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ABSTRACT: Semiconductor-based gas sensors have been commercially available since the 

early seventies. Over the past decade, the development of nanotechnology and new carbon-

nanomaterials has further increased both fundamental research and commercial innovations of 

such materials and devices. Each sensing element is expected to exhibit a signal for a given gas 

concentration that is described by three parameters: 1) the response or sensitivity, 2) the response 

time, and 3) the recovery time. A typical calibration or characterization procedure involves 

exposing several samples or devices simultaneously to different concentrations of a gas of 

interest. The response is then dynamically measured over time, and these three parameters can be 

calculated for each exposure cycle. Within this context, we present an open-source graphical user 

interface (GUI) that aims to facilitate the analysis procedure of dynamic response-recovery 

curves of resistive semiconductor-based gas sensors. The code was written in python, and it uses 

the open-source libraries matplotlib, pandas, NumPy, and SciPy for data visualization, handling, 

and fitting. PyQt is the library used for the graphical elements because it offers excellent 

flexibility and compatibility with different operating systems. Our software can analyze eight 

samples simultaneously that share the same time data, shortening the analysis process to a couple 

of minutes. Its source code is available at Github. This article describes its main features, the 

workflow, and we present three examples for data analysis whose data tables are available for 

user testing. 
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1. INTRODUCTION 

 

Gas sensors are devices that generate an electrical signal upon interaction with a gaseous species 

present in its surroundings. According to Liu et al. [1], there are two different classes of gas 

sensors. The first class is based on semiconductor materials with their electrical resistivity 

dependent on a surrounding gaseous species’ concentration. Such devices are frequently 

addressed as chemiresistors, as the output signal is an electrical resistance variation upon the 

interaction with chemical species. The second class is based on the variation of other physical 

properties such as optical, acoustic, or even the material’s heat capacity upon interaction with the 

target gas. According to the Market Size Report of 2020 from Grand View Research, the gas 

sensor market is projected to grow from US$ 1 billion in 2018 to US$ 4.1 billion by 2027 at a 

rate of 8.3% per year, which demonstrates the high demand for new technologies in this market 

[2]. 

Semiconductor metal oxides (SMOx) are a class of materials that are commonly used as 

chemiresistors [3] because they exhibit bandgaps in a range that yields considerable electrical 

resistance changes upon surface redox reactions with common reactive gases [4]. This effect has 

been known for decades. For instance, the first patent registered for a carbon monoxide detector 

was registered in 1971 by Naoyoshi Taguchi, and it was based on the SnO2 [5], an important 

SMOx typically used as a gas sensing layer in modern gas sensing devices. Other SMOx with 

remarkable gas sensing properties are ZnO [6], In2O3 [7], CuO [8], and WO3 [9]. It has been 

empirically determined that the resistance (R) of a SMOx-based chemiresistor depends on the 

concentration (C) of a specific gaseous species according to a power-law described as R = aCb, 

in which “a” and “b” are constants. The power-law exponent b depends on the gas and not on the 

sensing material. This universal behavior has been explained by Yamazoe and Shimanoe [10]. In 

their theory, the sensing mechanism is a consequence of charge transfer between the gas and the 

SMOx. 

The pioneering work of R. Morrison in 1982 [11] first elaborated that the changes in 

electrical resistance of semiconductor materials during exposure to gaseous species were a 

consequence of redox reactions between the semiconductor’s surface and the reactive gases. In 

his work, the charge on the semiconductor’s surface Vs from ionic adsorbed gaseous species is 

the parameter that most affects the electrical current flowing between the semiconductor grains. 
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This parameter can be used to derive the resistance Rg of the semiconductor when exposed to a 

given gas as:  

 

�� =  ��exp (��
���� )     (1) 

 

Where R0 is the electrical resistance measured before the gas exposure, kB is the 

Boltzmann constant, and T is the temperature [12, 13]. As a consequence of this charge transfer 

process, the gas sensing analysis of chemiresistors will always address a parameter often defined 

as “response”, which is the output resistance variation given by the ratio Rg/R0, or by ΔR/R0 

(where ΔR = |Rg-R0|) [14-19] or simply as ∆R. 

