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Proportional Fair Scheduling for Downlink
mmWave Multi-User MISO-NOMA Systems

Mingshan Zhang, Yongna Guo, Student Member, IEEE, Lou Salaün, Member, IEEE, Chi Wan Sung, Senior
Member, IEEE, and Chung Shue Chen, Senior Member, IEEE

Abstract—In this paper, we study non-orthogonal multiple
access (NOMA) user scheduling and resource allocation problem
for a generic downlink single-cell multiple input and single
output (MISO) millimeter wave (mmWave) system. The larger
number of packed antennas and the highly directional property
of mmWave communications enable directional beamforming
to achieve spatial diversity. Toward this end, we consider two
different hybrid precoding schemes which are based on orthog-
onal matching pursuit (OMP). Users are assigned into different
clusters and the base station (BS) transmits superposed signals
that share the same precoding vector. Moreover, both fixed
number of users per cluster and dynamic number of users per
cluster are investigated. We aim to jointly optimize the user
clustering, service scheduling, and power allocation strategy, in
maximizing the proportional fairness (PF) among the users and
exploring the multiuser diversity and multiplexing gain. Since the
formulated joint user clustering, scheduling and power allocation
problem is a mixed integer non-convex optimization problem,
we propose a two-fold methodology. First, we apply a hybrid
precoding and user clustering scheme, where the hybrid precoder
is constructed by singular vector division (SVD) or minimum
mean square error (MMSE). Then, with the obtained result, we
approximate the proportional fairness power allocation problem
by a sequence of Geometric Programming (GP) problems which
are solved iteratively. The proposed scheme strikes a balance
between the spectral efficiency and service fairness. Results show
that the proposed MISO-NOMA scheme which is based on
MMSE hybrid precoder and the proposed user scheduling and
power allocation strategy under proportional fairness metric can
outperform various conventional MISO schemes. Furthermore,
our proposed dynamic number of users per cluster scheme
outperforms the fixed scheme and can be considered as an
upper bound in several aspects, including spectral efficiency and
fairness.

Index Terms—Millimeter wave, opportunistic hybrid beam-
forming, multiple input single output (MISO), non-orthogonal
multiple access (NOMA), proportional fair scheduling.

I. INTRODUCTION

With the explosive growth of mobile data services, the
demand for higher network capacity and more diversified
mobile network applications imposes challenges for 5G and
beyond 5G (B5G) networks. Millimeter wave (mmWave)
communication has been considered as a promising technology
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to meet the fast growing data rate demand [1], [2]. The
large available spectrum bandwidth in mmWave (3-300 GHz)
provides a potential solution to tackle the bandwidth shortage
problem. Many countries and regions such as USA, Europe,
Korea, Japan and China have announced their 5G spectrum
strategies and roadmaps for the frequency spectrum 24.25-29.5
GHz as a key frequency band to deploy commercial systems
for new radio (NR) [3]. Different from the characteristics
of sub-6 GHz wireless communication, the propagation of
mmWave is highly directional with severe path loss, low
penetration and high signal attenuation [4]. Besides, the short
wavelength of mmWave allows a large amount of antennas
to be packed in a small form, to achieve spatial diversity
through highly directional beamforming [5]. Thus, multiple-
input multiple-output (MIMO) processing can in turn help reap
the gains offered by mmWave.

In traditional MIMO, the beamforming for baseband signal
is always done digitally, controlling both the signal’s phase and
amplitude, where each antenna element is controlled by dedi-
cated baseband and radio frequency (RF) hardware. However,
mmWave systems usually contain a large number of antennas,
which would increase the cost and power consumption if
full digital precoder is applied. Moreover, mmWave channels
may be sparser such that fewer spatial degrees of freedom
are available [6]. Indeed, the sparsity can be exploited for
optimizing channel estimation and beam training. To address
this issue, the idea of hybrid precoding was proposed in [7]
and [8], where the conventional digital precoder is divided
into two parts: a low-dimensional digital baseband precoder,
and a high-dimensional RF precoder which is implemented via
analog phase shifters. Thus, the hybrid precoding problem was
formulated as a sparse approximation problem and solved by
the proposed spatially sparse precoding (SSP) algorithm [9].

Non-orthogonal multiple access (NOMA) is another key
technology in 5G/B5G, and has attracted much attention due to
its excellent overload performance compared to traditional or-
thogonal multiple access (OMA) method [10]. Compared with
OMA transmission, the complexity of the NOMA receiver is
higher, but a higher spectrum efficiency can be obtained. For
example, in [11], the authors investigate and reveal the ergodic
sum-rate gain (ESG) of NOMA over OMA in uplink cellular
communication systems. The application of NOMA in MIMO
systems can further improve the system capacity. Regarding
MIMO-NOMA, it was shown that the application of MIMO
in NOMA is able to achieve an enhanced system performance
compared to pure NOMA and pure MIMO [12]. Since beam-
forming plays an important role in MIMO systems, the authors
in [13] investigate the beamforming problem in MISO-NOMA
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system, and they further study beamforming design with the
aid of reconfigurable intelligent surface (RIS) recently [14].
In [15], the user clustering, beamforming (BF), and power
allocation problem for sum rate maximization of a single-cell
MIMO-NOMA system is investigated, in which the number
of antennas per user is more than that of the base stations. In
[16], the authors investigate the power allocation problem of
NOMA in a virtual MIMO system for IoT communications.
However, it only considers the problem in one time slot but not
the long-time scheduling problem. A k-means based machine-
learning algorithm for user clustering in a mmWave system
is proposed in [17], which can be performed online with low
computational complexity. Moreover, unmanned aerial vehicle
(UAV) can also be exploited with NOMA. In [18], the authors
propose a UAV-assisted NOMA network, in which the UAV
and BS cooperate with each other to serve ground users
simultaneously. And the UAV-assisted NOMA transmission
system in mmWave is further investigated in [19].

For multi-user scenario, a base station (BS) can track the
channel condition of each user and schedule transmissions
among users according to their instantaneous channel quality
[20], so that the multi-user diversity benefits can be extracted.
There is usually a trade-off between the user fairness and cell
throughput. A proportional fairness (PF) scheduler can be used
to strike a balance of them while harnessing multiuser diversity
[21]. The user fairness of NOMA has been investigated in [22]
and [23] where BS transmits to several users in each time slot.
A proportional fair sub-carrier allocation scheduling scheme
for downlink NOMA has been proposed in [24]. Besides, an
opportunistic hybrid user scheduling strategy, called memory-
based greedy user scheduling, was proposed in [25], aiming at
maximizing the sum PF metric among users, while assuming
that each user communicates with the BS via only a single
stream.

To the best of our knowledge, the existing literature and
user scheduling studies for mmWave systems usually consider
simple user clustering, scheduling or power allocation prob-
lem, which may either transmit superposed signals of multiple
users (i.e., NOMA) or transmit via different data streams for
different users in each time slot (i.e., OMA). Besides, the joint
user clustering, scheduling and power allocation optimization
problem for generic multi-beam MISO-NOMA in mmWave
systems has not been addressed yet, which needs a careful
study on how to fully explore the multiuser diversity and
multiplexing gain.

