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The observation of ideal four-wave mixing dynamics is notoriously difficult to implement experimentally due to the
generation of higher-order sidebands and optical loss, which limit the potential interaction distance. Here, we overcome
this problem with an experimental technique that uses programmable phase and amplitude shaping to iterate the wave
mixing initial conditions injected into an optical fiber. This extends the effective propagation distance by two orders of
magnitude, allowing idealized Kerr-driven dynamics to be seen over 50 km of fiber using only one short fiber segment of
500 m. Our experiments reveal the full phase space topology, showing characteristic features of multiple Fermi–Pasta–
Ulam recurrence, stationary wave existence, and the system separatrix representing the boundary between two distinct
regimes of spatiotemporal evolution. Experiments are in excellent quantitative agreement with numerical solutions of
the differential equation system describing the wave evolution. This experimental approach can be readily adapted to
study other wave mixing and nonlinear propagation phenomena in optics. © 2022 Optica Publishing Group under the terms

of theOptica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.445172

1. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is one of the seminal
equations of science, describing wave evolution in a dispersive
medium subject to an intensity-dependent nonlinear phase shift.
It applies to many different domains including plasma physics,
hydrodynamics, Bose–Einstein condensates, analog gravity,
self-focusing and filamentation, and propagation in optical
fiber [1].

The study of the nonlinear dynamics of the NLSE is a sub-
ject of very broad interest, and recent studies have yielded major
advances in our understanding of processes such as symmetry
breaking and Fermi–Pasta–Ulam (FPU) recurrence, as well as
new insights into modulation instability [2–7]. The key physical
process in the NLSE is nonlinear four-wave mixing (FWM), which
arises from the dispersion-mediated energy exchange between
discrete evolving frequency components [8]. From a fundamental
perspective, the essential features of FWM are most clearly seen
in the degenerate case when a single frequency pump generates
only two sidebands of upshifted and downshifted frequency. In
this case, the system is fully described by a reduced system of three
coupled differential equations that fully capture the rich dynamical
landscape [9]. This includes effects such as the initial phase of
modulation instability, FPU recurrence, stationary waves (fixed
points), and the separatrix (representing the boundary between
different regimes of spatiotemporal evolution). However, although

this canonical FWM system has been the subject of a number
of previous theoretical and numerical studies, it is notoriously
difficult to implement in practice.

Here, we address this shortcoming directly through a new
experimental technique that allows us to characterize near-ideal
FWM dynamics in a NLSE system based on optical fiber propa-
gation. In particular, we have developed a system where iterated
initial conditions are sequentially injected into an optical fiber,
extending the effective propagation distance by two orders of mag-
nitude and mitigating against unwanted sideband generation and
optical loss. As a result, we are able to clearly follow the dynamical
interactions among only four evolving frequency components
over a distance of 50 km using only one fiber segment of only
500 m length. Our experiments reveal the full dynamical phase
space topology, revealing characteristic features of multiple FPU
recurrence cycles, stationary wave existence, and the system sepa-
ratrix. We compare our experimental results with solutions of the
canonical differential equation system describing the wave evolu-
tion, obtaining excellent agreement. This approach represents a
significant improvement in both implementation and accuracy on
previous approaches, and moreover, it can be readily generalized
to the study of any arbitrary number of interacting wave com-
ponents. This represents a major advance in the development of
experimental techniques in nonlinear fiber optics.
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2. THEORETICAL BACKGROUND AND PRINCIPLE

We first review the theoretical description of ideal FWM dynam-
ics in the NLSE, and use numerical simulations to illustrate the
expected dynamical behavior. In an ideal single mode and loss-
free fiber, the evolution of a slowly varying electric field envelope
ψ(z, t) is governed by the NLSE

i
∂ψ

∂z
−
β2

2

∂2ψ

∂t2
+ γ |ψ |2ψ = 0, (1)

with z being the propagation distance and t the time in a reference
frame traveling at group velocity. The group velocity dispersion is
β2, and the nonlinear Kerr coefficient is γ . We can write the NLSE
in normalized form:

i
∂A
∂ξ
+

1

2

∂2A
∂τ 2
+ |A|2 A= 0. (2)

Here, normalized propagation and co-moving time variables
ξ and τ are linked to the dimensional quantities in fiber optics
by ξ = z/LNL and τ = t/

√
|β2|LNL. The characteristic length

scale is defined as LNL = (γ P0)
−1, with P0 a power variable that

in our case corresponds to the total average power of the evolving
field, i.e., taking into account pump and any sideband components
[9]. The normalized field is related to its dimensional equivalent
ψ(z, t) by A(ξ, τ )=ψ(z, t)/

√
P0. Note that this form of the

NLSE that describes “focusing” dynamics is associated with a fiber
dispersion parameterβ2 < 0.