During the exposure of SMOx to the target gas, a transient period occurs corresponding to 

the evolution of resistance from R0 to Rg. This period corresponds to the adsorption process of 

ions at surface if the gas is oxidizing (for example, O2(gas) + e-
(surface) = 2O-

(surface)) or to the 

consumption of already adsorbed O- ions for reducing gases (CO(gas) + O-
(surface) = CO2(gas) + e-). 

The kinetics of charge q adsorption is described by the so-called Elovich equation [20, 21]: 

 

��

��
=  �����      (2) 

 

Where q is the amount of charge(s) of the absorbed species, a and b are constants. By 

considering that the electrical resistance of a semiconductor is proportional to q due to the 

Morrison relation [11], it is possible to demonstrate that the Rg depends on time according to the 

following equation [19]: 

 

�� (�) =  � +  Δ� exp (−� �� )    (3) 

 

Where the adsorption/desorption time constant τ. By considering these parameters, the 

typical dynamic-response recovery curve of a chemiresistor upon a given gas exposure can be 

calculated. An example of such a response-recovery curve is shown in Figure 1 based on an n-

type semiconductor material upon adsorption of oxidizing species. 
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Figure 1. Typical exponential behavior of dynamic response-recovery curve for a gas sensor 
based on a semiconductor. Three parameters can be extracted from this curve, the sensor 
response (ΔR/R0), the response-time, and the recovery-time. Arrows indicate the beginning and 
end of exposure and the end of the recovery. 

 

Clifford and Tuma further investigated this process in which a semiconductor interacts 

with a target gas and creates a measurable resistance signal  [22, 23]. Their seminal work on this 

subject demonstrated that this change in electrical resistivity depends on the concentration of 

oxygen and other reactive species. Furthermore, they proposed a general equation in which the 

power-law nature of the relation between the electrical resistance change and gas concentration 

was also valid for gases mixtures at equilibrium [22]. Regarding the transient regime between the 

two steady states, their model complemented the Elovich relation by proposing that the surface 

reaction between the semiconductor and the gas depends on the diffusion of oxygen vacancies 

and the potential intergranular barrier from the adsorbed species. This approach successfully 
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explained the strong dependence of the SMOx’s response to the operating temperature 

temperature [23]. 

 

Two parameters known as response-time and recovery-time are usually used to estimate 

the charge transfer rate between the gas and the semiconductor more frequently than the time 

constant from equation 3. These parameters are defined as the time necessary to reach 90% of 

ΔR during the adsorption/desorption regimes, and they can be depicted as an indirect measure of 

the surface redox reaction kinetics. Another critical parameter often discussed in the context of 

gas sensing performance is known as sensitivity, which is defined as the ratio between response 

and concentration [24]. This could be important to compare data from different studies or 

devices, as responses are frequently measured and presented differently. In other words, if two 

authors have not presented their responses in the same manner (resistance ratio, resistance 

variation, or percentage), the response data are often not comparable. 

The calibration of gas sensors based on semiconductor materials is carried out by 

continuously measuring its electrical resistance upon controlled exposure to a given gas at 

different concentration levels. Commercial semiconductor gas sensors are calibrated to several 

gases, and the calibration curves are available on the device’s datasheet. These curves are 

logarithmic plots in which the y-axis is the sensor response, and the x-axis is the gas 

concentrations. These log-log plots are helpful because the power-law nature of the interaction 

between the gas and the semiconductor [10] can be readily read. In other words, one calibration 

curve is determined after measuring the device’s electrical resistance upon several gas exposures 

in which the response, response time, and recovery time should be calculated for each dynamic 

response-recovery curve. 

Modern calibration systems in industry or academia measure several sensors’ dynamic 

response recovery curves simultaneously, leading to massive resistance-time data tables that 

should be carefully analyzed to determine each device’s calibration curves correctly. This task 

can be time-consuming and can lead to imprecisions to the correct determination of these 

parameters. In industry, this problem can lead to slow pace production, and in academia, it can 

lead to erroneous data interpretation. Recent developments on new materials for gas sensing 

technologies and the growing gas sensors market create a great demand for data analysis 

solutions. Modern gas analyzers based on multi-sensor arrays are also on the rise, and the 
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possibility to analyze the data from each sensing element simultaneously could benefit from 

smart data analysis solutions designed for such applications [25-27]. 