In this paper, we explore the potential of MISO-NOMA user
clustering, scheduling, and power allocation joint optimization
in downlink mmWave systems. The main contributions of the
paper can be summarized as follows:

1) We model and formulate a joint user clustering, service
scheduling and power allocation problem for a downlink
mmWave system to maximize the proportional fairness
metric.

2) To handle the joint mixed integer non-convex optimiza-
tion problem and deal with its high complexity, we
decouple the problem and tackle in a two-step strategy: a
heuristic user clustering and an iterative power allocation

scheme in solving a sequence of geometric programming
(GP) problems.

3) Given the hybrid precoding matrix and user cluster-
ing strategy, we satisfy the proportional fairness metric
through the proposed time scheduling and show that
during each iteration and based on a fixed value of
interference term, the subproblem can be solved by
GP method. According to the simulation results, the
algorithm always converges after a limited number of
iterations and the final power allocation solution can be
obtained.

4) The performance of the proposed schemes is evaluated
by extensive simulations. Results show that our pro-
posed MISO-NOMA user clustering and power allocation
scheme built on proportional fairness metric and MMSE
precoder can achieve a good tradeoff between user
throughput and fairness. Besides, we study the impact
of the maximum allowable number of users per cluster
and propose an interesting strategy that dynamically
decides the number of users for each cluster. We show
that this dynamic scheme outperforms the standard fixed
approach.

Note that in our previous work [26], a generic power
minimization problem for a general downlink MISO-NOMA
system was studied, which however did not consider user
scheduling and explicit user fairness. Besides, here we focus
on the mmWave system and problem, which is different and
of great potential for 5G/B5G networks. Most importantly, we
consider a thorough user clustering, service time scheduling
and power allocation joint optimization problem in order to
achieve enhanced spectrum utilization efficiency, user fairness,
and number of supported users.

Notation: (·)T is used to denote the transpose of a matrix
while (·)H is used to denote the conjugate transpose of a
matrix. | · | denotes the magnitude of a scalar while ‖ · ‖F
represents the Frobenius norm. Furthermore, CN (·, ·) denotes
a complex Gaussian distribution, and IN indicates an N ×N
identity matrix. Furthermore, E[·] is used to denote statistical
expectation of random variable.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we define the system model and notations
used throughout the paper.

A. System Model

In this work, we consider a downlink single-cell MISO-
NOMA system, where a base station (BS) serves K users.
The set of users is denoted by K. It is assumed that each user
experiences frequency-flat block fading channel, for which the
channel condition remains constant within the frequency band
and within a time slot. The transmitter consists of hybrid RF
and baseband precoders to exploit the sparse-scattering nature
of mmWave channels.

For massive MIMO hybrid beamforming, the transmitter
architecture can be categorized as full connection architecture
and sub-array partition architecture. For the fully connected
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TABLE I
SYSTEM MODEL PARAMETERS

Notations Description
Ns The number of data streams
NRF The number of RF chains
NTX The number of physical transmit antennas
FBB NRF ×Ns baseband precoder
FRF NTX ×NRF RF precoder

structure, each antenna unit is associated with the weighted
sum of all outputs from each RF chain. Although its com-
plexity is higher than that of the sub-array model, the full
connection architecture provides better suppression of the
sidelobe of its radiation pattern.

A downlink multi-user mmWave system is considered. The
BS is equipped with NTX transmit antennas and NRF RF
chains, to transmit Ns (≤ NRF) data streams to K users. Each
user is equipped with a single receive antenna. In practical
systems, the number of users K may be much larger than
Ns, and the channel condition of each user may vary during
each scheduling time slot, some users will be scheduled to
transmit in each cluster during each time slot according to
the scheduling scheme. Suppose that for each time slot the
BS schedules transmissions to a certain number of users, and
we denote the index set of scheduled users for time slot t by
U(t). Denote by J the index set of data streams of the down-
link multi-user transmissions, where J , {1, 2, . . . , Ns}.
Each data stream j ∈ J serves one cluster with Lj users
performing NOMA. Besides, denote by Uj(t) the index set
of users who are assigned to the j-th cluster in time slot
t, where U(t) = U1(t)

⋃
U2(t)

⋃
...
⋃
UNs(t). It is assumed

that users in the same cluster communicate with the BS via
only a single stream, and the receiver performs successive
interference cancellation (SIC) to decode the superposed signal
of users in the same cluster. Note that the time slot variable t
can be omitted for simplicity unless it is needed for clarity.

The hardware block diagram of mmWave transmitter is
shown in Fig. 1. The transmitter consists of a full-connected
hybrid beamforming architecture, where each RF chain is con-
nected to all NTX transmit antennas. The hardware architecture
of the transmitter consists of an NRF×Ns baseband precoder
FBB, followed by an NTX×NRF RF precoder FRF. The major
notations of the system model are illustrated in Table I. Note
that Ns, NRF , NTX are related to the transmitter physical
settings, and are treated as constants in the optimization
problem.

The transmitted signal is thus expressible as:

x = FRFFBBs = Fs =

Ns∑
j=1

fjsj ,

where s , [s1, s2, . . . , sNs ]
T is used to denote the transmitted

data stream vector of dimension Ns × 1, and F , FRFFBB
which consists of column vector fj of dimension NTX×1 with
j = 1, 2, . . . , Ns. We assume that the channel state information
can be obtained in the transmitter side by some channel esti-
mation methods in mmWave channels such as using multiple

frequency tones [27] or deep learning methods [28]. It is
assumed that data stream sj represents the superposed signal
of NOMA users in cluster j, i.e., sj ,

∑
k∈Uj

√
pkbk, where

bk is the desired data of user k, and pk is the transmit power
for user k. Let p , (p1, p2, . . . , pK) be the power vector of
all users in the cell. Further, let qj ,

∑
k∈Uj pk be the sum

transmit power of users in the j-th cluster and we use power
vector q , (q1, q2, . . . , qNs) to denote the sum transmit power
of users of all clusters.

It should be noted that RF precoder is implemented using
analog phase shifters, thus all entries of FRF are of constant
modulus, i.e., |Fm,nRF | = 1/

√
NTX. It is also assumed that the

phase of each entry in FRF is quantized to Q bits, thus Fm,nRF =
1√
NTX

ejϕm,n , where ϕm,n ∈ {0, 2π
2Q
, . . . , 2(2

Q−1)π
2Q

}.
In narrowband block-fading channels, the received signal of

user k is expressible as:

yk = hTk x+nk = hTk FRFFBBs+nk = hTk fjsj+hTk
Ns∑
j′ 6=j

fj′sj′+nk,

(1)
where yk is the received signal of user k who is assigned
to cluster j, hk is the NTX × 1 channel vector such that
E[‖hk‖2F ] = NTX, n , [n1, . . . , nK ]T is the vector of i.i.d.
CN (0, σ2) noise, and ‖ · ‖F refers to Frobenius norm.

