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Abstract

This article presents the design and implementation of a fault tolerant architecture for sensor fusion that tolerates
faults on a quadrotor unmanned aerial vehicle (UAV). It aims to tolerate both hardware sensors faults (GPS jamming,
IMU lock or freezing, magnetometer sensitivity to high power magnetic fields...) and software faults (faults in the
Kalman filter, bad parameters initialization....). The proposed architecture uses data fusion with Kalman filters in
order to estimate the states (position and orientation) of the UAV. It includes an analytical redundancy using the
dynamic model of the system. The estimations of the defined Kalman filters and the dynamic model feed a weighted
average voter, which increases the accuracy of the outputs and the error detection process. The proposed architecture
allows multiple recovery solutions to a faulty system and thus increasing its flexibility. The architecture is validated
using numerical simulations and experimental flights in real outdoor environment using a quadrotor.
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1. Introduction

Nowadays, Unmanned Aerial Vehicles (UAV) show a growing interest for applications such as infrastructures
surveillance (such as power grid or railways), hazardous terrain exploration (such as snowslide or landslide), mon-
uments modeling and restoration, etc. During their operations, multirotor UAVs are subject to different technical
and operational constraints such as limited battery, weight, altitude, possible faults, and flight over populated area.5

Thus, it is important to increase their technical reliability to ensure a safe flight in critical areas despite faults in the
system.

However, in order to allow such critical systems to operate in an open environment where their failure could cause
catastrophic consequences their fault tolerance must be improved. Moreover, these fault tolerance mechanisms must
not be too costly in order to be implemented on UAVs with limited payloads. In this article, we particularly focus10

on failures in the data fusion system caused by sensor and software faults in the data fusion process.
In this work, we present a fault-tolerance architecture for data fusion targeting sensors and software faults on

an outdoor quadrotor UAV. This architecture extends the duplication-comparison technique described in [1]. This
architecture uses data fusion with Kalman filters in order to estimate the states (position and orientation) of the
UAV.15

This paper is organized as follows: first, we present a state of the art on data fusion systems for UAV in section
2. Then we describe the UAV dynamics and the relations between the virtual and real control inputs along with
system’s and motor’s parameters identification in Section 3. These equations will be used in our architecture as
a dynamic model that is diversified compared to the sensors outputs. In Section 4, we describe the well-known
general equations of the Kalman filter and the Extended Kalman filter that we use in our architecture. Then, in20

Section 5, we propose our fault tolerance architecture for data fusion, which uses a voting system, the redundancy
based approach (Duplication/Comparison) described in [1] and the redundant analytical dynamic model previously
mentioned based on the quadrotor’s equations of motions. In Section 6, we detail a case study on the quadrotor
Tarot650 where we show the effectiveness of the proposed strategy through real experiments for hardware faults,
and numerical simulation for software faults. Finally, Section 7 presents our conclusions and possible perspectives.25
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2. State of the art on fault tolerance for data fusion

The field of data fusion plays a fundamental role for multi-sensor data fusion systems. In general, for dynamic
systems, it is implemented using the Kalman filter technique that allows to fuse data from different sensors and
reduces noise. We present here a state of the art for data fusion and then for fault tolerant techniques in data fusion.

Data Fusion [2] consists in joining or merging information obtained from several sources and exploiting that30

information in various tasks such as answering questions, making decisions, estimating numerical values, etc. These
sources are, commonly in robotics, physical sensors observing the actual situation and providing different information
on the possible events. Other definitions of the data fusion concept can be found in [3]. Multi-sensor data fusion
combines several sensors measurements to form a better and easier representation to use of the observed environment:
the world model. It seeks to take advantage of all available information on a given problem to counter each sources35

imperfections and improve robustness in data fusion. Generally three major theoretical frameworks are used to
implement a data fusion mechanism: the probability theory, the possibility theory [4, 5], and the belief function
theory [6]. In our work we focus on the probabilistic framework, particularly the Kalman filter method [7].

Data fusion has a long history in the robotic field. It has been a significant focus during the 80-90s in military
applications [8, 9], and remains relevant in this area. Fusion methods have been adapted and developed for robotics40

applications (such as autonomous navigation, target tracking, and localization). In [10] a belief function theory
data fusion technique is used and adapted to the robot localization problem using ultrasound measurements. As
navigation is fundamental for mobile robots, Kalman filters have been used in system localization for a long time
[11, 12]. As the original Kalman filter can only be applied to linear systems, the extended Kalman filter (EKF) has
been proposed for non linear systems. This EKF has been successfully implemented for robot position estimation in45

[13], and [14].

2.1. State of the art on multi-sensor data fusion systems

By using data fusion the risk of software and hardware faults increases, in terms of sensor failures and processing
failures, due to the rising number of sensors and the underlying data fusion mechanisms [15]. Hence, there is a need
to apply a fault tolerant strategy in safety critical applications to overcome these issues and detect any failures,50

and to ensure more reliable performance outcomes with respect to autonomous systems. To our best knowledge,
there exist only few works in the literature regarding fault tolerance in the field of data fusion. The approaches that
can be found use the duplication and comparison techniques to tolerate physical faults [16]. These approaches can
be categorized into two categories: duplication based on an analytical model, and duplication based on hardware
redundancy.55

The model based approaches, also known as analytical redundancy approaches [17], determine functional re-
lationships between the measured states through a mathematical model. This mathematical model can either be
developed from physics analyses or obtained from the measurements directly. Subsequently, a residual rk is then
generated between the actual sensor output yk and the estimated modeled output ŷk, i.e.,

rk = yk − ŷk (1)

A residual zero-mean, that is,
�
k

rk
k = 0 means no fault and the mean deviation from zero means the existence60

of a fault. A Nadaraya-Watson statistical estimator and a priori observations are used in [18] to validate sensor
measurements. Residuals or innovations generated by the Kalman filter (KF) were used in [19, 20, 21] to detect
faults: statistical tests on residual whiteness, mean, and covariance,... In [21], a failure detection approach for a
KF-based GPS integrity monitoring system was proposed. The idea is to process subsets of the measurements by
an auxiliary KF component and to use the estimate generated as a reference for the detection of failures. The KF65

prediction was used as a reference for detecting inconsistencies in the measurement of sensors in [22]. An adaptive
sensor/actuator detection and isolation scheme for a Unmanned Aerial Vehicle (UAV) based on KF have been
proposed in [23]. The detection of a system failure in this method is done by applying statistical tests on the KF’s
innovation covariance. In [24], this method is used to improve the accuracy of personal outdoor positioning systems.
Common tools for assessing residual statistical characteristics are generalized probability ratio tests [25], chi-square70

tests [26], and multiple hypothesis tests [27]. Some authors also proposed approaches based on Extended KF (EKF)
[28, 29] and Unscented KF (UKF) [30] with the objective of detecting inconsistencies in the data fusion of non-linear
systems. Multi-sensor data fusion for multi-robot system based on Kullback-Leibler Divergence (KLD) was proposed
in [31]. The method calculates the KLD between an Informational Filter a priori and a posteriori distributions and
uses the threshold of the Kullback-Leibler Criterion to detect and remove suspicious sensor data.75

Considering hardware redundancy based approaches, two or more sensors usually measure the same critical state
and then detect as well as isolate the faulty sensors by consistency checks and majority voting [17]. For example, in
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Figure 1: Duplication-comparison architecture for fault tolerance in multi-sensor data fusion, adopted from [1]

[32], the authors proposed a voter-based fault detection system for multiple sensors subsystems of inertial navigation
system (INS), GPS, attitude sensor and heading reference system (DAHRS). A sensor voting algorithm was presented
in [33] to manage three redundant sensors.80

Based on redundant multi-sensor navigation systems,an inconsistency detection for hypersonic cruise vehicles
(HCVs) was proposed in [34]. Two sensor blocks were involved: the first block consists of an inertial navigation
system (INS) and a GPS, while the second block consists of an INS and a navigation system. The method uses chi-
square test and sequential probability ratio test to detect inconsistencies in each block’s local sensor estimates before
sending their data to a central node for a global estimate. In another work, an application for failure detection and85

isolation on redundant aircraft sensors based on a fuzzy logic and a majority voting was proposed in [35]. A method
for detecting spurious sensor data based on the Bayesian framework without any prior information was proposed in
[36]. This method adds a term to a Bayesian probabilistic approach that increases the a posteriori distribution if
measurement from one sensor is inconsistent with the other.