Nowadays, several tools are available that can be used to analyze data in gas sensing 

applications. Some are general tools for statistical analysis and machine learning that have been 

successfully applied to analyze the signal of multiple sensing arrays, such as Orange or the  

Eigenvector PLS ToolBox. Commercial gas sensors are often available with an interface that 

allows the user to monitor the concentration of a target gas, such as the GasLab data logging 

package or the SGX Sensortech Evaluation kit. Other tools are designed to analyze the data from 

sensors in general, not specifically for gas sensors as the Vernier Graphical Analysis software. 

To the best of our knowledge, there is only one analysis tool that was specifically designed for 

gas sensing applications, the DAV³E [28]. This software allows a complete toolbox to analyze 

and calibrate multiple gas sensors that operate in temperature cycling mode, generating complex 

patterns and requires a rigorous approach to its proper analysis.  

Within this context, we report an open-source, user-friendly graphical interface (GUI) that 

provides a simple path to calculate the response, response time, and recovery time of 8 sensors 

measured simultaneously. This GUI was written in python, and it uses the open-source libraries 

matplotlib, pandas, Numpy, and Scipy for data handling, visualization, calculation, and fitting. 

The graphical elements were imported from the Quick-time library for python, known as PyQT5. 

This report also shows two examples of use by calculating two data tables’ calibration curves, 

one from a single sensor measurement and another table in which four sensors were measured 

simultaneously. 

 

2. DISTRIBUTION 

 

This software is open-source, and the source code can be accessed on GitHub on the following 

repository (https://github.com/delimabs/Gas-Sensor-Data-Analysis-System). A windows installer 

is also available, not requiring any previous installation of python or the libraries. Bug reports 

and suggestions can be given at https://github.com/delimabs/Gas-Sensor-Data-Analysis-

System/issues. The main layout of the software is shown in Figure 2. Figure S2 shows all dialog 

boxes that are used in the analysis process. 
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Figure 2. Graphical User Interface showing the main menu and plot area. 

 
 
 
 
3. ALGORITHM AND METHODOLOGY 

 

As soon as the software is running, it creates six pandas Data Frames (DFs) addressed as rawDF, 

previewDF, visualizationDF, normalizationDF, propertiesDF, fitDF within the code. All of 

these data frames are initially empty and will be populated according to the user’s workflow. 
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Figure S1 illustrates the main tasks possible within the workflow of this software. After the 

software is started, the user can access the open file dialog box by clicking on the “Open CSV 

file” button. In this box, Figure S2(a), the user should select the appropriate column separator 

character before opening the CSV file. Here, the system will check if the dataset has at least two 

columns, the first one is assumed as the time data, and all others will be assumed as the sensor 

signal from each sample. The algorithm will count the number of columns in the dataset, and if 

the number is one, it will warn the user with an error message pointing out that the column 

separator is not correct. The user can also fill the input boxes with the time and channel units and 

their respective converting factors. This feature was designed for convenience since experimental 

datasets often present time in seconds or minutes. The sensor signal is frequently measured as 

electrical resistance, typically varying from kΩ to GΩ. In addition, some measurement setups 

can measure electrical current or voltage drop as the sensor signal. The preview button allows the 

user to check the dataset before plotting it. After choosing these parameters and verifying if 

everything is correct, the system is suitable to plot data from up to eight samples (maximum 

columns allowed is 8, and another one from the time). The data will be inserted in the 

previewDF and plotted separately in the plot area by clicking the accept button. 

Once the data to be analyzed is shown in the plot area, the user can set specific 

visualization parameters such as the time interval and channels of interest by clicking on the 

Visualization button in the dock menu initially set on the left. This button will open the dialog 

box shown in Figure S2(b). All further analysis will depend on the parameters chosen in this 

dialog. Here, the user can select the time interval by setting the data frame's start and endpoints. 

During the evaluation of real samples/devices’ gas sensing properties, it is common to let the 

system reach thermal equilibrium before exposing the samples to the gases, and this process can 

take several hours. Thus, this function was designed to allow the user to determine the region of 

interest for analysis. This box is designed to handle possible invalid parameters, such as writing 

characters when choosing the time interval or leaving all channel checkboxes unchecked. The 

error-handling routine in these situations consists of popping up a window to warn the invalid 

parameters chosen and plotting the data on the reviewDF, respectively. By setting these 

parameters and clicking the plot button, the system fills the visualizationDF and plots it. 