Let fBB,j be each column vector of FBB, where j =
1, 2, . . . , Ns. The inter-cluster interference plus noise of user k
who is assigned to cluster j can be obtained by (1) as follows:

Îk ,
Ns∑
j′ 6=j

qj′ |hTk FRFfBB,j′ |2 + σ2, (2)

where the first term is the inter-cluster interference and the
second term is the noise power at user k. To simplify the
notation, we use Ik to represent the normalized inter-cluster
interference plus noise value of user k, i.e.,

Ik ,
Îk

|hTk FRFfBB,j |2
, (3)

where Îk is given by (2).
In each cluster, the user signals are superposed for trans-

mission, and decoded by SIC at the reception of users. In
general downlink communication scenarios, the users with
better channel condition are allocated with lower power. The
optimal SIC decoding for downlink is in the decreasing order
of normalized interference plus noise value [29]–[31], which
depends on a user’s channel gain and also its experienced
interference and noise level. We define power vector q−j ,
(q1, . . . , qj−1, qj+1, . . . , qNs). The decoding order of users in
each cluster should be decided by their normalized interference
plus noise value, which is determined by the power allocation
for other clusters, i.e., q−j . The decoding order of users in
cluster j can be thus denoted by:

πj(q−j) , (πj(1), πj(2), . . . , πj(Lj)), (4)
where πj(l), l = 1, 2, . . . , Lj , being the l-th element of πj ,
means that user πj(l) will first decode the signals of πj(1) to
πj(l − 1) and then subtract these signals to decode its own
signal while treating the signals of πj(l + 1) to πj(L) as
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Fig. 1. Simplified hardware block diagram of mmWave transmitter with digital baseband precoding followed by constrained radio frequency precoding
implemented using RF phase shifters.

noise according to optimal decoding order and SIC principle
[32]–[34]. We have the following permutation of users in each
cluster accordingly:

1) Users are sorted in the descending order of their interfer-
ence plus noise values such that Iπj(1) ≥ Iπj(2) ≥ · · · ≥
Iπj(Lj).

2) If two users have the same interference plus noise value,
i.e., Iπj(l) = Iπj(l′) for l < l′, then πj(l) < πj(l

′).

For convenience, if user k is the l-th decoded user of cluster
j, i.e., πj(l) = k, we define pj,l as the power of user k, which
is equivalent to pk. Suppose that the decoding order of users
in cluster j is π̂j , thus the signal to interference plus noise
ratio (SINR) of user k can be calculated based on the received
signal in (1), which depends on the mmWave precoder and also
the power allocation strategy p:

SINRk(p,FRF,FBB)

=
p
j,π̂

(−1)
j (k)

|hTk FRFfBB,j |2(∑Lj

l′=π̂
(−1)
j (k)+1

pj,l′ |hTk FRFfBB,j |2 +

Ns∑
j′ 6=j

Lj′∑
l=1

pj′,l|hTk FRFfBB,j′ |2 + σ2

)
=

pj,k∑Lj

k′=π̂
(−1)
j (k)+1

pj,k′ + Ik
,

(5)

where Ik is given by (3) and we define π̂(−1)
j (k) to denote the

decoding order of user k in cluster j, according to π̂j , such
that π̂(−1)

j (k) = l for π̂j(l) = k. The achievable data rate of
user k assigned to stream j is thus given by:

Rk(p,FRF,FBB) = W log2(1 + SINRk(p,FRF,FBB)), (6)

where k ∈ K and W is the system bandwidth. Note that users
in the same cluster communicate with the BS via only a single
stream.

B. mmWave Channel

Due to the limited scattering characteristic of mmWave
channels, a mmWave channel can be modeled as the summa-
tion of M scattering paths as follows [4]: The channel vector
hk between the BS and user k at time slot t can be expressed
as:

hk(t) =
√
NTXD(dk)

M∑
m=1

αk,m(t)aHBS(φk,m(t)),

where M is the number of propagation paths that can be
observed by each user, D(·) is used to denote the path loss
function which is given by D(dk) = ηd−αk , where η = ( c

4πfc
)2

is the frequency-dependent factor with c = 3×108 m/s and fc
is the carrier frequency, αk,m(t) is the complex link gain of
the m-th path, and φk,m(t) ∈ [−π, π] is the angle of departure
(AoD) of the m-th path. By assuming a uniform linear array
(ULA) [35] case, we use aBS(·) to denote the array response
vector, which is expressible as:

aBS(φk,m(t)) =

1√
NTX

[
1, ej

2πd
λ sin(φk,m(t)), . . . , ej(NTX−1) 2πd

λ sin(φk,m(t))
]T
,

(7)

where λ is the signal wavelength and d is the minimum
distance between antenna elements.

Since the channels will evolve over time, it is considered
that the link gains have time correlation according to a Gauss-
Markov random process [36] and the AoD of each path
experiences time evolution similar to [37], [38] as follows:

αk,m(t) = ρ · αk,m(t− 1) +
√

1− ρ2∆αk,m(t), (8)

φk,m(t) = φk,m(t− 1) + ∆φk,m(t), (9)

where ∆αk,m(t) ∼ CN (0, 1), ρ ∈ [0, 1] is the correlation
coefficient, and ∆φk,m(t) ∼ N (0, σ2

u) with variance σ2
u =

( π
360 )2, for k = 1, 2, . . . ,K and m = 1, 2, . . . ,M .
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III. PRECODING ALGORITHMS FOR MMWAVE SYSTEMS

It has been shown that the hybrid precoding approach
proposed in [7] and [8] can achieve similar performance to
full digital precoding but at lower system cost and power
consumption for MIMO mmWave schemes. In [39] and in
[40], the hybrid precoding is designed according to the
clustering results. In our proposed scheme, the beamforming
users of each cluster are selected firstly to design the hybrid
precoding. Then, the other users are matched to each cluster
according to their channel correlation values with the designed
precoder of each cluster. In this section, we introduce two
exemplary designs of hybrid precoder: one based on singular
value decomposition (SVD) and the other based on minimum
mean-squared error (MMSE).

