
HAL Id: hal-03606801
https://hal.science/hal-03606801

Submitted on 12 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Second-gradient continua: From Lagrangian to Eulerian
and back

Francesco Dell’Isola, Simon Eugster, Roberto Fedele, Pierre Seppecher

To cite this version:
Francesco Dell’Isola, Simon Eugster, Roberto Fedele, Pierre Seppecher. Second-gradient continua:
From Lagrangian to Eulerian and back. Mathematics and Mechanics of Solids, 2022. �hal-03606801�

https://hal.science/hal-03606801
https://hal.archives-ouvertes.fr


Article

Second-gradient continua: From
Lagrangian to Eulerian and back

Francesco dell’Isola
Department of Civil, Construction-Architecture and Environmental Engineering, University of
L’Aquila, L’Aquila, Italy

Simon R Eugster
University of Stuttgart, Stuttgart, Germany

Roberto Fedele
Politecnico di Milano, Milano, Italy

Pierre Seppecher
University of Toulon, La Garde, France

Received 15 December 2021; accepted 20 January 2022

Abstract
In this paper, we represent second-gradient internal work functionals in Lagrangian (referential) and Eulerian (spatial)
descriptions, and we deduce the corresponding expressions for the Piola transformations of stress and double-stress
tensors and of external forces and double-forces. We also derive, in both the Eulerian and Lagrangian description, the
expression of surface and edge contact interactions (which include forces and double-forces) for second-gradient conti-
nua in terms of the normal and the curvature of contact boundary surfaces and edge shapes.
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1. Introduction

We use the postulation scheme for continuum mechanics based on the principle of virtual work. In it,
the work is the primitive concept. This was done, for instance, already in the previous papers [1–5].
which are all written in the spirit of the works by D’Alembert, Lagrange, Piola, and Hellinger [6–9]. For
a more detailed discussion about this postulation scheme and related methodological topics, the reader
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is referred to dell’Isola et al. [10]. Rephrasing D’Alembert and Lagrange, the principle of virtual work
states that the motion of a continuum can be calculated: ‘‘By equating to zero the sum of the internal
work plus external and inertial work expended for any virtual displacement.’’

In the context of a D’Alembert–Lagrange postulation scheme, which is founded on the principle of
virtual work, the difference between first-gradient and second-gradient continua can be simply specified
by referring to the order of internal work functional, when regarding it as a distribution and virtual dis-
placements as the corresponding test functions. On the contrary, in the light of Cauchy’s postulation
scheme, which is based on balance of forces and moments of forces, to specify such a difference becomes
nearly insurmountable.

The first systematic formulation of continuum mechanics based on the principle of virtual work (or
virtual velocities, as he preferred to say) is due to Gabrio Piola [8]. In fact, the generalization of the prin-
ciple of minimum potential energy led him to the definition of an internal work functional, where, for a
first-gradient theory, the stress appears as dual quantity to the first gradient of the virtual displacement
field. Piola started from the formulation of this principle in the Lagrangian description, transformed the
Lagrangian expression of internal and compatible external work functionals into the Eulerian descrip-
tion and finally obtained the Eulerian equilibrium conditions as well as the dependence of contact inter-
actions on the shapes of so-called Cauchy cuts.

In contrast, Cauchy preferred to base continuum mechanics on the balances of forces and moments
of forces formulated at first in the Eulerian description. Within Cauchy’s postulation scheme forces and
moments of forces are the primitives concepts of the theory. Moreover, in Cauchy’s framework, one has
to assume that subbodies interact exclusively by contact surface forces and that these surface forces
depend only on the position in the continuum and on the normal of the Cauchy cut. The latter assump-
tion is generally referred to as Cauchy postulate. With his assumption, Cauchy restricted the possible
constitutive equations for the continua to be considered. In fact, it results that Cauchy did limit his the-
ory to first-gradient continua.

Instead, as already envisaged by Piola and fully proved by Mindlin and Toupin (among many other
scholars, see dell’Isola et al. [11]), it is possible to formulate continuum theories in which contact inter-
actions on Cauchy cuts depend also on their curvature. This is, for instance, the case for the theory of
second-gradient continua, in which Cauchy cuts not only contact surface forces but also contact edge
forces and double-forces do appear. While the generalization of Cauchy’s theory is almost impossible,
following D’Alembert–Lagrange continuum mechanics, it is conceptually straightforward to generalize
the first-gradient theory [12] to the second-gradient theory [9]: albeit Piola could not complete his scien-
tific program, he fully understood this.

1.1. Notation

Following the postulation accepted for Galilean Mechanics, the physical space, where the material parti-
cles of considered second-gradient continua can be placed, is modeled as a three-dimensional Euclidean
vector space E

3 with the inner product denoted by h�,�i. We assume the reference configuration of the
considered continuous body B to be a subset O � E

3, which is sufficiently regular to perform all the
required calculations, see Figure 1 for a particular example of such a configuration. The topological
boundary of O is denoted by ∂O. The boundary ∂O is assumed to be the union of a finite number of
two-dimensional orientable surfaces with boundary, called faces of O. The faces are oriented in accor-
dance with their corresponding outward-pointing unit normal fields N , and therefore the orthogonal
projections Mk on each tangent space is well defined. Each of the faces’ boundary curves are assumed to
have a piecewise continuous tangent T as well as an outward-pointing unit normal V that is tangent to
the face. The union of all boundary curves is denoted by ∂∂O. Remark that each curve constituting the
boundaries of the faces, which are called edges of O, must be regarded as part of the boundary of both
concurring faces. Edges of O are assumed to concur in a finite number of wedges together with a finite
number of other edges. See dell’Isola et al. [13] for more details about the differential-geometric assump-
tions and notations used here.

A placement of the body B is defined as a suitably regular map P : O! E
3,X 7!x = P(X ), which is

assumed to be a one-to-one map. The image v = P(O) � E
3 is called the current configuration of the

body B and represents the spatial positions occupied by the body B in its deformed state. Due to the
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regularity assumption made for the placement, for a current configuration, we have that the faces
∂v = P(∂O) and edges ∂∂v = P(∂∂O). The faces are oriented by the outward-pointing unit normal n
inducing the orthogonal projection mk. Clearly, the faces’ boundary curves have still a piecewise contin-
uous tangent t as well as an outward-pointing unit normal v that is tangent to the face.

We use the upper-case X 2 O and the lower-case x 2 v to denote points in the reference and current
configuration, respectively: they label material particles and positions occupied by material particles in
the considered configuration. We use an arbitrary right-handed basis (G1,G2,G3) to represent the refer-
ential position of material particles as linear combination X = X AGA. Note that we apply Levi-Civita–
Einstein’s summation convention, which implies summation over upper contravariant and lower covar-
iant indices that appear twice in a term. The positions in the current configuration are similarly repre-
sented with respect to an alternative basis (g1, g2, g3). Henceforth, we refer to these two bases as
referential and current basis and follow the convention for the Lagrangian upper-case and Eulerian
lower-case letters. The referential and current metric components are given by GAB = hGA,GBi and
gij = hgi, gji. As usually done in index notation GAB and gij denote the corresponding inverse metrics.
Let u, v 2 E

3 and A be an endomorphism on E
3, the transposed AT is defined by the relation

hu,A�Vi= hAT �u,V i, whose components can then be expressed as (AT )B
i = gijA

j
CGCB = AB

i . The placement
map P is represented in such a way that

x = xigi = P(X ) = Pi(X )gi:

The components of the first gradient F =rP and the second gradient F=rF of the placement map
are then given as

Fi
A := (rP)i

A =
∂Pi

∂X A
, F

i
AB := (rF)i

AB =
∂2Pi

∂X A∂X B
, ð1Þ

both of which are functions of X .
We introduce virtual displacements dP as small variations of the placement map P. Note that we still

follow our notational convention to denote Lagrangian fields, which are defined on O, with upper-case
letters. The first and second gradient of the virtual displacement are given by the relations

dFi
A =

∂dPi

∂X A
, dFi

AB =
∂2dPi

∂X A∂X B
:

In the Lagrangian description, all vector and tensor valued functions depend on the referential points
X . Since the placement P : O! E

3 is invertible, we can introduce its inverse for which the position
x 2 P(O) = v is regarded to be the independent variable. The inverse function p = P�1 : v! O is writ-
ten with lower-case letters, as it will be done henceforth for every map with v as its domain. Therefore,
every Lagrangian field can be regarded to be an Eulerian field when using the composition with p. In

Figure 1. Reference and current configuration of a body with a piecewise continuous boundary surfaces and piecewise continuous
boundary curves.
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particular, we consider dP8p, called Eulerian virtual displacement, and its first and second Eulerian
gradients:

ddi
j(x) :=

∂(dPi
8p)

∂x j
(x) , ddi

jk(x) :=
∂2(dPi

8p)

∂x j∂xk
(x):

As the Eulerian gradients can only be defined when dPi is composed with p, we abbreviate the above
expression as

ddi
j =

∂dPi

∂x j
, ddi

jk :=
∂2dPi

∂x j∂xk
:

We will make the same abuse of notation for every field we introduce, be it Lagrangian or Eulerian: we
use the same symbol independently of the presence of a composition with p or P. The indication of the
composition may be complemented by the reader if he feels it is necessary.

1.2. Main results of the paper

D’Alembert–Lagrange continuum mechanics is based on the Lagrangian form of the principle of virtual
work which demands the equality

dW tot
O (dP) := dW int

O (dP) + dW ext
O (dP) = 0 ð2Þ

to hold for every virtual displacement field dP, admissible with respect to the assumed kinematical
constraints.

For a second-gradient material, the internal work functional is defined as

dW int
O (dP) :=�

ð
O

(PA
i dFi

A +P
AB
i dFi

AB), ð3Þ

where PA
i and P

AB
i , called Piola–Lagrange stress P and Piola–Lagrange double-stress P, are work conju-

gate to the first and second gradient of virtual displacements.
As a consequence of the principle of virtual work, the external work functional compatible to the

internal work functional must have the form (see [1, 4])

dW ext
O (dP) :=

ð
O

F
O
i dPi +

ð
∂O

F
∂O
i dPi +

ð
∂O

D
∂O
i

∂dPi

∂X C
NC +

ð
∂∂O

F
∂∂O
i dPi:

In this expression, the co-vector fields FO, F∂O, and F∂∂O are dual to virtual displacements and are, due
to their integration domain, forces per unit reference volume, surface, and line, respectively. Moreover,
an additional surface density field D∂O appears, which is called surface density of double-forces: these
contributions are dual to the normal derivative of the virtual displacement.

After the Lagrangian Eulerian change of variable in the Lagrangian internal work functional (3), it is
easy to verify that the Eulerian internal work functional is still a second-order distribution of the form

dwint
v (dP) =�

ð
v

(c j
i ddi

j + cjk
i ddi

jk),

where c
j
i and c

jk
i are the components of the work conjugates to the first and second gradient of the spatial

virtual displacement. We call them the Cauchy–Euler stress c and the Cauchy–Euler double-stress c.
One of the main results of this paper consists in showing the Piola transformation of Lagrangian stres-

ses into Eulerian stresses

c
j
i = J�1(PA

i F
j

A +P
AB
i F

j
AB) , c

jk
i = J�1

P
AB
i F

j
AFk

B, ð4Þ
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which can be written, with an obvious meaning of the symbols, in a more synthetic way as

c = J�1(P�Ft +P : Ft) , c = J�1
P : (Ft � Ft):

Note that with our notation, either the left hand sides have to be composed with P or the right hand
sides with p.

