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INTRODUCTION

Gas sensors are devices that generate an electrical signal upon interaction with a gaseous species present in its surroundings. According to Liu et al. [1], there are two different classes of gas sensors. The first class is based on semiconductor materials with their electrical resistivity dependent on a surrounding gaseous species' concentration. Such devices are frequently addressed as chemiresistors, as the output signal is an electrical resistance variation upon the interaction with chemical species. The second class is based on the variation of other physical properties such as optical, acoustic, or even the material's heat capacity upon interaction with the target gas. According to the Market Size Report of 2020 from Grand View Research, the gas sensor market is projected to grow from US$ 1 billion in 2018 to US$ 4.1 billion by 2027 at a rate of 8.3% per year, which demonstrates the high demand for new technologies in this market [START_REF]By Type, By Technology (Electrochemical, Infrared), By End-use (Environmental, Industrial), By Region, And Segment Forecasts[END_REF].

Semiconductor metal oxides (SMOx) are a class of materials that are commonly used as chemiresistors [START_REF] Dey | Semiconductor metal oxide gas sensors: A review[END_REF] because they exhibit bandgaps in a range that yields considerable electrical resistance changes upon surface redox reactions with common reactive gases [START_REF] Grossmann | Semiconducting Metal Oxides Based Gas Sensors[END_REF]. This effect has been known for decades. For instance, the first patent registered for a carbon monoxide detector was registered in 1971 by Naoyoshi Taguchi, and it was based on the SnO2 [START_REF] Taguchi | Gas detecting device (US3695848A)[END_REF], an important SMOx typically used as a gas sensing layer in modern gas sensing devices. Other SMOx with remarkable gas sensing properties are ZnO [START_REF] Zhu | Room-temperature gas sensing of ZnO-based gas sensor: A review[END_REF], In2O3 [START_REF] Xu | High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties[END_REF], CuO [START_REF] Akhtar | Gas sensing properties of semiconducting copper oxide nanospheroids[END_REF], and WO3 [START_REF] Shen | Influence of effective surface area on gas sensing properties of WO3 sputtered thin films[END_REF]. It has been empirically determined that the resistance (R) of a SMOx-based chemiresistor depends on the concentration (C) of a specific gaseous species according to a power-law described as R = aC b , in which "a" and "b" are constants. The power-law exponent b depends on the gas and not on the sensing material. This universal behavior has been explained by Yamazoe and Shimanoe [START_REF] Yamazoe | Theory of power laws for semiconductor gas sensors[END_REF]. In their theory, the sensing mechanism is a consequence of charge transfer between the gas and the SMOx.

The pioneering work of R. Morrison in 1982 [11] first elaborated that the changes in electrical resistance of semiconductor materials during exposure to gaseous species were a consequence of redox reactions between the semiconductor's surface and the reactive gases. In his work, the charge on the semiconductor's surface Vs from ionic adsorbed gaseous species is the parameter that most affects the electrical current flowing between the semiconductor grains. This parameter can be used to derive the resistance Rg of the semiconductor when exposed to a given gas as:

= exp ( ) (1) 
Where R0 is the electrical resistance measured before the gas exposure, kB is the Boltzmann constant, and T is the temperature [START_REF] Hua | A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors I: Schottky barrier control[END_REF][START_REF] Hua | A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors II: Size and shape effects[END_REF]. As a consequence of this charge transfer process, the gas sensing analysis of chemiresistors will always address a parameter often defined as "response", which is the output resistance variation given by the ratio Rg/R0, or by ΔR/R0

(where ΔR = |Rg-R0|) [START_REF] Zhou | High sensitive and lowconcentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks[END_REF][START_REF] Li | Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity[END_REF][START_REF] Kumar | UV-Activated MoS2 Based Fast and Reversible NO2 Sensor at Room Temperature[END_REF][START_REF] Park | Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance[END_REF][START_REF] Chen | Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds[END_REF][START_REF] Wu | Analysis of the Sensing Properties of a Highly Stable and Reproducible Ozone Gas Sensor Based on Amorphous In-Ga-Zn-O Thin Film[END_REF] or simply as ∆R.