A. Spatially Sparse Precoding Design via OMP

A spatially sparse precoding algorithm based on orthogonal
matching pursuit (OMP) is proposed in [8], which exploits
the sparse scattering structure of mmWave channels. Algo-
rithms based on OMP are designed to approximate optimal
unconstrained precoders and combiners such that sub-optimal
performance can be achieved with low-cost RF hardware. The
precoder design problem is formulated as to minimize the
distance between FRFFBB and the channel’s optimal uncon-
strained precoder Fopt, see (10) below, which can be solved
by singular value decomposition (SVD) of the channel matrix.
Define the channel’s ordered SVD to be H = U

∑∑∑
VH , where

U is an Ns×rank(H) unitary matrix,
∑∑∑

is a rank(H)×rank(H)
diagonal matrix of singular values ranging in decreasing order,
and V is a NTX × rank(H) unitary matrix while VH is the
conjugate transpose of V. The optimal unconstrained unitary
precoder for H is thus given by Fopt = V. Given Fopt, the
precoder optimization problem can be stated as:

(Fopt
RF ,F

opt
BB) = arg min

FRF,FBB

‖Fopt − FRFFBB‖F , (10)

subject to

FRF ∈ FRF,

‖FRFFBB‖2F = Ns,
(11)

where FRF is the set of NTX×NRF matrices which are feasible
RF precoders, that is, each column of FRF is necessarily equal
to one of the following response vectors aBS(·)’s. We denote
them by matrix ABS to represent for the convenience of coming
discussions:

ABS ,

[aBS(φ1,1), . . . , aBS(φ1,M ), aBS(φ2,1), . . . , aBS(φK,M )],
(12)

where aBS(·) is defined in (7).
For completeness, we describe the procedure to compute

the hybrid spatially sparse precoder in Algorithm 1. In each
iteration of the algorithm, a column vector along which the
“residual precoding matrix” Fres has the largest projection
is selected from ABS, to be appended to the RF precoder
matrix FRF, as described by line 3, 4 and 5. Note that
FRF = [FRF|A(l∗)

BS ] in line 5 indicates that the column vector

A(l∗)
BS is appended to the matrix FRF. Then, the solution of FBB

is calculated (see line 6), and the contribution of the selected
vector on FRF is removed (see line 7). The procedure continues
for NRF iterations, until all beamforming vectors have been
selected. Finally, the baseband precoder is normalized (see
line 9).

Algorithm 1 Spatially Sparse Precoding Design via OMP
Input: Fopt, ABS
Output: FRF, FBB

1: Initialization: FRF = empty matrix, Fres = Fopt
2: for i ≤ NRF do
3: Φ = AHBSFres
4: l∗ = argmaxl=1,...,KLj (ΦΦH)l,l

5: FRF = [FRF|A(l∗)
BS ]

6: FBB = (FHRFFRF)−1FHRFFopt

7: Fres =
Fopt−FRFFBB

‖Fopt−FRFFBB‖F
8: end for
9: FBB =

√
Ns

FBB
‖FRFFBB‖F

B. Hybrid MMSE Precoding via OMP

Another hybrid precoder is the minimum mean-squared
error (MMSE) precoder proposed in [41], which can also
be easily implemented using an orthogonal matching pursuit
algorithm. The difference between the MMSE precoder and
aforementioned SVD precoder is that the MMSE precoder
jointly designs FRF and FBB for minimizing the sum mean-
square-error (MSE) of all streams and having the received
signal as close as possible to the original signal, i.e., mini-
mizing E[||s− ŝ||2], where s is transmitted signal while ŝ is
the received signal. The procedure to find the hybrid MMSE
precoder is presented in Algorithm 2 with inputs ABS and H̃,
where H̃ , [h̃1, . . . , h̃Ns ] and h̃j , j = 1, . . . , Ns, denotes the
highest channel gain for stream j.

The major difference between MMSE precoding and SVD
precoding lies in the method of designing the baseband pre-
coder FBB. By line 6 of Algorithm 1, the baseband precoder
FBB is calculated as the solution to the unconstrained least-
square minimization of ‖Fopt − FRFFBB‖F . While in line 6 of
Algorithm 2, the baseband precoder is derived as a closed-form
MMSE solution. As is analyzed in [41], the two precoding
designs yield the same total complexity order.

IV. PROPORTIONAL FAIR SCHEDULING METRIC

In the following, we consider proportional fairness metric
to strike a balance between cell throughput and user service
fairness.

A. Proportional Fairness for Single User Scheduling

In MISO-NOMA system, more than one user can be
scheduled for transmissions simultaneously. Always serving
the users with the best channel conditions can maximize the
total throughput, but the fairness among users would be poor
unless their channels are symmetric and have the same fading
statistics. In reality, the users’ channels are not the same and
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Algorithm 2 Hybrid MMSE Precoding via OMP

Input: H̃, ABS
Output: FRF, FBB

1: Initialization: FRF = empty matrix, Vres = INs , where INs
is an identity matrix

2: for i ≤ NRF do
3: Φ = AHBSH̃

H
Vres

4: l∗ = argmaxl=1,...,KLj (ΦΦH)l,l

5: FRF = [FRF|A(l∗)
BS ]

6: VBB = (FHRFH̃
H

H̃FRF + σ2FHRFFRF)−1FHRFH̃
H

7: Vres =
INs−FRFVBB

||INs−FRFVBB||F
8: end for
9: γ =

||FRFVBB||2F
Ns

10: Normalize FBB =
√

1/γVBB

a sum-rate maximization scheduling may degrade the service
quality of cell edge users. A proper time scheduling strategy
is relevant and can significantly affect the system throughput
and user fairness.

In proportional fair (PF) scheduling, the target is to max-
imize the long-term average throughput of users. In delay-
tolerant packet data systems, multi-user diversity can be
achieved by tracking the channel fluctuations of the users
and scheduling service time to users whose instantaneous
channel condition is relatively good compared to the time
average in the past. This strategy has been widely used in
wireless communications as it balances system sum rate and
user fairness and can be defined as follows [42]:

k∗ = argmax
k

Rk(t)

Tk(t)
,

where Rk(t) is the instantaneous throughput of user k at time
t and Tk(t) is its average throughput achieved at time t, which
is updated according to:

Tk(t+ 1) =


(1− 1

tc
)Tk(t) +

1

tc
Rk(t), if k = k∗,

(1− 1

tc
)Tk(t), if k 6= k∗,

where tc is the duration of considered past time window or
the throughput averaging parameter. Note that tc is considered
as a constant in the setting and does not change with time
slot t. It is known that the above PF scheduling is also
equivalent to maximizing the sum of the logarithms of the user
average throughput. It can be observed that the larger tc, the
less important the fairness constraint, and thus the above PF
scheduling tends to a maximum throughput scheduling when
tc → ∞. Note that in the case of large tc, a long delay may
appear between the successive transmissions of a user.

B. Proportional Fairness for Multiple User Scheduling

Recall that U(t) is the set of scheduled users over each time
slot t. The average throughput of user k is then updated by:

Tk(t+ 1) =


(1− 1

tc
)Tk(t) +

1

tc
Rk(t), if k ∈ U(t),

(1− 1

tc
)Tk(t), if k /∈ U(t).

Proposition 1. The optimal power allocation strategy p∗

that maximizes
∑
k∈U(t)

Rk(t)
Tk(t)

for long-term time average
is proportional fair (PF), where U(t) represents the set of
scheduled users for each time slot.

