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Time-scale analysis of abrupt changes corrupted
by multiplicative noise

Marie Chabert*, Jean-Yves Tourneret, Francis Castanie

ENSEEIHT/GAPSE, 2, rue Camichel BP7122, 31071 Toulouse, France

Abstract

Multiplicative Abrupt Changes (ACs) have been considered in many applications. These applications include image

processing (speckle) and random communication models (fading). Previous authors have shown that the Continuous

Wavelet Transform (CWT) has good detection properties for ACs in additive noise. This work applies the CWT to AC

detection in multiplicative noise. CWT translation invariance allows to de"ne an AC signature. The problem then

becomes signature detection in the time-scale domain. A second-order contrast criterion is de"ned as a measure of

detection performance. This criterion depends upon the "rst- and second-order moments of the multiplicative process's
CWT. An optimal wavelet (maximizing the contrast) is derived for an ideal step in white multiplicative noise. This wavelet

is asymptotically optimal for smooth changes and can be approximated for small AC amplitudes by the Haar wavelet.

Linear and quadratic suboptimal signature-based detectors are also studied. Closed-form threshold expressions are given

as functions of the false alarm probability for three of the detectors. Detection performance is characterized using

Receiver Operating Characteristic (ROC) curves computed from Monte-Carlo simulations.

Zusammenfassung

Multiplikative Abrupte AG nderungen (AC) wurden in vielen Anwendungen betrachtet. Beispiele solcher Anwendungen

sind die Bildverarbeitung (speckle) und Zufallsmodelle in der UG bertragungstechnik (Schwund). In fruK heren Arbeiten

wurde gezeigt, da{ die kontinuierliche Wavelet-Transformation (CWT) gute Detektionseigenschaften fuK r ACs in

additivem Rauschen besitzt. In der vorliegenden Arbeit wird die CWT auf die AC-Detektion in multiplikativem

Rauschen angewandt. Die Verschiebungsinvarianz der CWT erlaubt die De"nition einer AC-Signatur. Das Problem

besteht dann darin, eine Signatur im Zeit-Ma{stabs-Bereich zu detektieren. Es wird ein Kontrastkriterium zweiter

Ordnung als Ma{ fuK r die LeistungsfaK higkeit von Detektoren de"niert. Dieses Kriterium haK ngt von den Momenten erster

und zweiter Ordung der CWT des multiplikativen Prozesses ab. Ein optimales Wavelet, welches den Kontrast maximiert,

wird fuK r einen idealen Sprung in wei{em multiplikativem Rauschen hergeleitet. Dieses Wavelet ist asymptotisch optimal

fuK r glatte AG nderungen, und es kann fuK r kleine AC-Amplituden durch das Haar-Wavelet angenaK hert werden. Lineare und

quadratische suboptimale Detektoren, die auf Signaturen beruhen, werden ebenfalls studiert. FuK r drei der Detektoren

werden geschlossene AusdruK cke fuK r die Schwelle als Funktion der Fehlalarmwahrscheinlichkeit angegeben. Die

LeistungsfaK higkeit der Detektoren wird mittels Receiver Operating Characteristic (ROC) Kurven charakterisiert, welche

mittels Monte-Carlo-Simulationen berechnet wurden.
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E-mail address: chabert@len7.enseeiht.fr (M. Chabert)



Re2 sume2

Cette eH tude concerne l'application de la TransformeH e en Ondelette Continue (TOC) à la deH tection de ruptures dans un

bruit multiplicatif. L'invariance par translation de la TOC permet de deH "nir une signature temps-eH chelle de la rupture. Le

problème de deH tection est alors envisageH comme une recherche de signature dans le domaine temps-eH chelle. Un critère de

contraste permet de classer les ondelettes selon leur capaciteH à seH parer les deux hypothèses. Ce contraste s'exprime en

fonction des moments du premier et du second ordre de la TOC du processus. Une ondelette optimale, maximisant ce

contraste, est obtenue dans le cas d'un eH chelon multiplieH par un bruit blanc. Cette ondelette peut e( tre approcheH e par

l'ondelette de Haar pour de faibles valeurs de l'amplitude de la rupture. Elle est asymptotiquement optimale (c'est-à-dire

pour de grandes eH chelles) pour une rupture non abrupte (rampe, sigmoiGde2). Des deH tecteurs lineH aires et quadratiques

sous-optimaux baseH s sur la signature temps-eH chelle sont ensuite eH tudieH s. La mise en oeuvre de ces deH tecteurs est simple.

Une expression du seuil de deH tection en fonction de la probabiliteH de fausse alarme est donneH e pour trois des deH tecteurs.

Leurs performances, obtenues par simulations de Monte Carlo, sont preH senteH es sous la forme de courbes CaracteH ristiques

OpeH rationnelles du ReH cepteur (COR), pour di!eH rentes amplitudes de la rupture. ( 2000 Elsevier Science B.V. All rights

reserved.
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1. Introduction and problem formulation

Many signal and image processing applications
require the detection and estimation of rapid cha-
nges in "rst- and second-order moments of an ob-
served process [1]. These rapid changes (denoted
Abrupt Changes (ACs)) are separated by time inter-
vals where the moments are constant or slowly
varying. Their localization is needed for segmenta-
tion purposes and object contour extraction [1].
AC detection requires speci"c algorithms. Indeed,
adaptive algorithms are e!ective for tracking slow
signal variations but fail when ACs occur. The

Continuous Wavelet Transform (CWT) provides
e$cient detection of AC embedded in additive

stationary noise [8,16]. Here, the original con-
tribution is use of the CWT for AC detection in
multiplicative noise.