2.2. Related works based on duplication/comparison90

In [1], the authors introduced an approach for tolerating faults using multi-sensor data fusion. This approach
is based on the method of duplication/comparison and offer detection and diagnosis of faults in a data fusion
mechanism and a subsequent system recovery. Error detection helps to detect the erroneous state of the system
before the propagation of the error can cause the failure of the system. System recovery allows an error-free state
to be substituted in place of an erroneous state. The Figure 1 illustrates the architecture for fault tolerance using95

duplication-comparison and multi-sensory data fusion. The major difference between this approach and the ones
introduced earlier is that it offers the capability of taking into account the software faults in the system. Also we
believe that this strategy is more reliable and accurate in identifying and dealing with faults in the system since it
is less sensitive to uncertainties and has a reduced number of assumption to be considered in the conception of the
architecture.100

3. Quadrotor Dynamics and Motor Identification

In this section, the dynamic model of the quadrotor UAV is presented. The set of equations of motion given in
this section and governing the system dynamics will be used in our fault tolerant architecture as a diversified branch
called Dynamic model (DM) in the fusion process, which will be compared to the sensors outputs.

The modeling process is made under the following assumptions:105

� Assumption 1 The structure of the vehicle is supposed to be rigid and symmetrical. Specifically, the center
of gravity is supposed to be fixed and the actuator’s position are symmetrical with respect to the vehicle axes,
which will allow much simpler equations concerning the forces applied on the system.
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Figure 2: Quadrotor configuration

� Assumption 2 The motor dynamics are ignored. This will allow to not consider the equations between the
motor’s rotational speed and the feeding current and voltage.110

� Assumption 3 The center of gravity and the body-fixed frame origin are assumed to coincide. This will allow
the off-diagonal terms in the inertia matrix to be zero.

� Assumption 4 The propellers are supposed to be rigid. Thus, we ignore the blade flapping (the up and down
movement of a rotor blade).

� Assumption 5 The thrust and the drag are proportional to the square of the rotors speed. This simplifies115

the identification procedure of the motor parameters.

� Assumption 6 The system dynamics are limited to small angles and small variations of linear and angular
velocities, and thus no acrobatic behavior of the UAV can occur.

3.1. Dynamic model

The dynamical model of the quadrotor (Fig. 2) can be found following the Newton-Euler formalism. First, by
defining the Earth frame {XE , YE , ZE} and the body frame {XB , YB , ZB}, the translation motion of the UAV can
be obtained using Newton-Euler’s law:

mv̇ = RB→E .F+ Fw − Fz (2)

where m is the mass of the UAV, v is the velocity vector in the Earth frame, F =
�
0 0 uf

�T
is the vector

representing the sum of all the forces in the body frame, Fz =
�
0 0 mG

�T
represents the weight of the vehicle

with G the gravitational constant, Fw =
�
Fwx

Fwy
Fwz

�T
is the vector of external wind perturbations acting on

the UAV represented in the earth frame and uf is the thrust force produced by the motors and RB→E is the rotation
matrix from the body frame to the earth frame. Therefore, we obtain:





mẍ = (cosφ sin θ cosψ + sinφ sinψ)uf + Fwx

mÿ = (cosφ sin θ sinψ − sinφ cosψ)uf + Fwy

mz̈ = (cosφ cos θ)uf −mG+ Fwz

(3)

where φ, θ and ψ represent the Euler angles respectively (roll, pitch and yaw angles). Using Newton-Euler’s law, we
can model the dynamic of the UAV’s attitude by the following:

Iω̇ = −ω × Iω + τ (4)

or 


Ixx 0 0
0 Iyy 0
0 0 Izz






ṗ
q̇
ṙ


 = −




p
q
r


×




Ixx 0 0
0 Iyy 0
0 0 Izz






p
q
r


+




τφ
τθ
τψ


 (5)
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where ω =
�
p q r

�T
represents the angular velocity vector in the body frame, τ =

�
τφ τθ τψ

�T
is the vector of

moments acting on the UAV and Ixx, Iyy and Izz are the inertial constants of the UAV. A simplification is made by

setting
�
φ̇ θ̇ ψ̇

�T
=

�
p q r

�T
. This assumption holds true for small angles of movement (Assumption 6). So,

the full dynamic model of the UAV in the inertial frame is given by:





mẍ = (cosφ sin θ cosψ + sinφ sinψ)uf + Fwx

mÿ = (cosφ sin θ sinψ − sinφ cosψ)uf + Fwy

mz̈ = (cosφ cos θ)uf −mG+ Fwz

Ixxφ̈ = θ̇ψ̇(Iyy − Izz)− Jr θ̇Ωr + τφ
Iyy θ̈ = φ̇ψ̇(Izz − Ixx) + Jrφ̇Ωr + τθ
Izzψ̈ = φ̇θ̇(Ixx − Iyy) + τψ

(6)

The virtual inputs of the system are related to the force and torque of each motor by the following expressions:

uf = F1 + F2 + F3 + F4

τφ = d(F1 + F4 − F2 − F3)
τθ = d(F1 + F4 − F2 − F3)
τψ = (τ2 + τ4)− (τ1 + τ3)

(7)

where d is the distance from the motor’s position to the corresponding axis which is equal for all motors, and the
force Fi and the torque τi produced by each motor is proportional to the square of the angular speed :

Fi = Kfω
2
i

τi = Ktω
2
i

i = 1, ..., 4
(8)

where Kf and Kt represent respectively the thrust and drag coefficients of the actuators. The model presented in120

equations (6) is widely used in the literature for describing the quadrotor motion and is validated in many publications
such as [37].

3.2. Motor model Identification Procedure

The relation between the generated aerodynamic forces and moments by the propellers are the following: Fi =
Kfω

2
i and τi = Ktω

2
i . Since Round Per Minute (RPM) sensors are not yet compatible with the Cube flight controller125

used in our flight tests, it is difficult to measure the motor coefficients Kf and Kt directly. However, since the Pulse
Width Modulation (PWM) signals communicated between the autopilot and the ESCs are measured and identified,
it is possible to identify a polynomial relation between the PWM signals and the generated forces and moments.
These relationships can be considered as an alternative solution for the identification of the motor coefficients and a
replacement for the Kf and Kt gains. To do this, we have set up two experiments: the first is used to identify the130

relation between the input PWM signals and the force generated by the actuator, and the second is used to identify
the relation between the PWM signals and the generated torque.

3.2.1. Relationship between PWM inputs and generated thrust force

The first experiment is shown in Figure 3. It aims to find the relation between the PWM control signal and the
thrust generated. The actuator and its propeller are mounted on top of a single bar attached to a base support.135

When the actuator starts running, the weight scale under the support measures the added thrust force generated by
the actuator. To identify the relation between the PWM signal and the thrust generated, we implemented a Matlab
application to send PWM signals to the ESC, starting from 1000 up to 2000 with a step of 50. A value of 1000
means that no signal is sent to the motor, thus the motor is turned off, and a value of 2000 means that we run the
motor at full power.140

After collecting data, we obtain the curve of the thrust forces generated in Newton (N) with respect to each
PWM signal sent to the motor upwm, as shown in Figure 4. Five tests of the same experiment were conducted to
minimize the error due to the imperfections of the setup and the measurement noises, and to verify the repeatability
of the results.

Using the polyfit function in Matlab, we found that a polynomial of degree three presents a good approximation145

of the collected data from the tests, with an approximation error of order 10−3. The obtained relation is as follows:

fi = (−1.4736u3
pwm + 11.0691u2

pwm − 16.7074upwm + 7.3007)/100 (9)

5



Figure 3: Experimental setup for thrust identification of the Tarot 650
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Figure 4: Thrust force as function of the applied PWM input

In hovering mode, the PWM values of motors is around 1500 and 1600 which corresponds to 2 N and 3 N of
generated forces by the actuators. Note that, an approximation using a polynomial of second order gives an error of
2 × 10−2 which correspond to 1 − 2% of percentage error in hovering mode. Even though this error is not huge, it
adds up quickly with the passage of time, and we will get bad estimations after a short amount of time. Thus we150

consider this approximation unacceptable. Moreover, an approximation using a polynomial of fourth order gives an
acceptable error of order 4 × 10−3, while has a computation time significantly bigger than a polynomial of degree
three which gives a similar error of 3× 10−3. Thus, we choose the approximation of the polynomial of third order in
our model.
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3.2.2. Relationship between PWM inputs and generated torque155

The second experiment is shown in Figure 5. It aims to find the relation between the PWM control signal sent
to the motor and the torque generated. In this setup, a small bar, with a known length of 13 cm, is attached to the
motor arm and placed on top of the weight scale. When the actuator starts running, the motor arm starts to turn
slightly oppositely to the rotor’s direction due to the generated torque. This will induce a force on the weight scale
transmitted by the small bar. Thus by multiplying this force by the length of the small bar, we obtain the torque160

generated by the motor.
To identify the relation between the PWM signal and the generated torque, we used the same Matlab application

than in Section 3.2.1 to send PWM signals to the ESC, starting from 1000 up to 2000 with a step of 50.
After collecting data, we obtain the curve of the torque generated in Newton.meter (N.m) with respect to each

PWM signal sent to the motor upwm, as shown in Figure 6. Again, five tests of the same experiment are realized to165

minimize errors due to measurements noises and the imperfections of the setup.