We discuss the fundamental wave mixing processes in the NLSE
by considering the injection of a modulated pump wave A0 with
two sidebands at frequencies±�:

A(ξ, τ )= A0(ξ)+ A−1(ξ) exp (i�τ)+ A1(ξ) exp (−i�τ) .
(3)

Note that we omit the carrier frequency here, and the normal-
ized frequency� is related to dimensional frequency fm in Hz by
�= 2π fm

√
|β2|/γ P0. In general, the injection of such a modu-

lated signal in an optical fiber leads to the generation of multiple
additional sidebands, but the ideal truncated FWM system that
describes only pump and first sideband energy exchange with
distance is described by only three coupled equations that are well
known in the field of parametric amplification [10]:
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(4)

When |A±1| � |A0|, amplification of the lateral side-
bands can occur for �< 2, with maximum gain at a frequency
�=�0 =

√
2. This is of course the same condition for maximum

gain that is derived in the linear stability analysis of modulation
instability [9]. Note also that even though this system describes
degenerate FWM, the fact that there are only three frequency
components involved has led to it being described (somewhat
confusingly) as a “three wave” system.

Although solutions for the power [11] and phase [12] evolution
of each component can be written in terms of elliptic functions,
a significantly more intuitive picture of the dynamics is obtained
using a Hamiltonian approach. Specifically, we associate the system
with the one-dimensional conservative Hamiltonian

H = 2η(1− η) cos φ +
(
�2
+ 1

)
η−

3

2
η2, (5)

with canonical conjugate variables η= η(ξ) and φ = φ(ξ)

satisfying

∂η

∂ξ
=
∂H
∂φ

and
∂φ

∂ξ
=−

∂H
∂η
, (6)

and where η and φ are related to the amplitudes Ak(ξ) and phases
ϕk(ξ) of the evolving sidebands (k = 0, ±1) by{

η=
|A0|

2

|A0|
2+|A−1|

2+|A1|
2 ,

φ = ϕ1 + ϕ−1 − 2ϕ0.
(7)

Here, η and φ have physical interpretations as the fraction of
total power in the central frequency component and the sideband–
pump frequency component phase difference, respectively. Tracing
the dynamics in the (η cos φ, η sin φ) plane fully captures all the
physics of this ideal system.

To illustrate the physics of this system [13], Fig. 1 shows model-
ing results for different initial conditions. The parameters chosen
correspond to maximum gain with �=�0, and we assume ini-
tially equal sideband intensities A1(0)=A−1(0). In Figs. 1(a) and
(b), we show results of numerical integration of the ideal FWM
system in Eq. (4) (blue), results from simulation of the segmented
approach (described below) that we use in our experiments (red),
and results from the numerical solution of the full multiwave
interactions from the NLSE (yellow). In (c), we show the temporal
evolution computed from Eq. (3) for the ideal FWM case.

We now discuss these results in detail. We first consider initial
value η0 = 0.9 and in-phase initial components (φ0 = 0 shown
in Figs. 1(a1)–(c1)). The evolution of η in (1a) shows reversible
energy transfer from the central mode to the sidebands, associated
with expected FPU recurrence [2,14]. This recurrence is also seen
in the temporal intensity profile in (c1), and is reflected in the
closed trajectories in the phase space portrait in (b1). These orbits
are on the right-hand side of the separatrix [dashed black line, also
computed from Eq. (4)]. The separatrix divides the phase space
into two regimes, and we see a qualitatively different evolution
with different initial conditions of η0 = 0.9 andφ0 = π . Although
the power redistribution between modes remains periodic (a2),
the amplitude variation is increased compared to the previous case.
Moreover, the closed phase space trajectory (b2) is on the opposite
side of the separatrix, associated with modified evolution as shown
in (c2), with a temporal phase shift taking place in each recurrence
cycle [2,15]. Indeed, comparing (c1) and (c2) illustrates the physi-
cal difference between trajectories on either side of the separatrix,
and highlights the importance of the initial phase in driving the
dynamics.