The observed process is modelled as the product
of a signal and a noise process. This model has been

studied in many signal and image processing ap-
plications. Multiplicative process e!ectively models
images produced by coherent radiation imaging
systems such as Synthetic Aperture Radar (SAR)
[3] or LASER [13]. These multiplicative models

also describe fading phenomena in communica-
tions [29]. They model Doppler e!ects caused by
changes in target orientation for radar and sonar
applications [2]. Multiplicative models can also

represent composite random processes. For example,
Bernoulli}Gaussian models are useful for the joint
detection-estimation of random impulses [14]. This
study is restricted to multiplicative processes which
are the product of a deterministic signal and a sta-
tionary random process. AC detection can be ex-
pressed as a simple binary hypothesis testing
problem:

f Under hypothesis H
0
, the observed process y(t) is

stationary white noise x(t) with mean m
x
O0 and

power spectral density N
x
:

y(t)"x(t), t3X (1)

where X is the observation interval. In practical
applications, the multiplicative noise is generally
non-zero mean (for instance in SAR image pro-
cessing, the multiplicative noise is Gamma dis-
tributed with mean 1 and variance 1/¸ where ¸ is
the number of looks).

f Under hypothesis H
1
, the observed process is the

product of the deterministic signal s(t) and the
previously de"ned noise process x(t):

y(t)"x(t)s(t)"x(t)C1#AfA
t!t

0
a
0
BD

"x(t)[1#Af
0
(t)] (2)

t3X, A*0, a
0
'0, t

0
'0 (3)



s(t) is the change with parameter vector
h"(A, t

0
, a

0
)5 (amplitude, instant, dilation). This

signal models a transition from 1 to 1#A. The
function f characterizes the transition shape, is
assumed positive and bounded, and satis"es

f (t)"0 for t)!¹ and f (t)"1 for t*¹

(4)

f may be a step [3], a sigmoid [19], a ramp [22,
p. 399], etc. Note that when a

0
approaches zero,

s(t) approaches an ideal step of amplitude A at
position t

0
.

The Bayesian or maximum likelihood approach
can be used for AC detection when the probability
density functions (pdf 's) of the various processes
and the appropriate priors are known [27]. How-
ever, these approaches can be intractable for non-
Gaussian signals with known pdf 's. Wavelet-based
methods are proposed here as an alternative to
statistical methods.

This paper is organized as follows. Section 2 re-
views the main de"nitions and properties of the
CWT. A multiplicative AC signature can be de"ned
because of CWT translation invariance. Then, the
detection problem becomes a signature detection
problem in the time-scale domain. Section 3 studies
the statistical properties of the multiplicative pro-
cess's CWT [4]. The "rst- and second-order mo-
ments are derived for the observed process's CWT
under both hypotheses. A step and a polynomial
singularity in white noise are studied. Section
4 deals with suboptimal detection and contrast.
A second-order contrast measure is de"ned. This
contrast measure is used to "nd the optimal detec-

tion wavelet. Section 4.1 shows that the com-
plementary de#ection criterion is useful for the AC
detection problem in multiplicative noise. The com-

plementary de#ection measures a `signature-to-
noise ratioa in the time-scale domain. Section 4.2
derives an optimal wavelet (maximizing the com-
plementary de#ection) for an ideal step embedded
in white multiplicative noise. This wavelet is
asymptotically optimal for smoothed changes. Sec-

tion 5 studies linear and quadratic signature-based
detectors. The linear test statistics consist of either

the sum along scales of the CWT or the sum along
scales of its correlation with an ideal signature. The

quadratic test statistics have a similar structure
except that the CWT is replaced by the scalogram.
In both cases, the detection is achieved by thre-
sholding. The performance of these detectors is
evaluated by means of ROC curves. Closed-form
expressions are also given for the thresholds as
functions of the false alarm probability for three
detectors.

2. Background

2.1. The continuous wavelet transform (CWT)

Time-frequency and time-scale representations
have been developed because e!ective tools have
been lacking for dealing with non-stationary sig-
nals. The Fourier transform is a useful global rep-
resentation for stationary signals. However, an
abrupt signal variation is spread over the entire
frequency axis. The Fourier basis functions localize

in frequency but not in time. The CWT decomposes
a signal into a family of functions localized both in
time and frequency. The family Mt

a,qNa|RH
,q|R is con-

structed by dilation and translation of a function
t (denoted the mother wavelet) where a is the
dilation parameter and q is the translation para-
meter [7,17,24,30]. The CWT of y(t) (associated
with this analyzing function family) is de"ned by

C
y
(a,q)"PR

y(t)tH
a,q (t) dt (5)

with

t
a,q(t)"a~1@2tA

t!q
a B, a3RH, q3R. (6)