Figure 5: Experimental setup for torque identification of the Tarot 650
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Figure 6: Motor torque as function of the applied PWM input

Using the polyfit function in Matlab, we found that a polynomial of degree three presents a good approximation
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of the collected data from the tests, with an approximation error of order 10−3. The obtained relation is as follows:

τi = (−0.0905u3
pwm + 0.4771u2

pwm − 0.679upwm + 0.3045)/100 (10)

Similarly as in Section 3.2.1, an approximation using a polynomial of second order gives an unacceptable error
of 3× 10−2. An approximation using a polynomial of fourth order gives an acceptable error of 5× 10−4, but has a170

computation time bigger than a polynomial of degree three which gives a similar error of 2× 10−4. Thus, we choose
the approximation of a polynomial of third order for our model.

3.2.3. Inertia Matrix

The moment of inertia (inertia matrix) I (see equation (11)) of a rigid body is required to calculate the torque
needed to achieve a desired angular acceleration about a rotational axis. The calculation of this moment of inertia175

depends on the body mass distribution and the chosen axis. Assuming a perfect symmetry about the three rotational
axis, the off-diagonal terms of the inertia matrix (Ixy, Ixz, Iyz) become zero, and the diagonal terms can be calculated
using the following equations based on [38]

Ixx = Σimi(d
2
yi
+ d2zi)

Iyy = Σimi(d
2
xi

+ d2zi)
Izz = Σimi(d

2
xi

+ d2yi
)

(11)

with Σimi the mass of the UAV’s arm (including the actuator, ESC and the arm itself) and dxi , dyi and dzi the
perpendicular distances from the end of the arm to the specific axis, which are the same in each case since the180

structure is symmetrical. In the case of the Tarot 650, by applying the equation 11, we get the following values:

Ixx = Iyy = 3.38 ∗ 10−2 Kg.m2

Izz = 2.25 ∗ 10−2 Kg.m2 (12)

4. Data fusion using Extended Kalman filter

The Kalman filter assumes that the system states and the measurements of the sensors can be described by a
linear dynamic system. This dynamic system is divided into two parts:

� The linear model which describes the evolution of the system states over time.185

� The measurement model which describes how the measurements are related to the states.

Thus, the Kalman filter assumes that the system can be represented by linear equations. When the system is
nonlinear, we can use linearization techniques to transform the problem into a linear problem, using the Extended
Kalman filter (EKF). A good introduction to the topic can be found in [39]. A more detailed description of the
concept, derivation and properties is given in [40].190

In the following, we recall the well known equations of Kalman filters that will be extensively used in our
architecture.

4.1. Kalman filter for linear systems

The Kalman filter, also known as linear quadratic estimator, is an optimal estimator for discrete linear system of
the form:195

xk+1 = Akxk +wk (13)

where xk+1 ∈IRn, xk ∈IRn represent the system states respectively at the instants k + 1 and k, Ak ∈IRn×n is the
transition matrix between k + 1 and k and wk ∈IRn is the noise vector in the states model.

On the other hand, the observation model which describes the measurement of the sensors is described by:

zk = Hkxk + vk (14)

where zk ∈IRp, Hk ∈IRp×n and vk ∈IRp are respectively the measurement vector at instant k, the observation matrix
and the noise vector in the observation model.

The process noise wk and the measurement noise vk are assumed to be independent random variables with200

Gaussian probability density functions and zero mean value. The normal probability distributions p are as follows:

p(w) � N(0, Q),Q = diag(σ2
w1,σ

2
w2, ..., ) (15)
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p(v) � N(0, R),R = diag(σ2
v1,σ

2
v2, ..., ) (16)

with σ2 being the variance of the corresponding noise distribution.

Kalman filter process

The first step (prediction step) is to determine the predicted state x̂−
k at time k, using the previous corrected

state x̂k−1 , and the associated error covariance matrix P−
k using:205

x̂−
k = Akx̂k−1

P−
k = AkP

+
k−1A

T
k + Qk

(17)

The second step (correction step) is to correct the predicted states and the covariance matrix using the measure-
ments from the sensors zk when they are available. The predicted state can be corrected using the innovation (or
residual) Ŝk and the computed Kalman gain Kk. Thus, the corrected state x̂k and its associated covariance matrix

P+
k can be estimated using the following equations:

Ŝk = zk − Hkx̂
−
k

Ŝk = HkP
−
k HT

k + Rk

Kk = P−
k HT

k Ŝ−1
k

x̂k = x̂− + KkŜk

P+
k = P−

k KkHkP
−
k

(18)

The innovation Ŝk represents the difference between the predicted states and the real measurement from the210

sensors.

4.2. Extended Kalman filter EKF for nonlinear systems

For the estimation of a nonlinear system, several extended versions of the Kalman filter exist. A widely used
approach is to linearize the system dynamics in every step around the a priori estimation x−

k , and proceed as for a
linear system. This approach is known as the EKF. The fundamental imperfection of the EKF, as pointed out in [41],215

is that the distributions of the various random variables are no longer a normal distribution, after undergoing their
respective non-linear transformations. Thus, the optimality of the estimation is only approximated by linearization.
The stochastic system equations from (17) and (14) are now generalized to the nonlinear case as:

xk+1 = f(xk, wk) (19)

again with the state vector xk ∈IRn, and the observation model is given by:

zk = h(xk, vk) (20)

with the measurements vector zk ∈IRm.220

Extended Kalman filter process

By deriving the Jacobian matrix of the partial derivatives of f(xk, wk) and h(xk, vk) with respect to the state
xk and the noise vectors wk and vk, we obtain the linearized approximation of the matrices:

Ak = (∂f(xk,wk)
∂xk

)T |
x̂

−
k

Wk = (∂f(xk,wk)
∂wk

)T |
x̂

−
k

Hk = (∂h(xk,vk)
∂xk

)T |
x̂

−
k

Vk = (∂h(xk,vk)
∂vk

)T |
x̂

−
k

(21)

The EKF is implemented as shown in Figure 7, and a detailed process can again be found in [41].

5. Fault-tolerance architecture for data fusion system225

In this section, we present a fault-tolerance architecture for data fusion targeting sensors and software faults on an
outdoor quadrotor UAV. This architecture extends the duplication-comparison technique described in [1], with the
weighted average voting system proposed in [42]. This architecture uses data fusion with Kalman filters in order to
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Figure 7: Data flow of the Extended Kalman filter operation

estimate the states (position and orientation) of the UAV. Four main additions have been made between our proposed
architecture and the one proposed in [1]: (1) The first difference is that we add an analytical redundancy using the230

dynamic model of the system (DM). (2) The second difference is that we use a weighted average voter instead of
a simple thresholding, which increases the accuracy of the outputs and the error detection process. (3) The third
difference is that we propose multiple solutions which can be applied to recover a faulty system and this increases
the flexibility of our architecture. (4) The fourth difference is that our architecture is experimentally validated on
a closed loop quadrotor UAV during real outdoor experiments, instead of on an open loop using real data. The235

proposed architecture in our work is illustrated in Figure 8. All its modules will be detailed in the following sections:
first the voting system used to calculate the final estimation of the redundant components, second the error detection
and fault diagnosis mechanisms and finally the system recovery techniques. Please note that in our work, we consider
only single or successive faults as simultaneous faults are always extremely difficult to accurately identify and even
possibly detect. Note however that common cause faults, the most common simultaneous faults, can be avoided240

through diversification processes, which is applied both on hardware and software in our fault tolerant architecture
(except for the GPS sensors, which should also be diversified as much as possible).

5.1. Weighted Average Voting System

As seen in Figure 1, the fault tolerance architecture for data fusion proposed in [1] uses redundant sensors blocks
to produce diversified fusion outputs, and a voter to detect errors and produce a unique output. However, the voter245

is a fairly common threshold comparator that averages the output of the healthy sensors blocks and detects errors
by a thresholding comparison. We propose to use an updated version of this voter in order to improve the system’s
behavior both without faults and with faults prior to the error detection module, by weighting the output of each
sensors block with its consistency with the other’s.

Considering a redundant system using multiple diversified but functionally identical modules operating in parallel,250

the weighted average voter [42] gives a weighted mean of values obtained from the redundant modules. Given a set of
inputs from three diversified modules xm1, xm2, and xm3 for a particular cycle, the weighted average voter determines
first a numerical distance of input pairs: d12 = |xm1 − xm2|, d13 = |xm1 − xm3| and d23 = |xm2 − xm3|. Out of these
values, the weighting values of individual inputs, wm1, wm2 and wm3 are obtained: in practice, a module’s result far
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Figure 8: Proposed data fusion architecture for tolerating sensors and software faults

Figure 9: A 3-input weighted average voter

from the other modules results would be assigned a lower weight. The weight values are then used to calculate a255

single value as the voter output (Figure 9). We detail in the rest of this section how the weights and the final output
are computed.