The reader will remark that by simply assuming P= 0, we get the Piola transformation formula
c = J�1P�Ft for first-gradient continua. Moreover, in this case, the Piola transformation is usually
obtained by exploiting the relation between nominal and current surface forces and using so-called
Nanson’s formula. In contrast, already Piola proved that the easiest way to get the transformation of
stress consists in the change variables in the volume expression of the internal work functional. While
this procedure naturally generalizes in the case of second-gradient continua, in section 5, it is shown that
the generalization of the other one is nearly impossible.

Similarly to what happens for its Lagrangian counterpart, the Eulerian external work functional com-
patible with a second-gradient Eulerian internal work functional is given by

dwext
v (dP) =

ð
v

f
v
i dPi +

ð
∂v

f
∂v
i dPi +

ð
∂v

d
∂v
i

∂dPi

∂xc
nc +

ð
∂∂v

f
∂∂v
i dPi:

The co-vector fields fv, f∂v, and f∂∂v are forces per unit current volume, surface, and line, respectively.
Also in the Eulerian description, a surface density of double-forces d∂v appears, which is a density per
unit current surface and which is dual to the normal derivative with respect to the current normal vector.

To formulate the Piola transformation of external interactions, we introduce the inverse of the right
Cauchy-Green strain C�1 having as components

(C�1)AB = (F�1)A
i gij(F�1)B

j , ð5Þ

as well as the Lagrangian vector field K defined as

KA := Mk
A

C
(C�1)CBNB = ((F�1)A

i gij(F�1)B
j � k F�T �N k2GAB)NB:

Introducing the Jacobians for volume, area, and length J = det (F), JS = k JF�T �N k, and
JL = k F �T k, respectively, the Piola transformation formulas in second-gradient continua for the exter-
nal forces are found to be

F
O
i = Jf

v
i , F

∂O
i = JSf

∂v
i �Mk

B

A

∂

∂X B
(Jd

∂v
i KA),

F∂∂O
i = JLf∂∂v

i + (J (C�1)
AB

VANBd∂v
i )

+
+ (J (C�1)

AB
VANBd∂v

i )
�
,

ð6Þ

which are translated to a direct notation reads as

F
O = Jf

v , F
∂O = JSf

∂v �DIV∂O
k (Jd

∂v � K)

F
∂∂O = JLf

∂∂v + (J (V �C�1 �N)d∂v)
+

+ (J (V �C�1 �N)d∂v)
�
:

The Piola transformation of the surface double-force, once in index and once in direct notation, are
given by

D
∂O
i = J k F�T �Nk2

d
∂v
i , D

∂O = J k F�T �Nk2
d
∂v: ð7Þ

Finally, we remark that only via a change of variable within the internal work functional, we obtained
the Piola transformation of the stresses (4). Since Eulerian normal derivatives to ∂v do not transform
into Lagrangian normal derivatives, via the placement P, extra tangent terms to ∂O arise when changing
the variable in the Eulerian double-force functional. This is the reason for which Eulerian external
double-forces give rise to not only Lagrangian external double-forces (7) but also to extra surface and
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edge forces (6). In conclusion, we cannot follow the procedure used for instance by Gurtin [14], where
starting from the transformation of external surface forces the Piola transformation of stress is deduced:
instead the only possibility we have is to resort to the transformation of the internal and external work
functionals via the change of variable given by the placement P.

1.3. Outline of the paper

In the introduction at hand, we present the used notation and summarize the main results of this paper.
In section 2, we postulate the virtual work principle for second-gradient continua in Lagrangian descrip-
tion. In fact, it is the generalization of the principle of minimum of total energy envisaged by Piola [8]
and formalized by Paul Germain [3] in Eulerian description. Using an integration by parts procedure,
we formulate the strong form of the equilibrium conditions, including the local equilibrium partial dif-
ferential equations and corresponding natural boundary conditions. In section 3, the Eulerian virtual
work principle is deduced from the Lagrangian virtual work principle. An integration by parts proce-
dure similar to the one used in section 2 allows for the deduction of the structure of contact interactions
in Eulerian description. The dependence of contact interactions on the shape of Cauchy cuts is explicitly
shown so that it becomes clear that Cauchy postulate is not applicable to second-gradient continua. In
both sections 2 and 3, we deduce the compatible form of external interactions between second-gradient
continua and the external world. In section 4, the transformation formulas between the Lagrangian and
Eulerian fields are presented, generalizing the Piola transformations valid for first-gradient continua. In
the last section 5, we check the consistency among: (1) Piola transformations of stress and double-stress,
(2) Piola transformations of external forces and double-forces, and (3) the obtained expressions of
Lagrangian and Eulerian contact interactions.

2. The Lagrangian virtual work principle for second-gradient continua: equilibrium
conditions

If one insists to use the postulation scheme put forward by Cauchy for continuum mechanics, in general-
izing the theory to the case of second-gradient continua he finds some intrinsic, and nearly insurmounta-
ble, difficulties, see for instance dell’Isola and colleagues [15–17]. In fact, Cauchy’s approach1 is based
on the primitive concepts of force and moment of forces together with the formulation of corresponding
balance laws, and, by means of the tetrahedron argument, on the introduction of the concept of stress.
Cauchy’s approach requires some major and ad hoc modifications to include the case of second-gradient
continua, see dell’Isola and Seppecher [18] and dell’Isola et al. [11]. Instead, in D’Alembert–Lagrange
continuum mechanics [6,7], it is very easy to define higher gradient continua simply modifying the inter-
nal work functional (see e.g. Germain [1,3] and Epstein and Smelser [19]).

In Cauchy’s approach, stress is a derived concept, and its existence must be proven, while in the
D’Alembert–Lagrange approach it is a primitive concept. Vice versa in Cauchy’s approach, the concept
of force and the balance law of force are primitive while in D’Alembert–Lagrange’s approach they are
derived concepts. As discussed in detail by Eugster [9] and Eugster and dell’Isola [20–22], Truesdell (see
[23]) interpreted the D’Alembert–Lagrange postulation scheme from his point of view and therefore
claims

The derivation given by HELLINGER [...] fails through petitio principi[sic!], since the stress components appear
in the original variational principle. We do not understand the remark attributed to CARATHÉODORY by
MÜLLER and TIMPE [...]. Existence of the stress tensor can be proved from variational principles which
assume the existence of an internal energy having a special functional form. (p. 595)

In this section, we show how the principle of virtual work can be postulated to generalize the princi-
ple of minimum of total energy, as already discussed by D’Alembert [7] and in particular for continuum
mechanics by Piola [8].
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2.1. The principle of minimum of total energy generalized into the principle of virtual work

Once the kinematics of a mathematical model is established, it is necessary to find the time sequence of
configurations, that is, the motion that predicts the behavior of the modeled system. One can start by
looking for the predictions concerning equilibrium configurations. The principle of minimum of total
energy characterizes the stable equilibrium configurations and states that,

1. In every model for physical phenomena, the specification of kinematics has to be completed by
the choice of a functional defined on the set of admissible configurations, called functional of
total (potential) energy.

2. Stable equilibrium configurations are the minima of the total potential energy functional.

The total potential energy functional, for deformable bodies, includes the deformation energy and the
potential energy describing the interactions between the considered body with the external world.

D’Alembert, Lagrange, Piola, Hamilton, and Rayleigh (see [6–8,24] and [10,11,16,25] for a historical
overview) proposed to generalize the principle of minimum of total potential energy to enlarge the pre-
dictive scope of formulated models to include the possibility to describe non-conservative interactions
and dissipation phenomena. Their line of thoughts can be reformulated with the following thread of
reasoning.

Let us assume that the total potential energy functional E tot be differentiable. D’Alembert and
Lagrange formulated this assumption assuming that one can calculate its first variation, that is, the lin-
ear term, in its Taylor expansion, corresponding to an admissible2 infinitesimal variation dP of the con-
figuration and that this first variation is continuous. Using the modern conceptual frame given by
functional analysis, we may state that the total potential energy is continuously differentiable in the
sense of Fréchet (see Rudin [26]). Then, in stable equilibrium configurations Pequi, this first variation
must vanish because these configurations are minima for the total energy functional. In formulas: every
equilibrium configuration Pequi verifies the condition

(8dP) (dE tot Pequi; dP
� �

= 0): ð8Þ

Remark that in the previous condition the dependence on the variable dP is linear, while the dependence
on Pequi may be nonlinear, if the functional E tot is not quadratic. In other words, for every admissible
configuration P, the linear continuous first-variation functional dE tot, depending on the infinitesimal
variation dP, is well defined and when P = Pequi such a functional vanishes for every dP.

One may decompose E tot, and consequently dE tot, into the sum of an internal part E int, relative to the
body’s internal interactions, and an external interactions part E ext and assume that both these func-
tionals can be differentiated. The condition (8) thus becomes3:

8dPð Þ dE int Pequi;dP
� �

+ dE ext Pequi;dP
� �

0
� �

:

D’Alembert generalized the previous condition in the more general case of non-conservative and dissi-
pative models. He postulates the existence, for every admissible configuration P, of linear and continu-
ous functionals depending on the admissible infinitesimal variations dP. These functionals are called by
Piola internal (virtual) work functionals and external (virtual) work functionals. In the framework of
D’Alembert–Lagrange continuum mechanics, then, the material properties of a specific continuum are
fully mathematically described when assigning the internal and external work functional. When the sys-
tem is conservative, these functionals can be calculated as Fréchet derivative of the deformation energy
and potential energy functionals. In fact, in general, internal and external work functionals are not first
variations of some energy functionals: in this sense, the subsequent D’Alembert virtual work identity
generalizes the total energy stationarity condition. Finally, to include inertial effects, and therefore to
find the prediction of the time evolution of considered systems, D’Alembert postulates the existence of
an inertial (virtual) work functional, also specified by a constitutive equation.

In conclusion, the basic assumption in D’Alembert–Lagrange continuum mechanics consists in pos-
tulating that the motion of every continuum can be characterized by suitably choosing the constitutive

dell’Isola et al. 7



equations for the three work functionals dW int
O , dW ext

O , and dW
dyn
O and by assuming that the D’Alembert

virtual work identity

dW tot
O (dP) := dW int

O (dP) + dW ext
O (dP) + dW

dyn
O (dP) = 0

holds, at every time instant, for every small admissible displacement dP.
The functional dW int

O allows for the calculation of the work expended in the internal interactions
among parts of the considered body on every deformation process involving it. The functional dW ext

O
allows for the calculation of the work expended in the interactions of the body with its external world.
Finally, dW

dyn
O gives the inertial work expended on virtual displacements and deformations. In the fol-

lowing, we will focus on the static case and apply the principle of virtual work without the inertial part.
Albeit, in such a generalization, the original meaning of such small variation of placement (i.e. test dis-

placement used to check minimality of total (potential) energy) is lost, D’Alembert kept calling ‘‘virtual
displacement’’ the generic displacement that may be added, at any instant, to the configuration attained
by the motion to get another admissible placement.