The superscript `*a denotes complex conjugation.
The transform admits a reconstruction formula:

y(t)"
1

CtPPRCR

C
y
(a,q)t

a,q (t)
dadq
a2

(7)

if t satis"es the so-called `admissibility conditiona

[7]:

Ct"2pPR

DmD~1DtK (m)D2dm(R (8)



where tK denotes the Fourier transform of t. A ne-
cessary condition for admissibility is [10]

PR

t(t) dt"0 (9)

when the Fourier Transform of t is continuous.
More restrictive regularity conditions can be re-
quired for an e$cient signal analysis. Wavelets are
then often designed with a speci"c number of van-
ishing moments:

PR

tkt(t) dt"0, k3M0,2, mN. (10)

An important CWT property is invariance with
respect to the original signal translations and dila-
tions. The following results can be obtained [12]:

CWT[y(t!t
0
)]"C

y
(a,q!t

0
),

CWTC
1

Jj
yA

t

JjBD"C
yA

a

j
,
q
jB, ∀j'0.

Translation invariance has been used in many de-
tection and estimation applications (see [26,31]).
Note that the CWT linearity provides a simple
interpretation of the transform. No cross-terms
appear, in contrast to energy distributions such as
the Wigner}Ville transform.

2.2. The discretized continuous wavelet transform

Daubechies [7] de"ned the discretized CWT us-
ing hyperbolic sampling of the scale and translation

parameters:

a"am
0
, q"nq

0
am
0
, a

0
'1, q

0
'0, m, n3Z. (11)

The discretized CWT can be orthogonal or non-
orthogonal, depending upon the mother wavelet
t and the parameters a

0
,q
0
. The dyadic CWT

(a
0
"2 and q

0
"1) has received much attention in

the literature [7,18], since it allows to build ortho-
gonal wavelet bases. Daubechies [7] de"ned
orthogonal dyadic bases composed of compactly
supported wavelets with arbitrary regularities
(including the Haar basis). Hyperbolic sampling
(including dyadic sampling) is not suited to time-

scale signature-based estimation and detection.
Indeed, this sampling loses the translation and dila-
tion invariance de"ning a signature. Moreover, hy-
perbolic sampling is too sparse. The scale and
translation parameters must be "nely sampled for
joint detection estimation.

This paper computes the CWT for a very "ne
time-scale grid as in [12]. Translation and dilation
invariances are lost because of the time and scale
sampling. However, the representation remains
invariant to translation of an integer number of
samples. Note that the CWT samples are not or-
thogonal when computed on a very "ne time-scale
grid. This is not a problem since orthogonality is
not required for AC detection. On the contrary,
orthogonality imposes undesirable constraints. The
constraints on the wavelet reduce to the admissibil-
ity condition when orthogonality is not required.
Hence, an optimal wavelet can be chosen [31,32].

3. CWT statistical properties

For y(t) a random process, the CWT de"ned in
Eq. (5) is a random "eld. This section derives its
"rst- and second-order moments under hypotheses
H

0
and H

1
. The study is conducted with nor-

malized and admissible wavelets with compact
support [D

1
,D

2
] of length *t"D

2
!D

1
.

3.1. Hypothesis H
0

The observed process is stationary white noise
under hypothesis H

0
. The moments of C

y
(a,q) for

this case were studied in [17]. Using Eq. (9), the
following results can be obtained:

E[C
y
(a,q) D H

0
]"E[C

x
(a,q)]

"m
xP

`=

~=

tH
a,q(t) dt"0 (12)

even when x(t) is non zero-mean.

cov[C
y
(a

1
,q
1
), C

y
(a

2
,q
2
) D H

0
]

"N
xS

a
1

a
2
P

`=

~=

tH(u)tA
a
1
u#q

1
!q

2
a
2

Bdu. (13)



Fig. 1. Support of AC signature (a
0
"0).

Note that if the wavelet decomposition is not or-
thogonal and the noise is white, the time-scale noise
is correlated.

On the other hand, the orthonormal decomposi-
tion of a white stationary noise x(t) gives a white
sequence of stationary wavelet coe$cients [16].
For a normalized wavelet, the power spectral den-
sity of C

y
(a,q) can then be expressed as:

S[C
y
(a,q) DH

0
]"N

xP
D
2

D
1

Dt(t)D2 dt"N
x
. (14)

Consequently under hypothesis H
0
, the CWT is

a stationary zero-mean random process with power
spectral density N

x
.

3.2. Hypothesis H
1
} abrupt change signature

The observed process y(t) is non-stationary un-
der hypothesis H

1
. It is the product of a determinis-

tic signal s(t) and a stationary white noise x(t) with
mean m

x
and power spectral density N

x
. Little

attention has been devoted to the statistical proper-
ties of the CWT of a multiplicative process. Lu [15]
expressed the correlation and power spectral den-
sity of the DWT of a zero-mean white multiplica-
tive process in terms of the ambiguity function.
Unfortunately, the results were restricted to zero-
mean processes and orthogonal dyadic decomposi-
tions.