As a final example, Figs. 1(a3)–(c3) show the dynamics observed
for η0 = 0.715 and with φ0 = 0. This leads to a near-stationary
solution with very low amplitude variation in the sideband ratio
η (a3) and in the temporal intensity profile (c3). The phase space
trajectory in this case is a closed orbit of very small effective radius,
close to a fixed point of the system (b3).

Figures 1(a1)–(a3) also show the evolution of η computed from
the numerical simulation of the full NLSE including multiple side-
band generation (yellow). These results are clearly very different
from the truncated ideal FWM system, with significantly more
depletion of the central frequency component as additional side-
bands are generated [4]. These differences are also very apparent
when comparing the ideal FWM (blue) and NLSE (yellow) orbits
in the phase space portraits in (b1)–(b3). In fact, we see that the
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Fig. 1. Evolution properties of a strong pump and two lateral sidebands spaced by �=�0 =
√

2. Results are shown for different initial conditions:
(a1)–(c1) η0 = 0.9 and φ0 = 0; (a2)–(c2) η0 = 0.9, φ0 = π ; (a3)–(c3) η0 = 0.715 and φ0 = 0. Subpanels (a) show evolution of η for the ideal FWM sys-
tem (blue), a segmented approach (red), and full NLSE (yellow). Subpanels (b) show the corresponding phase space portraits. Subpanels (c) show the corre-
sponding evolution of the spatiotemporal intensity for the ideal FWM system |A(ξ, τ )|2, where A(ξ, τ ) is given by Eq. (3) and consists of the total pump–
sideband field.

NLSE orbits actually cross the separatrix associated with the ideal
FWM system (this is in fact expected here given that the NLSE
separatrix for this case is associated with the Akhmediev breather,
which possesses an infinite number of sidebands). Moreover, for
η0 = 0.715, the stationary solution is clearly not recovered, and the
orbit is much more complex than a fixed point.

These examples clearly show the difficulties in observing the
canonical dynamics of ideal FWM in a NLSE system because of the
generation of higher-order sidebands. Certainly, it is the cascading
of the FWM process [16,17] that leads to important applications
such as frequency-comb and supercontinuum generation, but their
presence naturally means that the ideal FWM process cannot be
studied in isolation. However, a segmented approach to propaga-
tion with reinjection of power-adjusted initial conditions allows
us to overcome this limitation, and to develop a practical system
that yields close to ideal FWM dynamics. The principle here is
to replace a single long segment of fiber by a concatenation of
segments that are sufficiently short such that additional sidebands
cannot reach a significant level. Moreover, between sequential seg-
ments, we cancel spectral components outside the four principle
modes, and we use amplification to restore the same average power.
Results illustrating this segmented approach are shown as the red

lines in Fig. 1, and clearly show how this approach yields excellent
agreement with the ideal FWM model: all the main features previ-
ously discussed are now quantitatively reproduced. Note that for
these results, we use fiber segment lengths of ξL = 0.12, a choice
motivated by our experiments described in Section 4.

3. EXPERIMENTAL SETUP

Attempts to measure the complex longitudinal NLSE wave mixing
dynamics in optical fiber have been previously reported using
various methods such as destructive cut-back measurements [4],
distributed optical time domain reflectometry [7,18,19], or evo-
lution in a recirculating loop [6,20]. However, deviation between
experiments and ideal FWM dynamics becomes significant very
quickly in these cases, and is dramatically impacted by even small
amounts of distributed loss or gain [3,14,18]. Consequently, the
expected dynamics of isolated FWM have been only partially or
imperfectly seen in experiments to date.