Voter implementation

In order to determine the consistency of all voter input pairs, the weighted average voter uses the concept of the
soft threshold [42]. For any voter input pairs i and j, the agreement indicator sij is defined as follows:260

sij =





1, if dij � a

( n
n−1 )(1−

dij

na ), if a < dij � na

0, if dij � na

(22)

where dij is the distance between the input pairs i and j, a is the fixed threshold of the voter, and n is another
positive tuneable thresholding parameter.

If the distance dij of input pairs is less than the threshold a, the agreement indicator is sij = 1. This means that
the measurements of the modules i and j are aligned and consistent for the specific application. Oppositely, if the
distance dij of input pairs is more than the threshold n × a, then the agreement indicator becomes sij = 0, which265
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Figure 10: Agreement indicator in function of the distance between input pairs

means that the measurements of the modules i and j are inconsistent. For input pairs with a distance between a
and n× a, the agreement indicator varies in the range [0, 1] as shown in Figure 10.

After calculating the agreement indicator for each input pairs, the next step is to calculate the weighted values
wmi for each module i based on the following equation:

wmi =

k�
j=1,j �=i

sij

k − 1
(23)

where k is the number of diversified modules.270

The voter output is calculated as follows:

yv =

k�
i=1

xmi × wmi

k�
i=1

wmi

(24)

The tuneable parameter n has a significant impact on the behavior of the voter. In our case, we will also use the
voter as a detection error mechanism, considering that an error is present in a sensor when an agreement indicator
reaches zero. Thus, as n increases, the chances of getting undetected errors increases, while when n tends to 1, the
voter behaves as a common voter with a fixed hard threshold value a, where the agreement indicator sij is either 0275

or 1, which increases the chances of getting false positives.

5.2. Enhanced data fusion architecture for tolerating sensor and software faults

Data fusion can be used to reduce sensor noise and errors and to achieve and optimize a solution in case of
multiple sensors. However, even though data fusion architectures are robust to some temporary outliers (like sensor
noises) they can not usually tolerate prolonged sensor faults. They are also vulnerable to software faults, particularly280

on gains or covariances in the data fusion mechanism.
In this section, we present our proposed data fusion architecture for tolerating sensors and software faults which

is based on duplication and comparison and was initially proposed in [1]. We also use a redundant predictive block
based on a mathematical model of the UAV for both error detection and diagnosis and the weighted average voting
system presented in section 5.1. This architecture will be validated in section 6 on a real outdoor UAV: the Tarot650285

quadrotor.
The proposed fault tolerance architecture is shown in Figure 11. This architecture provides detection and recovery

services adapted to multi-sensor data fusion systems to ensure their reliability and the safety of the UAV.
The main differences between our architecture (Figure 11) and the architecture proposed in [1] are summarized

as follows:290

� Branches: in our architecture we proposed to add an analytical redundancy using the dynamic model (DM) and
the equations of motion of the UAV, whereas in [1], all the branches are formed only using available hardware
(sensors).

� Voter : in our architecture we used an average weighted voter to calculate the output of the system, whereas
in [1], a simple thresholding is used instead.295
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� Recovery : in our architecture, we propose several solutions to recover a faulty system by altering the outputs
of the sensor blocks, whereas in [1], the solutions were limited to using the identified healthy branch.

� Validation: our architecture is validated in real outdoor flights, whereas the architecture in [1] was only validated
in an open loop using data sets from real experiments.

In our generic architecture, we implement two parallel and independent data fusion branches, each containing300

a data fusion block (here KF1 and KF2) that estimates the state of the UAV from redundant and diversified
sensor blocks. Each sensor block (SB1, SB2, SB3 and SB4) may contain one or several sensors. In the Figure
11, we consider that the sensor blocks SB1 and SB3 contain functionally similar sensors measuring the same state’s
variables. Similarly, the sensor blocks SB2 and SB4 are functionally equivalent. Note that more than two independent
branches could be used if the required resources and space are available, which ultimately would allow to tolerate more305

successive faults. In the residuals generator block we calculate the residuals from the redundant sensors data which
represents the differences between the output of these redundant sensors. Moreover, the dynamic model module in
the Figure 11 represents the analytic redundancy in our architecture, where we use the equations of motion of the
UAV and the control input (thrust and torques) of the motors. The output of all the mentioned modules are then
fed into the final module which is called the software/hardware error detection, isolation and recovery module.310

This architecture can tolerate one or more successive hardware faults related to sensor blocks (as long as we still
have redundancies in functionally equivalent sensors) and allows to tolerate a software fault related to the fusion
blocks, under the assumption of no simultaneous sensor’s failure.

5.3. Fault detection

We propose in this section an implementation example of our architecture with three parallel branches, two of315

them executing a data fusion process and using each two sensor blocks similarly to Figure 11. The first branch (SB1,
SB2, KF1) combines the outputs of sensor blocks SB1 and SB2 within the KF1 fusion block, the second branch
(SB3, SB4, KF2) combines the outputs of sensor blocks SB3 and SB4 at the KF2 fusion block, and the third branch
is the Dynamic model which uses the equations of motion of the quadrotor UAV. For the sensor blocks (SB1, SB2)
and (SB3, SB4), the outputs of each component are compared with its redundant component: the outputs of SB1320

are compared with the output of SB3, while the outputs of SB2 are compared with the output of SB4. Also, the
outputs of the fusion blocks KF1 and KF2 and of the Dynamic model (DM) are compared and combined using the
weighted average voter. The comparison between the fusion blocks allows to detect an error in the system, while the
comparisons between the sensor blocks are used to diagnose the detected error. In case of no fault in the system, the
output of the data fusion system is the same as the output of the voter which represents a combined solution of the325

three estimations of the state vector. In the following we explain the error detection and identification algorithm.
Note that a third sensor branch could be used instead (or additionally) to the Dynamic Model and could allow to
tolerate more hardware faults, but would obviously be more costly and limit the payload of the UAV.

Our architecture is made up of three modules (as shown in Figure 12). In the following, we define each module
the two modules used respectively for error detection and identification:330

1. Voter and error detection: The error detection is done by computing the values of the agreement indicators
sij of the outputs of the two fusion blocks KF1 and KF2, and of the Dynamic model (DM). The indicators
are computed using the equation (22), where the indices 1, 2 and 3 represent respectively the outputs of KF1,
KF2 and DM. When the indicator s12 goes to zero, this implies the occurrence of an error in the system. This
error is either due to a software fault of the data fusion blocks KF1 and KF2, or to a hardware fault in one of335

the sensor blocks. Using these agreement indicators, we can also identify the erroneous branch thanks to the
redundancy introduced by the DM. When s12 = 0, we compare the values of s13 and s23. If s13 = min(s13, s23),
and |s13 − s23| > � (a threshold value delta), then the error is in the first branch. If s23 = min(s13, s23) and
|s13 − s23| > �, the error is in the second branch. Finally, if |s13 − s23| � �, we can only conclude that the fault
does not yet affect the system sufficiently to be identified, and we will continue checking this condition in the340

next cycles until we identify the erroneous branch.
In case where the indicators s13 and s23 go to zero with s12 = 1, this implies that there is an error in the
estimation of the DM. Such error can be due to high uncertainties in the system, which can happen because of
unusual environmental conditions or divergence due the model imperfections. In this case, on possible solution
is to reset the output of the DM to the average value of the outputs of KF1 and KF2, under the assumption345

that no other fault impacts the sensors. We could also remove the erroneous DM from the system, but we
would then only be able to detect hardware faults, and no longer tolerate them as we would be unable to
identify the correct branch.
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Figure 11: Fault tolerance architecture using Duplication comparison and analytical redundancy

2. Software/hardware error identification module: This module diagnoses the detected error, and identifies whether
it is a software fault in the data fusion process or a hardware fault of a sensor block. In practice, the comparison350

of sensors outputs allow us to determine whether the detected error is hardware or software, and to identify
the erroneous sensor in the case of a hardware fault. The residuals are computed as the differences between
the outputs of the redundant sensors blocks (SB1/SB3 and SB2/SB4 in our implementation). If the output of
a sensor block deviates significantly from its redundant block then the system diagnoses a hardware error on
one of these two sensors. More precisely, a hardware error is detected if the value of the residual ΔSB1,SB3 or355

ΔSB2,SB4 exceeds the values of the fixed thresholds Th13 and Th24, which are depending on the application.
If the value of all residuals are below their corresponding threshold, a software error is diagnosed either in KF1
or KF2. Note that if these thresholds were too high or too low, this may cause respectively absences of error
detection or false positives. The value of these thresholds are determined by taking into account the precision
of the onboard sensors. For example, for the low cost GPS l used in our Tarot650, a value of 2 meters is360

acceptable. On the other hand, if the value of the residuals are below the predefined thresholds, we diagnose
a software error in one of the data fusion blocks KF1 and KF2.
The operation of the fault tolerance algorithm is summarized in the algorithm 1 and illustrated in Figures 13
and 14

5.4. Recovery module365

Once the error in the system is detected on the voter level and isolated by the identification module, an appropriate
system recovery solution must be applied accordingly in order to re-stabilize the data fusion system. In the following,
some of the possible solutions are presented.