Using Eq. (9), the CWT mean value under hy-
pothesis H

1
reads:

E[C
y
(a,q) D H

1
]

"Am
xCP

t2

t1

f
0
(t)tH

a,q(t) dt#P
q`aD2

t2

tH
a,q(t) dtD

(15)

where t
1
"t

0
!a

0
¹ and t

2
"t

0
#a

0
¹. The

time-scale multiplicative AC signature is de"ned as
the CWT mean value under hypothesis H

1
[8]. In

what follows, AC denotes multiplicative AC. Ac-
cording to (15), the time-scale signature support is
included in the region S de"ned by

S"G(a,q)3R`H]R`K
t
1
!q
a

(D
2

and

t
2
!q
a

'D
1H. (16)

The CWT mean value equals zero in R`H]
R`!S. Fig. 1 shows the region S for an ideal step
(a

0
"0 hence t

1
"t

2
"t

0
).

Note that the time-scale multiplicative AC signa-
ture is zero when the noise is zero-mean, contrary
to the additive noise case [8]. On the other hand
when the noise is non-zero mean, the AC signatures
are proportional in both the additive and multipli-
cative cases. Consequently, the type of noise (addi-
tive or multiplicative) cannot be determined from
"rst-order statistics [4]. The covariance of the pair
(C

y
(a

1
,q
1
),C

y
(a

2
,q
2
)) can be expressed under hy-

pothesis H
1

as:

cov[C
y
(a

1
,q
1
), C

y
(a

2
,q
2
) D H

1
]

" cov[C
y
(a

1
,q
1
), C

y
(a

2
,q
2
) DH

0
]

#AN
xP

`=

~=

[2f
0
(t)#Af2

0
(t)]

tH
a1 ,q1 (t)ta2 ,q2 (t) dt.

Note that when the wavelet decomposition is or-
thogonal, the second term di!ers from zero for
a
1
Oa

2
and q

1
Oq

2
. Consequently, a multiplica-

tive white noise is transformed into a time-scale
colored noise, even when the decomposition is or-
thogonal. The variance of C

y
(a,q) is obtained for

a
1
"a

2
"a and q

1
"q

2
"q:

var[C
y
(a,q) DH

1
]"N

xC1#AP
q`aD2

t1

[2f
0
(t)

#Af
0
(t)2] D t

a,q (t) D 2dt]. (17)



Fig. 2. Step signature (A"0.4, t
0
"512) with symmetrical

Haar wavelet.

Fig. 3. Step signature (A"0.4, t
0
"512) with FDG wavelet.

Eq. (17) shows the variance of C
y
(a,q) is not a con-

stant in the time-scale domain under hypothesis
H

1
, contrary to the additive noise case. This prop-

erty was used in [4] for distinguishing multiplica-
tive and additive AC.

Recall that we assumed that the multiplicative
noise has non-zero mean (see Eq. (1)). Conse-
quently, the observed process y(t) has a simulta-
neous mean and variance change. When the noise is
zero mean, the observed process y(t) has a variance
change but no mean change. In this case, the CWT
mean is zero under hypothesis H

1
. However, in this

case, a quadratic non-linear preprocessing allows
to take advantage of CWT properties [5].

The next subsections deal with step and poly-
nomial singularities. The e!ect of wavelet regularity
on their time-scale signatures is studied.

3.2.1. Example 1: step singularity

Consider the fundamental example of a step-like
singularity (a

0
P0) contaminated by white multi-

plicative noise. This model has been used for line-
by-line edge detection in SAR images [3]. The
multiplicative AC time-scale signature reads:

E[C
y45%1

(a,q) D H
1
]"Am

x
JaP

D
2

t0~q@a
tH(t) dt. (18)

The signature points to the AC instant t
0

(since
t
1
"t

2
"t

0
), whatever the wavelet regularity. For

a "xed scale a, the multiplicative AC time-scale
signature cross-sections are proportional to the
wavelet integral (18). Consider the symmetrical
Haar wavelet and the "rst derivative of a Gaussian

(denoted FDG) de"ned as follows:

Symmetrical Haar wavelet

t(t)"G
1/J*t if !*t/2)t(0,

!1/J*t if 0)t(*t/2,

0 otherwise,

(19)

First derivative of a Gaussian

t(t)"S
2

dtp1@2

t

dt
expC!

1

2A
t

dtB
2

D,
t3R, dt3R`H. (20)

The multiplicative AC time-scale signature cross-
sections are triangles and Gaussian functions.

These signatures are shown (Figs. 2 and 3) for
parameters t

0
"512 (AC instant), A"0.4 (AC am-

plitude), N"1024 (number of samples), m
x
"1

(multiplicative noise mean) and N
x
"1 (power

spectral density). The signatures are conic with a max-
imum for q"t

0
with Haar and FDG wavelets.

The time-scale variance for a step singularity can
be expressed as:

var[C
y45%1

(a,q) DH
1
]"

G
N

x
[1#(2A#A2):D

2

t0~q@a Dt(t)D2 dt]

for D
1
(t0~q

a
(D

2
,

N
x
(1#A)2 for t0~q

a
(D

1
,

N
x

for t0~q
a

'D
2
.

(21)

Eq. (21) shows a constant variance for C
y
(a,q) in

the two time-scale regions bordering the conic



Fig. 4. CWT of a step (A"0.4, t
0
"512) embedded in multipli-

cative noise with Haar wavelet.