Our experimental setup is shown in Fig. 2 and is made of
commercially available telecommunications components. First,
a laser operating at 1550 nm emits a continuous wave (CW). A
phase modulator driven by a 40 GHz RF sinusoidal modulation
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Fig. 2. Experimental setup. Insets 0–4 represent the optical spectrum generated at different stages of the experiment.

converts the monochromatic laser spectrum into a set of equally
spaced spectral lines [21]. The resulting symmetrical comb is then
processed using a programmable filter (waveshaper device based
on liquid crystal on silicon [22]) that simultaneously implements
several operations: elimination of unwanted spectral components,
and the precise adjustment of the ratio η between the central and
lateral components as well as their relative phase φ. Special care
has been devoted to ensure that no unwanted phase/intensity cou-
pling occurs during this shaping. Specifically, although the finite
resolution of a diffraction-based waveshaper necessarily introduces
phase–amplitude coupling, this can be mitigated with a sufficient
frequency interval between spectral components. In our setup, we
found that spacing of 40 GHz or greater avoided such coupling.
The tailored three-component signal with targets ηi and φi is then
amplified by an erbium-doped fiber amplifier that can deliver tun-
able power. The amplifier runs in a power controlled mode so that
the average power does not depend on the input spectral properties
such that the system can be considered as quasi-conservative.

Nonlinear propagation takes place in single mode optical fiber
with dispersion and nonlinear parameters being, respectively,
−7.6 ps2

·m−1 and 1.7 W−1
·m−1. The fiber length is 500 m,

with this length selected as a trade-off between the sensitivity of
the detection stage of our setup and the appearance of Brillouin
scattering: with 500 m of this fiber, the changes experienced by the
optical field are significant enough to be conveniently detected,
and we have checked the absence of Brillouin backscattering for
the range of powers under investigation. We can therefore work
with CW signals without having to involve additional strategies of
temporal pulse carving and associated synchronization. To limit
polarization mode dispersion, the input state of polarization is
optimized using polarization controllers.

The output signal is then attenuated and split in two to record
both its spectral phase and intensity. An optical spectrum analyzer
(OSA, resolution 0.1 nm) provides directly the ratio ηi+1. The
spectral phase offset φi+1 is retrieved from the temporal delay
between the central and lateral sidebands as measured with a high-
speed sampling oscilloscope. The experimentally measured values

can then be imprinted as new input values, and the process can be
iterated at will without any accumulation of deleterious ampli-
fied spontaneous emission and without any growth of unwanted
spectral sidebands or noise. Potentially unlimited propagation can
therefore be emulated.

4. EXPERIMENTAL RESULTS

A. Phase Space and Longitudinal Reconstruction of
the Dynamics

We first study the dynamics of the system at maximum gain with
�=�0 =

√
2, i.e., for Pin = 21.5 dBm. In terms of normalized

units, LNL = 4.1 km, and the 500 m length of our fiber segment
corresponds to a normalized length ξL = 0.12, similar to the one
used in the discussion in Section 2. The experimental phase space
portraits obtained for different initial values η0 and φ0 are shown
in Fig. 3(a) with the orbits shown as circles connected by dotted
lines. Note that in these experiments, we checked that the energy
contained in the unwanted sidebands located at ±2fm always
remained well below 3% of the total energy of the signal.

For each value of η0, we examined the dynamics at two values
of initial phase: φ0 = 0 and φ0 = π which yielded trajectories
on the right and left of the separatrix as expected from the results
in Section 2. The dynamics were measured over 25 km (i.e., 50
iterations), and the results yield immediate insight into the phase
space topology. The experimental orbits are seen to be in very good
agreement with the predictions from the ideal system described
in Section 2, which are shown as thick solid lines. Indeed, many
fundamental features of the ideal FWM dynamics can be seen
from these results. Specifically, we clearly confirm the importance
of the separatrix dividing the phase plane into two well-defined
regions, with the measurements for η0 = 0.95 in particular pro-
viding a very clear indication of its location. We also see that the
different experimental trajectories are nearly closed orbits and do
not intersect. The slight discrepancies between experiment and
prediction here are attributed to the accumulation of small errors
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Fig. 3. Experimental results for �=�0 =
√

2. (a) Phase space por-
traits for initial values of η0 of 0.65, 0.85, 0.90, and 0.95 (green, yellow,
red, and blue lines, respectively). Results are plotted for an initial phase
offset φ0 of 0 orπ , which appear, respectively, on the right and left sides of
the separatrix (dashed black line). The experimental results over 50 itera-
tions (circles joined with dotted lines) are compared with the theoretical
solution of the system (solid thick lines). (b) Longitudinal evolution of the
temporal intensity profiles reconstructed from the experimental spectral
measurements for η0 of 0.9 and phases of 0 andπ as indicated.

in the phase/intensity measurements and residual depolarization
effects not included in our scalar model.