Proof. Suppose that the scheduled users interfere each other, it
is known [43], [44] that the following power allocation policy
maximizes the PF metric:

arg max
p

∏
k∈U(t)

(1 +
Rk(t)

(tc − 1)Tk(t)
). (13)

See also for example [23], [45], the use of (13) for NOMA
user scheduling problems. By expansion, we can rewrite (13)
as:∏
k∈U(t)

(1+
Rk(t)

(tc − 1)Tk(t)
) =

1 +
1

tc − 1

 ∑
k∈U(t)

Rk(t)

Tk(t)

+

(
1

tc − 1
)2

 ∑
{k1,k2}∈U(t),

k1 6=k2

Rk1(t)

Tk1(t)

Rk2(t)

Tk2(t)

+ · · · .

When tc tends to infinity, (13) is asymptotically equivalent to:

arg max
p

1 +
1

tc − 1

∑
k∈U(t)

Rk(t)

Tk(t)

 . (14)

Hence, for tc � 1, maximizing (14) is PF, which is indeed
equivalent to maximizing the value of

∑
k∈U(t)

Rk(t)
Tk(t)

for each
time slot. This completes the proof. �

By the result of Proposition 1, the PF scheduling problem
in (13) can be approximated and formalized as the following
weighted sum-rate (WSR) maximization problem to address:

arg max
bj,k,pk

∑
j∈J

∑
k∈K

bj,k
Rk
Tk

(15)

s.t. C1 : bj,k ∈ {0, 1},∀j ∈ J ,∀k ∈ K, (15a)

C2 :
∑
k∈K

bj,k ≤ Lj ,∀j ∈ J , (15b)

C3 :
∑
j∈J

bj,k ≤ 1,∀k ∈ K, (15c)

C4 :

K∑
k=1

pk ≤ Pmax, (15d)

C5 : pk ≥ 0,∀k ∈ K, (15e)

where we omit t for the sake of notational simplicity and
the binary variable bj,k decides whether user k is scheduled
in cluster j. Constraints C2 and C3 ensure that at most
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Lj users can be scheduled in each cluster and each user
receives a single beam at most. Constraint C4 represents the
limited transmit power Pmax available at the BS. Constraint
C5 refers to the non-negativity of transmit power. It can
be observed that (15) is a mixed integer and non-convex
optimization problem because of constraints C1–C3 (where
bj,k’s are binary decision variables) and the interference power
term in the objective function.

V. USER CLUSTERING AND SCHEDULING

In order to reduce the computational complexity, we decou-
ple the optimization problem (15) into two sub-problems such
that the user clustering and power allocation are performed
separately and by iterative algorithms. In the first step, the
BF matrix is constructed by OMP, based on SVD or MMSE
precoding. Then, the users are clustered according to their
channel conditions using the same principle of the Channel
Condition based User Clustering (CCUC) method in [26],
since CCUC can be conducted independently of the power
control part and has low computational complexity. Finally,
given the user clustering, the power allocation problem is
solved by using geometric programming (GP) techniques [46].

A. Heuristic User Clustering Method

When the hybrid beamforming precoder is obtained, the user
selection and clustering is computed based on the channel
conditions such that users that are allocated to cluster j
are highly correlated with the hybrid precoder for cluster j,
i.e., FRFfBB,j . The CCUC algorithm proposed in [26] adopts
zero forcing for constructing the precoding matrix, thus the
channel condition metric is the correlation value between user
channels. However, in this work, since the precoding matrix is
constructed based on OMP method, thus, the channel condition
metric will be the correlation value between user channels and
the precoding matrix of each BF user. The maximum number
of users per cluster is limited to Lj , as a constraint due to
receiver decoding complexity and error propagation issues in
practical SIC implementations [21].

The proposed heuristic user clustering is summarized in
Algorithm 3. For the simplicity of notation, we use Uj to
denote the user set of cluster j, while Jfull denotes the set
of clusters that are full (i.e., any cluster j which has already
Lj users). The correlation value between each user k and the
hybrid precoder of each cluster j is determined and there are
in total K ×Ns correlation values. At each iteration (see line
2–8), a user k∗ is assigned to a cluster j∗ according to the
channel quality based metric (see line 3) such that k∗ and j∗

have the highest correlation value given that cluster j∗ is not
full. The algorithm terminates when either all the users are
selected or all the clusters are full.

B. Geometric Programming for Power Allocation

Suppose that the user clustering strategy is settled and the
mmWave precoders FRF and FBB are given based on the

Algorithm 3 The proposed user clustering algorithm
Input: FRF, FBB, and H
Output: Uj for j ∈ J

1: Initialization: Uj = ∅ for j ∈ J , Jfull = ∅, K′ ,
U1
⋃
. . .
⋃
UNs

2: while K′ 6= K and Jfull 6= J do
3: Match a new user to a cluster such that they

have the highest correlation value, i.e., (k∗, j∗) ,

arg max
(k,j) : k∈K\K′, j∈J\Jfull

|hTk FRFfBB,j |
‖hk‖·‖FRFfBB,j‖

4: Uj∗ ← Uj∗
⋃
{k∗}

5: if |Uj∗ | = Lj then
6: Jfull ← Jfull

⋃
j∗

7: end if
8: end while

channel conditions of BF users, we now have the power
allocation problem below according to (15):

arg max
p

∑
j∈J

∑
k∈Uj

Rk
Tk

(16)

s.t. C1 :
∑
k∈U

pk ≤ Pmax, (16a)

C2 : pk ≥ 0, k ∈ U . (16b)

Note that bj,k’s in (15) are now removed, since the user
clustering has already been done previously. Problem (16) can
be converted to the linear fractional programming problem
and then solved optimally by the monotonic optimization
approach using the polyblock algorithm [47]. The fractional
programming problem can be derived as follows:

arg max
p

∏
j∈J

∏
k∈Uj

[
fk(p)

gk(p)

] 1
Tk

(17)

s.t. C1 :
∑
k∈U

pk ≤ Pmax, (17a)

C2 : pk ≥ 0, k ∈ U , (17b)

where fk(p) = pj,k +
∑Lj

k′=π̂
(−1)
j (k)+1

pj,k′ + Ik and gk(p) =∑Lj

k′=π̂
(−1)
j (k)+1

pj,k′ + Ik. The problem dimension of the

fractional programming is denoted by D =
∑
j∈J |Uj |. Note

that the polyblock algorithm has worst-case exponential-time
complexity in D, which makes it not practical when D ≥ 10
[48]–[50]. Moreover, it requires a large number of iterations
when D ≥ 5. Therefore, we propose a low-complexity
iterative algorithm by geometric programming (GP) techniques
to solve the power allocation problem. Note that the problem
(16) can be re-written as follows.

Proposition 2. Problem (16) can be converted into the
following optimization problem with R , (Rk)k∈U as the
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optimization variable.

argmin
R

log e
−

∑
k∈U

Rk
Tk (18)

s.t.