5.4.1. Recovery for Hardware Fault

In the case of a hardware fault in component i of KF1, many solutions may be implemented in order to reconfigure370

the system after the error detection and identification process. However, we identify two main solutions as follows:

� Sol 1: the first solution consists in removing the component i from KF1 and replacing it with the equivalent
component j from KF2. The newly defined block KF3 (KF1 with component j) is then integrated into the
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Algorithm 1: Fault detection and identification algorithm

Data: KF1,KF2: data fusion output
SB1, SB2, SB3, SB4: sensor blocks outputs
Constant: �, Th24, Th13

1 begin
2 Calculate s12, s13, s23;
3 Calculate ΔSB1,SB3 and ΔSB2,SB4;
4 if s12 = 0 then
5 if |s13 − s23| > � then
6 if ΔSB1,SB3 > Th13 then
7 if s13 = min(s13, s23) then
8 /* error in SB1, apply adapted hardware recovery mechanism */

9 else
10 /*error in SB3, apply adapted hardware recovery mechanism */

11 else if ΔSB2,SB4 > Th24 then
12 if |s13 − s23| > � then
13 if s13 = min(s13, s23) then
14 /* error in SB2, apply adapted hardware recovery mechanism */

15 else
16 /*error in SB4, apply adapted hardware recovery mechanism */

17 else if s13 = min(s13, s23) then
18 /* error in KF1, apply adapted software recovery mechanism */

19 else
20 /* error in KF2, apply adapted software recovery mechanism */

21 else
22 /* cannot identify the faulty branch, keep running without modifications */

23 else
24 /* No error detection, system healthy */
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voting mechanism along with KF2 and DM. Henceforth, using this technique, it is possible to tolerate all
software faults and hardware faults except on component j which cannot be even detected anymore. This is375

because if the component j becomes faulty, it will affect KF2 and KF3 simultaneously, and by following the
diagnostic logic of 1, we can see that a fault in DM will be detected because it’s equivalent output will defer
from the coherent estimations of KF2 and KF3 and a false alarm will be reported by the error detection process.

� Sol 2: the second solution consists in removing the branch containing KF1 from the architecture and using only
the remaining healthy branches KF2 and DM. Moreover, the healthy components of KF1 as backup resources380

and keep comparing their output with those of KF2. Henceforth, it is possible to detect all possible faults
although we can only tolerate the errors on the healthy components only (all components except component
j).

� Sol 3: the third solution consists in removing the branch containing KF1 and replacing it by a virtual estimation
branch KF3 where the output of KF3 is a weighted average of the outputs of KF2 and DM, where the weight385

of the KF2’s output is greater than the DM’s output. This may increase the precision of the estimation in case
of increasing uncertainties in the DM calculations due to unmodeled effects. The same properties of sol 2 are
available here, however the detection time becomes greater in this case after a new fault in the system as the
third branch is a combination of the other two.

Note that if the hardware faults is in KF2, the same solutions mentioned above can be applied by removing KF2390

instead of KF1. Once the appropriate solution for the intended application is selected, the recovery module can be
easily developed as its code is quite simple.

5.4.2. Recovery for Software Fault

In the case of software fault in KF1, again many solutions may be proposed in order to reconfigure the system
after the error detection and identification process. However, we identify two main solutions as follows:395

� Sol 1: the first solution consists in initializing a new data fusion block KF3 with the current states values of
the healthy block KF2. Also, the same code section of the KF2 is used in order to perform the estimations in
KF3, since no software fault is yet activated in KF2. Henceforth, using this technique, it is possible to detect
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Figure 14: Proposed data fusion architecture for tolerating sensors and software faults
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and tolerate all hardware faults in the system although software faults cannot be guaranteed to be detected
anymore. This is because a new software fault may affect the shared code section between KF2 and KF3 and400

thus leads to a simultaneously distortion in both estimations, and by following the diagnostic logic of 1, we can
see that a fault in DM will be detected because it’s output will defer from the coherent estimations of KF2 and
KF3 and a false alarm will be reported by the error detection module.

� Sol 2: the second solution consists in removing all the branch containing KF1 from the architecture and using
only the remaining healthy branches KF2 and DM. Moreover, the healthy components of KF1 can be kept as405

backup resources to keep comparing their output with those of KF2. Henceforth, it is possible to detect and
tolerate all the harware faults in the system, however we can only detect software faults without the ability
to tolerate them. It is also possible to identify a virtual estimation branch KF3 by using the average of the
outputs of KF2 and DM as the output of KF3. This may increase the precision of the estimation in case of
increasing uncertainties in the DM calculations due to unmodeled effects.410

� Sol 3: the third solution consists designing during the development phase a third diversified Kalman filter
software block KF3. The added KF3 in the system is only performing mathematical calculations during
operations without its outputs being used in the data fusion mechanism. Once a software fault in KF1 is
detected, it is replaced by the diversified KF3. Using this solution, all the detecting and tolerance capacities
in the system are retained after the first software fault. Note however that fault detection in KF3 must be415

done from the start of the operation even if its outputs are not immediately used, as it could become erroneous
before KF1 or KF2 and should obviously not be used in this case.

Again once the appropriate solution for the intended application is selected, the recovery module can be easily
developed accordingly.

6. Validation420

To evaluate the proposed architecture for tolerating sensors and software faults developed during this work, we
have conducted the following experiments:

� A real outdoor flight test with hardware fault injection (additive fault of 5m in the x and y direction) on the
GPS1 during a U-path trajectory tracking

� A real outdoor flight test with hardware fault injection (additive fault of -1m) on the Lidar used in KF1 during425

a hovering at 3m altitude

� A simulation of a flight with software altitude fault injection in KF1 during a hovering at 3m altitude

� A simulation of a flight with software x, y fault injection in KF1 during a U-path trajectory tracking

The real experiments were conducted using the Tarot 650 which is a commercial hobby type quadrotor UAV.
The implemented UAV using this frame is shown in Figure 15. The Tarot 650 is equipped with the Hex Cube Black430

(FMUv3). This is an updated version of the Pixhawk controller which is an open-source and open-hardware autopilot
able to run the Arducopter flight stack used to build our software. This Cube has a 32-bit ARM Cortex M4 core
processor with FPU with 168 Mhz/256 KB RAM/2 MB Flash and a 32-bit failsafe co-processor. It also includes
three redundant IMUs and two redundant barometers. The Cube has been equipped with additional sensors, namely
the Lidar Lite v3, two GNSS modules and an RTK module used as the reference for the position measurements to435

evaluate our experimental results.
To our best knowledge, the model parameters of the TAROT 650 were not identified elsewhere in the literature,

and we couldn’t obtain these information from the manufacturers. Therefore, we had to estimate these constants
using mesurement tool (numerical balance for mass, and a meter for length) and analytical expressions for inertia
values. The Tarot 650 parameters are given in Table 1.440

m Mass of the vehicle 1.7 kg

l Length of the arm 0.23m

Ixx, Iyy Inertia 3.38 ∗ 10−2 Kg.m2

Izz Inertia 2.25 ∗ 10−2 Kg.m2

Table 1: The TAROT 650 model’s parameters
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Figure 15: Experimental Tarot 650 quadrotor

All the simulations and experiment configurations were done using a ground control station (Mission Planner)
running the Arducopter flight stack. Note that the control law used to control the UAV is a smooth second order
sliding mode control law based on the super-twisting algorithm proposed in [43]. It has been proven that this control
law is capable of stabilizing the UAV despite the existence of external perturbations due to wind which increases the445

reliability of the states estimations of the dynamic model.
Also, it is worth mentionning that in our platform, the Ardupilot is used as an open source flight code to develop

our architecture and the pixhawk is used as an autopilot which supports Ardupilot. By default, Ardupilot has a
built-in Extended Kalman Filter algorithm (EKF2) to consolidate the sensors data in order to estimate the vehicle
position, velocity and angular orientation based on rate gyroscopes, accelerometer, compass, GPS and Lidar. In our450

work, we created two instances of the Ardupilot EKF core (KF1 and KF2) along with the analytical model in order
to build our architecture. In both instances, we used the default settings of the EKF parameters which are related
to the accelerometer, gyro and magnetometer noises since these values are recommended when using the internal
IMU of the Pixhawk (InvenSense MPU9250 in our case). However, we modified the Lidar and GPS parameters to
get better response. These parameters are commonly updated in practice to take into consideration the type of the455

chosen device and its specifications. For example, we did the following modifications to certain parameters:

� EK2 GPS TY PE: This parameter controls how GPS is used. We set to 1 in order to use 2D velocity & 2D
position (GPS velocity does not contribute to altitude estimate).