D’Alembert virtual work identity is intended to hold, at every time instant, for every admissible vir-
tual displacement dP. Commonly, we will face two kinds of kinematical constraints. Constraints on
positions g = g(P) = 0 as well as on deformations h = h(F) = 0. For these types of kinematical restric-
tions, a variation of a placement P̂ = P + dP is admissible if g(P̂) = 0 and h(rP̂) = 0. Taking the first
variation of these expressions leads to the conditions which must be satisfied by admissible virtual dis-
placements and admissible gradients of virtual displacements. These are

(8dP = dPadm)
∂g

∂Pi
dPi = 0 ,

∂h

∂Fi
A

∂dPi

∂X A
=

∂h

∂Fi
A

dFi
A = 0:

2.2. Work functionals as distributions

A fundamental part of the principle of virtual work as formulated in a modern language consists in pos-
tulating that the functional which associates to every virtual infinitesimal displacement the work
expended in any specific interactions among and inside bodies is: (1) linear and (2) continuous.

Of course, one needs to introduce a topology in the set of admissible virtual displacements, if one
wants to be able to talk about continuity of work functionals. Therefore, the distribution theory of L.
Schwartz [27] seems suitable to give the conceptual frame needed to formulate continuum mechanics
(see Germain [3]). The linear continuous functional that associates the virtual work corresponding to
every virtual displacement is a distribution. We assume to have bounded reference configurations so that
O is compact. The set of distributions that we consider here is, in fact, the dual space of the set of C‘(O)
functions having compact support and endowed with the topology induced by the derivatives semi-
norms (see Schwartz [27] and Reed and Simon [28]).

A very general kinematical assumption that we accept is that the set of admissible virtual displace-
ments include (let us underline: we are not stating that it coincides with) the set C‘(O) constituted by
the infinitely differentiable functions having compact support in O.

Note that, the smaller is the space of test functions the larger is its dual space.4 Therefore, considering
the dual of C‘(O) supplies us, under the stated assumption, with the widest possible set of linear and
continuous functionals. This set seems suitable for giving a firm mathematical basis for D’Alembert–
Lagrange continuum mechanics.

2.3. Second-gradient deformation energy functional

An internal work functional is said to be conservative if it is the derivative of an energy functional, which
we call deformation energy functional. We assume that, in general, internal work functionals are the
sum of a conservative plus a non-conservative part. For instance, following Hamilton–Rayleigh’s postu-
lation scheme (see e.g. [10,29]), the non-conservative part of the internal work functional can be calcu-
lated from a so-called Rayleigh dissipation functional. An interesting physical system in which a phase
transition occurs (similar to what has been described by Javanbakht et al. [30]) in large deformations is
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given by Spagnuolo and Cazzani [31]: Pantographic metamaterials may behave as a second-gradient
continua until a certain threshold is reached, beyond which, because of friction phenomena, they behave
as standard first-gradient continuum.

Elastic second-gradient continua are continua whose deformation energies depend on F and rF: In
Lagrangian description, this means that there exists a constitutive function for volume density of defor-
mation energy

Wdef = Wdef(X ,F,rF),

such that the total deformation energy E def corresponding to a placement P is given by the functional

E def Pð Þ=
ð
O

Wdef(X ,F(X ),rF(X )):

When calculating the first variation of the deformation energy, a special role is played by the elastic
Piola–Lagrange stress and double-stress tensors defined as

(Pe)A
i :=

∂Wdef

∂Fi
A

, (Pe)AB
i :=

∂Wdef

∂Fi
AB

:

The first variation of the second-gradient deformation energy functional has the following form

dE def =

ð
O

(Pe)A
i dFi

A +

ð
O

(Pe)AB
i dFi

AB: ð9Þ

D’Alembert and, then, Lagrange and Piola, generalized this approach to non-conservative internal
interactions. Albeit, in this last case, the internal interactions are not fully determined by a volume den-
sity of deformation energy, they assume that it is still possible to introduce a linear (and continuous)
functional dW int

O depending on the variation dP, which has the same structure as equation (9). The func-
tional dW int

O allows for the calculation of the work expended on the virtual displacements by the conti-
nuum’s internal interactions. In general, it is not the first variation of a deformation energy functional
but can, for second-gradient continua, always be represented as follows:

dW int
O (P; dP) :=�

ð
O

(PA
i (X )dFi

A(X ) +P
AB
i (X )dFi

AB(X )), ð10Þ

where we have introduced the Piola–Lagrange stress and double-stress tensors PA
i and P

AB
i , which are to

be assigned by means of suitable constitutive assumptions depending on (P,F,rF).5 In case of elastic
continua, we have

dW int
O (dP) =� dE def(dP):

2.4. External work functionals in second-gradient continua

The external work functional specifies the interactions between the considered continuum and its exter-
nal world. Once we have defined the internal, inertial, and external work functionals, postulating the
D’Alembert identity for every virtual displacement dP allows for the determination of the motion.
However, this determination is possible only if the external work functional belongs to a specific class,
which is compatible with dW int

O and dW
dyn
O . In other words, when an internal and inertial work func-

tional are postulated, then, in the corresponding D’Alembert identity, only external work functional of
a particular class can be used.

A classical illustration of this fact, already presented by Piola [8,24], is given by perfect fluids. One
assumes that perfect fluid’s internal energy depends only on their current mass density r = ( detF)�1r0.
As a consequence of the D’Alembert identity, it is easy to prove that perfect fluids cannot interact with
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the external world by shear contact forces on the boundary of the region that they currently occupy (see
for instance [32]). Therefore, one should not be surprised when observing that the inclusion of second
gradient of placement in the volume density of the deformation energy enlarges the ‘‘possibilities’’ of
interactions that are allowed to second-gradient materials in comparison to first-gradient materials.6

This section is dedicated to the description of the class of those ‘‘compatible’’ external interactions which
are allowed in the case of first- and second-gradient continua.

The internal virtual work equation (10) is, in fact, a representation of a second-order distribution.
Using the generalized Schwartz representation theorem for second-order distributions (see Schwartz
[27]) as proven in Appendix A by successive application of the divergence theorem, the internal work
functional can also be represented7 as

dW int
O (dP) =

ð
O

∂�PA
i

∂X A
dPi �

ð
∂O

�PA
i NA dPi +

ð
∂O

Mk
C

L

∂

∂X C
(PAB

i NBMk
L

A
)dPi

�
ð
∂O

(PAB
i NANB)

∂dPi

∂X C
NC �

ð
∂∂O

(PAB
i VANB)dPi,

ð11Þ

where

�PA
i = PA

i �
∂PAB

i

∂X B
:

Therefore, the representation (11), together with the virtual work principle (2), implies that the exter-
nal work functionals must have the form

dW ext
O (dP) =

ð
O

F
O
i dPi +

ð
∂O

F
∂O
i dPi +

ð
∂O

D
∂O
i

∂dPi

∂X C
NC +

ð
∂∂O

F
∂∂O
i dPi: ð12Þ

As already discussed in the introduction, in this expression, the co-vector fields FO, F∂O, and F∂∂O are
dual to virtual displacements and are, due to their integration domain, forces per unit reference volume,
surface, and line, respectively. Moreover, an additional surface density field D∂O appears, which is
called surface density of double-forces. This last field is dual to the normal derivatives of the virtual
displacement.

2.5. Boundary value problem in second-gradient continua

When the class of external work functionals compatible with the internal work functionals is specified,
the essential and natural boundary conditions, supplying well-posed boundary value problems, can be
easily determined. We underline that the variational methods introduced in modern mechanics by
D’Alembert allow for the simultaneous and logically coherent determination of the strong form of the
PDEs that govern the evolution of the considered systems together with the corresponding boundary
conditions. Other postulation schemes must, instead, face a difficult problem related to the independent
postulations of bulk PDEs and boundary conditions: one has to verify then that the chosen postulates
lead to well-posed problems.

The PDEs implied by the D’Alembert identity (2), when using dF =r(dP) and dF=r(dF), in view
of equations (11) and (12) are given by

∂

∂X A
PA

i �
∂PAB

i

∂X B

� �
+F

O
i = 0 in O: ð13Þ

In order to get well-posed problems, to these PDEs suitable boundary conditions must be added. The
structure of both equations (11) and (12) obviously indicate that in second-gradient continua, one can
assign as essential (kinematical) boundary conditions not only the placements on a subset SP of the

10



boundary ∂O but also the placements’ normal derivatives on another subset S? of ∂O.8 The natural
boundary conditions associated to equation (13) can be found by considering, in the D’Alembert iden-
tity, all the non-vanishing admissible virtual displacements (outside of SP) and normal derivatives of
virtual displacements (outside of S?) on the boundary of O, allowed by essential boundary conditions,
to get

F
∂O
i = �PA

i NA �Mk
C

L

∂

∂X C
(PAB

i NBMk
L

A
) on ∂OnSP ð14Þ

F
∂∂O
i = (PAB

i VANB) + + (PAB
i VANB)� on ∂∂OnSP ð15Þ

D
∂O
i =P

AB
i NANB on ∂OnS? ð16Þ

We recall that (see equation (56) in Appendix 1) the symbols ðÞ6 denote the limits on the curves consti-
tuting ∂∂O from the faces 6 of the quantities in the brackets.

2.6. Contact interactions in second-gradient continua: dependence on the shape of Cauchy cuts

The concept of contact interactions inside deformable bodies was developed in the third decade of the
19th century by Piola and Cauchy (a detailed discussion about the priority between them deserves fur-
ther investigations: see e.g. [24,33]). While Piola, following Lagrange, considered contact interactions as
derived concepts, Cauchy based his analysis on the laws of balance of forces and moments of forces and
therefore treated contact forces as primitive concepts.

2.6.1. Cauchy cuts inside deformable bodies. Cauchy cuts are (suitably regular) surfaces in the Lagrangian or
Eulerian configurations that are introduced to divide a continuum into disjoint subbodies. Cauchy, in
his foundation of continuum mechanics, assumed that the interaction between two subbodies of a given
deformable body, having in common a surface, is localized on such cuts. As shown in Truesdell [34]
using a modern formalism, the contact interactions concentrated on Cauchy cuts represent the primitive
concept by means of which, assuming as fundamental hypotheses the balance of force and balance of
momentum of forces, the existence of the stress tensor can be proven. The key point of this proof is
given by the celebrated Cauchy tetrahedron argument. However, Cauchy’s argument is based on some
assumptions which complicate the generalization to the case of second-gradient continua: for instance
the absence of edge contact forces (for a more detailed discussion of this point see [15,18]).

Following an analysis that can already be found in the works by Piola and choosing the principle of
virtual work as the most fundamental postulate of continuum mechanics, we show, in this section, that
the concept of contact interaction can be formulated also for second-gradient continua, but as a derived
concept. The question is rather delicate: in fact, it is true that even for N th gradient continua9 the inter-
action between subbodies is concentrated on Cauchy cuts, see dell’Isola and colleagues [13,16] where a
discussion of the original results by Piola and Lagrange can be found.

In this aspect, D’Alembert–Lagrange’s approach to continuum mechanics does not differ from
Cauchy’s. However, as we will show in the following of this subsection, one of the most important
among the assumptions accepted by Cauchy, the so-called Cauchy postulate,10 has not a general
validity.

The so-called Cauchy postulate has to be regarded as a property specific to first-gradient continua being valid
for a particular class of deformation energy constitutive equations. As a consequence the choice of the word
‘‘postulate’’ seems rather inappropriate.