After the visualization process is complete, the user can choose to compare the dataset by 

normalizing. For example, if the data set consists of the electrical resistance data from four 
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different samples, it is expected that each sample will exhibit its own electrical resistance range. 

Therefore, to compare, the user can choose a specific time in which the system will divide each 

column by its own value at that specific time. This feature allows fast comparison between 

different samples because all normalized data will then be plotted together. The normalization 

option is available by clicking on the normalization button in the dock menu that opens the 

normalization dialog box, shown in Figure S2(c). 

After setting the visualization parameters, it is also possible to calculate the response, 

response-time, and recovery-time for each exposure-recovery cycle from the analyzed dataset. 

To perform this calculation, the user should click on the dock widget’s “Calc. Resp.” button to 

access the response dialog box, shown in Figure S2(d). Each sample dataset comprises multiple 

exposure cycles in a typical sensor calibration routine, similar to the one pointed out in Figure 1. 

Each cycle yields one response value, one response-time, and one recovery-time. Figure 2 

presents the software interface, and it shows a dataset of four samples composed of four different 

exposure cycles. If the user manually calculates the response, response-time, and recovery-time 

for each sample cycle, that would result in 48 operations. The response dialog box will 

automatically perform these calculations after entering the concentration value, exposure time, 

end of exposure time, and end of recovery time. These values are subjective, depending on the 

experimental setup and configuration, but a good estimative is pointed out by arrows in Figure 

1. To calculate the response, response time, and recovery time, the user has to click on the 

calculate button after filling the input box with the time of start and end of exposure and the time 

of the end of recovery. 

The calculation of these three parameters is the core of the algorithm of this software. By 

entering the start of exposure time, end of exposure time, and end of recovery time, the system 

will first find the closest time value in the timetable for each of them, addressed here as t0, tf1, 

and tf2, respectively. For each sensor’s data table (one column in the DF), the system will find its 

correspondent values to t0, tf1, and tf2 and assign them to the correspondent signal variables S0, 

Sf1, and Sf2. Now, the system will calculate two variations and the response as ΔS1 and ΔS2, 

defined as: 

 

∆!" =  !#" − !�     (3) 
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∆!$ =  !#$ − !#"     (4) 

 

%�&'()&� =  
"��*∆+,

+-
     (5) 

 

Once these values are calculated, the system will find in the sensor column its value 

corresponding to 90% variation of value ΔS1 and ΔS2, as the result of the following operations: 

 

!#"�.�% = !� + 0.9∆!"    (6) 

 

!#$�.�% = !#" − 0.9∆!$    (7) 

 

Then, the corresponding time values will be used to calculate the response and recovery times as: 

 

%�&' − �34� =  �+#" − �+�    (8) 

 

%�5 − �34� =  �+#$ − �6+"    (9) 

 

A preview of response, response time, and recovery time calculated for the first channel 

will be shown in the dialog box. If the values are correct, the user can click the append button to 

append the values to a table shown in the text area to the right. This data will be used to fill the 

propertiesDF. This data frame is then displayed in the text box on the right side of the dialog 

box. The button “clear last” will erase the last data point in case of any errors, and the button plot 

will generate three different plots, one for the response, one for the response time, and one for 

recovery time. 

After setting the correct values for each exposure cycle, the user can then fit the response 

data to a power-law function. This operation is carried out using the function curve_fit from the 

scipy.optmize, and it considers the following equation: 

 

R = a*C b 
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Where R is the sensor’s response (equation 5), a and b are the coefficients, and C is the 

concentration value. Finally, after the analysis is complete for all exposures, the user can then 

export the data from the visualizationDF, normalizationDF, propertiesDF, the fit information by 

clicking the export button, entering the desired file name, and selecting the data available to 

export. Another minor feature available is related to the settings menu accessible in the main 

menu bar. In this dialog box, the user can choose the response form (ΔS/S0, Sg/Sair, or simply 

ΔS), the number of points generated by the fitting procedure, different plotting styles (from 

matplotlib.style), and different color pallets for visualization. Finally,  by selecting the sensitivity 

option in the settings menu, Figure S2(f), the system will perform a linear regression of the 

concentration values and the chosen response, and it will show in the legend of the fitting the 

slope of this curve as the sensitivity and the resulting R-squared value [24]. It is also available to 

show the ratio between response and concentration, which can be helpful to visualize how the 

sensitivity is changing with concentration, in a case where the R-squared value deviates from 

one, which can suggest that the response is not following a linear trend. 