� EK2 RNG NOISE: This is the RMS value of noise in the range finder measurement. Increasing it reduces
the weight on this measurement. We have chosen the value of 0.025 meters since this is the precision of the460

Lidar Lite v3 that we used in the experiments.

� EK2 POSNE NOISE: This sets the GPS horizontal position observation noise. Increasing it reduces the
weight of GPS horizontal position measurements. We have chosen the value of 2.5 meters since this is the
precision of the ”Here 3” Precision GNSS Module that we used in our experiments.

6.1. Implementation of the fault tolerance architecture465

The details of the implemented architecture are shown in Figure 8. In this application we implement three parallel
branches (B1, B2 and B3).

The first two branches B1 and B2 are the fusion blocks, each containing two sensors blocks: SB1 and SB2 in B1,
and SB3 and SB4 in B2. The first sensors blocks SB1 and SB3 are the IMU blocks (IMU1 and IMU2), they are used
to estimate the prediction of the state vector. Each IMU contains the following sensors:470
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Estimated State a n
x 0.5 6
y 0.5 6
z 0.5 2
φ 1 3
θ 1 3
ψ 2 3

Table 2: Tuneable parameters values for selecting the thresholds of the voter

� A gyroscope (Gyro1 and Gyro2): it is used to measure the angular velocity of the UAV in the body frame.
The integration of this measure gives the attitude angles (roll, pitch and yaw) of the UAV.

� An accelerometer (Acc1 and Acc2): it is used to measure the linear accelerations of the UAV. The integration
of this measure gives the linear velocity, and its double integration gives the position of the UAV.

Each of the other two blocks SB2 and SB4 contains the following sensors:475

� A GPS (GPS1 and GPS2): it is used to measure the absolute position of the UAV.

� A magnometer (Mag1 and Mag2): it is used to measure the heading (yaw) of the UAV.

� A lidar (Lidar1): it is used to measure the altitude of the UAV.

Note that we only use one lidar in our experimental quadrotor. Of course we would need another redundant lidar
to tolerate faults on this sensor according to our architecture, but we did not have the second one on the UAV at480

the time of the experiments. In fact, we intended first to use a barometer as a diversified sensor to the lidar, but its
performances were too poor in practice to use it.

A data fusion block combines the outputs of these sensors blocks in a Kalman filter (KF1 for SB1 and SB2, and
KF2 for SB3 and SB4). The sensors blocks SB2 and SB4 are used in the correction step of the Kalman filter process,
while the sensors blocks SB1 and SB3 are used for the prediction step of the Kalman filter process. The third branch485

B3 is the Dynamic Model block. In this block the state vector of the UAV is estimated using the dynamic model of
the vehicle and the relationships between the PWM inputs and the generated thrust and torques that we identified
on our UAV as follows:

Fi = (−1.4736u3
pwm + 11.0691u2

pwm − 16.7074upwm + 7.3007)/100 (25)

τi = (−0.0905u3
pwm + 0.4771u2

pwm − 0.679upwm + 0.3045)/100 (26)

The dynamic model that we use in this chapter is the model from (6), since the experimental validations are done
in an outdoor environment where wind perturbations affect the UAV.490

Finally, in order to test our architecture in real outdoor experiments, we need to choose all the values of the
thresholds used in the Residuals Generator block and the minimum and maximum threshold’s parameters used in
the voter module. The values that we used were determined after conducting several real outdoor experiments in
normal conditions and are chosen empirically in order to prevent the occurrence of false alarms and undetected
errors. They are given in Tables 2 and 3. For example, in case of hardware fault in one of the GPS modules, the495

residuals between the measured distances d1 and d2 measured respectively by GPS1 and GPS2 will exceed the fixed
threshold Th23 which can be found equal to 2 m from Table 3.

Note that these parameters and thresholds are determined based on the type and accuracy of the sensors and
the precision of the Kalman filter algorithm and the analytical model used to build up the architecture. Based on
these information, they can be tuned empirically during experiments in order to improve the consistency between the500

different estimations. One way to proceed is to begin by setting up initial values based on simulations results, and
conducting several flight tests, and testing different values in data replay in order to better evaluate these parameters
and to avoid false alarms as much as possible.

6.2. Additive fault on GPS1

In this experiment, an additive fault of 5m in the x and y direction has been injected in the first GPS (GPS1).505

The UAV is required to follow a U-path trajectory starting from the initial point (x = 0, y = 0) to the destination
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Sensor Measured state Threshold Unit
GPS d 2 m

Magnetometer ψ 6 deg
Lidar z 1 m
IMU ẍ, ÿ 0.01 m/s2

Gyro φ̇, θ̇ 0.1 deg/s

Table 3: Thresholds values used in the Residual Generator block

-2 0 2 4 6 8 10 12

x(m)

-6

-4

-2

0

2

4

6

8

y
(m

)

RTK

KF1

KF2

model

voter

Start

Fault Injection

Figure 16: GPS additive fault: positions estimated by the two Kalman fi
lters, the dynamic model, the voter, and the ground truth given by a GPS RTK

point (x = 4, y = −3) as shown in the Figure 16. This is the case of a trajectory tracking case, where the desired
positions and velocities are time-dependent and the system is restricted to follow the U-path reference. Note that
the GPS RTK is chosen as ground truth because of its precision (1cm) when receiving enough satellites data (four
or more in our case).510

The injected fault simulates an external fault such as a jump in the position provided by the GPS due to bounces
from one of the satellite signals. This fault is generally not permanent, but it can occur for a significant period
of time. Note that using the same type of GPS would usually not tolerate this fault, as it has a common cause.
However, using diversified GPSs (such as Galileo, Glonass, or USA’s GPS) would allow to tolerate faults due to a
lack of satellites visibility in the constellation or signal rebounds. However some common cause faults, such as signal515

obtrusions due to a tunnel or a dense forest, would still be impossible to tolerate.
Between the instants tinj = 7s and tinjend

= 15.8s, we added a 5 meter jump on the xGPS1 and yGPS1 components,
as described in (27).

xGPS1(tk) = xGPS1(tinj) + 5
yGPS1(tk) = yGPS1(tinj) + 5
for tk such as tinjend

≥ tk ≥ tinj

(27)

Figure 16 shows the UAV positions given by the different localization systems during the first experiments: the
ground truth as the output of the GPS RTK, the output of the branches B1 and B2 as the Kalman filter blocks KF1
and KF2, the output of the branch B3 given by the dynamic model, and the output of the data fusion component as
the result of the voter on the three branches. The additive fault injected to the system causes the position estimated520

by KF1 to deviates significantly from all the other systems.
Figure 17 presents the agreement indicators of our voter during the experiment. We can see that after the fault

injection at t = 7s the agreement indicator between the two Kalman filter blocks sdKF1−dKF2 starts to fall down
from sdKF1−dKF2 = 1 and reaches sdKF1−dKF2 = 0 after 0.5s at tdet = 7.5s. A similar behavior can be seen for the
agreement indicator between KF1 and the dynamic model. The agreement indicator between KF2 and the model525
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Figure 17: GPS additive fault: the agreement indicators of the Euclidean distance of the first and second Kalman filters and the model
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Figure 19: GPS additive fault: The residues of the x, y, d components between the first GPS and the second GPS
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Figure 20: GPS additive fault: accelerations estimates by the two Accelerometers and their corresponding residues

stays much higher during this period, although it drops from 1 to 0.5. This is due to the value of KF1 affecting the
output of the voter until the error detection, and thus affecting the dynamic model that uses the voter’s output to
calculate its next position.

Following Algorithm 1, when the agreement indicator sdKF1−dKF2 equals 0, we check which one is the more
consistent to the dynamic model. Figure 17 clearly shows from the agreement indicators pertaining to the dynamic530

model that the erroneous one is KF1. Thus, the erroneous branch is B1 which contains KF1.
After identifying the erroneous branch, the next step is to identify if the error is due to a hardware or software

fault. Thus we compare the outputs of the functionaly equivalent sensors. The Figure 18 shows the measured
positions by GPS1 and GPS2, and for reference by the ground truth. As shown in this figure, the positions of GPS1
and GPS2 are highly different after the fault injection. Indeed, in Figure 19, we can see the residuals of the measured535

x, y, d components by the two GPS. In particular, the distance d between the two GPS exceeds the ThGPS = 2m
threshold at tdet = 7.5s, thus a hardware fault is reported at tdet = 7.5s. Note that after the fault injection on GPS1,
some outliers appear in the measurements of this sensor. In our opinion, we think that this is due to some corrections
which are done automatically in the Ardupilot since the autopilot is reporting unusual output of the sensor which is
not supposed to be unhealthy.540

Since the detected error in our architecture involves the positions estimates, the outputs of the Acc1 and Acc2
are also compared since they are also used to predict the positions estimates in the Kalman Filter and could be
another source of the error. The Figure 20 shows the measured accelerations ẍ and ÿ measured by Acc1 and Acc2
and their corresponding residues. It is clear that the values of the residues do not exceed the value of the predefined
threshold ThAcc = 0.01m/s2, thus the two Acc are reported as healthy sensors. Since we have already identified the545

first branch as the erroneous branch in the previous step, we can conclude that the erroneous sensor is the first GPS
(GPS1) in KF1.