Fig. 5. CWT of a step (A"0.4, t
0
"512) embedded in multipli-

cative noise with FDG wavelet.

signature. The noisy multiplicative AC CWTs for
the Haar and FDG wavelets are shown in Figs.
4 and 5. Clearly, a cone emerges from the noise for
the Haar and FDG wavelets. The cone points to
the AC instant t

0
. Provided an appropriate wavelet

is selected (discussed in Section 4.2), the CWT is
a suitable tool for multiplicative AC estimation and
detection.

Smoother transitions must be considered in
many interesting cases. According to the Stone}
Weierstrass theorem, any continuous function de-
"ned on a closed interval can be approached by
a polynomial function [22, p. 399]. The next sub-
section studies polynomial singularities.

3.2.2. Example 2: polynomial singularity

A polynomial singularity is de"ned by

f (t)"
N
+
i/0

b
i
ti for !¹(t(¹.

The time-scale signature in a region S can be ex-
pressed as (15):

E[C
y
(a,q) D H

1
]

"JaAm
xCP

(t2~q)@a

(t1~q)@a

N
+
i/0

b
iA

au#q!t
0

a
0

B
i
tH(u) du

#P
D

2

(t2~q)@a
tH(u) duD. (22)

The CWT mean depends upon the polynomial de-
gree and the wavelet number of vanishing mo-
ments. The signature in region sLS (de"ned
presently) reduces to

E[C
y
(a,q) D H

1
]
s

"JaAm
xP

D
2

D
1

N
+
i/0

b
iA

au#q!t
0

a
0

B
i
tH(u) du (23)

with

s"G(a,q)3R`H]R`K
t
1
!q
a

(D
1

and
t
2
!q
a

'D
2H. (24)

Consequently, if m denotes the number of vanishing
moments of the wavelet and m*N then
E[C

y
(a,q)]

s
"0. For a ramp singularity de"ned by

f (t)"G
t`T
2T

t3[!¹, ¹],

0 t(!¹,

1 t'¹,

Eq. (23) reduces to

E[C
y
(a,q) D H

1
]

s
"G

a
3@2

Amx

a0
:D

2
D

1
utH(u) du if m"0,

0 if m*1.

(25)

If m*1, two cones are pointing one to the begin-
ning of the polynomial singularity and the other
to the end (Fig. 6). The time-scale multiplicative
AC signature and the multiplicative AC CWT
with Haar and FDG wavelet (m"0) are shown in
Figs. 7}10 for a

0
"200, t

0
"512 and A"0.4.



Fig. 6. Support of smoothed change signature (a
0
O0).

Fig. 7. Ramp signature (A"0.4, t
0
"512, a

0
"200) with sym-

metrical Haar wavelet.

Fig. 8. Ramp signature (A"0.4, t
0
"512, a

0
"200) with FDG

wavelet.

Fig. 9. CWT of a ramp (A"0.4, t
0
"512, a

0
"200) embedded

in multiplicative noise with Haar wavelet.

Fig. 10. CWT of a ramp (A"0.4, t
0
"512, a

0
"200) embed-

ded in multiplicative noise with FDG wavelet.

4. Contrast in the time-scale domain

The optimal Neyman}Pearson detector has been
used successfully in many signal and image applica-

tions. The Neyman}Pearson detector is optimal in
the sense that it maximizes the Probability of De-
tection (PD) for a "xed Probability of False Alarm
(PFA). The Neyman}Pearson detector determines
the likelihood ratio which is a su$cient statistic for
simple binary hypothesis tests [21]. The likelihood
ratio is compared to a threshold which depends
upon PFA. Optimal detection requires knowledge
of the observed process distribution. Unfortunate-
ly, this distribution is often only partially known or
too complex to derive. This problem suggests the
use of suboptimal detectors. The decision, concern-
ing the observation y(t), is made using the pseudo-
observation C

y
(a,q). The previous section has

shown that the wavelet choice can be critical for AC
detection in multiplicative noise. The best detection



wavelet is de"ned by the selected contrast cri-
terion.

This section is restricted to non-zero mean multi-
plicative noise. The contrast criterion is based upon
the observed CWT mean and variance under hy-
potheses H

0
and H

1
(see Eqs. (12), (15), (14) and

(17)). However, a similar contrast could be de"ned
for zero-mean noise using a non-linear transforma-
tion of the observed signal [5].