Indeed, within the variational postulation scheme, where the stresses are defined as duals in work to
the gradients of the virtual displacement, the contact interactions between a subbody and its comple-
ment, divided by the Cauchy cut, are a derived concept.
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2.6.2. Validity of the principle of virtual work for subbodies and contact interactions in second-gradient continua: reasoning
à la Piola. In the following, we define contact interactions also in second-gradient continua, and we show
how they do depend on the shape of the Cauchy cut. We will see that the contact interactions for
second-gradient continua can be expressed in terms of

1. The value of the Piola–Lagrange stress and double-stress tensors in the considered point of a
Cauchy cut.

2. The local shape of a Cauchy cut.

Let us consider an inner subbody Ô of O: that is a connected subset of O as regular as O and which
has no common boundary points neither with the faces nor with the edges of O, that is, ∂Ô \ ∂O= [
and ∂∂Ô \ ∂∂O= [. Following our notation, we denote by N̂ and V̂ the outward-pointing unit normals
to the boundary surface ∂Ô and to the boundary curves ∂∂Ô. For what concerns the complement
Ôc =OnÔ, clearly the normals N̂ c and V̂ c are given by N̂ c = N on ∂O and V̂ c = V on ∂∂O as well as
N̂ c =� N̂ on the part of ∂Ôc which is included in ∂Ô and V̂ c =� V̂ on the part of ∂∂Ôc which is included
in ∂∂Ô. The virtual work identiy (2), valid for every admissible dP, can be written as

�
ð
Ô

(PA
i dFi

A +P
AB
i dFi

AB) +

ð
Ô

F
O
i dPi + dW tot

O jÔc(dP) = 0, ð17Þ

where

dW tot
O jÔc(dP) =�

ð
Ô

c

(PA
i dFi

A +P
AB
i dFi

AB) +

ð
Ô

c

F
O
i dPi +

ð
∂O

F
∂O
i dPi

+

ð
∂O

D
∂O
i

∂dPi

∂X C
NC +

ð
∂∂O

F
∂∂O
i dPi:

Inserting the representation of internal work given by generalized Schwartz theorem (11) in its unique

form involving transverse derivatives to the boundary ∂Ôc, we obtain

dW tot
O jÔc(dP) =

ð
Ô

c

∂�PA
i

∂X A
dPi �

ð
∂Ô

c

�PA
i (N̂

c
)A dPi +

ð
∂Ô

c

M̂
c

k
C

L

∂

∂X C
(PAB

i (N̂
c
)BM̂

c

k
L

A
)dPi

�
ð
∂Ô

c

(PAB
i (N̂

c
)A(N̂

c
)B)

∂dPi

∂X C
(N̂

c
)C �

ð
∂∂Ô

c

(PAB
i (V̂

c
)A(N̂

c
)B)dPi ,

+

ð
Ô

c

FO
i dPi +

ð
∂O

F∂O
i dPi +

ð
∂O

D∂O
i

∂dPi

∂X C
NC +

ð
∂∂O

F∂∂O
i dPi:

Using ∂Ôc = ∂Ô [ ∂O and ∂∂Ôc = ∂∂Ô [ ∂∂O together with the boundary conditions (14)–(16) as well as
the equilibrium equations (13), the expression can be simplified to

dW tot
O jÔc(dP) =

ð
∂Ô

�PA
i N̂A dPi �

ð
∂Ô

M̂k
C

L

∂

∂X C
(PAB

i N̂BM̂k
L

A
)dPi

+

ð
∂Ô

(PAB
i N̂AN̂B)

∂dPi

∂X C
N̂

C
+

ð
∂∂Ô

(PAB
i V̂ AN̂B)dPi:

12



By defining the work functional of contact interaction for Ô as follows

dW
ext, con

Ô
(dP) :=

ð
∂Ô

F
∂Ô
i dPi +

ð
∂Ô

D
∂Ô
i

∂dPi

∂X C
N̂C +

ð
∂∂Ô

F
∂∂Ô
i dPi,

with

F∂Ô
i = �PA

i N̂A � M̂k
C

L

∂

∂X C
(PAB

i N̂BM̂k
L

A
) on ∂Ô

D
∂Ô
i =P

AB
i N̂AN̂B on ∂Ô

F
∂∂Ô
i = (PAB

i V̂ AN̂B) + + (PAB
i V̂ AN̂B)� on ∂∂Ô,

ð18Þ

we are let to define the external work functional for Ô as

dW ext
Ô

(dP) :=

ð
Ô

F
O
i dPi + dW

ext, con

Ô
(dP): ð19Þ

By defining

dW int
Ô

(dP) :=�
ð
Ô

(PA
i dFi

A +P
AB
i dFi

AB),

we get that the D’Alembert identity (17) for O implies the D’Alembert identity for Ô:

dW int
Ô

+ dW ext
Ô

= 0:

The presented derivation proves that we can obtain the formulation of the principle of virtual work
for any inner subbody Ô from its formulation for the body O. The definition (19) can be interpreted say-
ing that the complement Ôc acts on the subbody Ô via contact interactions which are seen from the sub-
body as external virtual work functionals.

We recall here that the presented definitions and reasonings parallel closely those used by Piola (see
dell’Isola et al. [24]) for introducing contact interactions in the context of first-gradient theory.

Unfortunately, this circumstance was not remarked somewhere in the literature: In Fried and Gurtin
[35], the principle of virtual work is postulated for every subbody introducing a so-called non-standard
form of the principle of virtual power. However, this non-standard form was already presented by
Germain [1,3].

2.6.3. How contact interactions in second-gradient continua depend on the shape of the Cauchy cut. Considering equation
(18), evidently one sees that

� Contact double-forces D∂Ô at X depend: (1) on the shape of the Cauchy cuts only via its unit nor-
mal at X , and this dependence is quadratic, (2) on the values at X of the Piola–Lagrange double-
stress tensor.

� Edge contact forces F∂∂Ô at X depend: (1) on the shape of the edge of the Cauchy cuts only via
the normals N̂6 and V̂ 6 at X and this dependence is bilinear, (2) on the values at X of the Piola–
Lagrange double-stress tensor.

Very important, for understanding the true nature of the so-called Cauchy postulate, is the depen-
dence of the surface contact forces F∂Ô with respect to the shape of the Cauchy cut ∂Ô at the point
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X 2 ∂Ô. To make more explicit this dependence, we use equation (57) of Appendix A together with
P

AB
i =P

BA
i , which leads to

F
∂Ô
i = PA

i � 2
∂PAB

i

∂X B

� �
N̂A � P

AB
i

∂N̂A

∂X B
+

∂PAB
i

∂X C
N̂BN̂CN̂A +P

AB
i

∂N̂
C

∂X C
N̂BN̂A:

Hence, for second-gradient continua, the Lagrangian expression for surface contact forces depends
polynomially on the normal and on the curvature of Cauchy cuts.11 This polynomial includes a linear
and a cubic term in the components of the normal vector, a linear term in the curvature and a mixed
third-order polynomial quadratic in the normals and linear on the surface mean curvature. Only, when
P vanishes, we recover that contact interactions depend only linearly on the normal of Cauchy cuts.

3. The Eulerian virtual work principle for second-gradient continua: equilibrium
conditions

Whether the problem is formulated in Lagrangian or Eulerian description, we still model the same phys-
ical phenomena. For this reason, the value of the virtual work for corresponding virtual displacements
must be the same in Lagrangian and Eulerian descriptions:

dwint
v (dP) := dW int

O (dP) , dwext
v (dP) := dW ext

O (dP): ð20Þ

Consequently, the virtual work equality holds also in the Eulerian description for every admissible
Eulerian virtual displacement:

dwtot
v (dP) := dwint

v (dP) + dwext
v (dP) = 0 : ð21Þ

Since, after the simple change of variables given by P, the Eulerian internal virtual work is still a
second-order distribution (see Schwartz [27] and the subsequent section 4) and can be represented as

dwint
v (dP) =�

ð
v

(c j
i ddi

j + c
jk
i ddi

jk), ð22Þ

where c
j
i and c

jk
i are the components of the work conjugates to the first and second gradient of the spatial

virtual displacement. We call them the Cauchy–Euler stress c and the Cauchy–Euler double-stress c.
The ‘‘Axiom of Power of Internal Forces’’12 in Eulerian form (as postulated in Germain [3]), which

must hold for any suitably regular subbody v̂ � v, requires the following identity

dwint
v jv̂(dPrig) = 0 8dPrig,

whereas the rigid virtual displacements in Eulerian form are parameterized by

dPi
rig = ai + W i

j x j , where W =�W T :

Since the second gradient of the rigid virtual displacement vanishes, we get the symmetry of the Cauchy–
Euler stress c, that is

c = cT :

To characterize the compatible external work functional, the same integration by parts procedure as
in the Lagrangian formulation can be applied. Defining

�c j
i = c

j
i �

∂c
jk
i

∂xk
,
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and using the results presented in Appendix A, it is proven that the Eulerian internal work functional
has the following representation:

dwint
v (dP) =

ð
v

∂�c j
i

∂x j
dPi �

ð
∂v

�c j
i njdPi +

ð
∂v

mk
c
l

∂

∂xc
(cjk

i nkmk
l
j
)dPi

�
ð
∂v

(cjk
i njnk)

∂dPi

∂xc
nc �

ð
∂∂v

(cjk
i vjnk)dPi:

ð23Þ

Consequently, the compatible external work functionals must be of the form

dwext
v (dP) =

ð
v

f
v
i dPi +

ð
∂v

f
∂v
i dPi +

ð
∂v

d
∂v
i

∂dPi

∂xc
nc +

ð
∂∂v

f
∂∂v
i dPi, ð24Þ

where the co-vector fields fv, f∂v, and f∂∂v are forces per unit current volume, surface, and line, respec-
tively. Also in the Eulerian framework, there appears a surface density of double-forces d∂v, which is a
density per unit current surface and which is dual to the derivative of the Eulerian virtual displacement
with respect to the current normal vector.

Inserting equations (23) and (24) in equation (21), we obtain the equilibrium equations

∂

∂x j
c

j
i �

∂c
jk
i

∂xk

!
+ f

v
i = 0 in v, ð25Þ

and by considering the dual in work of virtual displacement left free by imposed essential boundary con-
ditions, we get

f
∂v
i =�c j

i nj � mk
c
l

∂

∂xc
(cjk

i nkmk
l
j
) on∂vnP(SP), ð26Þ

f
∂∂v
i = (cjk

i vjnk) + + (cjk
i vjnk)� on ∂∂vnP(SP): ð27Þ

We recall that (see equation (56) in Appendix A) the symbols ðÞ6 denote the limits on the curves consti-
tuting ∂∂v from the faces 6 of the quantities in the brackets.

