( ) ( ) ( )( )1 2 30, ; , , ; 0, ; 0,0, 1E E Th ThG G G ω= = Ω = = Γ Γ −G G G Ω Ω  

and using (23) in that moving frame:  

d d
d de E

D
t t

   = = + Λ ⋅   
   

V
G GG G  

we get  

( )d d , , 0,
d d Th

e Et t
   = + − + ∧   
   

G G A G V V G A GΩ  

Using then  

d ; , ; , 0;
d e

k k
t

  = = = 
 

G V A G V G  

we obtain:  

( )d 0, 0
d Th

Et
  + ∧ = 
 

G GΩ  

The left hand side of this equation is the Fermi-Walker derivative of G  in 

the V  direction. Using 
dd d0,

d d d
E

Et τ τ
   = =   
   

GG G  this last equation becomes  

d
d Thτ

= − ∧
G GΩ                       (33) 

Consequently, the gyroscope rotates with respect to ( ),M E  in the opposite 
direction to the instantaneous Thomas rotation. ( ),M E  taking again its initial 
orientation after a complete period, this gap shows that the gyroscopes also 
rotate with respect to the inertial referential frame ( ),O e  

It can be noted that the solution of (33) (with the initial condition ( )0 00,=G G  

also is the Fermi-Walker parallel transport of 0G


 along   [2] [4] [5]. 

7. Conclusion: Langevin’s Twins and Thomas Precession 

The main results of every dynamical system are contained in the tangent boost L 
(which gives its 4-velocity V  and the basis vectors of its rest frame ( ),M E ), 
and its associated matrix of the Lie algebra Λ  which gives its acceleration and 
the instantaneous Thomas rotation.  

The age of the electron with respect to the atom nucleus is then obtained by 
integrating 1,1L  over one period T. In the case of a uniform circular motion its 
value is TΓ  

The gyroscope rotation Ψ  in the physical space ( )1 2, ,M E E  can be 
obtained by integrating over one period between 0t τ= Γ =  and 2πt τ ω= Γ = . 
We get  

( )2π 1Ψ = − Γ −  
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Figure 3. Illustration of “Langevin’s twins” in the case of an electron rotating on a 
circular orbit around the atom nucleus. The twins are denoted O′  and M respectively. 
The straight line parallel to the axis of the cylinder is the worldline of O′ ; the helix is 
that of M. 
 

We thus see that in the case of Langevin’s twins, (here, in the case of a 
uniform circular motion), when the twin who made a journey into space returns 
home he is not only younger than the twin who stayed on Earth but he is also 
disorientated with respect to the terrestrial frame because his gyroscope has 
turned with respect to earth referential frame. This effect is illustrated in Figure 3 
in the case of an electron rotating on a circular orbit around the atom nucleus. 
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