4.1. Contrast criterion

The contrast criterion measures how a transform
separates two hypotheses. The most popular family
of contrasts is based upon second-order quality
measures. A second order quality measure is de-
"ned only in terms of second-order probabilistic
parameters, viz., means and covariances. A sec-
ond-order contrast is related to generalized SNR
when the hypotheses are `noisea and `signal and
noisea. The contrast for the pseudo-observation
C

y
(a,q) is de"ned at each point of the time-scale

plane (a,q) as (cf. [11,21]):

ca[Cy
(a,q)]"

[E[C
y
(a,q) D H

1
]!E[C

y
(a,q) DH

0
]]2

Vara[Cy
(a,q)]

"
E[C

y
(a,q) DH

1
]2

Vara[Cy
(a,q)]

. (26)

In (26), Vara[Cy
(a,q)] is the variance corresponding

to the mixing distribution:

pa(x)"(1!a)p
0
(x)#ap

1
(x) with a3[0,1]

where p
0
(.) and p

1
(.) are the distributions of C

y
(a,q)

under hypotheses H
0

and H
1
. For a"0 and a"1,

the criteria are usually called de#ection and com-
plementary de#ection respectively [11]. The de#ec-
tion and complementary de#ection are used
interchangeably for additive noise since the vari-
ance is the same under both hypotheses. Here, for
the multiplicative AC detection problem, the com-
plementary de#ection has been chosen. It corres-
ponds to the most restrictive contrast between the
two extremes a"0 and a"1 (Var[C

y
(a,q) D H

1
]*

Var[C
y
(a,q) DH

0
] according to (14) and (17)).

The complementary de#ection, denoted b
f
(a,q)

in what follows, can be interpreted as a signature-

to-noise ratio in the time-scale domain. A straight-
forward computation yields

b
f
(a,q)"

A2m2
x

N
x

]
D:q`aD2

t0~a0T
f
0
(t)tH

a,q (t) dtD2
1#A:q`aD2

t0~a0T
[2f

0
(t)#Af

0
(t)2] Dt

a,q (t)D2 dt
.

(27)

4.2. Optimal wavelet

4.2.1. Dexnition

This section derives an optimal wavelet for the
multiplicative AC detection problem. A wavelet
t(t) is optimal if it maximizes the complementary
de#ection denoted b

f
(a,q) under the constraints of

normalization (28) and of the su$cient condition
for admissibility (29):

P
D

2

D
1

Dt(t)D2dt"1, (28)

P
D

2

D
1

t(t) dt"0. (29)

Recall that (29) is required to obtain a signature
under H

1
against no signature under H

0
. Maximiz-

ing b
f
(a,q) under the constraints (28) and (29) for

any AC (de"ned by f
0
(t)) is a di$cult problem. The

next subsection studies the case of a step singular-
ity.

4.2.2. Step singularity in white noise

For a step singularity in white noise, the com-
plementary de#ection reduces to:

b
45%1

(a,q)"a
A2m2

x
N

x

Pt,m
1#lNt,m

with G
Nt,m":D

2

m Dt(t)D2dt,

Pt,m"D:D
2m t(t) dtD2,

l"A2#2A,

m"t0~q
a

.

The contrast is proportional to the scale on the
time-scale plane line Dm de"ned by (t

0
!q)/a"m

and consequently increases at high scales. The



Fig. 11. Optimal wavelet for an AC embedded in white multipli-

cative noise (A"0.5).

maximum complementary de#ection is obtained
for [6]:

m
015

"D
1
#

D
2
!D

1
A#2

, (30)

t
015

(t)"G
C

1
"!eJ(A`1)

*t
for t3[D

1
, m

015
],

C
2
" e

J(A`1)*t
for t3[m

015
, D

2
].

(31)

Fig. 11 shows the optimal wavelet for an AC ampli-
tude A"0.5. Note that the optimal wavelet
depends upon the AC amplitude. This may be
a problem in practical applications since the AC
amplitude is unknown. However, for small values
of A(A;1), Eqs. (30) and (31) yield

m
015

+
D

1
#D

2
2

, (32)

t
015

(t)+G
C

1
"! e

J*t
for t3[D

1
, m

015
],

C
2
" e

J*t
for t3[m

015
, D

2
].

(33)

This shows that the optimal wavelet can be ap-
proximated by the symmetrical Haar wavelet.

4.2.3. Smoothed change

Consider the general case of a smoothed change.
The complementary de#ection on the line Dm de-
"ned by (t

0
!q)/a"m3[D

1
,D

2
], reads:

b
f
(a,q)"

aA2m2
x

p2
x

[I
1
#I

2
]2

1#I
4
#(A2#2A)I

3

with

I
1
"P

(t2 @a)`m

(t1 @a)`m
fA

at

a
0
Bt(t) dt,

I
2
"P

D
2

(a0 @a)T`m
t(t) dt,

I
3
"P

D
2

(t2 @a)`m
t2(t) dt,

I
4
"P

(t2 @a)`m

(t1 @a)`mCA1#AfA
at

a
0
BB

2
!1Dt2(t) dt,

I
5
"P

(a0 @a)T`m

(~a0 @a)T`mCA1#AfA
at

a
0
BB

4
!1Dt2(t) dt.

When the scale a goes to in"nity, the integrals
I
i
reduce as follows:

lim

a?`=

I
1
" lim

a?`=

I
2
" lim

a?`=

I
3
"0,

lim

a?`=

I
4
"P

D
2

m
t(t) dt

and

lim

a?`=

I
5
"P

D
2

m
t2(t) dt

(since the wavelet t and the function f are
bounded). Finally

b
f
(a,q)&b

45%1
(a,q) when aP#R.

Consequently, the optimal wavelet for an ideal AC
is asymptotically optimal (asymptotically means
when aP#R) for a smoothed change. This result
shows that the CWT is asymptotically robust to the
transition shape.