By considering the dual in work of the normal derivative of virtual displacement left free by imposed
essential boundary conditions, we get

d∂v
i = c

jk
i njnk on ∂vnP(S?) : ð28Þ

Using the same procedure as in the Lagrangian framework, the virtual work of the contact interaction
between a subbody v̂ � v and its complement v̂c can be recognized as

dwext, con
v̂ (dP) =

ð
∂v̂

f
∂v̂
i dPi +

ð
∂v̂

d
∂v̂
i

∂dPi

∂xc
n̂c +

ð
∂∂v̂

f
∂∂v̂
i dPi,

where the contact surface forces f∂v̂, contact surface double-forces d∂v̂, and contact line forces f∂∂v̂ are
given as

f
∂v̂
i =�c j

i n̂j � m̂k
c

l

∂

∂xc
(cjk

i n̂km̂k
l

j
) on ∂v̂,

d
∂v̂
i = c

jk
i n̂jn̂k on ∂v̂,

f
∂∂v̂
i = (cjk

i v̂jn̂k) + � (cjk
i v̂jn̂k)� on ∂∂v̂:

ð29Þ

dell’Isola et al. 15



Here, n̂ denotes the outward-pointing unit normal to ∂v̂ and v̂ the outward-pointing unit normal to the
boundary curves ∂∂v̂. Using equation (57) of Appendix A together with c

jk
i = c

kj
i , the contact surface

force can be expressed as

f∂v̂
i = c

j
i � 2

∂c
jk
i

∂xk

!
n̂j � cjk

i

∂n̂j

∂xk
+

∂c
jk
i

∂xl
n̂k n̂ln̂j + cjk

i

∂n̂l

∂xl
n̂jn̂k: ð30Þ

The expression for contact forces, which we just obtained, must be compared with the expression
obtained following the Cauchy tetrahedron procedure. First of all, we note that when c vanishes, we
recover Cauchy’s representation formula. However, in the case of non-vanishing c, we can immediately
see in equation (30) that f∂v̂ depends also on the curvature of the Cauchy cut. Clearly the so-called
Cauchy postulate is not verified for second-gradient continua. As the dependence of the deformation
energy on the second gradient of placement produces a non-vanishing tensor c, we must conclude that
the logical status of the Cauchy postulate is different from that of the principle of virtual work, as it
holds only for a specific class of continua.

Finally, we remark that, in second-gradient continua, contact interactions must include double-forces.
As shown in Germain [3], the tangent part of contact double-forces can be interpreted as contact couples
(see also Toupin [4]), whereas the normal part of contact double-forces are a kind of interaction com-
pletely independent of forces (i.e. interactions expending work on displacements) and couples (i.e. inter-
actions expending work on rotations). Therefore, it appears evident that postulating the balance of
forces and moment of forces is not enough, in second-gradient continua, to get all necessary conditions
which follow from the principle of virtual work. This circumstance shows the intrinsic weakness of
Cauchy’s postulation scheme in producing the theory of generalized continua.

4. Piola transformations in second-gradient continua

In the previous section, we have introduced as Eulerian dual-quantities the Cauchy–Euler stresses
together with the Eulerian external forces and double-forces. The Piola transformation problem consists
in finding the relationships between the Lagrangian and Eulerian stresses and double-stresses as well as
external forces and double-forces implied by the identities (20).

Let F be a Lagrangian field with domain O related to the corresponding Eulerian field f with domain
v by F(X ) = f(P(X )). Recalling (1), the chain rule implies that the gradients of the Lagrangian and
Eulerian fields are connected by

∂F

∂X A
(X ) =

∂f

∂x j
(P(X ))

∂P j

∂X A
(X ) =

∂f

∂x j
(P(X ))F j

A(X ): ð31Þ

As this relation can also be written as

∂F

∂X A
(p(x)) =

∂f

∂x j
(x)F j

A(p(x)), ð32Þ

we will drop the arguments in what follows. Using this convention together with equation (1), we obtain,
by taking once more the gradient of equation (31), the expression

∂2F

∂X A∂X B
=

∂2f

∂x j∂xk
F

j
AFk

B +
∂f

∂x j
F

j
AB:

Consequently, the gradients of the Lagrangian and Eulerian virtual displacement fields are related by

dFi
A = ddi

jF
j

A , dFi
AB = ddi

jkF
j

AFk
B + ddi

jF
j
AB : ð33Þ
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When the gradient of the Eulerian field f should be expressed in terms of its Lagrangian counterpart,
we use the relation f = F8p as well as (F�1)A

i = ∂pA=∂xi to end up with

∂f

∂xi
=

∂F

∂X A

∂pA

∂xi
=

∂F

∂X A
(F�1)A

i : ð34Þ

In the following subsections, we will use these relations together with the formulas of the change of
variables of volume, surface, and line integrals of Appendix B.4. We obtain the Piola transformations
for stresses, double-stresses as well as external forces and external double-forces.

4.1. Piola transformation of stress and double-stress

For a scalar valued function F : O! R, the change of variables is of the formð
O

F(X ) =

ð
p(v)

F(X ) =

ð
v

F(p(x))j(x), ð35Þ

where j(x) = J�1(p(x)) = det (F(p(x)))�1 is the volume density change induced by p and J = det (F).
The change of variables of the internal work functional leads to

dW int
O (dP) =�

ð
v

J�1(PA
i dFi

A +P
AB
i dFi

AB),

where all functions in the integral are to be composed with p. If we introduce the relation (33), we obtain
the functional

dW int
O (dP) =�

ð
v

J�1PA
i ddi

jF
j

A �
ð
v

J�1
P

AB
i (ddi

jkF
j

AFk
B + ddi

jF
j
AB): ð36Þ

Because of equation (20), dwint
v is a second-order distribution, which can be represented as

dwint
v (dP) =�

ð
v

(c j
i ddi

j + c
jk
i ddi

jk): ð37Þ

By using equations (20), (36), and (37), we get the relations between the Piola–Lagrange and the
Cauchy–Euler stresses and double-stresses

c
j
i = J�1(PA

i F
j

A +P
AB
i F

j
AB) , cjk

i = J�1
P

AB
i F

j
AFk

B , ð38Þ

which are called the Piola transformation of stress and double-stress.

4.2. Piola transformations of external forces and double-forces

The Eulerian external work functional (24) is the sum of four different termsð
v

f
v
i dPi ,

ð
∂v

f
∂v
i dPi ,

ð
∂v

d
∂v
i

∂dPi

∂xc
nc ,

ð
∂∂v

f
∂∂v
i dPi:

The Lagrangian work functional (12) admits a similar decomposition in four termsð
O

F
O
i dPi ,

ð
∂O

F
∂O
i dPi ,

ð
∂O

D
∂O
i

∂dPi

∂X C
NC ,

ð
∂∂O

F
∂∂O
i dPi:
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The difficulty arises because the change of variable from Eulerian to Lagrangian descriptions does not
induce a one-to-one correspondence between the listed terms. In particular, the work of external
double-forces in Eulerian description does not produce only a term which can be recognized as work of
Lagrangian double-forces. In fact, Eulerian work of double-forces, once transformed into Lagrangian
description can be uniquely decomposed into the sum of work functional of double-forces plus work of
surface forces plus work of edge forces. This is due to the fact that Eulerian normal derivatives, once
transformed into Lagrangian description, are derivatives along a direction not orthogonal to the refer-
ential boundary ∂O.

4.2.1. Transformations of external forces. The external work functionals due to Eulerian force densities can read-
ily be transformed into Lagrangian description when applying the corresponding change of variables
according to equation (64) with the volume Jacobian J = det (F), the area Jacobian JS = k JF�T �N k as
well as the length Jacobian JL = k F �T k.

The transformations are: for the volume forcesð
v

f
v
i dPi =

ð
O

Jf
v
i dPi, ð39Þ

for the surface forces ð
∂v

f
∂v
i dPi =

ð
∂O

JSf
∂v
i dPi, ð40Þ

and finally for the edge forces ð
∂∂v

f
∂∂v
i dPi =

ð
∂∂O

JLf
∂∂v
i dPi: ð41Þ

4.2.2. Transformation of external surface double-forces. The external work functional of Eulerian surface double-
forces is

Ð
∂v

d∂v
i (∂dPi=∂xr)nr. Using the change of variable (64) together with equation (34) for the cur-

rent gradient of the virtual displacement as well as the expression (62) of the Eulerian unit normal in
terms of the Lagrangian unit normal, the work functional takes the formð

∂O

d
∂v
i

∂dPi

∂X R
(F�1)R

r grs (F�1)S
s NS

k F�T �N k

� �
k JF�T �N k :

Identifying the inverse of the right Cauchy–Green strain C�1 from equation (5), using simple algebra,
the work functional becomes ð

∂O

Jd∂v
i

∂dPi

∂X R
(C�1)RSNS : ð42Þ

Clearly, this expression involves derivatives of dP which are not normal to the boundary ∂O. Hence, it
cannot coincide with the work expended by the Lagrangian double-forces.

We decompose it into Lagrangian normal and tangential derivatives as follows: using the Kronecker-
delta dE

R and writing the gradient as

∂dPi

∂X R
=

∂dPi

∂X E
dE

R =
∂dPi

∂X E
(NENR + Mk

E

R
)
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together with the equality

NR(C�1)RSNS = NR(F�1)R
r grs(F�1)S

s NS = k F�T �N k2

the normal part of equation (42) is given byð
∂O

Jd
∂v
i

∂dPi

∂X E NENR(C�1)
RS

NS =
Ð
∂O

Jd∂v
i

∂dPi

∂X E NE k F�T �N k2
:

The residual tangential part is written asÐ
∂O

Jd∂v
i

∂dPi

∂X E Mk
E
R

(C�1)
RS

NS =
Ð
∂O

SRS
i NS

∂dPi

∂X E Mk
E
R,

with

SRS
i = Jd

∂v
i (C�1)RS:

For a fixed index i, this functional is of the form studied in Appendix A equation (53). Hence, it can be
represented by the sum of the two functionals as given by equations (54) and (55), which reads in the
present case as the sum of the following termsð

∂∂O

(Jd
∂v
i (C�1)

RS
NSVR)dPi

and

�
ð
∂O

Mk
E
D

∂

∂X E
(Jd∂v

i KD)dPi,

where we have introduced the Lagrangian vector field

KD := Mk
D

R
(C�1)RSNS = ((F�1)D

i gij(F�1)S
j � k F�T �N k2GDS)NS:

Consequently, the external work functional of Eulerian double-forces can be written asð
∂v

d
∂v
i

∂dPi

∂xc
nc =

ð
∂O

Jd
∂v
i

∂dPi

∂X E
NE k F�T �N k2

�
ð
∂O

Mk
E
D

∂

∂X E
(Jd∂v

i KD)dPi +

ð
∂∂O

(Jd∂v
i (C�1)

RS
NSVR)dPi:

ð43Þ

Remark that the two last terms will intervene in the Lagrangian expression for external surface and edge
work functionals.

4.3. Identification of Piola transformations

Both Lagrangian and Eulerian external work functionals (12) and (24) are unique representations in
terms of transverse derivatives. Hence, when transforming the Eulerian work functional into Lagrangian
description, the unique relationships between the Lagrangian and Eulerian external forces and double-
forces can be identified.