Significantly, with complete experimental knowledge of the
spectral phase and intensity of the three interacting frequency
components of the evolving field, it is straightforward to fully
reconstruct the evolving intensity profiles in the temporal domain.
Over a propagation distance of 50 km (normalized distance
ξ = 12, 100 iterations), Fig. 3(b) shows these results for an ini-
tial value of η0 = 0.9 and both initial values of phase φ0 = 0 and
φ0 = π plotted beneath the corresponding orbits on the right and
left sides of the phase space plot. These results show the expected
recurrence dynamics as seen in Section 2, and for the case of
φ0 = π , also highlight the evolution phase shift of half-temporal
period, leading, as expected by theory, to a period doubling [15].
Note that these double-periodic solutions have been the subject of
particular recent interest [7,18].

B. Influence of Gain

Tuning the input power, we can also explore the modulationally
unstable dynamics for higher values of gain. Phase space portraits
obtained for an average value of 23.7 dBm, leading to�= 1.1 are
plotted in Fig. 4. Once again, the experimental results are in good
agreement with the theoretical predictions. When comparing with

Fig. 4. Experimental phase portraits obtained at an average power
Pin = 23.7 dBm and for initial values of η0 of 0.65, 0.85, and 0.95 (green,
yellow, and blue lines, respectively). Results are plotted for an initial phase
offset φ0 of 0 orπ , which appear, respectively, on the right and left sides of
the separatrix (dashed black line). The experimental results accumulated
over 50 iterations (circles joined with dotted lines) are compared with the
theoretical solution of the system (solid thick lines).

Fig. 3(a), we note how the dynamics at higher gain are associated
with the change in shape of the trajectories and the displacement of
the separatrix.

A more exhaustive study of the influence of the average power
for a fixed value of η0 = 0.65 and η0 = 0.9 and phase offset φ0

of 0 and π is shown in Fig. 5. Average powers between 19.7 and
23.7 dBm were tested, leading in terms of normalized frequency�
to a range between 1.74 and 1.1.

The measurements of the instability process achieved at
η0 = 0.9 [Fig. 5(a)] confirm that with increasing powers, the
separatrix progressively shifts: the intersection point between the
separatrix and the horizontal axis φ = 0 continuously decreases.
Consequently, the phase space available for the evolution of initial
condition φ0 = 0 gets larger and larger, whereas initial condi-
tion φ0 = π evolves in more and more restricted areas. This shift
of the separatrix with power helps to qualitatively understand
the reported influence of the losses or gain on FPU recurrence
[3,18,23]. Indeed, in the case of losses, the FPU recurrence experi-
enced with φ0 = 0 is broken as the trajectory crosses the separatrix
shifting to the right side. Consequently, phase shifts of half-
temporal period appear. In the presence of gain, as the separatrix
is moving to the other direction, the in-phase recurrence cycles are
preserved.

Further measurements at η0 = 0.65 [Fig. 5(b)] are also of
interest, especially for φ0 = 0. Indeed, we note that for the lowest
powers (19.7 and 20.2 dBm), the initial condition η0 = 0.65 and
φ0 = 0 leads to orbits that are on the left side of the separatrix.
For these powers, the trajectory obtained for φ0 = π is therefore
surrounded within the trajectory for φ0 = 0. When increasing the
power, the separatrix is crossed and each initial condition evolves
on a different side of the phase plane. For powers between 20.7 and
22.7 dBm, the orbits get smaller and smaller up to the stage where
they reach a fixed point for 22.7 dBm. When further increasing the
average power, the orbit becomes increasingly open.
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Fig. 5. Influence of the input average power on phase space por-
traits obtained for initial values of η0 of (a) 0.9 and (b) 0.65, and initial
phase offset of 0 or π . (1) Theoretical predictions are compared with (2)
experimental results.