5. Suboptimal time-scale detectors

The CWT can be interpreted as a correlation
between the observed process and a shifted scaled
mother wavelet. The CWT can then be compared
to a two-dimensional threshold for AC detection
[9]. However, the threshold setting requires know-
ledge of the CWT distribution under H

0
. This dis-

tribution may be unknown or di$cult to derive for
non-Gaussian inputs. This paper proposes four



one-dimensional CWT detectors. They correspond
to a summation over scales of the CWT with pos-
sible post-processing. The summation is over sev-
eral octaves in scale in order to sum decorrelated
coe$cients. The main purpose of summation is to
obtain Gaussian statistics whatever the multiplica-
tive noise distribution. The detectors are de"ned as
follows:
f Detectors C

1
and C

2
correspond to a linear post-

processing of the CWT. These detectors were
"rst studied in [8] for the detection of ACs in
additive stationary noise. C

1
computes the sum

along scales of the CWT. C
2

computes the sum
along scales of the CWT correlation with an
ideal signature.

f Detectors C
3

and C
4

introduce a quadratic
post-processing of the CWT and a scale depen-
dent weighting.

5.1. Linear post-processing (detectors C
1

and C
2
)

f Sum along scales of the CWT: The sum of
"xed scale CWT slices reduces noise e!ects
since the noise maxima do not propagate
from one scale to another [16]. Detector C

1
is

de"ned by

C
1
(q)"

n
+
i/1

C
y
(a

i
,q). (34)

This detector does not require a priori informa-
tion about the AC to be detected.

f Time-scale correlator: The time-scale correlator
computes the sum across scales of the correlation
between the observed process's CWT and an
ideal 2D signature C

*$%!-
(a,q) (constructed using

a priori information on the expected AC):

C
2
(q)"

n
+
i/1
PR

C
y
(a

i
, t)C

*$%!-
(a

i
, t!q) dt. (35)

This correlation yields a smoother statistic than the
previous detector. The correlation would be equiv-
alent to time-scale matched-"ltering if (i) the noise
were additive, white and stationary, and (ii) the
expected signal were perfectly known [9]. Here,
the notion of matched "lter is not de"ned because

the noise is colored, non-stationary and non-addi-
tive in the time-scale domain [27].

The test statistics C
1

and C
2

are linear and
equivalent to "ltering in the time domain. The
CWT allows to build this "lter in the multiplicative
noise case. However, the optimal Neyman Pearson
detector is non-linear for this detection problem
[28]. Consequently, it seems natural to study
suboptimal non-linear detectors. Non-linear post-
processings were already proposed for the detec-
tion and estimation in the time-scale domain.
Mallat suggested to extract CWT modulus maxima
for edge characterization in additive noise [17].
Multiscale products were also studied for multi-
step detection and estimation in additive or multi-
plicative noise [25]. Finally, the scalogram
(squared CWT modulus) was used to build time-
scale energetic detectors [10]. This paper proposes
to study two quadratic detectors (denoted C

3
(q)

and C
4
(q)) based on the scalogram.

5.2. Quadratic post-processing (detectors C
3

and C
4
)

f Weighted sum of the scalogram: C
3
(q) is

a weighted quadratic formulation of C
1
(q). Go-

ing back to continuous variable, summing across
scales means integrating the CWT with the
measure da. However, the energy in the whole
time-scale domain expresses as ::DC

y
(a,q)D2$a $q

a
2

[10]. Hence, da/a2 appears as a more meaningful

measure for one-dimensional energetic detectors.
This suggests to de"ne the following detector:

C
3
(q)"

n
+
i/1

DC
y
(a

i
,q)D2

a2

f Weighted sum of the scalogram correlation: C
4
(q)

computes the sum along scales of the scalogram
correlation with an ideal scalogram

C
4
(q)"

n
+
i/1

:R DC
y
(a

i
, t)D2DC

*$%!-
(a

i
, t!q)D2dt

a2
.

Note that the four test statistics C
i
(q), i"1,2,4,

are maximum for q"t
0
. This property can be

used to derive AC instant estimates. These esti-
mates do not require information about the process



Fig. 12. ROC curves for detectors C
1
(q) and C

3
(q) (white multi-

plicative noise).

Fig. 13. ROC curves for detectors C
2
(q) and C

4
(q) (white multi-

plicative noise).

distribution as is required for maximum likelihood
estimation.

5.3. Detection performance

AC detection can be achieved as follows:

H
0

is rejected if &q3X such that C
i
(q)'S

i
(PFA)

(36)

where PFA"P[reject H
0

DH
0

true]"P
=

Si

f
0
(t) dt.

(37)

f
0

denotes the test statistic distribution under H
0
.