Owing to the previously discussed transformations (39)–(41) and to expression (43) for the external
double-force work functional, the external virtual work functional can be written as
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dwext
v (dP) =

ð
O

Jfv
i dPi +

ð
∂O

JSf∂v
i �Mk

E
D

∂

∂X E
(Jd∂v

i KD)

� �
dPi

+

ð
∂O

Jd∂v
i k F�T �N k2 ∂dPi

∂X E
NE

+

ð
∂∂O

JLf
∂∂v
i +

ð
∂∂O

(Jd
∂v
i (C�1)

RS
NSVR)dPi:

ð44Þ

Note, the last integral expression must be understood in the sense of the convention specified in equa-
tion (56) of Appendix A. In agreement with the identity (20), comparison of equation (44) with equation
(12) induces the following transformation formulas of the force densities

F
O
i = Jf

v
i , ð45Þ

F
∂O
i = JSf

∂v
i �Mk

E
D

∂

∂X E
(Jd

∂v
i KD) , ð46Þ

F
∂∂O
i = JLf

∂∂v
i + (Jd

∂v
i (C�1)RSVRNS)+ + (Jd

∂v
i (C�1)RSVRNS)� , ð47Þ

as well as the Piola transformation of the surface double-force

D∂O
i = J k F�T �Nk2d∂v

i : ð48Þ

5. Consistency of Piola transformations

In section 2, we have derived the equilibrium equations and boundary conditions in Lagrangian descrip-
tion. In section 3, we have repeated the same procedure to obtain the corresponding Eulerian boundary
value problem. Section 4 was then dedicated to find the Piola transformations relating Piola–Lagrange
stress and double-stress with Cauchy–Euler stress and double-stress. Moreover, the transformation for-
mulas for the external force and double-force contributions have been derived. Essentially, we have
obtained all the desired results. However, as the transformation formulas (46)–(48) are novel and not
very intuitive, a consistency check would be desirable. This is exactly what this section is for. Indeed,
Piola transformation for external forces and double-forces can also been deduced from the Piola trans-
formations (38) of stress and double-stress, by making use of the equilibrium conditions both in
Eulerian and Lagrangian frameworks.

5.1. Transformation of local equilibrium equations

From the Eulerian principle of virtual work, we obtain the equilibrium equations (25), which are

∂ca
i

∂xa
� ∂2cab

i

∂xb∂xa

� �
+ fv

i = 0 : ð49Þ

Inserting the relations from equation (38) into equation (49) leads to

∂

∂xa
J�1 PA

i Fa
A + J�1

P
AB
i F

a
AB

� �
� ∂

∂xa

∂

∂xb
J�1

P
AB
i Fa

AFb
B

� �� �
+ f

v
i = 0 :

For a fixed index i, applying the Piola identity div(J�1F �T) = J�1Div(T ) from equation (65), Appendix
C, we obtain
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J�1 ∂PA
i

∂X A
+

∂

∂xa
J�1

P
AB
i F

a
AB � J�1 ∂

∂X B
P

AB
i Fa

A

� �� �
+ f

v
i = 0 :

Using Leibniz’ rule in the last term, two terms cancel and we end up with

J�1 ∂PA
i

∂X A
� ∂

∂xa
J�1Fa

A

∂PAB
i

∂X B

� �
+ f

v
i = 0 :

Applying once more the Piola identity (65) on the second term, the equality reduces to

J�1 ∂PA
i

∂X A
� J�1 ∂

∂X A

∂PAB
i

∂X B

� �
+ f

v
i = 0 :

Using the Lagrangian equilibrium equations (13) in the last expression, we immediately obtain the
relation

Jf
v
i =� ∂PA

i

∂X A
+

∂

∂X A

∂PAB
i

∂X B

� �
=F

O
i ,

and we recover the Piola transformation (45) relating Eulerian and Lagrangian external volume force
densities.

5.2. Transformation of boundary conditions

The boundary conditions (14)–(16) in Lagrangian or the boundary conditions (26)–(28) in Eulerian
form relate the external interactions with the stresses and double-stresses. In the following, we show that
inserting the Piola transformation of the stress and double-stress into the boundary conditions, confirms
the transformation rules for the external force and double-force densities. The transformations are car-
ried out in the same order as in section 4. Hence, we start with the double-force density followed by the
edge forces and close the subsection with the most tedious transformation of the surface force densities.

5.2.1. External surface double-forces. The external double-force densities must satisfy the boundary condition
(28), which, after inserting equation (38), can be expressed as

d
∂v
i = c

jk
i njnk = J�1

P
AB
i F

j
AFk

Bnjnk :

Using (62) to get F
j

Anj = NA k F�T �Nk�1, the previous expression becomes

d
∂v
i = J�1

P
AB
i NANB k F�T �N k�2 = J�1

D
∂O
i k F�T �N k�2 ,

where the Lagrangian boundary condition (16) has been used. Clearly, this identity is equivalent to the
Piola transformation (48) of external double-forces.

5.2.2. External edge forces. When dealing with edge force densities, we use the transformations (62) and (63)
for the normal to the faces and for the tangent-normal to the edge (Appendix B.2). We obtain
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c
jk
i vjnk = c

jk
i nk (F�1)R

j VR �
(C�1)

RS
VRNS(F�1)Q

j NQ

k F�T �Nk2

" #
JSJ�1

L

= c
jk
i

(F�1)L
k NL

k F�T �N k (F�1)R
j VR k JF�T �N k J�1

L

� c
jk
i nk

(C�1)
RS

VRNS(F�1)Q
j NQ

k F�T �N k JJ�1
L :

Replacing the Cauchy-Euler double-stress with equation (38) in the first term of the right hand side and
using equation (62) in the second term, we obtain the following equation:

cjk
i vjnk = (PAB

i F
j

AFk
B(F�1)L

k NL(F�1)R
j VR � Jc

jk
i nknj(C

�1)
RS

VRNS)J�1
L
:

Using the boundary condition (28), we get

c
jk
i vjnk = (PAB

i VANB � Jd
∂v
i (C�1)RSVRNS)J�1

L :

Using the last expression in the Eulerian boundary condition (27) together with the Lagrangian bound-
ary condition (15), we obtain

JLf∂∂v
i = JL½(cjk

i vjnk) + + (cjk
i vjnk)��

= (PAB
i VANB) + + (PAB

i VANB)� � (Jd
∂v
i (C�1)RSVRNS) +

� (Jd
∂v
i (C�1)RSVRNS)�

=F
∂∂O
i � (Jd

∂v
i (C�1)RSVRNS) + � (Jd

∂v
i (C�1)RSVRNS)�,

which corresponds to the Piola transformation of edge forces (47).

5.2.3. External surface forces. For the transformation of the surface force density, we consider the two terms
in the boundary conditions (26) separately. Using equations (38) and (62), we get�

c
j
i �

∂c
jk
i

∂xk

�
nj =

�
J�1PA

i F
j

A + J�1
P

AB
i F

j
AB �

∂

∂xk
(J�1

P
AB
i F

j
AFk

B)
� (F�1)L

j NL

k F�T �N k :

Using the Piola identity (65) in the third term, we obtain�
c

j
i �

∂c
jk
i

∂xk

�
nj =

�
PA

i F
j

A +P
AB
i F

j
AB �

∂

∂X B
(PAB

i F
j

A)
� (F�1)L

j NL

k JF�T �N k :

Applying Leibniz’ rule in the last term, the expression simplifies further to�
c

j
i �

∂c
jk
i

∂xk

�
nj = J�1

S

�
PA

i �
∂PAB

i

∂X B

�
NA:

For treating the second term that appears in the Eulerian boundary condition (26), we must use the
surface Piola-type identity in the form equation (69) (Appendix C). We get the relation

mk
c

l

∂

∂xc
(cjk

i nkmk
l

j
) = J�1

S Mk
A

S

∂

∂X A
(JSMk

S

R
(F�1)R

l mk
l

j
c

jk
i nk):

Inserting mk
l
j
= dl

j � nlnj and using equations (38) and (28), we get
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mk
c

l

∂

∂xc
(cjk

i nkmk
l

j
) = J�1

S Mk
A

S

∂

∂X A
(Mk

S

R
k JF�T �N k (F�1)R

j J�1
P

CD
i F

j
CFk

Dnk

�Mk
S

R
k JF�T �N k (F�1)R

l d
∂v
i nl):

Since k F�T �N k Fk
Dnk = ND and

Mk
S
R

(F�1)R
l nl k F�T �N k = Mk

S
R

(F�1)R
l glj(F�1)C

j NC = Mk
S
R

(C�1)RCNC = KS ,

we can modify the expression further to

mk
c

l

∂

∂xc
(cjk

i nkmk
l

j
) = J�1

S Mk
A

S

∂

∂X A
(Mk

S

C
P

CD
i ND � Jd

∂v
i KS)

and use it to finally write

f
∂v
i = J�1

S PA
i �

∂PAB
i

∂X B

� �
NA �Mk

A

S

∂

∂X A
(Mk

S

C
P

CD
i ND) + Mk

A

S

∂

∂X A
(Jd

∂v
i KS)

� 	
= J�1

S F
∂O
i + Mk

A
S

∂

∂X A
(Jd

∂v
i KS)

� 	
:

The last equality confirms the Piola transformation (46) for external surface forces. Hence, we succeeded
in showing with an alternative way the Piola transformation formulas for the external forces and dou-
ble-forces.

In first-gradient theory, where P= 0, it is quite common (see e.g. [14,36]) to show the Piola transfor-
mation of the stresses by assuming the transformation rule for the surface forces

J�1
S F

∂Ô
i = f

∂v̂
i ,

and then representing contact surface forces in terms of stress, by using equations (18) and (29) into the
above expression to get

k JF�T �Nk�1PA
i NA = c

j
i nj = c

j
i (F�1)A

j k F�T �Nk�1NA:

This results in the Piola transformation c
j
i = J�1PA

i F
j

A. For second-gradient continua, however, we
have seen that this procedure cannot be applied as even the external surface force density transforms in
a completely unexpected way.

In fact, Piola transformations can be deduced only by considering the change of variables introduced
by the placement P in the work functionals.

6. Conclusion

In this paper, it has been chosen to base continuum mechanics on the principle of virtual work. Note
that this principle, established by D’Alembert and Lagrange, has been first called ‘‘principle of virtual
velocities’’ and was applied to fluid mechanics. This is true also for its application to second-gradient
continua. Indeed the so-called ‘‘capillary fluids’’ were the first continua of this type to be described
([32,37,38], more historical remarks can be found in previous studies [39–42]). We have argued that
D’Alembert–Lagrange postulation scheme is more suitable than Cauchy’s postulation scheme for intro-
ducing generalized continuum models (see among others [43–49]). In fact, while it is impossible to gener-
alize Cauchy’s tetrahedron argument based on the postulation of balance of forces and moments of
forces to formulate generalized higher gradient continuum models, instead by using different forms of
internal work functionals such a generalization becomes very natural. Specifically, we have discussed
how the definition of the internal work functional as a second-order distribution restricts the compatible
external work functionals and how it determines the contact interactions which can be exerted in
second-gradient continua. Moreover, we deduced the equilibrium conditions from the principle of vir-
tual work in Lagrangian description first and then in Eulerian description. The novel contribution of
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this paper is the Piola transformations of all mechanically relevant tensor quantities from Lagrangian
to Eulerian description in the case of second-gradient continua.

With the transformations given by equations (46)–(48), we found that, in addition to the geometry of
the boundary

1. Lagrangian surface forces are expressed in terms of the Eulerian surface forces and of Eulerian
double-forces.

2. Lagrangian edge forces are expressed in terms of the Eulerian edge forces and of the jump of the
Eulerian double-forces.

3. Lagrangian double-forces are simply expressed in terms of the Eulerian double-forces.

Sometimes, it has been questioned the importance of second-gradient continuum theories based on a
presumed absence of physical systems which are described by such theories. The homogenization meth-
ods in previous studies [50,51], or methods based on statistical mechanics [52–55], prove that there exist
specific micro-structures that, at macro level, produce a second-gradient behavior [56–63]. The pertinent
micro-structures are constituted by lattices of beams [64–71] connected via elastic or perfect pivots [72].
Experimentally, the deformation of such micro-structures can be captured by X-ray micro-tomography
in combination with digital image correlation procedures [73,74].