C1 : log e−Rk ≤ 0,∀k ∈ U , (18a)

C2 :

Ns∑
j=1

Lj∑
l=1

(Iπj(l) − Iπj(l+1))

Pmax +
∑Ns
j′=1 Iπj′ (1)

e
∑l
l′=1

Rπj(l′)
ln 2
W ≤ 1.

(18b)

Proof. See Appendix A. �

It can be seen that the objective function of (18) is linear and
the constraint C1 is convex in R. However, the constraint C2
is not convex, since the interference term Iπj(l), j = 1, . . . , Ns
and l = 1, . . . , L, depends on the power allocation strategy and
is thus a function of the data rates of the other users. According
to geometric programming (GP), the objective function of
a problem needs to be linear while the constraints should
be convex. As a consequence, we design an iterative power
control algorithm. At each iteration, the interference terms are
assumed to be fixed values, independent of each user’s data
rate, such that the constraint C2 becomes convex in R, and the
problem (18) can be solved by GP method. At each iteration,
the interference of each user is calculated based on the power
allocation strategy of the former iteration and the data rates of
the other users. Here, the GP problem can be solved by using
interior point methods, which is a very efficient algorithm,
with the worst-case polynomial-time complexity [46], [51].
Then, given the data rate, the power allocation strategy can
be determined and be used to calculate the interference in the
next iteration.

Let I(n)k and R(n)
k be the normalized interference plus noise

value and the achievable data rate of user k at iteration n,
respectively. In addition, we define vector R(n) , (R

(n)
k )k∈U

to represent the data rates of users at the n-th iteration. Note
that the iterations are in the same time slot, and thus the
average throughput of each user Tk does not change. We solve
the following problem at each iteration for problem (18):

argmin
R(n)

log e
−

∑
k∈U

R
(n)
k
Tk (19)

s.t.

C1 : log e−R
(n)
k ≤ 0,∀k ∈ U , (19a)

C2 : log

Ns∑
j=1

Lj∑
l=1

(I
(n−1)
πj(l)

− I(n−1)πj(l+1))

Pmax +
∑Ns
j′=1 I

(n−1)
πj′ (1)

e
∑l
l′=1

R
(n)

πj(l
′)

ln 2
W ≤ 0.

(19b)

At each iteration n, since I(n−1)πj(l)
’s, for j = 1, . . . , Ns and

l = 1, . . . , Lj , are given fixed values, the problem (19) is
exactly in the form of GP and we can solve it by using interior
point methods at each iteration.

Theorem 3. Given the data rates of all users R, the power
consumption of cluster j, j ∈ J , with the decoding order πj

can be calculated as:

qj(πj , q−j) =

Lj∑
l=1

χl(πj)Iπ̂j(l), (20)

where
χl(πj) ,

[∏
l′<l

(γπj(l′) + 1)
]
γπ̂j(l), (21)

and
γk , 2

Rk
W − 1, k ∈ K. (22)

Proof. See Appendix B. �
We describe our iterative power allocation algorithm for

solving (16) by Algorithm 4. In each iteration, the interfer-
ence terms are regarded as fixed values such that the power
allocation problem can be converted as a GP problem with
data rate vector as the optimization variable. We solve the
GP problem in the first place to obtain the data rate allocation
strategy R(n)(t). Then, the power vector p(n) can be uniquely
determined accordingly. We conduct exhaustive computer sim-
ulations and find that the algorithm always converges after a
limited number of iterations and the final data rate allocation
strategy R∗ can be obtained.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
user clustering and power allocation strategy under different
scheduling metrics and precoding schemes. In OMA scheme,
only one user is assigned to each cluster. However, in NOMA
scheme, the maximum number of users per cluster can be
larger than one (Lj ≥ 1). We will consider both proportional
fairness (PF) and sum rate (SR) maximization metrics for
comparison. The SR maximization metric is adopted by setting
Tk = 1,∀k ∈ K in (15). Note that we implement the SVD and
MMSE precoding schemes under the assumption of perfect
CSI at the BS.

Following 3GPP specifications [52], we set the power limit
of BS, Pmax, as 46 dBm and the noise spectral density at
−174 dBm/Hz. The carrier frequency of the mmWave system
is set at 28 GHz while the bandwidth is equal to 100 MHz.
We simulate for each network topology a duration of 104 time
slots, in which the BS is located at the center of a cell and
the users are uniformly generated within the cell with channel
conditions set according to 3GPP and standard mmWave radio
propagation model (see Section II). The system parameters
are summarized in Table I. It is worth noting that the plots
of simulation results are obtained by simulating 104 instances
of randomly generated network realization while each point is
the obtained average result.

First, we evaluate the sum rate performance of different
precoding, user scheduling and power allocation schemes. We
set Lj = L,∀j, for simplicity. Fig. 2(a) and Fig. 2(b) illustrate
the sum spectral efficiency against the number of users under
different schemes. Here, we assume that each cluster contains
two users (i.e., Lj = L = 2,∀j). It can be seen that the
sum spectral efficiency increases generally with the number of
users due to multi-user diversity. From Fig. 2(a), we observe
that NOMA-SR-MMSE, which uses SR maximization as the
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Algorithm 4 The iterative power allocation with GP for one
time slot
Input: Uj for j ∈ J , Tk for k ∈ U , and I(n−1)k for k ∈ U
Output: R(n)

k for k ∈ U , q(n)j for j ∈ J , and p(n)j for j ∈ J
1: Solve GP problem (19) to obtain the optimal data rates of

scheduled users Rk for k ∈ U .
2: for j := 1, 2, . . . , Ns, do
3: Calculate the optimal decoding order, πj , based on (4),

with inputs I(n−1)k for k ∈ U
4: for l := 1, 2, . . . , Lj , do
5: Calculate γj,πj(l) by (22), i.e.,

γj,πj(l) := 2
rj,πj(l)

W − 1

6: Calculate χl by (21), i.e.,

χl :=
[∏
l′<l

(γπj(l′) + 1)
]
γπj(l),m

7: end for
8: Determine the least required transmit power of cluster

j as follows:

q
(n)
j :=

Lj∑
l=1

χlI
(n−1)
πj(l)

9: Determine the power allocation for user πj(Lj), which
is quoted below:

p
(n)
πj(L)

:= γπj(Lj)I
(n)
πj(L)

10: for l := Lj − 1, Lj − 2, . . . , 1, do
11: Calculate the allocated power to user πj(l) as fol-

lows:

p
(n)
πj(l)

:= γπj(l)

(∑
l′>l

p
(n)
πj(l′)

+ I
(n−1)
πj(l)