The detection performance can then be studied
using Receiver Operating Characteristics (ROC)
curves [29]. These curves show PD as a function of
PFA. The PD (respectively PFA) computation re-
quires knowledge of the test statistic pdf under H

1
(respectively H

0
). However, when pdf 's are un-

known or partially known, ROC curves can be
obtained numerically by comparing runs of the test
statistic under H

0
and H

1
to suitable threshold

values. Figs. 12 and 13 show numerical ROC curves
obtained with 100 runs. The observed process
is a step embedded in multiplicative white noise.
The noise and AC parameters are t

0
"512,

A3M0.1, 0.2, 0.3, 0.4, 0.5N, m
x
"1, N

x
"1 and N"

1024. The CWT is computed with the symmetri-
cal Haar wavelet, with normalized support,
for integer scales varying from a"1 to 1024.
Very good detection performance is obtained for an
AC with amplitude A*0.4 in multiplicative noise

with mean m
x
"1 and power spectral density

N
x
"1.
The theoretical results (optimal wavelet, contrast

comparison, etc.) were obtained for white noise in
this paper. The e!ects of noise correlation are
studied through simulations. Figs. 14 and 15 show
ROC curves for multiplicative colored noise
modelled as a zero-mean Auto-Regressive AR pro-
cess plus constant m

x
"1. The AR parameters are

a"[1, 0.2, 0.15]T and the driving noise spectral
density is such that N

x
"1. The AC and CWT

parameters are the same as previously. Figs. 14 and
15 show that the detection performance is not a!ec-
ted by noise coloration, in contrast to optimal

detector performance [28]. This result emphasizes
the advantage of time-scale detectors.

5.4. Comparison between linear and quadratic

detectors

Figs. 12}15 allow to compare linear and quad-
ratic detector performance for "xed noise para-
meters and di!erent AC amplitudes. These "gures
show that C

4
performs better than C

2
but that

C
3

performs worse than C
1

for low PFAs. Similar
results are obtained for white and colored noise.
Consequently, a quadratic post-processing does
not necessarily improve performance. This im-
provement depends on the detector structure but
also on the noise and signal parameters.



Fig. 14. ROC curves for detectors C
1
(q) and C

3
(q) (colored

multiplicative noise).

Fig. 15. ROC curves for detectors C
2
(q) and C

4
(q) (colored

multiplicative noise).

Fig. 16. Histogram of C
1
(t
0
) and "tted Gaussian pdf with 95%

con"dence intervals.

Fig. 17. Histogram of C
2
(t
0
) and "tted Gaussian pdf with 95%

con"dence intervals.

Recall that the main motivation for summing
across scales was to obtain approximately Gaus-
sian test statistics for any noise distribution and
any "xed q. When the Gaussian approximation is
valid, the threshold can be determined using the
approximate Gaussian pdf for the test statistic un-
der H

0
by

PFA"P
=

Si(pfa)~mi0
pi0

1

J2p
e~y

2
@2 dy (38)

where mi
0

and pi
0

are the mean and standard devi-
ation of the test statistic under H

0
. Finally

S
i
(pfa)"mi

0
#pi

0
(1!erf~1(PFA))

where erf(x)"(2/Jp):x
0
e~t

2
@2 dt. Note that the

threshold determination requires the knowledge of
mi

0
and pi

0
(functions of the noise mean and power

spectral density). These parameters have to be esti-
mated using noise samples in practical applica-
tions.

The use of central limit theorems (such as
Liapounov or Lindeberg [23]) is not straightfor-
ward to prove the asymptotic normality of
C
i
, i"1,2,2,4. However, Figs. 16}19 show a com-

parison between the four test statistics histograms
and the "tted Gaussian pdf 's under hypothesis
H

0
with 95% con"dence intervals (computed as in

[20, p. 251]). The multiplicative noise is uniformly



Fig. 18. Histogram of C
3
(t
0
) and "tted Gaussian pdf with 95%

con"dence intervals.

Fig. 19. Histogram of C
4
(t
0
) and "tted Gaussian pdf with 95%

con"dence intervals.

distributed with m
x
"1 and N

x
"1. These "gures

clearly show that the Gaussian pdf is a good ap-
proximation for the pdf of C

1
(q), C

2
(q) and C

4
(q)

under H
0
, but not for C

3
(q). Consequently, the

Gaussian approximation for C
1
(q), C

2
(q) and C

4
(q)

can be used to compute the test thresholds without
a priori information on the noise distribution.
However, this Gaussian approximation cannot be
used for detector C

3
(q).

Consequently, the use of quadratic post-process-
ings can lead to non-Gaussian test statistics. In
these cases, the threshold cannot be obtained in
closed form. For this reason, quadratic post-pro-
cessings should not be systematically introduced.
This paper recommends the use of linear post-
processings which provide approximately Gaus-
sian test statistics and good performance for white
and colored noise.

6. Conclusions

The continuous wavelet transform showed good
properties for detecting abrupt changes in multipli-
cative noise. First and second order moments were
derived for the continuous wavelet transform of the
observed process. These moments de"ned an
abrupt change signature in the time-scale domain.
The complementary de#ection was chosen as
a contrast criterion in the time-scale domain. An
optimal wavelet maximizing the complementary
de#ection was derived for the detection of an ideal
step in white multiplicative noise. This wavelet de-
pended upon the abrupt change amplitude and was
asymptotically optimal for smooth changes. Linear
and quadratic time-scale AC detectors were then
compared. Threshold determination cannot always
be achieved for non-linear detectors. Consequently,
linear time-scale detectors have to be prefered to
quadratic time-scale detectors for the detection of
AC in white or colored multiplicative noise.
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