It has to be remarked that already Piola considered N th gradient continua as a local approximation
of continua in which particles can interact over distance [8,16]. Piola started from non-local energies and
based his reasoning on a truncated Taylor expansion: more recently by Silling [75], Piola’s results were
rediscovered and used for getting predictions in crack generation and many other applications [60,76–
79]. However, in peridynamics literature, the generalization of Piola transformations are not yet fully
developed.

Piola transformation for second-gradient continua can have a great impact in applications. In fact, a
large class of novel metamaterials (those showing a pantographic micro-structure) [72,80–85] produces
greater exotic effects in large deformation regimes (e.g. low sensitivity to micro-structure defects [86–88])
and this is exactly the context where the Piola transformations play the most important role. Moreover,
in the study of problems in which natural boundary conditions are assigned, deadloads are usually for-
mulated in the Eulerian description. In that case, numerical methods [86,89–94] are generally used to get
predictions and Piola transformations are mandatory for formulating effective numerical integration
schemes [95–98] in Lagrangian description.

Concerning the modeling of damage and plasticity pheneomena [99–102], we remark that second-
gradient continua supply an important tool for getting mathematically well-posed problems. The prob-
lem of force concentration on crack tips has attracted particular interest: In this context, describing edge
force effects is of utmost relevance. Because of the different nature of Lagrangian and Eulerian edge
forces, the presented results may clarify some apparent paradoxes.

In perspective, it is interesting to consider the case of second-gradient continua in which new edges
can appear in the Eulerian configuration. We mean here, Eulerian edges which are not the image, under
the placement mapping, of Lagrangian edges. Moreover, it is challenging to generalize the presented
results to the case of N th gradient continua, albeit the related formulas of tensor calculus seem to have
a complex recursive structure, see dell’Isola et al. [13]. For what concerns applications, second-gradient
continua in large deformations may be useful in describing bone reconstruction [103], and pantographic
metamaterial properties may be optimized for being resilient to damage phenomena [104].
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Notes

1. Whose inspiring ideas are described by Truesdell [105].
2. An admissible dP is such that the placement P + dP is admissible when such is P.
3. Henceforth the dependence on P will be omitted, if it does not cause any misunderstandings.
4. The dual spaces are decreasing, in the partial order relation given by the inclusion, when the sets of test functions are

increasing.
5. Note that as the tensor PAB

i represents a linear form over the variations dFi
AB, which satisfy the symmetry dFi

AB = dFi
BA, then

the symmetry PAB
i =P

BA
i is satisfied.

6 This is another consequence of the fact that the dual space is decreasing with increasing set of test functions: considering
test functions in H2 instead of test functions in H1 enlarges the set of work functionals.

7. This representation in terms of transverse to ∂O derivatives is unique.
8. Note that SP and S? must be non-vanishing subsets of ∂O, where the trace of H2 functions can be defined.
9. An elastic N th gradient continuum is a continuum whose deformation energy is given by Wdef = Wdef(X ,F,rF, :::,rN F).
10. It has many equivalent versions including those which are formulated as hypotheses in the Hamel–Noll theorem (see e.g.

Truesdell [106]). A careful reading of the hypotheses presented there shows that, in Noll’s analysis, it is systematically
assumed that contact forces cannot be concentrated on curves. This seems to be, ultimately, one of the most important
parts of the basic assumptions in Cauchy’s approach.

11. This property holds more generally also for N th gradient continua, see dell’Isola et al. [13].
12. Certainly, in our context, it is a condition on the internal work functional.
13. Note that some authors introduce �v6 = t+ ^ n6, see [3,4,107]. Then they get a different sign in the second term of (56).
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A. Equivalent form for second-order distributions

Let us consider a regular manifold V embedded in n-dimensional Euclidean vector space En and the pro-
jectors mk and m? on its tangent and normal spaces. When V has co-dimension one, and if n denotes its
unit normal vector, we have

m?
g
a = ngna , mk

g

a
= dg

a � ngna : ð50Þ

Given a vector field w defined in the neighborhood of V , the divergence theorem for Riemannian sub-
manifolds with boundaries is stated asð

V

mk
g

a

∂

∂xg
mk

a

b
wb

� �
=

ð
∂V

mk
a

b
wb

� �
mk

g

a
vg =

ð
∂V

wbvb, ð51Þ

where ∂V denotes the boundary of V and where the unit vector v is tangent to V and normal to ∂V .
Defining divV

k by setting for all smooth fields f

( divV
k (f))a := mk

g

a

∂

∂xg
(f),

the divergence theorem, see Capobianco and Eugster [108], readsð
V

divV
k (mk �w) =

ð
∂V

w�v:

In accordance with the theory of distributions [27], both the virtual work expressions in Lagrangian
and Eulerian descriptions can be considered as distributions D represented in the form

D (f) =

ð
v

sa ∂f

∂ya
+ �

ab ∂2f

∂ya∂yb

� �
, ð52Þ

where the derivatives of the test functions f are taken with respect to the coordinates ya of a three-
dimensional Euclidean space. Note that the index i appearing in both equations (10) and (22) does not
play any role in the present considerations and is therefore omitted. D is a second-order distribution.
The symbol - denotes the generic integration domain which satisfies the same regularity requirements
as discussed in section 1.1 for the reference configuration O. The faces of the subset v are denoted by ∂-
and come along with the outward-pointing unit normal field n. The symbol ∂∂- denotes the edges on
which the outward-pointing unit normals v are defined. Moreover, the unit normal v lies in the tangent
plane to the faces constituting ∂v.

Using the product rule in the second integrand of equation (52), we can write

D (f) =

ð
-

sa � ∂�ab

∂yb

� �
∂f

∂ya
+

ð
-

∂

∂yb
�

ab ∂f

∂ya

� �
:
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With the abbreviation �sa = sa � ∂�ab=∂yb and applying Leibniz’ rule for the first integrand, we end up
with

D (f) =

ð
-
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∂ya
(�saf)�

ð
-

∂�sa

∂ya
f +

ð
-

∂

∂yb
�

ab ∂f

∂ya

� �
:

Using the divergence theorem for the first and the third term and introducing the distributions

D
0
-(f) :=�

ð
-

∂�sa

∂ya
f , D 0

∂-(f) :=

ð
∂-

�sanaf :

Equation (52) can be written in the form

D (f) =D
0
-(f) +D

0
∂-(f) +

ð
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�
ab ∂f

∂ya
nb:

The last term here, is the only expression in which derivatives of f yet appear. Therefore, we will manip-
ulate this term further by using the projectors (50) for the faces ∂-ð

∂-
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where we have introduced the distribution

D
I
∂-(f) :=

ð
∂-

(�abnanb)
∂f

∂yg
ng:

The distribution D I
∂- involves the normal derivative of the test function (∂f=∂yg)ng and cannot be

reduced any further.
Applying once more Leibniz’ rule, we can manipulate the first term in the last line of equation (53) in

the following wayð
∂-

�
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In the last step, we have introduced the distributions

D 0
∂∂-(f) :=
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To obtain D 0
∂∂-, the divergence theorem (51) has been applied leading to a line integral along the edges

of -. We explicitly remark that in equation (54), we used a notational convention: as depicted in Figure
1, we observe that in an edge g two faces s+ and s� concur. Hence, in the performed integration by
parts, g is traversed twice: with the surface normal n�, edge normal v� and the limit (��)ab approach
from the surface s�, and similarly from s+ with the corresponding n+, v+, and (�+)ab. Consequently, if
we denote each edge curve by gi for i = 1, . . . , ne, then the integral expression of equation (54) reads13ð

∂∂-

(�abnbva)f :=
Xne
i = 1

ð
gi

(�ab nbva)
+

+ (�ab nbva)
�h i

f: ð56Þ

In conclusion, from the point of view of the theory of distributions, the second-order distribution
D(f) from equation (52) can equivalently be represented as

D =D
0
- + (D 0

∂- + ~D 0
∂-) +D

I
∂- +D

0
∂∂-:

This equivalence can be applied to the Lagrangian or Eulerian internal work functionals.
As a last thing, we work out the explicit dependence of ~D 0

∂- on the normal and the curvature of the
faces ∂-. For the sake of compact notation, in the following computations, partial derivatives ∂=∂ya are
written as (�),a and the abbreviation �

a
n = �

abnb is used. Inserting the tangent projector (50), we obtain
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which is obviously equivalent to
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We can further manipulate the expression to
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We assume that the faces are regular enough for extending any field in their vicinity as constant along
the normal. Using

nlnl = 1 ,
∂nl

∂yg

� �
ng = 0 ,

∂nd

∂yg

� �
ng = 0 ,

the above expression simplifies to

(�a
n mk

l

a
), gmk

g

l
= (�abnb),a � (�ab), gnbngna � �

abnbna(ng), g : ð57Þ

Inserting equation (57) in equation (55), the distribution ~D 0
∂- can finally be written as

~D 0
∂-(f) =�

ð
∂v

((�abnb),a � (�ab), gnbngna � �
abnbna(ng), g)f:

B. Piola transformations of tangents, surface normals, and edge normals

B.1. Piola transformation of unit tangent vectors

Given any curve in the reference configuration G : S 7!G(S) � O, this curve is transported by the place-
ment P to a curve in the current configuration g(S) = P(G(S)). Assume S to be the arc length parameter
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of G such that T = dG=dS is a unit vector. The application of the chain rule readily implies that the refer-
ential tangent vector T is mapped to the current tangent vector ~t by

~ti(S) :=
dgi

dS
(S) = Fi

A(G(s))TA(S) ,

which following the convention of omitting the arguments is written as

~ti = Fi
ATA : ð58Þ

Because~t is generally not a unit vector, the Piola transformation of the unit tangent vector T to the curve
G to the unit tangent vector t to the curve g is given by

t =~t k ~t k�1 = Fi
ATA k F �T k�1 : ð59Þ

B.2. Piola transformation of unit normals

Let S � O be a surface that is transported by the placement P to the surface s � v. Considering a pair
of independent vectors (V ,W ) both of which are tangent to the surface S. Then the referential unit nor-
mal to the surface S can be constructed by

N =
V ^W

k V ^W k , NA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(GLM )
p

eABCV BW C

k V ^W k ,

where eABC denotes the Levi-Civita permutation symbol and ^ the vector product in E
3. According to

equation (58), the tangent vectors V and W are mapped to ~v = F �V and ~w = F �W , respectively, both of
which are tangent to s. The current unit normal to the surface s is then given by

n =
~v ^ ~w

k ~v ^ ~w k , ni =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(glm)

p
eijk~v

i ~w j

k ~v ^ ~w k :

As for any U ,V ,W 2 E
3, the determinant det (F) of the map F is defined by

hF �U , (F �V ) ^ (F �W )i= det (F)hU ,V ^Wi and consequentlyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det (gij)

p
eijkFi

AUAF
j

BV BFk
CW C = det (F)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det (GIJ )

p
eABCUAV BW C ,

one can carry out the following computations:

(~v ^ ~w)l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(gij)

p
eljk~v

j ~wk

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(gij)

p
eljkF

j
BV BFk

CW C

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(gij)

p
eijk(Fi

A(F�1)A
l )F j

BV BFk
CW C

= det (F)(F�1)A
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(GIJ )

p
eABCV BW C

= J(F�T �(V ^W ))l :

ð60Þ

Note, in the last line, we have introduced J := det (F) and used (F�T �B)l = (F�1)A
l BA, see Auffray et al.