)
12: end for
13: end for
14: return R

(n)
k for k ∈ U , q(n)j for j ∈ J , and p(n)j for

j ∈ J

user scheduling metric, achieves the highest spectral efficiency.
On the other hand, NOMA-PF-MMSE scheme, which uses PF
maximization as the user scheduling metric, obtains a slightly
lower spectral efficiency compared to NOMA-SR-MMSE. It
is because NOMA-PF-MMSE scheme takes user fairness into
concern and some spectral efficiency performance are sacri-
ficed for the tradeoff. We also simulate for OMA schemes. It is
shown in Fig. 2(a) that NOMA-PF-MMSE outperforms OMA-
PF-MMSE generally. OMA-SR-MMSE has the lowest spectral
efficiency performance compared to other MMSE schemes and
does not increase a lot along with the increase of user number,
it is because the maximum scheduled user number of OMA
is limited as the number of antennas and less user diversity
can be achieved. As expected, we can see from Fig. 2(b), the
spectral efficiency of NOMA schemes is clearly higher than
that of OMA, similar to that in Fig. 2(a). Another observation
is that MMSE precoder has higher spectral efficiency than

TABLE II
SIMULATION PARAMETERS

Parameters Values
Cell radius (m) 10

Channel correlation coefficient, ρ 0.9924
Noise power spectral density -174 dBm/Hz

Transmit power budget of a BS, Pmax 46 dBm
Throughput calculation Shannon’s capacity formula
Carrier frequency, fc 28 GHz

System bandwidth, W 100 MHz
Maximum number of iterations 100

Number of transmit antennas NTX 32
Number of RF chains NRF 8
Number of data streams Ns 8

No. of simulation instances for each case 104

SVD precoder generally. It is because MMSE is able to form
very narrow beams by RF antenna arrays with high number of
transmit and receive antennas. It can also be seen in Fig. 2(b)
that the spectral efficiency of all the schemes for 16 users
per cell is higher than that of 20 users per cell, and the
curves for NOMA-PF-SVD and the OMA-PF-SVD are not
too smooth. The reason is that there is tradeoff between the
spectral efficiency and user fairness, which may sacrifice the
spectral efficiency for the user fairness.

To evaluate the user fairness, we use the Jain’s fairness index
[53], which is given by:

JFI =

(∑K
k=1 R̄k

)2
K
∑K
k=1 R̄

2
k

, (23)

where we have R̄k to denote the average throughput of user
k during the simulation period while the throughput of user is
measured over a sliding window of 30 slots. Fig. 3 shows the
user fairness against the number of users under the different
schemes. It can be seen that the user fairness decreases with
the increase of the number of users per cell. This is because
the users compete to access and the sum transmitted power
is limited, which leads to the unfairness among users. As
expected, NOMA-SR-MMSE scheme has the lowest fairness
since its target is to maximize the sum rate instead of user
fairness. On the other hand, the NOMA-PF-SVD scheme can
achieve the highest user fairness at the expense of its low
spectral efficiency (see Fig. 2(b)). Further, it can also be seen
that with a same precoding strategy, NOMA can achieve higher
user fairness than OMA. Taking into account both the sum-rate
and user fairness performance, we see that overall NOMA-
PF-MMSE can achieve a good balance between the spectral
efficiency and user fairness, and is the most interesting scheme.

Consider that the maximum number of users per cluster is at
L = 2 and the number of data streams is at Ns = 8, we assume
16 users to be clustered and scheduled for transmission. It
should be noted that the actual number of users that are
allocated with transmit power in the optimization solution
can be less than or equal to 16 since some users could be
allocated with zero power. Let K+(t) be the number of users
that are allocated with positive power in time slot t. Fig. 4 plots
the average value of K+(t) over t, say the average number
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Fig. 2. Sum spectral efficiency vs. the number of users per cell, for L = 2.

of scheduled users, against the total number of users in the
system, where L = 2, under the different schemes. It can be
seen that NOMA-SR-MMSE scheme can accommodate the
highest number of scheduled users. NOMA-PF-MMSE has
very close performance compared to NOMA-SR-MMSE. On
the other hand, the OMA scheme has the lowest number of
scheduled users on average. It is because only Ns users are
selected in the user clustering procedure and then considered
during power allocation.

Moreover, we evaluate the performance of NOMA-PF-
MMSE with different number of antennas, NTX , and RF
chains, NRF , respectively. The number of users is fixed
to be K = 40. Fig. 5 shows the sum spectral efficiency
and Jain’s fairness index performance of NOMA-PF-MMSE
versus the number of antennas. We can see that the spectral
efficiency grows with the number of antennas and the curve for
Jain’s fairness index is flat since a larger number of antennas
can provide a higher degree of freedom. Fig. 6 shows the
performance of NOMA-PF-MMSE versus the number of RF
chains. It can be seen from Fig. 6 that the spectral efficiency
decreases slowly with the number of RF chains and the Jain’s
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Fig. 3. Jain’s fairness index vs. the number of users per cell, for L = 2.
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Fig. 4. The average value of K+(t) over t, say the average number of users
allocated with positive power, vs. the number of users per cell, for L = 2.

fairness index remains stable. The reason is that when the
number of RF chains increases, it will bring some interference.

We also investigate the influence of the maximum number of
users per cluster, denoted by L, on the system’s performance.
We consider two strategies of setting L, namely fixed-L strat-
egy and dynamic-L strategy, to compare. In fixed-L strategy,
the maximum number of users of each cluster is fixed and
equal to L (such that the number of scheduled users in each
time slot is equal to NsL), whereas in dynamic-L strategy,
all users are clustered during the user clustering step and
L = dK/Nse, where d·e represents rounding up to an integer.
Note that when L = 1, it is equivalent to OMA, where each
cluster contains only one user.

Fig. 7 and Fig. 8 show the sum spectral efficiency and user
fairness performance for different L, respectively, considering
NOMA-MMSE-PF scheme especially. It can be seen that both
the spectral efficiency and user fairness are improved with
the increase of L under fixed-L schemes. On the other hand,
the dynamic-L scheme indeed performs better than the fixed-
L schemes. Fig. 9 shows the average number of scheduled
users per time slot increases with the number of users per
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Fig. 5. Sum spectral efficiency and Jain’s fairness index of NOMA-PF-MMSE
vs. the number of antennas (K = 40).
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Fig. 6. Sum spectral efficiency and Jain’s fairness index of NOMA-PF-MMSE
vs. the number of RF chains (K = 40).

cell. We can see that dynamic-L scheme outperforms the fixed-
L schemes and can be considered as an upper bound. Note
that dynamic-L scheme does not discard users during the
user clustering step and let the power allocation optimiza-
tion determine during the user scheduling. Thus, dynamic-L
scheme is more adaptive to different user density in a system.
However, it should be noted that the computational complexity
of SIC receiver grows with L and in practice there exists error
propagation during SIC [21].