Once the GPS1 is detected as the faulty sensor, the first branch is immediately removed from the system and a
new localization system KF3 is defined, where the position estimated by KF3 is equal to the average of the position
estimated by KF2 and the Dynamic model. This recovery corresponds to the solution 3 in section 5.4.1. This explains550

why the agreement indicators sdKF1−dKF2 and sdKF1−dmodel increases quickly after the identification of the fault in
Figure 17, since KF1 has been recovered. Note that as we do not directly use the redundant sensors of SB1 and SB3,
we can no longer directly tolerate another fault. However, we can still compare the outputs of the IMU, the lidars
and the magnometers to detect hardware faults. We could also have used the other recovery mechanism proposed
in 5.4.1, by using GPS2 instead of GPS1 in KF1.555
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filters, the dynamic model and the voter

0 5 10 15 20 25 30 35 40 45 50 55

t(s)

0

0.5

1
 s

zKF1-zKF2

0 5 10 15 20 25 30 35 40 45 50 55

t(s)

0

0.5

1
 s

zKF1-zmodel

0 5 10 15 20 25 30 35 40 45 50 55

t(s)

0

0.5

1
 s

zKF2-zmodel

t
det

 = 19.5s
t
inj

 = 17.8s

(b) Lidar additive fault: The agreement indicators of the altitude of the
first and second Kalman filters and the model

Figure 21

0 10 20 30 40 50 60

t(s)

0

1

2

3

4

z(
m

)

 zr1

zr2

0 10 20 30 40 50 60

t(s)

-1

-0.5

0

z(
m

)

 Res-zr1-zr2

TH
rg

 =0.5m

t
inj

 = 17.8s t
det

 = 19.5s

Figure 22: Lidar additive fault: The measured altitude and the residues of the Lidar’s output used in KF1 and KF2

6.3. Hardware additive fault on Lidar1

In this experiment, the quadrotor is required to perform a hovering flight at a 3 meters altitude. In this experiment,
the injected fault consists in adding a value of -1 meter to the Lidar1 output used in KF1. Note that because of time
constraints, as previously stated in section 6.1, we only have one lidar on our UAV, which outputs are sent to both
SB2 and SB4. To simulate a fault on a single Lidar, we thus only inject the fault on the data received by SB2. There560

is no need for an additional ground truth in this experiment since the precision of the Lidar Lite v3 equipped to the
drone is below 15 cm, thus we consider it as a ground truth for the altitude estimation. The estimated altitudes by
the first and second Kalman filters (KF1 and KF2), the dynamic model and the voter are also depicted in Figure
21a. As can be seen, the additive fault injected to the system causes the estimated altitude by KF1 to deviate from
all the other systems.565

In Figure 21b, it can be noticed that after the fault injection at tinj = 17.8s the agreement indicator of the
altitude between the two Kalman filter blocks szKF1−zKF2 starts to fall down from szKF1−zKF2 = 1 and reaches
szKF1−zKF2 = 0 after 1.7s at tdet = 19.5s. As in the previous experiment, the agreement indicator between KF1
and the model behaves in the same way. However, here the agreement indicator between KF2 and the model stays
at the maximum value of 1, probably because of a more conservative threshold value than for the position, thanks570

to the better precision of the lidar compared to the GPS.
As described in algorithm 1, an error has been detected due to the value of szKF1−zKF2. Figure 21b shows that

the two agreement indicator on the model points to an error in the branch B1.
After identifying the erroneous branch, the next step is to diagnose if the error is due to a hardware or a software

fault. Thus we compare the outputs of the Lidar used in KF1 and KF2 which are considered independant. The575

Figure 22 shows the measured altitudes of the Lidar zr1 and zr2 in KF1 and KF2 respectively, and their residues.
We can see that the residuals of the zr1 and zr2 exceeds the Thrg = 1m threshold at tdet = 19.5s, thus a hardware
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fault is reported at tdet = 19.5s. We do not need to compare other sensors results here, as the lidar is the only sensor
determining the altitude in our data fusion. Since we have already identified that the first branch is the erroneous
branch from the previous step, we can conclude that the faulty sensor is the zr1 in KF1.580

Once zr1 is detected as the faulty sensor, the first branch is immediately removed from the system and a new
localization system KF3 is defined, where the position estimated by KF3 is equal to the average of the altitude
estimated by KF1 and the Dynamic model. This corresponds to solution 3 in section 5.4.1. This explains why the
agreement indicators szKF1−zKF2 and szKF1−zmodel increases quickly after the identification of the fault in Figure
21b, since they no longer describe the difference between the faulty branch and the other branches in the system.585

As in the previous experiment, this solution has the flaws described in 5.4.1, and could have been replaced by the
other method presented in the same section.

6.4. Software altitude fault

To evaluate the proposed architecture for tolerating software faults developed during this work, we present in
this section the simulation results of a software fault injection described in the following.590

In order to validate our architecture against a software fault in the altitude estimation, the altitude covariance
term Pz is forced to a negative value of -0.1, starting from the beginning of the flight simulation described in the
following. In this simulation, the quadrotor is required to perform a hovering flight at a 3 meters altitude. The
estimated altitudes by the first and second Kalman filters (KF1 and KF2), the dynamic model and the voter are
depicted in Figure 23a. It can be noted that KF1 still gives an acceptable behavior for more than 15 seconds even if595

the software fault is injected before the takeoff. Indeed, development software faults are always present in the system
but can still take time to be activated or cause errors. Here, the fault is immediately activated as it is in the lines
of code executed by the Kalman filter, but it takes more than 15 seconds to cause an error in the system.

This injected fault can correspond to two real faults. First a development error in the value of this term. This
can correspond to a programming error (an incorrect value due to some mistakes from the programmers) or a design600

error. Indeed, the matrices P and Q in Kalman filters have values that are not easy to determined and can thus be
designed incorrectly. Second, it can simulate the propagation of other software errors during operation. Consider
that the effect of rounding errors on the state estimation can be accounted for by calculation errors in the error
covariance matrix P during the data fusion mechanism in the Kalman filter. The longer the Kalman filter has been
running and the higher the iteration rate, the greater the distortion of the matrix becomes. The diagonal terms of605

the covariance matrix represent the estimation uncertainties relative to each state estimation and should always be
positive in order to guarantee a stable estimation during the data fusion positive. However, distortions due to other
software errors in the system could lead, the estimated covariance terms to become negative as in our injected fault,
which will cause divergence in the estimation process.

In Figure 23b, we can see that the agreement indicator of the altitude between the two Kalman filter blocks610

szKF1−zKF2 starts to fall down from szKF1−zKF2 = 1 and reaches szKF1−zKF2 = 0 after 1.7s at tdet = 19s. As in
the previous experiments, the agreement indicator between KF1 and the model behaves in the same way. However,
here the agreement indicator between KF2 and the model stays at the maximum value of 1 as for the software attitude
fault, probably because of a more conservative threshold value due to the reduced uncertainties in the simulation
environment. These results are consistent with the values of the residues between the branches presented in Figure615

23c, where only the residues of KF1 exceed the predefined threshold value of 0.5 m, thus indicating a fault in the
first branch.

As described in algorithm 1, an error has been detected due to the value of szKF1−zKF2. Figure 23b shows that
the two agreement indicator on the model points to an error in the branch B1.

After identifying the erroneous branch, the next step is to identify if the error is due to a hardware or software620

fault. Thus we compare the outputs of the functionaly equivalent sensors. The Figure 23d show the measured
altitudes by the first and the second Lidar. As shown in this figure, the altitude measurements of both Lidars show
consistency during all the flight time. Since we do not need to compare other sensor results here, as the Lidar is
the only sensor used to measure the altitude, this leads to the conclusion that no hardware fault is present in the
system. Thus, a software fault is confirmed in KF1.625

Once KF1 is detected as the faulty block, it is immediately removed from the system and a new localization
system KF3 is defined, where the position estimated by KF3 is equal to the average of the altitude estimated by
KF1 and the dynamic model. This is another alternative solution for those presented in section 5.4.2. This explains
why the agreement indicators szKF1−zKF2 and szKF1−zmodel increases quickly after the identification of the fault
in Figure 23b, since they no longer describe the difference between the faulty branch and the other branches in the630

system. As in the previous experiment, this solution has the flaws described in 5.4.2, and could have been replaced
by the other method presented in the same section.
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6.5. Software position fault

In order to validate our architecture against a software fault in the position estimation, the position covariances
terms Px and Py representing Px from equation 18 are forced to a small negative value of -0.01 starting from the635

beginning of the flight simulation described in the following. As previously said, this fault can be representative of
several software development faults, particularly in the values of matrices P and Q. In this simulation, the UAV
is required to follow a U-path trajectory starting from the initial point (x = 0, y = 0) to the destination point
(x = 26, y = 5). The estimated positions by the first and second Kalman filters (KF1 and KF2), the dynamic model
and the voter are depicted in Figure 24a. It can be noted that KF1 still gives an acceptable behavior for more than640

18 seconds even if the software fault is injected before the takeoff. As previously said, it is typical of software faults
to take time to causes errors in a system, as otherwise they would be easily eliminated during validation.