[32] for more details. Using the Piola transformation of the vector product (60), we can relate the refer-
ential and current normals in accordance with

n =
~v ^ ~w

k ~v ^ ~w k =
(F �V ) ^ (F �W )

k (F �V ) ^ (F �W ) k =
JF�T �(V ^W )

k JF�T �(V ^W ) k

=
JF�T �(V ^W )

k JF�T �N kk (V ^W ) k =
F�T �N
k F�T �N k :

ð61Þ
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In components, this transformation reads as

ni =
(F�1)A

i NA

k F�T �N k , ni =
gij(F�1)A

j NA

k F�T �N k : ð62Þ

This formula appears already in Piola, see dell’Isola et al. [8].

B.3. Piola transformation of unit edge normals

Consider two surfaces S
+
and S

�
that concur in an edge G. As depicted in Figure 1, the referential edge

normals V 6 are the outward-pointing unit normals to the edge G that are tangent to the surfaces S
6
,

that is, the unit vectors that are normal to T+ and N6. When the tangent vector T+ is introduced as in

Figure 1, then V 6 = 6T+ ^ N6. In the following, we consider only S
+
for which the triple (T+,N+,V+)

constitute a right-handed orthonormal system of E3 and we drop the superscript (�)+. Through the pla-
cement P, the surface is transported to s = P(S) and the edge to g = P(G). The tangent and normal
vector T and N are transported to the unit vectors t and n following equations (59) and (61). The ques-
tion is now how the current edge normal v = t ^ n is related to the referential edge normal V . To derive
this relation, we will essentially apply the Gram-Schmidt process. The transformation rules (59) and
(61) were derived such that ht, ti= 1 and hn, ni= 1. Moreover, the orthogonality between n and t is pre-
served. Introducing JL = k F �T k and JS = k F�T �N k, we remark that

JSJLht, ni= hF �T ,F�T �Ni= hT ,FT �F�T �Ni= hT ,Ni= 0 :

The triple (t, n,F�T �V ) generates a basis for E3. Indeed,

JS(n ^ (F�T �V )) = (F�T �N) ^ (F�T �V ) = J�1F(N ^ V ) = J�1t

is not the zero vector, and (t, n,F�T �V ) spans the three-dimensional E3. Moreover,

JLht,F�T �Vi= hF �T ,F�T �Vi= hT ,Vi= 0 ,

which shows that F�T �V lies in a plane orthogonal to t. To get a basis vector ~v which is orthogonal also
to n, we must subtract from F�T �V its component in n direction. Setting

~v := F�T �V � hF�T �V , nin = F�T �V � hF
�T �V ,F�T �Ni

hF�T �N ,F�T �NiF
�T �N :

Introducing a = F�T �V and b = F�T �N , the norm of ~v can be computed as

h~v,~vi= ha, ai � 2
ha, bi2

hb, bi +
ha, bi2

hb, bi2
hb, bi= ha, aihb, bi � ha, bi2

hb, bi =
k a ^ b k
hb, bi

=
k (F�T �V ) ^ (F�T �N)k2

k F�T �Nk2
=
k J�1F �(V ^ N)k2

k F�T �Nk2
=
k F �Tk2

k JF�T �Nk2
:

Consequently, the current unit edge normal v is given by

v = JSJ�1
L F�T �V � hF

�T �V ,F�T �Ni
k F�T �Nk2

F�T �N
� 	

:

dell’Isola et al. 33



In terms of the covariant components of the edge normal, the transformation rule can be written as

vi = JSJ�1
L (F�1)R

i VR �
(F�1)S

k VSgkl(F�1)P
l NP

k F�T �Nk2
(F�1)R

i NR

� 	
= JSJ�1

L (F�1)R
i VR �

(C�1)
SP

VSNP

k F�T �Nk2
(F�1)R

i NR

" #
:

ð63Þ

B.4. Change of variables for volume, surface, and line integrals

In this subsection, we give a brief summary of the transformation rules for the change of variables for
volumes, surfaces, and line integrals. With the regularity assumptions made in section 1.1, the reference
configuration O � E

3 with boundary faces ∂O and edges ∂∂O is mapped to v = P(O) with faces
∂v = P(∂O) and edges ∂∂v = P(∂∂O). Denoting the outward-pointing unit normal to the boundary sur-
faces ∂O by N and the tangent vector to ∂∂O by T , the volume, area, and length Jacobians can be intro-
duced as

J := detF , JS := k JF�T �N k , JL := k F �T k :

It can be shown that the following equalities hold when changing the variables within the integral:ð
v

1 =

ð
O

J ,

ð
∂v

1=

ð
∂O

JS ,

ð
∂∂v

1=

ð
∂∂O

JL: ð64Þ

The proof of these relation makes use of the incremental version of the following equalities.
Let U ,V ,W 2 E

3 be three independent referential vectors. These are mapped by the deformation gra-
dient F to the current vectors u = F �U , v = F �V and w = F �W . Then the current volume
Vol(u, v,w) = jhu, v ^ wij spanned by the triad (u, v,w) can be related to the referential volume
Vol(U ,V ,W ) = jhU ,V ^Wij by

Vol(u, v,w) = jhu, v ^ wij= j det (F)jjhU ,V ^Wij= JVol(U ,V ,W ) :

Using equation (60), the current area spanned by the two vectors u and v can be expressed as

Area(u, v) = k u ^ v k = k (F �U) ^ (F �V ) k = k JF�T �(U ^ V ) k
= k JF�T �N kk (U ^ V ) k = JSArea(U ,V ) :

Introducing T = U k U k�1, the length of the vector u is given as

Length(u) = k u k = k F �U k = k F �T kk U k = JLLength(U) :

C. Piola-type identities

The Piola-type identities are essential in getting a direct transformation between the equilibrium equa-
tions in Lagrangian and Eulerian form. In fact, they allow for the expression of the Lagrangian diver-
gence operator in terms of the Eulerian divergence operators. As the divergence operator can also be
defined on an arbitrary submanifold, Piola identities for such submanifolds can be formulated. For our
purposes, we need such an identity for two- and three-dimensional domains.

C.1. Volume Piola identities

It is well known (see e.g. Auffray et al. [32]) that the Lagrangian and Eulerian volume divergence opera-
tors can be related by means of celebrated identities that are unanimously attributed to Gabrio Piola
(see dell’Isola and colleagues [11,16]). Let T = T(X ) be a vector field over the reference configuration.
Then the first Piola identity is
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∂

∂xa
((J�1Fa

ATA)8p)(x) = J�1 ∂TA

∂X A

� �
8p(x) ,

which, after dropping the arguments, reads as

∂

∂xa
(J�1Fa

ATA) = J�1 ∂TA

∂X A
, div(J�1F �T) = J�1Div(T) : ð65Þ

The proof of this identity can be carried out as follows. Let f = f(x) be a scalar test function on the
current configuration v with compact support vanishing on the boundary ∂v, that is, f(x) = 0 for
x 2 ∂v. The integral over v of the left hand side of equation (65) multiplied with the test function leads
after an integration by parts to ð

v

∂

∂xa
(J�1Fa

ATA)f =�
ð
v

J�1Fa
ATA ∂f

∂xa
:

Introducing the Lagrangian test function F = f8P, together with equation (32), we can writeð
v

∂

∂xa
(J�1Fa

ATA)f =�
ð
v

J�1TA ∂F

∂X A
=�

ð
O

TA ∂F

∂X A

where in the last equality, we made use of the change of variables (35). A subsequent integration by parts
followed by a change of variables with equation (64) leads toð

v

∂

∂xa
(J�1Fa

ATA)f =

ð
O

∂TA

∂X A
F =

ð
v

J�1 ∂TA

∂X A
f:

Since the equality must hold for all test functions, equation (65) follows directly.
Note that, setting t := J�1F �T , we get the so-called second Piola identity:

J
∂ta

∂xa
=

∂

∂X A
(J (F�1)A

a ta) , Jdiv(t) =Div(JF�1 �t) : ð66Þ

Note also that, considering in equations (65) and (66) constant tensor fields T or t, the equalities reduce
to

0 =
∂

∂xa
(J�1Fa

A) , 0 =
∂

∂X A
(J (F�1)A

a ) : ð67Þ

C.2. Surface Piola-type identity

Similar to the volume Piola-type identity, which relates the current volume divergence operator with the
referential one, we can derive an identity for the surface divergence operators. The relation correspond-
ing to equation (66) in terms of the surface operators is expressed in a symbolic way as

JS divs
k (tk) = DIVS

k (JSF�1 �tk)

which in components reads as

JS

∂

∂xc
(mk

a
b
tb)mk

c
a
=

∂

∂X C
(JS(F�1)A

a mk
a
b
tb)Mk

C
A
: ð68Þ

The proof follows the same strategy as for the volume identity. Let S be a Lagrangian surface with
boundary ∂S. Then, the surface with boundary s = P(S) is diffeomorphic to S. Let us assume that a
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sufficiently regular Eulerian vector field t is defined in the neighborhood of s. Let f = f(x) be a scalar
test function on the current surface s with compact support vanishing on the boundary ∂s. We haveð

s

∂

∂xc
mk

a
b
tb

� �
mk

c
a
f =�

ð
s

mk
a
b
tb ∂f

∂xc
mk

c
a
:

Changing integration variable in agreement with equation (64), using equation (34) and the idempotence
of mk, one obtains ð

s

∂

∂xc
mk

a

b
tb

� �
mk

c

a
f =�

ð
S

JSmk
c

b
tb ∂F

∂X A
(F�1)A

c :

By definition of mk, the vector t = mk �w is a vector tangent to s. According to equation (58),
T = F�1 �t is tangent to S. We have T = Mk �T that is F�1 �t = Mk �F�1 �t, hence

t = F �Mk �F�1 �t , tc = Fc
I Mk

I

J
(F�1)J

ata :

Using this identity, we can modify our expression further toð
s

∂

∂xc
mk

a
b
tb

� �
mk

c
a
f =�

ð
S

JS(Fc
I Mk

I
J
(F�1)J

a)mk
a
b
tb ∂F

∂X A
(F�1)A

c

=�
ð
S

JS(Mk
A

J
(F�1)J

a)mk
a

b
tb ∂F

∂X A

=�
ð
S

JS(Mk
A

B
Mk

B

J
(F�1)J

a)mk
a

b
tb ∂F

∂X A

=

ð
S

FMk
A
B

∂

∂X A
(JS(F�1)J

amk
a
b
tbMk

B
J

)

=

ð
s

fMk
A
B

∂

∂X A
(JS(F�1)J

amk
a
b
tbMk

B
J

)J�1
S ,

resulting in the identity

∂

∂xc
(mk

a
b
tb)mk

c
a
= J�1

S Mk
A
B

∂

∂X A
(JSMk

B
J

(F�1)J
amk

a
b
tb) : ð69Þ

Since mk �t is tangent to s, the Lagrangian vector F�1 �mk �t is tangent to S and

Mk
B

J
(F�1)J

amk
a

b
tb = (F�1)B

a mk
a

b
tb,

with which the Piola-type identity (68) follows.
We conclude this subsection by remarking that the volume Piola identity (67)

0 =
∂

∂xa
(J�1Fa

A)

cannot be generalized easily for surfaces. To discuss this point, we should delve into the problem of
determining Levi-Civita parallel transport on the submanifolds ∂O and ∂v.
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