 

4. RESPONSE ANALYSIS EXAMPLES 

 

In our GitHub repository, it is possible to download three ZIP files named “dataSample_1”, 

“dataSample_2”, and “dataSample_3” to test the analysis process. Each of these files contains a 

folder with the analysis results, the experimental information, and the data. For these files, the 

time data (first column) is given in seconds. All other columns represent the electrical resistance 

in ohms from different samples. By the first raw data file, the user can set the column separator 

to Tab, the number of channels to 4, time factor to 60, channel factors to 1000, time units will be 

given in minutes, and electrical resistance kΩ. These unit values could also be provided by the 

user and preview the data table. By accepting it, the data will be plotted in the plot area. To 

choose the visualization parameters for this analysis, the user can select four channels, set the 

time interval from 310 to 650 minutes, and select the time to zero check box. By clicking the plot 

button, the user should see the plot area like in Figure 3(a). To compare the data from the 

samples quickly, the user can access the normalization menu, enter 50 in the input dialog box, 

and click the normalize button. Now, the plot area should be similar to the one shown in Figure 

3(b). 
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Figure 3. Data analysis example 1. Response-recovery curve of rGO-based sensors upon NO2 
exposure between 0.5 and 5 ppm. This figure shows the output of the four main processes of the 
data analysis. (a) Visualization, (b) Normalization, (c) Response data, (d) power-law fit, (e) 
response time and (f) recovery time. 
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The user can access the response analysis menu by clicking the “calc resp” button in the 

dock menu. It is important to note that this dataset consists of four cycles of exposure to NO2 

during 10 minutes, with the concentration of each cycle of 0.5, 1, 2, and 5 ppm, respectively. 

This measurement recorded the electrical resistance over time of four different rGO-based 

sensors, which exhibited a p-type behavior towards this strong oxidizing gas. The recovery 
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period of each cycle was set to 50 minutes. For each cycle, the user can enter the correspondent 

start of exposure time, end time of exposure time, and end time of recovery. For instance, in the 

first cycle, these values are 50, 60, and 110 minutes (10 min of exposure, 50 minutes of 

recovery). For the second cycle, these values are 110, 120, and 170 min. For the third cycle, 170, 

180, and 230. For the last fourth cycle, it was 230, 240, and 290 min. After entering the exposure 

cycles information, calculating the response parameters for each cycle, and appending each of 

these values to a table, the user can then plot the response as shown in Figure 3(c). The response 

versus concentration data can be fitted to the power-law, and the system will return a plot as 

shown in Figure 3(d). The response time and recovery time versus concentration are already in 

the memory at this point and can be accessed and visualized by clicking the “Resp time” and 

“Rec time” buttons on the Show menu, Figure 3(e) and (f). All data and fit information can be 

exported to a specific location. The system will generate “.dat” files that will use the same 

column separator as the initial data file. These files are also available in our GitHub repository 

for comparison purposes in the results folder within the zip file. 

The second zip file, “dataSample_2”, consists of data set measured to evaluate the stability 

of ZnO-based sensors for O3 detection. This data set consists of measuring the response-recovery 

cycle of two sensors prepared together in a sputtering chamber, and they were kept at 200°C for 

one month. Each sensor was submitted to several sequences of O3 exposures in three different 

samples. In this data set, channels 1, 2, and 3 correspond to the data from one sensor measured 

on weeks 1, 2, and 3, respectively. Channels 4, 5, and 6, corresponds to the data of another 

sensor measured on weeks 1, 2, and 3. This dataset can also be downloaded from our GitHub 

repository. In this case, the stabilization period lasted 12 hours. Each sample was exposed to O3 

for 15 minutes and recovered for 60 minutes. 