During the exposure of SMOx to the target gas, a transient period occurs corresponding to the evolution of resistance from R0 to Rg. This period corresponds to the adsorption process of ions at surface if the gas is oxidizing (for example, O2(gas) + e -(surface) = 2O -(surface)) or to the consumption of already adsorbed O -ions for reducing gases (CO(gas) + O -(surface) = CO2(gas) + e -).

The kinetics of charge q adsorption is described by the so-called Elovich equation [START_REF] Wu | Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems[END_REF][START_REF] Mclintock | The Elovich Equation in Chemisorption Kinetics[END_REF]:
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Where q is the amount of charge(s) of the absorbed species, a and b are constants. By considering that the electrical resistance of a semiconductor is proportional to q due to the Morrison relation [START_REF] Morrison | Semiconductor Gas sensors[END_REF], it is possible to demonstrate that the Rg depends on time according to the following equation [START_REF] Wu | Analysis of the Sensing Properties of a Highly Stable and Reproducible Ozone Gas Sensor Based on Amorphous In-Ga-Zn-O Thin Film[END_REF]:

( ) = + Δ exp ( -) (3) 
Where the adsorption/desorption time constant τ. By considering these parameters, the typical dynamic-response recovery curve of a chemiresistor upon a given gas exposure can be calculated. An example of such a response-recovery curve is shown in Figure 1 based on an ntype semiconductor material upon adsorption of oxidizing species. Clifford and Tuma further investigated this process in which a semiconductor interacts with a target gas and creates a measurable resistance signal [START_REF] Clifford | Characteristics of semiconductor gas sensors 1. Steady-state gas response[END_REF][START_REF] Clifford | Characteristics of semiconductor gas sensors 2. Transientresponse to temperature change[END_REF]. Their seminal work on this subject demonstrated that this change in electrical resistivity depends on the concentration of oxygen and other reactive species. Furthermore, they proposed a general equation in which the power-law nature of the relation between the electrical resistance change and gas concentration was also valid for gases mixtures at equilibrium [START_REF] Clifford | Characteristics of semiconductor gas sensors 1. Steady-state gas response[END_REF]. Regarding the transient regime between the two steady states, their model complemented the Elovich relation by proposing that the surface reaction between the semiconductor and the gas depends on the diffusion of oxygen vacancies and the potential intergranular barrier from the adsorbed species. This approach successfully explained the strong dependence of the SMOx's response to the operating temperature temperature [START_REF] Clifford | Characteristics of semiconductor gas sensors 2. Transientresponse to temperature change[END_REF].

Two parameters known as response-time and recovery-time are usually used to estimate the charge transfer rate between the gas and the semiconductor more frequently than the time constant from equation 3. These parameters are defined as the time necessary to reach 90% of ΔR during the adsorption/desorption regimes, and they can be depicted as an indirect measure of the surface redox reaction kinetics. Another critical parameter often discussed in the context of gas sensing performance is known as sensitivity, which is defined as the ratio between response and concentration [START_REF] Banica | Chemical Sensors and Biosensors. Fundamentals and Applications[END_REF]. This could be important to compare data from different studies or devices, as responses are frequently measured and presented differently. In other words, if two authors have not presented their responses in the same manner (resistance ratio, resistance variation, or percentage), the response data are often not comparable.

The calibration of gas sensors based on semiconductor materials is carried out by continuously measuring its electrical resistance upon controlled exposure to a given gas at different concentration levels. Commercial semiconductor gas sensors are calibrated to several gases, and the calibration curves are available on the device's datasheet. These curves are logarithmic plots in which the y-axis is the sensor response, and the x-axis is the gas concentrations. These log-log plots are helpful because the power-law nature of the interaction between the gas and the semiconductor [START_REF] Yamazoe | Theory of power laws for semiconductor gas sensors[END_REF] can be readily read. In other words, one calibration curve is determined after measuring the device's electrical resistance upon several gas exposures in which the response, response time, and recovery time should be calculated for each dynamic response-recovery curve.