Fig. 6. (a) Longitudinal evolution of the temporal intensity profile
reconstructed from the spectral properties of the signal obtained for an
average power of 22.7 dBm and initial conditions η0 = 0.65 and φ0 = 0.
(b) Comparison of the temporal intensity profile reconstructed from
spectral measurements (blue line) and directly measured with an optical
sampling oscilloscope (red dashed line). Results from theoretical predic-
tions are also displayed with black circles. (c) Evolution of the value of η0

leading to a fixed point. The experimental data (blue) are compared with
the analytical prediction [dashed black line, Eq. (8)].

C. Observation of a Fixed Point

Finally, we investigate in more detail the properties observed at one
of the two fixed points of the phase plane. For η0 = 0.65, φ0 = 0,

and Pin = 22.7 dBm (�= 1.23), the longitudinal evolution of the
temporal intensity reconstructed from the spectral measurements
is plotted in Fig. 6(a) over 50 km. We clearly see in this case that
the temporal profile is invariant with propagation. Fig. 6(b) explic-
itly compares these results with temporal measurements made
with a picosecond-resolution optical sampling oscilloscope, and
the agreement is such that they cannot be visually distinguished.
Moreover, both experimental profiles agree with the expected tem-
poral profile computed from Eq. (3), which in the case of a fixed
point, simply consists of a stationary temporal profile formed from
three wave interference.

More generally, a fixed point of the ideal FWM system is
predicted to exist at any value of gain for a particular choice of
sideband ratio. Expressed in terms of normalized frequency�, the
dependence is given by [13]

ηe =
3+�2

7
, (8)

and this can be readily tested experimentally. Specifically, for
different input powers, the waveshaper is used to experimen-
tally determine the value of ηe associated with the fixed point,
and the results are shown in Fig. 6(c). The agreement between
experimental results (blue) and the prediction of Eq. (8) is
excellent.

5. CONCLUSION AND OUTLOOK

Optical systems are well known to provide flexible testbeds with
which to study the physics of diverse nonlinear systems, and the
results here show the success of a new experimental approach allow-
ing the dynamics of ideal FWM to be fully explored. The use of
iterated initial conditions in a short fiber segment mitigates effects
of loss, inelastic scattering, and high-order sideband generation,
allowing clear observation of the predicted evolution dynamics of
the FWM system. Among the dynamics seen are FPU recurrence,
qualitatively different evolution on either side of a separatrix, and
the existence of system fixed points.

The technique reported here bridges the gap between ideal
FWM theory described by coupled differential equations and
experiment, allowing us to fully examine the fundamental
properties of four wave dynamics using readily available tele-
communications components. Indeed, our method using a
programmable waveshaper coupled with iterative propagation
represents an important technique complementary to earlier
approaches studying FWM using recirculation loops [20].

It is important to stress the adaptability of this experimental
technique. Potential future investigations are manifold. Although
we have focused on spectrally symmetric initial conditions,
experiments can easily handle asymmetric initial sidebands [10].
Moreover, our approach can also be readily adapted to study
the non-degenerate case that can also be formulated using a
Hamiltonian approach, leading to even richer phase space portraits
[24]. The two-pump configuration can be extremely fruitful in
terms of signal processing capabilities such as optical regenera-
tion or switching [25,26]. Using periodic filtering of unwanted
new frequency components could therefore be an effective way
to practically improve device performance. Evolution in fibers
with normal dispersion [24,27], fourth-order dispersion [28], or
dispersion oscillating profiles [29] can also be encompassed as well
nonlinear frequency mixing in lumped photonic waveguides [30].
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As the state of polarization can also be controlled [31], vector insta-
bility processes in birefringent fibers offer additional perspectives
[32]. The technique can be extended into the spatial domain and
frequency mixing in multimode fiber or waveguides [33,34] using
spatial light modulators and phase-intensity characterization [5].

We also anticipate extension to other branches of nonlinear
physics where discrete wave mixing plays a central role in system
evolution, including route to chaotic evolution [35]. Our method
can therefore be translated to hydrodynamics where the use of an
initial condition based on the profile of a wave after propagation
has already been implemented to reach potentially unlimited
propagation distance [36]. This opens the way to a new approach
for control of wave dynamics in terms of a reduced set of parameters
that affect the phase space trajectory [37].
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