 

 

 

 

 

Figure 4. Data analysis example 2. (a) Visualization, (b) Normalization, (c) Response data, (d) 
power-law fit. This dataset corresponds to a stability test carried out on two ZnO-based sensors 
upon controlled O3 exposure between 50 and 500 ppb during one month. Channels 1, 2, and 3 
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are the data from one sensor measured on three different weeks, while data from channels 4, 5, 
and 6 are the data from another similar sample measured at the same three weeks. 

 
 
 

In order to perform the analysis of this dataset, the user can open the “dataSample_2”, set 

column separator to tab, the number of channels 6, divide the time data by 60, and the channels 

by 1000, then the time will be given in minutes and the sensor data in kΩ. By clicking the 

visualization button, the user can set the visualization parameters to start at 670 and to end at 

2000 min. These values were chosen to get the start time of the first exposure time at 50 minutes 

(12 hours of stabilization = 720 min – 670 min). By setting these parameters and clicking the 

plot button, the user should see the plot shown in Figure 4(a). For fast comparison, the data can 

be normalized by clicking the normalization button and setting the normalization time to 50, 

which will result in the plot shown in Figure 4(b). To calculate the response, response time, and 

recovery time, the user has to enter the concentration, start of exposure time, end of exposure 

time, and end of recovery time for each cycle, click calculate and append. This data set’s first 

five exposure sequences correspond to an O3 concentration of 50 ppb, the following four 
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exposure cycles of 100 ppb, the subsequent four cycles of 250 ppb, and the last four of 500 ppb. 

The first cycle’s exposure starts at 50, ends at 65, and the recovery ends at 125 (15 minutes of 

exposure, 60 minutes of recovery). The second exposure cycle starts at 125, ends at 140, and the 

recovery ends at 200. This dataset has 17 exposure cycles, and the resulting curve of response 

versus concentration is shown in Figure 4(c). By fitting this dataset, the user should see the 

curve shown in Figure 4(d). As these samples were prepared in the same batch and exposed to 

O3 in the same conditions, it is expected that they would exhibit similar sensing behavior. 

For the third example, Figure 5, the user can open the “dataSample_3.dat”, set the time 

factor to 60, unit to min, channels’ factor to 1e6 (1x106), and channel units to MΩ. This dataset 

was obtained after measuring the dynamic resistance of a polyaniline film upon controlled 

ammonia exposures ranging from 50 to 500 ppm. In this dataset, the user set the visualization to 

start at 3 minutes and check the box “set initial time” to zero. By entering these parameters, the 

user’s plot should be similar to the one shown in Figure 5(a). Here, each exposure cycle lasted 

15 minutes, and the recovery cycle lasted 45 minutes. By filling the response parameters in the 

dialog box shown in Figure S2(d) (accessed by clicking the Calc. Resp. button), the user can 

then fit the data with a power-law function. Finally, in the settings menu, the user can check the 

sensitivity checkbox, which will also perform a linear regression between the concentration 

values and the response values when the power-law fit button is clicked. The sensitivity will then 

be the slope of this fit, and it will be shown in the legend of the figure, as shown in Figure 5(b). 

This information will also be available to export in the Fit Info data frame. 

 

 

 

 

 

 

 

 

 

Figure 5. Data analysis example 3. (a) Visualization and (b) fitting also considering a linear fit 
whose slope is considered the sensitivity in response/concentration units. 



16 
 

 
 

5. CONCLUSIONS 

 

This article presents a simple and friendly graphical user interface that can analyze the data from 

multiple SMOx-based gas sensors that share the same data table. This system can analyze the 

dynamic data from 8 samples simultaneously, and it yields a fast and straightforward path to data 

comparison, visualization, and fitting. The system extracts the response, response-time, and 

recovery-time from each dynamic response-recovery cycle. Then, each of these properties can be 

plotted. The system can perform two fits, one related to the power-law equation from the gas-

material interaction, which can yield information about the interaction mechanism between the 

gas/solid interaction, and another linear fit that can be useful to estimate the sensitivity of the 

devices. 

 

SUPPLEMENTARY MATERIAL 
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The supplementary material presents the workflow algorithm to carry out the gas sensor data 

analysis routine (Figure S1). Also, it shows the main dialog boxes for the input of the main 

parameters to carry out the analysis (Figure S2). 
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