Modern calibration systems in industry or academia measure several sensors' dynamic response recovery curves simultaneously, leading to massive resistance-time data tables that should be carefully analyzed to determine each device's calibration curves correctly. This task can be time-consuming and can lead to imprecisions to the correct determination of these parameters. In industry, this problem can lead to slow pace production, and in academia, it can lead to erroneous data interpretation. Recent developments on new materials for gas sensing technologies and the growing gas sensors market create a great demand for data analysis solutions. Modern gas analyzers based on multi-sensor arrays are also on the rise, and the possibility to analyze the data from each sensing element simultaneously could benefit from smart data analysis solutions designed for such applications [START_REF] Wang | Real-time assessment of food freshness in refrigerators based on a miniaturized electronic nose[END_REF][START_REF] Ali | Perspective-Electrochemical Sensors for Soil Quality Assessment[END_REF][START_REF] Yuan | Trace-Level, Multi-Gas Detection for Food Quality Assessment Based on Decorated Silicon Transistor Arrays[END_REF].

Nowadays, several tools are available that can be used to analyze data in gas sensing applications. Some are general tools for statistical analysis and machine learning that have been successfully applied to analyze the signal of multiple sensing arrays, such as Orange or the Eigenvector PLS ToolBox. Commercial gas sensors are often available with an interface that allows the user to monitor the concentration of a target gas, such as the GasLab data logging package or the SGX Sensortech Evaluation kit. Other tools are designed to analyze the data from sensors in general, not specifically for gas sensors as the Vernier Graphical Analysis software.

To the best of our knowledge, there is only one analysis tool that was specifically designed for gas sensing applications, the DAV³E [START_REF] Bastuck | DAV(3)E -a MATLAB toolbox for multivariate sensor data evaluation[END_REF]. This software allows a complete toolbox to analyze and calibrate multiple gas sensors that operate in temperature cycling mode, generating complex patterns and requires a rigorous approach to its proper analysis.

Within this context, we report an open-source, user-friendly graphical interface (GUI) that provides a simple path to calculate the response, response time, and recovery time of 8 sensors measured simultaneously. This GUI was written in python, and it uses the open-source libraries matplotlib, pandas, Numpy, and Scipy for data handling, visualization, calculation, and fitting.

The graphical elements were imported from the Quick-time library for python, known as PyQT5.

This report also shows two examples of use by calculating two data tables' calibration curves, one from a single sensor measurement and another table in which four sensors were measured simultaneously.

DISTRIBUTION

This software is open-source, and the source code can be accessed on GitHub on the following repository (https://github.com/delimabs/Gas-Sensor-Data-Analysis-System). A windows installer is also available, not requiring any previous installation of python or the libraries. Bug reports and suggestions can be given at https://github.com/delimabs/Gas-Sensor-Data-Analysis-System/issues. The main layout of the software is shown in Figure 2. Figure S2 shows all dialog boxes that are used in the analysis process. 

ALGORITHM AND METHODOLOGY

As soon as the software is running, it creates six pandas Data Frames (DFs) addressed as rawDF, previewDF, visualizationDF, normalizationDF, propertiesDF, fitDF within the code. All of these data frames are initially empty and will be populated according to the user's workflow. character before opening the CSV file. Here, the system will check if the dataset has at least two columns, the first one is assumed as the time data, and all others will be assumed as the sensor signal from each sample. The algorithm will count the number of columns in the dataset, and if the number is one, it will warn the user with an error message pointing out that the column separator is not correct. The user can also fill the input boxes with the time and channel units and their respective converting factors. This feature was designed for convenience since experimental datasets often present time in seconds or minutes. The sensor signal is frequently measured as electrical resistance, typically varying from kΩ to GΩ. In addition, some measurement setups can measure electrical current or voltage drop as the sensor signal. The preview button allows the user to check the dataset before plotting it. After choosing these parameters and verifying if everything is correct, the system is suitable to plot data from up to eight samples (maximum columns allowed is 8, and another one from the time). The data will be inserted in the previewDF and plotted separately in the plot area by clicking the accept button.

Once the data to be analyzed is shown in the plot area, the user can set specific visualization parameters such as the time interval and channels of interest by clicking on the Visualization button in the dock menu initially set on the left. This button will open the dialog box shown in Figure S2(b). All further analysis will depend on the parameters chosen in this dialog. Here, the user can select the time interval by setting the data frame's start and endpoints.