In Fig. 8, we can see that the user fairness performance
is not monotone and it first increases and then decreases.
This is because the user diversity is low when K is small
(e.g., when K = 8, all of the users are served simultaneously
by 8 beams) such that the channels of some users can be
highly correlated, which would result in large inter-beam
interference and poor achievable data rates at the users. Since
the optimization targets to maximize the user fairness in the
system, the solution will arrive to a result where a few users are

served. This situation occurs more frequently when K is small
and substantially degrade the system’s overall performance
and also the user fairness. The user fairness increase from
K = 8 to K = 11. When K is larger, one can expect higher
user diversity in the system. However, it should be noted that
when the number of users grows, there would be an increasing
number of users of low data rate although the PF scheduler
will try to maintain user fairness, it would not support high
throughput to users under poor channel conditions, due to the
limited power and the interference limited system, resulting to
lower service fairness in the system (from K > 11).

Furthermore, we compare the performance of the GP
scheme with that of the polyblock solution. In our former sim-
ulation, the number of data streams Ns = 8 and L = 2, thus
the problem dimension is D =

∑
j∈J |Uj | = Ns × L = 16.

For the comparison of the GP and polyblock algorithms and
their practical implementation, we set the number of data
streams Ns = 3 and L = 2, and thus D = Ns × L = 6.
We then compare the performance of the two algorithms under
the NOMA-PF-MMSE scheme. Fig. 10 shows the spectral effi-
ciency performance versus the maximum number of iterations
of the polyblock algorithm. The number of users is 20. Since
the polyblock algorithm will take a very long (computation)
time for 10,000 time slots, each point is obtained by taking
average of the sum rate of each time slot in 100 time slots for
one randomly generated network realization. The red curve
represents the spectral efficiency of the GP algorithm. We can
see from Fig. 10 that when the number of iterations is small,
the performance of the polyblock algorithm is worse than that
of the GP algorithm. The spectral efficiency performance of
the polyblock algorithm increases with the maximum number
of iterations and the curve becomes flat when the number of
iterations is larger than 400. When the number of maximum
iterations is 500, the GP algorithm can still achieve 85.1%
of the spectral efficiency of the polyblock algorithm. Fig. 11
shows the running time (in log scale) versus the maximum
number of iterations of polyblock. It is shown that the running
time of the polyblock algorithm increases very fast with the
maximum number of iterations, which is much longer than
that of the GP algorithm.

VII. CONCLUSION

In this paper, we study for MISO-NOMA user cluster-
ing, scheduling, and power allocation joint optimization in
downlink mmWave communications. The mixed integer non-
convex optimization problem is solved in a two-step scheme:
a heuristic user clustering and precoding step, and an iterative
GP power allocation step. Since the propagation of mmWave
is highly directional with severe path loss, different hybrid
precoding strategies are investigated and users are grouped into
clusters for superposed transmissions. A heuristic user clus-
tering algorithm is proposed, which takes the inter-correlation
value between channels as criteria and is applicable for various
number of users per cluster. To strikes a balance between
the spectral efficiency and user fairness, we adopt PF metric
for service scheduling and power allocation. One can see
that the resource allocation problem can be expressed as a
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weighted sum rate maximization problem, for maximizing the
PF metric. The non-convex optimization problem is finally
solved in an iterative way, where in each iteration, the problem
can be converted into a GP problem and be solved by
standard interior point methods. Simulation results show that,
NOMA-PF-MMSE can achieve an overall optimal balance
between the sum spectral efficiency and user fairness. Note
that although SVD precoder can achieve higher user fairness,
it has quite poor sum spectral efficiency when compared to
that of MMSE precoder. Besides, we investigate the influence
of the maximum number of users per cluster, denoted by
L. It is shown that the proposed dynamic-L scheme can
achieve a strictly better performance than the standard fixed
approach and can adapt to various user density and practical
scenario. One may also consider in the future to use NOMA
and mmWave techniques for mobile edge computing, fog
radio access, mission-critical IoT, and massive machine type
communications in 6G systems.
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APPENDIX A
PROOF OF PROPOSITION 2

Proof. We convert the optimization problem (16) into a GP
problem by following the method in [54]. The achievable rate
region of user k, who is assigned to cluster j, can be expressed
as:

R(Ik, pk) ={
Rπj(l) : Rπj(l) ≤W log

(
1 +

pπj(l)

Iπj(l) +
∑
l′>l pπj(l′)

)
,

l = 1, . . . , Lj

}
.

(24)

Assume that the data rate vector of all users {Rk} reaches
its boundary, the power consumption of each user can be
calculated according to the data rate:

pπj(l) =
(
eRπj(l) ln 2/W − 1

)(
Iπj(l) +

∑
l′>l

pπj(l′)

)
. (25)
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The following equation stands for the sum power of all users
assigned to cluster j:
Lj∑
l=1

pπj(l) =

Lj∑
l=1

e
∑l
l′=1

Rπj(l′) ln 2/W
(Iπj(l)−Iπj(l+1))−Iπj(1).

(26)
And the sum power consumption of BS can be calculated by
summing up the power of each cluster:

Ns∑
j=1

Lj∑
l=1

pπj(l) =

Ns∑
j=1

 Lj∑
l=1

e
∑l
l′=1

Rπj(l′) ln 2/W
(Iπj(l) − Iπj(l+1))− Iπj(1)

 .

(27)

Intuitively, the optimal power allocation strategy of the
weighted sum rate maximization can be obtained when the
sum power is maximum. Thus, the sum power of the BS
should be less than or equal than Pmax, and (27) can be
converted to:
Ns∑
j=1

Lj∑
l=1

(Iπj(l) − Iπj(l+1))

Pmax +
∑Ns
j′=1 Iπj(1)

e
∑l
l′=1

Rπj(l′) ln 2/W ≤ 1. (28)

Therefore, problem (16) can be converted to (18) with data
rate vector {Rk} as the optimization variable, and the proof
is completed. �

APPENDIX B
PROOF OF THEOREM 3

Proof. According to (6), the allocated power to user πj(l) is
as follows:

p
(t)
πj(l)

:= γπj(l)

(∑
l′>l

p
(t)
πj(l′)

+ I
(t−1)
πj(l)

)
. (29)

The power of user πj(L) and πj(L − 1) in cluster j can be
calculated as follows:

p
(t)
πj(L)

:= γπj(L)I
(t)
πj(L)

, (30)

p
(t)
πj(L−1) := γπj(L−1) × (p

(t)
πj(L)

+ I
(t)
πj(L−1)). (31)

Based on (30) and (31), we obtain that
L∑

l=L−1

pπj(l) =

γπj(L−1)Iπj(L−1) + (γπj(L−1) + 1)γπj(L)Iπj(L).
(32)

Then, we calculate the power of user πj(L− 2), which is as
follows:

pπj(L−2) = γπj(L−2) × (pπj(L−1) + pπj(L) + Iπj(L−2)).
(33)

Based on (32) and (33), the required power of the last three
users is obtained. We repeat the aforementioned steps, the
summation of all the Lj,m users’ transmit power is obtained,
i.e.,

L∑
l=1

pπj(l) =

L∑
l=1

[∏
l′<l

(γπj(l′) + 1)
]
× γπj(l)Iπj(l), (34)

which completes the proof. �
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