In Figure 24c, we can see that the agreement indicator of the Euclidean distance between the two Kalman filter
blocks sdKF1−dKF2 starts to fall down from sdKF1−dKF2 = 1 and reaches sdKF1−dKF2 = 0 after 18s at tdet = 32.5s.
As in the previous experiments, the agreement indicator between KF1 and the model behaves in the same way.645

As described in algorithm 1, an error has been detected due to the value of sdKF1−dKF2. Figure 24c shows that
the two agreement indicator on the model points to an error in the branch B1.

After identifying the erroneous branch, the next step is to identify if the error is due to a hardware or software
fault. Thus we compare the outputs of the functionaly equivalent sensors. The Figures 24b and 24d shows that
the diversified sensors couples contributing in the estimation of the position (Acc1/Acc2 for the prediction step and650

GPS1/GPS2 for the correction step in the Data fusion process) show consistency during all the flight time. Thus, a
software fault is confirmed in KF1.

Once KF1 is detected as the faulty block, it is immediately removed from the system and a new localization
system KF3 is defined, where the position estimated by KF3 is equal to the average of the altitude estimated by
KF1 and the dynamic model. This explains why the agreement indicators sdKF1−dKF2 and sdKF1−dmodel increases655

quickly after the identification of the fault in Figure 24c, since they no longer describe the difference between the
faulty branch and the other branches in the system.
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7. Conclusion

In this paper, we have presented our proposed data fusion architecture for tolerating sensors and software faults
which is based on duplication and comparison and was initially proposed in [1]. Four main differences exist between660

our proposed architecture and the one proposed in [1]: (1) The first difference is that we propose to add an analytical
redundancy using the dynamic model (DM). (2) The second difference is that we use a weighted average voter instead
of a simple thresholding, which increases the accuracy of the outputs and the error detection process. (3) The third
difference is that we have multiple solutions which can be applied to recover a faulty system, increasing the flexibility
of our architecture. (4) The fourth difference is that our architecture is experimentally validated in real outdoor665

environment using a quadrotor. The experiments show that our architecture is able to deal with hardware faults
during real flights, and software faults during simulations.

For perspectives, redundancies in the proposed architecture could also be exploited to timely reinitialize state
variables values in the dynamic model block. As the dynamic model is a simplification of reality, it will probably
diverge slowly from it as time passes. Resetting its state variables values using sensors data when no faults are present670

in the system (typically when the diversified KF blocks give very similar outputs) would correct this problem. It
would also be interesting to test the effectiveness of the architecture regarding successive and simultaneous hardware,
or software or mixed hardware and software faults in the system. The proposed solutions for the recovery could then
be analyzed further more in terms of robustness and sensitivity to different conditions of faulty situations. Also,
this architecture could be tested on other applications such as autonomous cars or rovers to further guarantee its675

applicability.
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intelligent, Ph.D. thesis, University of technology of Compiegne (2014).

[17] L. Jiang, Sensor fault detection and isolation using system dynamics identification techniques, Ph.D. thesis, The
University of Michigan (2011).

[18] S. Wellington, J. Atkinson, R. Sion, Sensor validation and fusion using the nadaraya-watson statistical estimator,710

in: Proceedings of the Fifth International Conference on Information Fusion., Vol. 1, 2002, pp. 321–326.

[19] R. Doraiswami, L. Cheded, A unified approach to detection and isolation of parametric faults using a kalman
filter residual-based approach, Journal of the Franklin Institute 350 (5) (2013) 938–965.

[20] S. Huang, K. K. Tan, T. H. Lee, Fault diagnosis and fault-tolerant control in linear drives using the kalman
filter, IEEE Transactions on Industrial Electronics 59 (11) (2012) 4285–4292.715

[21] R. Da, C.-F. Lin, A new failure detection approach and its application to gps autonomous integrity monitoring,
IEEE transactions on Aerospace and Electronic Systems 31 (1) (1995) 499–506.

[22] Q. Kai, Y. Hui, Y. X. Peng, R. Yan, An integrated fault detection scheme for the federated filter, in: Fourth
International Conference on Digital Manufacturing & Automation, 2013, pp. 161–164.

[23] C. Hajiyev, H. E. Soken, Robust adaptive kalman filter for estimation of uav dynamics in the presence of720

sensor/actuator faults, Aerospace Science and Technology 28 (1) (2013) 376–383.

[24] E. P. Herrera, H. Kaufmann, J. Secue, R. Quirós, G. Fabregat, Improving data fusion in personal positioning
systems for outdoor environments, Information Fusion 14 (1) (2013) 45–56.

[25] H. Jamouli, D. Sauter, A generalized likelihood ratio test for a fault-tolerant control system, in: International
Conference on Advances in Computational Tools for Engineering Applications, IEEE, 2009, pp. 474–479.725

28



[26] R. E. Walpole, R. H. Myers, S. L. Myers, K. Ye, Probability and statistics for engineers and scientists, Vol. 5,
Macmillan New York, 1993.

[27] I. Hwang, S. Kim, Y. Kim, C. E. Seah, A survey of fault detection, isolation, and reconfiguration methods 18
(2010) 636–653.

[28] S. Matzka, R. Altendorfer, A comparison of track-to-track fusion algorithms for automotive sensor fusion, in:730

Multisensor Fusion and Integration for Intelligent Systems, Springer, 2009, pp. 69–81.

[29] D. Del Gobbo, M. Napolitano, P. Famouri, M. Innocenti, Experimental application of extended kalman filtering
for sensor validation, IEEE Transactions on control systems technology 9 (2) (2001) 376–380.

[30] M. Sepasi, F. Sassani, On-line fault diagnosis of hydraulic systems using unscented kalman filter, International
Journal of Control, Automation and Systems 8 (1) (2010) 149–156.735

[31] J. Al Hage, M. E. El Najjar, D. Pomorski, Multi-sensor fusion approach with fault detection and exclusion
based on the kullback–leibler divergence: Application on collaborative multi-robot system, Information Fusion
37 (2017) 61–76.

[32] T. Kerr, Decentralized filtering and redundancy management for multisensor navigation, IEEE Transactions on
Aerospace and Electronic Systems (1) (1987) 83–119.740

[33] S. Dajani-Brown, D. Cofer, G. Hartmann, S. Pratt, Formal modeling and analysis of an avionics triplex sensor
voter, in: International SPIN Workshop on Model Checking of Software, Springer, 2003, pp. 34–48.

[34] R. Wang, Z. Xiong, J. Liu, J. Xu, L. Shi, Chi-square and sprt combined fault detection for multisensor navigation,
IEEE Transactions on Aerospace and Electronic Systems 52 (3) (2016) 1352–1365.

[35] D. Berdjag, J. Cieslak, A. Zolghadri, Fault detection and isolation of aircraft air data/inertial system, Progress745

in Flight Dynamics, Guidance, Navigation, Control, Fault Detection, and Avionics 6 (2013) 317–332.

[36] M. Kumar, D. P. Garg, R. A. Zachery, A method for judicious fusion of inconsistent multiple sensor data, IEEE
Sensors Journal 7 (5) (2007) 723–733.

[37] S. Bouabdallah, Design and control of quadrotors with application to autonomous flying, Ph.D. dissertation,
Ecole Polytech Federale de Lausanne, Lausanne, Switzerland (2007).750

[38] Q. Quan, Introduction to multicopter design and control, 2017.

[39] G. Welch, G. Bishop, An introduction to the kalman filter (1995).

[40] R. Faragher, et al., Understanding the basis of the kalman filter via a simple and intuitive derivation, IEEE
Signal processing magazine 29 (5) (2012) 128–132.

[41] L. Ljung, Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems, IEEE755

Transactions on Automatic Control 24 (1) (1979) 36–50.

[42] G. Latif-Shabgahi, A novel algorithm for weighted average voting used in fault tolerant computing systems,
Microprocessors and Microsystems 28 (7) (2004) 357–361.

[43] H. Hamadi, B. Lussier, I. Fantoni, C. Francis, H. Shraim, Observer-based super twisting controller robust to
wind perturbation for multirotor uav (2019) 397–405.760

29