During the evaluation of real samples/devices' gas sensing properties, it is common to let the system reach thermal equilibrium before exposing the samples to the gases, and this process can take several hours. Thus, this function was designed to allow the user to determine the region of interest for analysis. This box is designed to handle possible invalid parameters, such as writing characters when choosing the time interval or leaving all channel checkboxes unchecked. The error-handling routine in these situations consists of popping up a window to warn the invalid parameters chosen and plotting the data on the reviewDF, respectively. By setting these parameters and clicking the plot button, the system fills the visualizationDF and plots it.

After the visualization process is complete, the user can choose to compare the dataset by normalizing. For example, if the data set consists of the electrical resistance data from four different samples, it is expected that each sample will exhibit its own electrical resistance range.

Therefore, to compare, the user can choose a specific time in which the system will divide each column by its own value at that specific time. This feature allows fast comparison between different samples because all normalized data will then be plotted together. The normalization option is available by clicking on the normalization button in the dock menu that opens the normalization dialog box, shown in Figure S2(c).

After setting the visualization parameters, it is also possible to calculate the response, response-time, and recovery-time for each exposure-recovery cycle from the analyzed dataset.

To perform this calculation, the user should click on the dock widget's "Calc. Resp." button to access the response dialog box, shown in Figure S2(d). Each sample dataset comprises multiple exposure cycles in a typical sensor calibration routine, similar to the one pointed out in Figure 1.

Each cycle yields one response value, one response-time, and one recovery-time. The calculation of these three parameters is the core of the algorithm of this software. By entering the start of exposure time, end of exposure time, and end of recovery time, the system will first find the closest time value in the timetable for each of them, addressed here as t0, tf1, and tf2, respectively. For each sensor's data table (one column in the DF), the system will find its correspondent values to t0, tf1, and tf2 and assign them to the correspondent signal variables S0, Sf1, and Sf2. Now, the system will calculate two variations and the response as ΔS1 and ΔS2, defined as:
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Once these values are calculated, the system will find in the sensor column its value corresponding to 90% variation of value ΔS1 and ΔS2, as the result of the following operations:
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Then, the corresponding time values will be used to calculate the response and recovery times as:
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A preview of response, response time, and recovery time calculated for the first channel will be shown in the dialog box. If the values are correct, the user can click the append button to append the values to a table shown in the text area to the right. This data will be used to fill the propertiesDF. This data frame is then displayed in the text box on the right side of the dialog box. The button "clear last" will erase the last data point in case of any errors, and the button plot will generate three different plots, one for the response, one for the response time, and one for recovery time.

After setting the correct values for each exposure cycle, the user can then fit the response data to a power-law function. This operation is carried out using the function curve_fit from the scipy.optmize, and it considers the following equation:

R = a*C b
Where R is the sensor's response (equation 5), a and b are the coefficients, and C is the concentration value. Finally, after the analysis is complete for all exposures, the user can then export the data from the visualizationDF, normalizationDF, propertiesDF, the fit information by clicking the export button, entering the desired file name, and selecting the data available to export. Another minor feature available is related to the settings menu accessible in the main menu bar. In this dialog box, the user can choose the response form (ΔS/S0, Sg/Sair, or simply ΔS), the number of points generated by the fitting procedure, different plotting styles (from matplotlib.style), and different color pallets for visualization. Finally, by selecting the sensitivity option in the settings menu, Figure S2(f), the system will perform a linear regression of the concentration values and the chosen response, and it will show in the legend of the fitting the slope of this curve as the sensitivity and the resulting R-squared value [START_REF] Banica | Chemical Sensors and Biosensors. Fundamentals and Applications[END_REF]. It is also available to show the ratio between response and concentration, which can be helpful to visualize how the sensitivity is changing with concentration, in a case where the R-squared value deviates from one, which can suggest that the response is not following a linear trend.

RESPONSE ANALYSIS EXAMPLES

In our GitHub repository, it is possible to download three ZIP files named "dataSample_1", "dataSample_2", and "dataSample_3" to test the analysis process. Each of these files contains a folder with the analysis results, the experimental information, and the data. For these files, the time data (first column) is given in seconds. All other columns represent the electrical resistance in ohms from different samples. By the first raw data file, the user can set the column separator to Tab, the number of channels to 4, time factor to 60, channel factors to 1000, time units will be given in minutes, and electrical resistance kΩ. These unit values could also be provided by the user and preview the data table. By accepting it, the data will be plotted in the plot area. To choose the visualization parameters for this analysis, the user can select four channels, set the All data and fit information can be exported to a specific location. The system will generate ".dat" files that will use the same column separator as the initial data file. These files are also available in our GitHub repository for comparison purposes in the results folder within the zip file.

The second zip file, "dataSample_2", consists of data set measured to evaluate the stability of ZnO-based sensors for O3 detection. This data set consists of measuring the response-recovery cycle of two sensors prepared together in a sputtering chamber, and they were kept at 200°C for one month. Each sensor was submitted to several sequences of O3 exposures in three different samples. In this data set, channels 1, 2, and 3 correspond to the data from one sensor measured on weeks 1, 2, and 3, respectively. Channels 4, 5, and 6, corresponds to the data of another sensor measured on weeks 1, 2, and 3. This dataset can also be downloaded from our GitHub repository. In this case, the stabilization period lasted 12 hours. Each sample was exposed to O3 for 15 minutes and recovered for 60 minutes. This information will also be available to export in the Fit Info data frame. 

CONCLUSIONS

This article presents a simple and friendly graphical user interface that can analyze the data from multiple SMOx-based gas sensors that share the same data table. This system can analyze the dynamic data from 8 samples simultaneously, and it yields a fast and straightforward path to data comparison, visualization, and fitting. The system extracts the response, response-time, and recovery-time from each dynamic response-recovery cycle. Then, each of these properties can be plotted. The system can perform two fits, one related to the power-law equation from the gasmaterial interaction, which can yield information about the interaction mechanism between the gas/solid interaction, and another linear fit that can be useful to estimate the sensitivity of the devices.

SUPPLEMENTARY MATERIAL

The supplementary material presents the workflow algorithm to carry out the gas sensor data analysis routine (Figure S1). Also, it shows the main dialog boxes for the input of the main parameters to carry out the analysis (Figure S2).

Figure 1 .

 1 Figure 1. Typical exponential behavior of dynamic response-recovery curve for a gas sensor based on a semiconductor. Three parameters can be extracted from this curve, the sensor response (ΔR/R0), the response-time, and the recovery-time. Arrows indicate the beginning and end of exposure and the end of the recovery.

Figure 2 .

 2 Figure 2. Graphical User Interface showing the main menu and plot area.

Figure

  Figure S1 illustrates the main tasks possible within the workflow of this software. After the software is started, the user can access the open file dialog box by clicking on the "Open CSV file" button. In this box, Figure S2(a), the user should select the appropriate column separator

Figure 2 presents 1 .

 21 the software interface, and it shows a dataset of four samples composed of four different exposure cycles. If the user manually calculates the response, response-time, and recovery-time for each sample cycle, that would result in 48 operations. The response dialog box will automatically perform these calculations after entering the concentration value, exposure time, end of exposure time, and end of recovery time. These values are subjective, depending on the experimental setup and configuration, but a good estimative is pointed out by arrows in Figure To calculate the response, response time, and recovery time, the user has to click on the calculate button after filling the input box with the time of start and end of exposure and the time of the end of recovery.

  time interval from 310 to 650 minutes, and select the time to zero check box. By clicking the plot button, the user should see the plot area like in Figure 3(a). To compare the data from the samples quickly, the user can access the normalization menu, enter 50 in the input dialog box, and click the normalize button. Now, the plot area should be similar to the one shown in Figure 3(b).

Figure 3 .

 3 Figure 3. Data analysis example 1. Response-recovery curve of rGO-based sensors upon NO2 exposure between 0.5 and 5 ppm. This figure shows the output of the four main processes of the data analysis. (a) Visualization, (b) Normalization, (c) Response data, (d) power-law fit, (e) response time and (f) recovery time.

Figure 4 .

 4 Figure 4. Data analysis example 2. (a) Visualization, (b) Normalization, (c) Response data, (d) power-law fit. This dataset corresponds to a stability test carried out on two ZnO-based sensors upon controlled O3 exposure between 50 and 500 ppb during one month. Channels 1, 2, and 3

Figure 5 .

 5 Figure 5. Data analysis example 3. (a) Visualization and (b) fitting also considering a linear fit whose slope is considered the sensitivity in response/concentration units.
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